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ABSTRACT

Various applications of voice synthesis have been developed independently despite
the fact that they generate “voice” as output in common. In addition, the majority
of voice synthesis models currently rely on annotated data, but it is crucial to scale
them to self-supervised datasets in order to effectively capture the wide range of
acoustic variations presented in human voice, including speaker identity, emotion,
and prosody. In this work, we propose MVoice, a multimodal spoken large language
model for synthesizing and manipulating voice signals at scale. MVoice employs
self-supervised voice tokens with the “coarse-to-fine” designs to first determine
semantic meaning and then introduce condition signals for acoustic generation. It
offers notable benefits with unified generation and transformation capabilities: 1)
model and data scalability: without the requirement of scattered model-specific
methodologies or annotations acoustic data, training could be scaled up in terms
of data usage and model capability; and 2) controllability and conditioning flex-
ibility: we investigate different conditioning mechanisms and effectively handle
voice synthesis applications, including text-to-speech, voice conversion, singing
voice synthesis, singing voice conversion, and speech-to-speech translation by
re-synthesizing the discrete representations with prompt guidance. Experimental
results demonstrate that MVoice exhibits superior audio quality and style similarity
compared with competitive baseline models in monolingual/cross-lingual voice
generation. 1

1 INTRODUCTION

Table 1: Supported audio generation tasks of MVoice and selected prior works. The versatile MVoice
model supports more tasks than all others: it supports 5 voice generation tasks in 6 languages. ML:
Multilingual; TTS: text-to-speech; VC: voice conversion; SVS: singing voice synthesis; SVC: singing
voice conversion; S2ST: speech-to-speech translation;

Model Feature ML TTS/VC SVS SVC S2ST
VoiceBox (Le et al., 2023) Continuous ✓ ✓ ✗ ✗ ✗
NaturalSpeech2 (Shen et al., 2023) Continuous ✗ ✓ ✓ ✗ ✗
Maga-TTS (Jiang et al., 2023) Continuous ✗ ✓ ✗ ✗ ✗
VALL-E X (Zhang et al., 2023) Discrete ✓ ✓ ✗ ✗ ✓
SPEAR-TTS (Kharitonov et al., 2023) Discrete ✗ ✓ ✗ ✗ ✗
SpeechX (Wang et al., 2023b) Discrete ✓ ✓ ✗ ✗ ✗
MVoice (Ours) Discrete ✓ ✓ ✓ ✓ ✓

Voice synthesis (Wang et al., 2017; Ren et al., 2019; Qian et al., 2020) aims to generate human-like
voices, which attracts broad interest in the machine learning community. These voice generation
models have been extended to more complex scenarios, including multiple speakers, emotions, and
styles for expressive and diverse voice generation. A growing number of applications, such as
voice assistant services and long-form reading, have been actively developed to real-world speech
platforms.

1Audio samples are available at https://MVoice.github.io

1

https://MVoice.github.io


Under review as a conference paper at ICLR 2024

Despite the recent success of deep generative models (Casanova et al., 2022; Huang et al., 2022b;
Min et al., 2021; Nachmani & Wolf, 2019), the rising demand for expressive voice generation poses
challenges for models in 1) zero-shot generalization: when the distributions of testing samples differ
from training data with unseen acoustic diversities (e.g., speaker identity, emotion and prosody), the
quality of synthesized voice often deteriorates due to distribution gaps, and 2) unified generation:
most of current voice models have been developed independently, where the methodologies developed
for each application remain scattered in research fields.

In this work, we introduce MVoice, a multimodal large language model for synthesizing and manipu-
lating multilingual voice signals at scale. MVoice employs self-supervised tokens with the following
“coarse-to-fine” generation designs: 1) Semantic stage determines the desired meaning given text
or speech; 2) Acoustic stage is scaled to a large amount of self-supervised audio-only data, where
conditioning mechanisms are investigated with various control signals. The single decoder-only
model is trained on a mixture of tasks that involve arbitrarily interleaved voice.

MVoice demonstrates notable advantages as a general-purpose unified model in voice synthesis:
1) Model and data scalability: without the requirement of annotation data or scattered model-
specific methodologies, training could be scaled up in terms of data usage and model capability; 2)
Controllability with flexible conditioning options: various conditioning mechanisms are investigated
by re-synthesizing the semantic or acoustic representations with prompt-guided in-context learning.

