
Under review as submission to TMLR

Learning with Kan Extensions

Anonymous authors
Paper under double-blind review

Abstract

A common problem in machine learning is “use this function defined over this small set to
generate predictions over that larger set.” Extrapolation, interpolation, statistical inference
and forecasting all reduce to this problem. The Kan extension is a powerful tool in category
theory that generalizes this notion. In this work we explore applications of the Kan extension
to machine learning problems. We begin by deriving a simple classification algorithm as a
Kan extension and experimenting with this algorithm on real data. Next, we use the Kan
extension to derive a procedure for learning clustering algorithms from labels and explore
the performance of this procedure on real data.
Although the Kan extension is usually defined in terms of categories and functors, this paper
assumes no knowledge of category theory. We hope this will enable a wider audience to learn
more about this powerful mathematical tool.

1 Introduction

A popular slogan in category theoretic circles, popularized by Saunders Mac Lane, is: “all concepts are Kan
extensions” (Mac Lane, 1971). While Mac Lane was partially referring to the fundamental way in which
many elementary category theoretic structures can be formulated as Kan extensions, there are many applied
areas that have Kan extension structure lying beneath the surface as well.

Casting a problem as a Kan extension can unveil hidden structure and suggest new avenues for exploration.
In this paper we aim to demonstrate what Kan extensions, and applied category theory more broadly, can
offer to machine learning researchers. We hope that our work will inspire more researchers to explore this
direction.

As a machine learning researcher it may be easiest to think of the Kan extension as tool for extrapolation.
We can use the Kan extension to expand a function over a small set to a similar function over a larger
set. However, the Kan extension perspective on extrapolation is fundamentally different from traditional
machine learning perspectives. Intuitively, traditional perspectives focus on means and sums whereas the
Kan extension perspective focuses on minimums and maximums. That is, a traditional machine learning
algorithm may try to extrapolate from data in a way that minimizes the total observed error. In contrast, an
algorithm derived from the Kan extension may try to solve a problem like “minimize false positives subject
to no false negatives on some set”.

In this paper we explore the ramifications of this difference across supervised and unsupervised learning
applications. To do this, we cast basic machine learning problems in category theoretic language, apply
the Kan extension, translate the result back to machine learning language, and study the behavior of the
resulting algorithms.

First, we derive a simple classification algorithm as a Kan extension and demonstrate experimentally that
this algorithm can learn to classify images. Next, we use Kan extensions to derive a novel method for
learning a clustering algorithm from labeled data and demonstrate experimentally that this method can
learn to cluster images. All code is available on GitHub.

For interested readers we include two additional examples of how Kan extensions can be applied to machine
learning in the Appendix. In Section A.2 we explore the structure of meta-supervised learning and use Kan

1

Under review as submission to TMLR

extensions to derive supervised learning algorithms from sets of labeled datasets and trained functions. In
Section A.3 we use Kan extensions to characterize the process of approximating a complex function with a
simpler minimum description length (MDL) function.

2 Preliminaries

The foundational structures that we use in this paper are preorders and monotonic maps.
Definition 2.1. A preorder (P, ≤) is a tuple of a set of objects P and a reflexive, transitive relation ≤ on
P .
Definition 2.2. A monotonic map f : (P1, ≤1) → (P2, ≤2) from the preorder (P1, ≤1) to the preorder
(P2, ≤2) is an order-preserving function from P1 to P2. That is, for any x, y ∈ P1 where x ≤1 y we have
f(x) ≤2 f(y).

For example, consider the preorder (Rn, ≤∥∥) where for v, u ∈ Rn we have v ≤∥∥ u when ∥v∥ ≤ ∥u∥. Consider
also the preorder (Rn, ≤∀) where v ≤∀ u when ∀i=1···n|vi| ≤ |ui|. The identity function id : (Rn, ≤∀) →
(Rn, ≤∥∥) is a monotonic map, but the identity function id : (Rn, ≤∥∥) → (Rn, ≤∀) is not a monotonic map.
Definition 2.3. (P, ≤) is a discrete preorder if p1 ≤ p2 in P implies p1 = p2

Definition 2.4. (P1, ≤1) is a subpreorder of the preorder (P2, ≤2) if P1 ⊆ P2 and the identity function
id : (P1, ≤1) → (P2, ≤2) is a monotonic map.

For example, (Rn, ≤∀) is a subpreorder of (Rn, ≤∥∥). As another example, consider the preorder (Un, ≤∀)
where Un is the set of unit-norm vectors in Rn. (Un, ≤∀) is a subpreorder of (Rn, ≤∀).

In order to keep notation simple we will use bold characters like A to represent the preorder (Ob(A), ≤A).
In addition, given two monotonic maps f1, f2 : A → B we will write f1 ≤ f2 to indicate that for all a ∈ A
we have f1(a) ≤ f2(a).