MVoice is trained on ∼200K hours of multilingual data in 6 languages, and we introduce 5 voice
generation applications: text-to-speech (TTS), voice conversion (VC), singing voice synthesis (SVS),
singing voice conversion (SVC), and speech-to-speech translation (S2ST). These applications can
be effectively addressed by leveraging the unified framework that employs discrete representations.
Experimental results demonstrate that MVoice achieves state-of-the-art results in monolingual/cross-
lingual zero-shot voice generation. Both subjective and objective evaluation metrics show that MVoice
exhibits superior audio quality and style similarity compared with baseline models. Our contributions
can be summarized as follows:

• We propose a multimodal large language model called MVoice for unified voice synthesis, where
the “coarse-to-fine” design aims to effectively model the human voice by considering semantic
meanings and acoustic conditions.

• We investigate data and model scalability with 6 languages of multilingual data.

• We unify generation and transformation capabilities, allowing a mixture of 5 voice generation
applications including text-to-speech (TTS), voice conversion (VC), singing voice synthesis (SVS),
singing voice conversion (SVC), and speech-to-speech translation (S2ST).

• Experimental results demonstrate that MVoice achieves state-of-the-art results in monolingual/cross-
lingual zero-shot voice generation. MVoice excels in scalability, controllability, and conditioning
flexibility.

2 RELATED WORKS

Text-guided voice synthesis (text-to-speech and singing voice synthesis) typically converts input text
into mel-spectrogram (e.g., Tacotron Wang et al. (2017), FastSpeech Ren et al. (2019)), which is
then transformed to waveform using a separately trained vocoder (Kong et al., 2020; Huang et al.,
2021), or directly generate waveform from text (e.g., EATS Donahue et al. (2020) and VITS Kim
et al. (2021)). In zero-shot scenarios, when the distributions of style prompts deviate from the training
data, the quality of the synthesized voice often suffers degradation due to distribution mismatches:
GenerSpeech (Huang et al., 2022b) leverages multi-level style adaptors for the global and local
stylization of the custom utterance. YourTTS (Casanova et al., 2022) is built upon VITS with several
novel modifications for zero-shot multi-speaker and multilingual training. In this work, we enhance
zero-shot robustness by scaling up training data with an extensive collection of speakers encompassing
diverse accents, demographics, and recording conditions. This approach aims to capture the acoustic
diversity presented in human speech, including variations of speaker identity, emotion, and prosody.

Beyond text-guided voice synthesis, speech-guided voice synthesis has made massive progress to
date. Voice conversion (VC) (Liu et al., 2021; Qian et al., 2020; Yi et al., 2020) and singing voice
conversion (SVC) (Deng et al., 2020; Nachmani & Wolf, 2019; Huang et al., 2023) aim to convert
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only the speaker identity attribute while keeping semantic meaning the same. To replace timbre
features extracted from referenced audio and keep content and pitch features unchanged, the key is
decomposing the voice into timbre, pitch, and content representations. In contrast, speech-to-speech
translation (S2ST) aims at converting speech from one language into speech in another, significantly
breaking down communication barriers between people not sharing a common language. Direct
systems (Lee et al., 2021a;b) leverage recent progress on self-supervised discrete units learned from
unlabeled speech for building textless S2ST, and Popuri et al. (2022) show that self-supervised
encoder and decoder pre-training with weakly-supervised data improves model performance.

Most aforementioned generative models are task-specific and trained on different datasets, while
building a simple and unified voice synthesis framework has also attracted increasing attention in the
community: Liu et al. (2023) make use of large amounts of unlabeled data for model training and
boost the performance of zero-shot text-to-speech and voice conversion simultaneously. NANSY
families (Choi et al., 2021a; 2022) are trained in a self-supervised manner that does not require any
annotations paired with audio. Built-in continuous vector space, VoiceBox (Le et al., 2023) leverage
non-autoregressive flow-matching model for speech at scale, and NaturalSpeech2 (Shen et al., 2023)
uses a diffusion model to generate neural codec-based latent vectors conditioned on text input.

Another line of works models voice with an autoregressive transformer in a compact and discrete
space. VALL-E (Wang et al., 2023a), SPEAR-TTS (Kharitonov et al., 2023) are proposed to clone a
human’s voice with discrete prompt tokens from a short recording (3-seconds). Speech-X (Wang
et al., 2023b) combines neural codec language modeling with multitask learning using task-dependent
prompting, which is capable of zero-shot TTS and various speech transformation tasks, dealing with
both clean and noisy signals. MVoice has several design advantages compared to these baselines: 1)
model and data scalability: without the requirement of annotations acoustic data or scattered model-
specific methodologies, training could be scaled up in terms of data usage and model capability; 2)
Controllability with flexible conditioning options: various conditioning mechanisms are investigated
by re-synthesizing the semantic or acoustic representations with prompt guidance. MVoice exhibits
in-context learning abilities by presenting how to create the context to perform tasks MVoice is not
explicitly trained on.

3 MVOICE

3.1 OVERVIEW

MVoice is considered a unified voice synthesis model with a “coarse-to-fine” design that progressively
enhances the modeling of voice signals by injecting desired conditioning information, which is
organized in two main stages as illustrated in Figure 1: 1) semantic stage S1, speech or text inputs
are transformed into a sequence of semantic tokens s, 2) acoustic stage S2, acoustic tokens a with
a variety of conditions (speaker, emotion, prosody, and style) are generated autoregressively from
the “pseudo” text (i.e., semantic tokens s). In the end, a unit-based vocoder synthesizes high-fidelity
waveforms from compressed acoustic representations.

3.2 VOICE REPRESENTATION

Semantic tokens. It is crucial to extract rich linguistic information from the speech signal. To
this end, we resort to XLSR-53: a wav2vec 2.0 model pre-trained on 56k hours of speech in
53 languages (Conneau et al., 2020). In the following, a k-means algorithm is applied to the
learned representations of the unlabelled speech to generate K1 cluster centroids at every 20-ms
frame. In the end, a speech utterance y is represented as semantic tokens with [s1, s2, . . . , sT ] , si ∈
{0, 1, . . . ,K1 − 1},∀1 ≤ i ≤ T , where T is the number of frames.

Acoustic tokens. The audio encoder E of codec models (Zeghidour et al., 2021; Défossez et al.,
2022) consists of several convolutional blocks with a total downsampling rate of 320 and gen-
erates continuous representations at every 20-ms frame in 16kHz. The residual vector-quantizer
Q produces discrete representations aq with a codebook size of K2, using a vector quantization
layer (Vasuki & Vanathi, 2006). In the end, a speech utterance y is represented as acoustic tokens
with [a1, a2, . . . , aT ] , ai ∈ {0, 1, . . . ,K2 − 1},∀1 ≤ i ≤ T , where T is the number of frames.
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Figure 1: A high-level overview of MVoice. Note that S1 and S2 are learned jointly in a decoder-only
language model. The F0 auxiliary input denoted with dotted lines is included only for singing voice.

3.3 MODEL: “COARSE-TO-FINE” DESIGN

3.3.1 SEMANTIC STAGE S1: DETERMINING SEMANTIC MEANING

Semantic stage S1 maps tokenized text or speech into semantic tokens s. For semantic token modeling,
we use parallel text-semantic or speech-semantic data to learn this mapping with an autoregressive
decoder-only transformer architecture θAR. It is conditioned on the condition signals cs (multilingual
phonemes), formulated as p (s | cs; θAR) =

∏T
t=0 p (st | s<t, cs; θAR)

3.3.2 ACOUSTIC STAGE S2: INTRODUCING ACOUSTIC CONDITIONS

Acoustic stage S2 maps semantics into acoustic tokens a, where we flatten all the codebooks from
the codec model. S2 is scaled up to a large amount of self-supervised audio-only data containing
many speakers with various accents, diverse demographics, and heterogeneous recording conditions
to improve the robustness in zero-shot scenarios. It is designed to include a variety of acoustic
conditions (e.g., speaker, emotion, prosody, and style) on top of semantic meanings, and thus we
investigate different conditioning mechanisms for controllability and flexibility. It is conditioned
on the condition signals ca (semantic tokens, acoustic prompts, or explicit F0), formulated as
p (a | ca; θAR) =

∏T
t=0 p (at | a<t, ca; θAR)

3.4 RECONSTRUCTING HIGH-FIDELITY WAVEFORMS

We train a unit-based neural vocoder from scratch for the acoustic unit to waveform generation.
Inspired by BigVGAN (Lee et al., 2022), the synthesizer includes the generator and multi-resolution
discriminator (MRD). The generator is built from a set of look-up tables (LUT) that embed the
discrete representation and a series of blocks composed of transposed convolution and a residual
block with dilated layers. The transposed convolutions upsample the encoded representation to match
the input sample rate, while the dilated layers increase the receptive field. More details have been
included in Appendix C.2.