2.1 Kan Extensions

Now suppose we have three preorders A, B, C and two monotonic maps G : A → B, K : A → C and we
would like to derive the “best” monotonic map F : B → C:

B

A C

F
G

K

There are two canonical ways that we can do this.
Definition 2.5. The left Kan extension of K : A → C along G : A → B is the minimal monotonic map
LanGK : B → C such that K ≤ (LanGK ◦ G).

That is, for any other monotonic map m : B → C such that K ≤ (m ◦ G) we have LanGK ≤ m.
Definition 2.6. The right Kan extension of K : A → C along G : A → B is the maximal monotonic map
RanGK : B → C such that (RanGK ◦ G) ≤ K.

That is, for any other monotonic map m : B → C such that (m ◦ G) ≤ K we have m ≤ RanGK.

If G : A ↪→ B is the inclusion map then the Kan extensions of K along G are interpolations or extrapolations
of K from A to all of B. For example, suppose we want to interpolate a monotonic function K : Z → R to
a monotonic function F : R → R such that F ◦ G = K where G : Z ↪→ R is the inclusion map.

2

Under review as submission to TMLR

R

Z R

F
G

K

We have that LanGK : R → R is simply K ◦ floor and RanGK : R → R is simply K ◦ ceil, where floor, ceil
are the rounding down and rounding up functions respectively.

In this paper we explore a few applications of Kan extensions to machine learning. In each of these applica-
tions we first define preorders A, B, C and a monotonic function K : A → C such that A is a subpreorder of
B and G : A ↪→ B is the inclusion map. Then, we take the left and right Kan extensions LanGK, RanGK
of K along G and study their behavior.

3 Classification

We start with a simple application of Kan extensions to supervised learning. Suppose that I is a preorder,
I′ ⊆ I is a subpreorder of I, and {false, true} is the two element preorder where false < true. Suppose
also that K : I′ → {false, true} is a mapping into {false, true} and we would like to learn a monotonic
function F : I → {false, true} that approximates K on I′. That is, K defines a finite training set of points
S = {(x, K(x)) | x ∈ I′} from which we wish to learn a monotonic function F : I → {false, true}. Of course,
it may not be possible to find a monotonic function that agrees with K on all the points in I′.

I

I′ {false, true}

F
G

K

We can solve this problem with the left and right Kan extensions of K along the inclusion map G : I′ ↪→ I.
Proposition 3.1. The left and right Kan extensions of K : I′ → {false, true} along the inclusion map
G : I′ ↪→ I are respectively:

LanGK : I → {false, true} RanGK : I → {false, true}

LanGK(x) =
{

true ∃x′ ∈ I′, x′ ≤ x, K(x′) = true
false else

RanGK(x) =
{

false ∃x′ ∈ I′, x ≤ x′, K(x′) = false
true else

(Proof in Appendix A.1.1)

In the extreme case that Ob(I′) = ∅, for x ∈ I we have that:

LanGK(x) =
({

true ∃x′ ∈ I′, x′ ≤ x, K(x′) = true
false else

)
= false

RanGK(x) =
({

false ∃x′ ∈ I′, x ≤ x′, K(x′) = false
true else

)
= true

3

Under review as submission to TMLR

Similarly, in the extreme case that Ob(I′) = Ob(I) we have by the monotonicity of K that for x ∈ I both of
the following hold if and only if K(x) = true.

∃x′ ∈ I′, x′ ≤ x, K(x′) = true ̸ ∃x′ ∈ I′, x ≤ x′, K(x′) = false

Therefore in this extreme case we have LanGK(x) = RanGK(x) = K(x).

Now suppose that I′ contains at least one x′ such that K(x′) = true and at least one x′ such that K(x′) =
false. In this case LanGK and RanGK split I into three regions: a region where both map all points to
false, a region where both map all points to true, and a disagreement region. Note that RanGK has no false
positives on I′ and LanGK has no false negatives on I′.

For example, suppose I = R, I′ = {1, 2, 3, 4} and we have:

K(1) = false K(2) = false K(3) = true K(4) = true

Then we have that:

LanGK(x) =
({

true ∃x′ ∈ I′, x′ ≤ x, K(x′) = true
false else

)
=
({

true x ≥ 3
false else

)

RanGK(x) =
({

false ∃x′ ∈ I′, x ≤ x′, K(x′) = false
true else

)
=
({

true x > 2
false else

)

In this case the disagreement region for LanGK, RanGK is (2, 3) and for any x ∈ (2, 3) we have LanGK(x) <
RanGK(x).