3.5 ARCHITECTURE AND TRAINING

3.5.1 ARCHITECTURE

With large-scale training data and powerful models, large language models have recently exhibited
high-quality samples in natural language processing. To make audio modeling more tractable, recent
studies propose to represent audio signals as multiple streams of discrete tokens representing the
same signal and flatten these codes (Agostinelli et al., 2023; Kreuk et al., 2022). It comes at the
high computational cost of modeling extremely long sequences, because of the quadratic cost of
self-attention and large feedforward networks per-position.

To tackle the aforementioned issue, inspired by Yu et al. (2023), MVoice (denoted as θAR) predicts
long sequences with multiscale transformers. Specifically, 1) the token embedding matrix EG

maps integer-valued tokens x0..T to m dimensional embeddings, and concatenate with continuous
speech representation in time axis (if any), following which 2) we chunk it into patches of size
P of length K = T

P , 3) a large global transformer θglobal
AR module outputs patch representations

4



Under review as a conference paper at ICLR 2024

G1:K
o = θglobal

AR (G0:K−1
i ), and 4) a small local transformer module operates on a single patch

containing P elements, each of which is the sum of an output from the global model and an embedding
of the previous tokens, and autoregressively predict the next patch L1:K

o = θlocal
AR (L0:K−1

i +G1:K
o ).

The model is optimized to maximize the probability of the next token, and we share the parameters
of the output projection layer with the parameters of the embedding. This enables sub-quadratic
self-attention and much larger feedforward layers for the same compute, unlocking the ability to train
much larger and better-performing models and scale to very long audio sequences.

3.5.2 MULTILINGUAL AND MULTITASK TRAINING

Scalability. 1) Data: the acoustic modeling S2 stage does not require any annotations, and thus train-
ing data could be scaled up to a large number of speakers, with various accents, diverse demographics,
and heterogeneous recording conditions. It enables capturing acoustic diversity (speaker identity,
emotion, prosody) in human voice, especially for zero-shot scenarios. 2) Model: Like GPT-3, large
language models are all variants of the transformer architecture (Vaswani et al., 2017), where the
improvements have primarily come from scaling the models’ size in depth and width. Without the
requirement of scattered model-specific methodologies, training could be scaled up regarding model
capability.

Languages and tasks module. We signal to the model which language or task it should perform
on a given input by prefixing the input with a tag specifying the task and language. For example, to
query the model to perform text-to-semantic translation on an utterance in English, the tokenized
input would be preceded by the two tags [T2S] [En]. To perform speech-to-semantic translation from
English to French, the tokenized input would be preceded by [S2S] [En-Fr]. The component tasks that
we consider in this report are 1) Text-to-semantic: mapping the phone sequence to semantic tokens;
2) Text-to-semantic with duration: mapping the phone sequence to semantic tokens given explicit
duration guidance; 3) Speech-to-semantic: translating the speech sequence to semantic tokens; 4)
Semantic-to-acoustic: translating the semantic sequence to acoustic tokens given acoustic prompt
ap, and 5) Semantic-to-acoustic with F0: translating the semantic sequence to acoustic tokens given
acoustic prompt ap and explicit F0.

3.6 APPLICATION

MVoice exhibits competitive advantages as a unified voice synthesis framework with a “coarse-to-fine”
design. As illustrated in Table 2, we demonstrate that MVoice exhibits in-context learning abilities by
presenting how to perform tasks MVoice is not explicitly trained on.

Zero-shot TTS / VC. Given a target text y, zero-shot TTS aims to generate high-quality speech
samples with acoustic prompt ap derived from a reference utterance, which has different acoustic
conditions from training data. To control the characteristics of the speaker’s voice, a prompt for
timbre guidance is required. During training, we randomly select two non-overlapping windows of
speech from each example, and consider one of the windows as the prompt and the other as the target
output. Instead, we extract the semantic tokens from speech using the K-means model for voice
conversion.

Zero-shot SVS / SVC. Given the frame-level phone df , SVS aims to generate a singing voice
with accurate pitch control, where the fundamental frequency F0 prompt is further requested in
semantic-to-acoustic modeling. In practice, F0 could be predicted by a separately-trained neural
network given MIDI score, and thus we directly take the F0 value as condition signals in acoustic
model S2 for simplification following (Liu et al., 2022), where we extract F0 = (f1, . . . , fL) using
the YAAPT algorithm (Kasi, 2002) from target singing voice with 320 hop size.

Textless S2ST. Unit-based textless S2ST system consists of a speech-to-unit translation (S2UT)
model followed by a unit-based vocoder that converts discrete units to speech, we use the parallel
data to learn this mapping from wav2vec continuous vector to the semantic token. Wav2vec 2.0 is a
self-supervised framework to learn speech representations from unlabeled audio data, which is trained
via contrastive loss with masked spans on the input to the context encoder. Shown in (Popuri et al.,
2022), the self-supervised encoder pre-training with weakly-supervised data significantly improves
model performance.
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Table 2: Zero-shot applications by re-synthesizing the semantic or acoustic representations with
varying conditions.

Applications S1 S2

TTS Text-to-semantic Semantic-to-acoustic
SVS Text-to-semantic with duration Semantic-to-acoustic with F0

VC K-means Semantic-to-acoustic
SVC K-means Semantic-to-acoustic with F0

S2ST Speech-to-semantic Semantic-to-acoustic

4 DATA AND METRICS

4.1 DATASET

Table 3 lists the used datasets with six languages: English (En), French (Fr), German (De), Spanish
(Es), Japanese (Ja) and Chinese (Zh), and overall we have ∼200k hours 16 kHz audio as training
data. For text sequence, we tokenize it into the phoneme sequence with an open-source grapheme-to-
phoneme conversion tool (Sun et al., 2019). During the evaluation, we randomly choose sentences to
construct the zero-shot testing set for each application task, in which the voice used for prompting is
never seen by the model at training, and it has to reproduce the characteristics from a single prompt
example. We have attached detailed information on the data configuration in Appendix A.

Table 3: Dataset usage in training and inference stages.

Tasks Language Dataset Testing set

TTS/VC Ja, De, Fr, En, Es, Zh Librilight, Gigaspeech, WenetSpeech, CSS, AISHELL LibriTTS/VCTK
SVS En, Zh OpenSinger, M4Singer, CSD, Kiritan Opencpop
S2ST Fr, En, Es, De SpeechMatrix SpeechMatrix test

4.2 TRAINING AND EVALUATION

Intelligibility and accuracy. We employ word error rate (WER) to evaluate the intelligibility of
the generated speech by transcribing it using a wav2vec ASR system. We transcribe the translated
speech for accuracy and then calculate the BLEU score (Papineni et al., 2002) between the generated
and the reference text. For English-only setups, we use the large model pretrained and fine-tuned on
Libri-Light and Librispeech on 16kHz sampled speech audio. For multilingual settings, we use ASR
models publicly released on Hugging Face following (Duquenne et al., 2022).

Style quality and similarity. Speaker similarity score (SIM) assesses the coherence of the generated
speech in relation to the speaker’s characteristics, which is calculated as the cosine similarity between
the speaker embeddings of the generated speech and the desired speech signals. F0 Frame Error
(FFE) measures the timbre and prosody similarity of synthesized and reference audio, respectively.

Subjective evaluation. We also conduct a crowd-sourced human evaluation via Amazon Mechanical
Turk, which is reported with 95% confidence intervals (CI), and analyze two aspects: style similarity
(speaker, emotion, and prosody) and audio quality (clarity, high-frequency), respectively scoring
SMOS and MOS. More information has been attached in Appendix D.