As another example, suppose I = R, I′ = {5, 6, 7, 8} and we have:

K(5) = false K(6) = true K(7) = false K(8) = true

Then we have that:

LanGK(x) =
({

true ∃x′ ∈ I′, x′ ≤ x, K(x′) = true
false else

)
=
({

true x ≥ 6
false else

)

RanGK(x) =
({

false ∃x′ ∈ I′, x ≤ x′, K(x′) = false
true else

)
=
({

true x > 7
false else

)

In this case the disagreement region for LanGK, RanGK is [6, 7] and for any x ∈ [6, 7] we have RanGK(x) <
LanGK(x).

While this approach is effective for learning very simple mappings, there are many choices of K for which
LanGK, RanGK do not approximate K particularly well on I′ and therefore the disagreement region is large.
In such a situation we can use a similar strategy to the one leveraged by kernel methods (Hofmann et al.,
2008) and transform I to minimize the size of the disagreement region.

That is, we choose a preorder I∗ and transformation f : I → I∗ such that the size of the disagreement region
for Lanf◦GK ◦ f, Ranf◦GK ◦ f is minimized.

I I∗

I′ {false, true}

f

FG

K

4

Under review as submission to TMLR

For example, if I∗ = Ra we can choose f to minimize the following loss:
Definition 3.2. Suppose we have a set I′ ⊆ I and function K : I′ → {false, true} such that:

∃x′, x′′ ∈ I′, K(x′) = true, K(x′′) = false

Then the ordering loss l maps a function f : I → Ra to an approximation of the size of the disagreement
region for Lanf◦GK ◦ f, Ranf◦GK ◦ f . Formally, we define the ordering loss l to be:

l : (I → Ra) → R

l(f) =
∑
i≤a

max(0, max{f(x)[i] | x ∈ I′, K(x) = false}−

min{f(x)[i] | x ∈ I′, K(x) = true})

where f(x)[i] is the ith component of the vector f(x)[i] ∈ Ra.

We can show that minimizing the ordering loss l will also minimize the size of the disagreement region:
Proposition 3.3. The ordering loss l (Definition 3.2) is nonnegative and is only equal to 0 when ∀x ∈ I′

we have:

K(x) = (Lanf◦GK ◦ f)(x) = (Ranf◦GK ◦ f)(x)

Proof. First note that l must be nonnegative since each term can be expressed as max(0, _). Next, suppose
that l(f) = 0. Then it must be that for any x0, x1 ∈ I′ such that K(x0) = false, K(x1) = true we have that
f(x0) ≤ f(x1). As a result, for any x ∈ I′ there can only exist some x′ ∈ I′ where f(x) ≤ f(x′), K(x′) = false
when K(x) = false. Similarly, there can only exist some x′ ∈ I′ where f(x′) ≤ f(x), K(x′) = true when
K(x) = true. Therefore:

K(x) = (Lanf◦GK ◦ f)(x) = (Ranf◦GK ◦ f)(x)

It is relatively straightforward to minimize the ordering loss with an optimizer like subgradient descent (Boyd
et al., 2003). For example, we can implement the ordering loss in Tensorflow (Abadi et al., 2015) as follows:

1 import numpy as np
2 import tensorflow as tf
3

4 def get_ordering_loss(model, X, y):
5 # model: Tensorflow sequential model
6 # X: 2D numpy float array in which each row is a feature vector
7 # y: 1D numpy boolean array of labels
8 X_false = X[np.logical_not(np.array(y, dtype=bool))]
9 false_preds = tf.transpose(model(X_false))

10

11 X_true = X[np.array(y, dtype=bool)]
12 true_preds = tf.transpose(model(X_true))
13

14 return tf.reduce_sum(tf.math.maximum(0,
15 tf.math.reduce_max(false_preds), axis=1) -
16 tf.math.reduce_min(true_preds), axis=1)

5

Under review as submission to TMLR

Model Dataset True Positive Rate True Negative Rate
Left Kan Classifier Training 1.000 (±0.000) 0.612 (±0.042)

Right Kan Classifier Training 0.705 (±0.035) 1.000 (±0.000)
Left Kan Classifier Testing 0.815 (±0.020) 0.593 (±0.044)

Right Kan Classifier Testing 0.691 (±0.044) 0.837 (±0.026)

Table 1: True positive rate and true negative rate of the left Kan classifier Lanf◦GK ◦ f and the right
Kan classifier Ranf◦GK ◦ f where f is a linear map trained to minimize the ordering loss l(f) (Definition
3.2) on the Fashion-MNIST “T-shirt” vs “shirt” task (Xiao et al., 2017). We run a bootstrap experiment
by repeatedly selecting 9000 training samples and 1000 testing samples, running the training procedure, and
computing true positive rate and true negative rate metrics. Mean and two standard error confidence bounds
from 10 such bootstrap iterations are shown.