4.3 BASELINE

We compare the generated audio samples with other systems, including 1) GT, the ground-truth
audio; 2) YourTTS (Casanova et al., 2022), GenerSpeech (Huang et al., 2022b), VALL-E (Wang et al.,
2023a) for English zero-shot TTS; 3) YourTTS (Casanova et al., 2022) for zero-shot multilingual
TTS; 4) NANSY (Choi et al., 2022) and PPG-VC (Liu et al., 2021) for VC; 5) Diffsinger (Liu et al.,
2022) and FFT-Singer for SVS; 6) SpeechMatrix (Duquenne et al., 2022) for multilingual S2ST.

5 EXPERIMENTS

Model Configurations. For semantic representations, we apply XLSR-53 pre-trained on 56k hours
of speech in 53 languages (Conneau et al., 2020) and use k-means to discretize 12th-layer embeddings

6



Under review as a conference paper at ICLR 2024

into semantic tokens with a codebook of size 1000 and a total downsampling rate of 320. For acoustic
representation, we train the SoundStream model with 12 quantization levels, each with a codebook
of size 1024 and the same downsampling rate of 320. We take three quantization levels as the
acoustic tokens, representing each frame as a flat sequence of tokens from the first, second, and third
quantization layers. We trained three sets of MVoice, with 160M (base), 520M (medium), and 1.2B
(large) parameters. As for the unit-based vocoder, we use the modified V1 version of BigVGAN. A
comprehensive table of hyperparameters is available in Appendix B. Except explicitly stated, we use
our 520M (medium) model for downstream evaluation.

Training. During training, we train MVoice for 100K steps using 8 NVIDIA V100 GPUs with a
batch size of 6000 tokens for each GPU on the publicly-available fairseq framework (Ott et al., 2019).
Adam optimizer is used with β1 = 0.9, β2 = 0.98, ϵ = 10−9. S3 model is optimized with a segment
size of 8192 and a learning rate of 1 × 10−4 until 500K steps using 4 NVIDIA V100 GPUs. For
sampling, we employ top-p (Holtzman et al., 2019) sampling with p = 0.25.

5.1 MONOLINGUAL AND CROSS-LINGUAL ZERO-SHOT TEXT-TO-SPEECH

Table 4: Quality and style similarity of generated samples in monolingual zero-shot text-to-speech.

Model MOS (↑) SMOS (↑) WER (↓) SIM (↑)

GT 4.23±0.09 / 4.1 /

GenerSpeech 3.99±0.08 3.77±0.08 8.6 0.83
YourTTS 3.89±0.08 3.72±0.06 12.1 0.78
MVoice 4.04±0.07 3.81±0.08 6.7 0.85

Small-Scale Subjective Test
VALL-E 3.92±0.12 3.81±0.07 4.5 0.79
MVoice 4.01±0.06 3.87±0.04 3.0 0.83

1) For the intelligibility of the generated speech, MVoice has achieved a WER of 6.7, comparable with
other systems, indicating that MVoice could generate accessible speech of good quality as previous
non-autoregressive TTS families. 2) For audio quality, MVoice has achieved the highest MOS with
scores of 4.04 compared with the baseline models, demonstrating the effectiveness of the vocoder in
generating high-fidelity waveforms. 3) Regarding style similarity, MVoice scores the SIM of 0.85,
showing that MVoice surpasses the state-of-the-art models in transferring the style of custom voices.
Informally, MVoice is optimized in a large amount of self-supervised data, which contains many
speakers with various accents, diverse demographics, and heterogeneous recording conditions, to
improve robustness and generalization in zero-shot scenarios.

Using the examples provided on its demo page, we also compare MVoice with VALL-E in a small-
scale subjective test. We synthesize utterances using the same transcripts and prompts and conduct
the objective and subjective test with the same protocol described above. Table 4 shows that, in these
examples, MVoice obtains 1.5 lower WER and 0.04 higher style similarity than baseline models in
zero-shot synthesis.

Table 5 presents cross-lingual zero-shot TTS results, where the audio context and the target text are
in different languages. For each target text, we sample one 3-second-long audio context from each
language, which creates language transfer directions in total. Compared with YourTTS, MVoice
yields better results in most languages, obtaining lower WERs and higher similarity SIM averaged
across audio contexts. Regarding low-resource language, MVoice presents potential improvement for
the limited usage of training data at this time.

5.2 SINGING VOICE SYNTHESIS

Table 6 demonstrates that MVoice (SVS) outperforms the baseline system by a large margin in terms
of pitch similarity, showing distinct 70%/30% superiority over FFT-Singer/DiffSinger in terms of
FFE objective evaluation. MVoice can resemble the note prompt and demonstrates its precise pitch
reconstruction. Regarding singer similarity, MVoice scores the highest SIM of 0.78, surpassing the
state-of-the-art models in transferring the style of custom singing voices in zero-shot scenarios even
though the voice used for prompting is never seen at training.
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Table 5: Quality and style similarity of generated samples in multilingual zero-shot text-to-speech.
YT refers to YourTTS. We report SIM for simplification for the Fr, Zh, and Ja languages.

Prompt De En Es Fr Zh Ja
WER SIM WER SIM WER SIM SIM SIM SIM

YT

De 6.0 0.81 3.1 0.71 4.1 0.71 0.72 0.74 /
En 8.0 0.79 6.3 0.71 3.0 0.78 0.71 0.72 /
Es 10.3 0.71 2.6 0.73 12.3 0.80 0.70 0.70 /
Fr 12.7 0.76 5.1 0.71 18.6 0.67 0.79 0.67 /
Zh 21.3 0.72 11.0 0.65 2.0 0.75 0.76 0.75 /
Ja 6.1 0.80 10.1 0.73 2.1 0.69 0.82 0.79 /

AVG 10.7 0.76 6.3 0.70 7.0 0.73 0.75 0.72 /

Ours

De 10.1 0.78 4.2 0.75 14.1 0.75 0.78 0.72 0.70
En 15.1 0.78 9.1 0.77 9.1 0.80 0.74 0.79 0.67
Es 13.0 0.76 7.1 0.75 13.0 0.78 0.78 0.68 0.70
Fr 22.0 0.70 3.6 0.71 11.0 0.73 0.78 0.77 0.69
Zh 10.3 0.68 5.3 0.71 18.1 0.69 0.76 0.70 0.68
Ja 9.1 0.79 8.0 0.77 8.1 0.85 0.80 0.76 0.93

AVG 13.2 0.75 6.2 0.74 12.2 0.77 0.77 0.74 0.72

5.3 VOICE CONVERSION AND SINGING VOICE CONVERSION

Table 6: SVS. Note that FFT-Singer and Diffsinger
conduct in-domain generation with seen speaker while
MVoice presents zero-shot SVS.

Model MOS (↑) SMOS (↑) SIM (↑) FFE (↓)

GT 4.08±0.08 / / /

FFT-Singer 3.86±0.05 3.91±0.08 0.66 0.12
Diffsinger 3.96±0.07 3.94±0.07 0.67 0.11

MVoice (Zero-shot) 3.99±0.06 3.96±0.05 0.78 0.08

Table 7: Zero-shot VC and SVC.
Model MOS (↑) SMOS (↑) SIM (↑)

Voice Conversion
Prompt 4.26±0.06 / /
NANSY 3.89±0.08 3.73±0.10 0.68
PPG-VC 3.97±0.06 3.82±0.05 0.78
MVoice (Zero-shot) 4.02±0.08 3.78±0.06 0.80
Singing Voice Conversion
Prompt 4.21±0.05 / /
MVoice 3.96±0.06 3.72±0.05 0.76

Table 7 shows that MVoice scores the comparable overall SIM of 0.93 with baseline. It excels at
converting speaker identity even in a zero-shot scenario, attributing to the scalable training data
covering diverse speakers with various accents. For audio quality, it presents high perceptual quality
with outperformed MOS evaluation. To conclude, MVoice converts the timbre with better naturalness
and comparable speaker similarity to baseline models, even though the model is trained without any
text transcript paired with audio recordings. For singing voice conversion (SVC), MVoice also excels
at converting singer identity and presents good perceptual quality and naturalness.

5.4 SPEECH-TO-SPEECH TRANSLATION

Table 8 shows a decrease in translation accuracy compared with state-of-the-art models in Speech-
Matrix datasets. Informally, a gap from baseline models regarding translation accuracy could be
witnessed: Different from straight-forward semantic mapping in voice synthesis task, it is thus per-
haps not surprising that a decrease in performance on the speech translation tasks could be witnessed,
since model capacity must be devoted to semantic translation and conversion simultaneously.

For speech quality, since we apply the publicly available pre-trained unit vocoder, which mainly
controls the naturalness of output speech and leaves it unchanged, we expect S2ST to exhibit
high-quality speech generation as baselines.

5.5 ANALYSIS AND ABLATION STUDIES

To verify the effectiveness of several designs in MVoice, we conduct ablation studies and discuss
the key findings as follows. In this section, we first analyze the model scalability, then qualitatively
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Table 8: BLEU score in S2ST. A decrease
in the speech translation tasks could be wit-
nessed since model capacity must be devoted
to semantic translation (S2ST) and conver-
sion (TTS/SVS) simultaneously.

Model En-Es En-De En-Fr

Hours 1366 / 1518

SpeechMatrix 21.9 10.1 19.2
MVoice 16.3 7.3 12.3

Table 9: We compare with 1) different scales and 2)
multilingual (M) or monolingual training data.

Model TTS-WER TTS-SIM VC-SIM

Base 9.8 0.84 0.75
Medium 8.3 0.86 0.76
Large 6.1 0.87 0.76
De 18.0 0.65 0.52
De (M) 10.1 0.78 0.72
Fr 44.0 0.53 0.62
Fr (N) 30.2 0.72 0.79

investigate the benefits of multilingual and multitask training, and finally explore the ability to
maintain voice emotion and noise continuations.

Model Scalability. Table 9 reports LJSpeech results for different model sizes, namely 160M (base),
520M (medium), and 1.2B (large) parameter models. As expected, scaling the model size results in
better scores. However, this comes at the expense of longer training and inference time. Increasing
the model size further from 520M to 1.2B leads to additional gains of a further 40% reduction in
WER for TTS tasks with a similar style similarity.

Multilingual and Multitask. The limited amount of data is a significant challenge for low-resource
languages. For one model, we train with monolingual speech tasks; for the other, we include the
combined task of 6 languages. MVoice leverages a joint vocabulary and trains a single decoder-only
model on a mixture of tasks that involve arbitrarily multilingual voice, and Table 9 shows the improved
performance with the combination of simpler tasks. Combined language and task training reduce
the problem to a pipeline approach of separate systems, which helps the model to better connect its
semantic understanding to its acoustic audios especially in low-resource languages, leading to the
gains of 7.9 reduction in WER (De) for TTS tasks and a 0.2 point improvement in SIM (De).

Zero-shot transfer beyond speaker identity. This section presents how our approach could be
extended beyond, including cross-lingual timbre transferring, generating coherent emotion, and noise
continuations. We have attached the information on testing data in Appendix A. As shown in the
demo page, we find that 1) MVoice can preserve the emotion in the prompt at a zero-shot setting,
even if the model is not fine-tuned on an emotional TTS dataset; 2) MVoice effectively reproduces
the characteristics from a cross-lingual style prompt, which has not been seen during training; and
3) In a noisy environment, the model also presents the acoustic consistency and maintain the noise
conditions in the prompt.

6 CONCLUSION

In this work, we proposed MVoice, a multimodal large language model for synthesizing and manipu-
lating multilingual voice signals at scale. MVoice enjoyed the “coarse-to-fine” design to effectively
model the human voice by considering semantic meanings and acoustic conditions. Experimental
results demonstrated that MVoice achieves state-of-the-art results in monolingual/cross-lingual zero-
shot TTS and comparable results in speech-to-speech translation. MVoice offered notable advantages
as a general-purpose unified model in voice synthesis: 1) model and data scalability: without the
requirement of annotations acoustic data or scattered model-specific methodologies, training could be
scaled up in terms of data usage and model capability; 2) controllability and conditioning flexibility:
various conditioning mechanisms were investigated by re-synthesizing the semantic or acoustic
representations with prompt guidance. For future work, we will verify the effectiveness in more
general scenarios of visual modality. We envisage that our work will serve as a basis for future voice
synthesis studies.

Limitation. Although MVoice as a spoken large language model is successfully applied to multilin-
gual zero-shot voice signals at scale, it still suffers from some limitations: 1) MVoice introduces a
strong dependency on the quality of the audio tokenizer. 2) The model only shows in-context learning
ability on voice synthesis, rather than all voice recognition and understanding tasks, and 3) a longer
sequence length typically requires more computational resources, and degradation could be witnessed
with decreased training data.
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