In Table 1 we demonstrate that we can use this strategy to distinguish between the “T-shirt” (false) and
“shirt” (true) categories in the Fashion MNIST dataset (Xiao et al., 2017). Samples in this dataset have
784 features (pixels), so we train a simple linear model f : R784 → R10 with Adam (Kingma & Ba, 2014)
to minimize the ordering loss l(f) over a training set that contains 90% of samples in the dataset. We then
evaluate the performance of the left Kan classifer Lanf◦GK ◦ f and the right Kan classifier Ranf◦GK ◦ f
over both this training set and a testing set that contains the remaining 10% of the dataset. We look at two
metrics over both sets: the true positive rate and the true negative rate. Recall that the true positive rate
of a classifier is the proportion of all true samples which the classifier correctly labels as true and the true
negative rate of a classifier is the proportion of all false samples which the classifier correctly labels as false.

As we would expect from the definition of Kan extensions, the left Kan classifier Lanf◦GK ◦ f has no false
negatives and the right Kan classifier Ranf◦GK ◦ f has no false positives on the training set. The metrics
on the testing set are in line with our expectations as well: the left Kan classifier has a higher true positive
rate and the right Kan classifier has a higher true negative rate.

4 Clustering with Supervision

Clustering algorithms allow us to group points in a dataset together based on some notion of similarity
between them. Formally, we can consider a clustering algorithm as mapping a finite metric space (X, dX) to
a partition of X.

In most applications of clustering the points in the metric space (X, dX) are grouped together based solely
on the distances between the points and the rules embedded within the clustering algorithm itself. This is an
unsupervised clustering strategy since no labels or supervision influence the algorithm output. For example,
agglomerative clustering algorithms like HDBSCAN (McInnes & Healy, 2017) and single linkage partition
points in X based on graphs formed from the points (vertices) and distances (edges) in (X, dX).

However, there are some circumstances under which we have a few ground truth examples of pre-clustered
training datasets and want to learn an algorithm that can cluster new data as similarly as possible to these
ground truth examples. We can define the supervised clustering problem as follows. Given a collection of
tuples

S = {(X1, dX1 ,PX1), (X2, dX2 ,PX2), · · · , (Xn, dn,PXn)}

where each (Xi, dXi
) is a finite metric space and PXi

is a partition of Xi, we would like to learn a general
function f that maps a finite metric space (X, dX) to a partition PX of X such that for each (Xi, dXi

,PXi
) ∈ S

the difference between f(Xi, dXi) and PXi is small.

In order to frame this objective in terms of Kan extensions we will first construct our preorder of metric
spaces.

6

Under review as submission to TMLR

Definition 4.1. A nonexpansive map from the metric space (X, dX) to the metric space (Y, dY) is a function
f : X → Y such that for x1, x2 ∈ X we have:

dY (f(x1), f(x2)) ≤ dX(x1, x2)

Definition 4.2. In the preorder Metid the set Ob(Metid) consists of all metric spaces (X, dX) and
(X, dX) ≤Metid

(Y, dY) when X ⊆ Y and the inclusion map ι : (X, dX) ↪→ (Y, dY) is nonexpansive.

We can represent a clustering of a set X with a partition PX of that set. We can now construct our preorder
of partitions.
Definition 4.3. Consider the tuples (X,PX), (Y,PY) where PX is a partition of X and PY is a partition of
Y . Then a consistent map f : (X,PX) → (Y,PY) is a function f : X → Y such that for any set SX ∈ PX

there exists some set SY ∈ PY such that f(SX) ⊆ SY .
Definition 4.4. In the preorder Partid the set Ob(Partid) consists of all partitions (X,PX) and
(X,PX) ≤Partid

(Y,PY) when X ⊆ Y and the inclusion map ι : (X,PX) ↪→ (Y,PY) is consistent.

We need one more condition to corral our definition of a clustering map.
Definition 4.5. We say that a monotonic map f from a subpreorder of Metid to a subpreorder of Partid

is well-behaved if for all (X, dX) in the domain of f we have that f(X, dX) = (X,PX) for some partition PX

of X.

Intuitively a well-behaved monotonic map from Metid to Partid acts as the identity on underlying sets.

Now given a subpreorder D ⊆ Metid, a discrete preorder T ⊆ D, and a well-behaved monotonic map
K : T → Partid, our goal is to find the best well-behaved monotonic map F : D → Partid such that
F ◦ G = K where G : T ↪→ D is the inclusion map.

D(⊆ Metid)

T(⊆ D) Partid

F
G

K

Intuitively, Ob(T) is the set of unlabelled training samples, K defines the labels on these training samples,
and Ob(D) is the set of testing samples.

We would like to use the Kan extensions of K along G to find this best clustering map. However, these Kan
extensions are not guaranteed to be well-behaved. For example, consider the case in which T is the discrete
preorder that contains the single-element metric space as its only object and D is the discrete preorder that
contains two objects: the single-element metric space and R equipped with the Euclidean distance metric 1.

{({∗}, d{∗}), (R, dR)}

{({∗}, d{∗})} Partid

F
G

K

1This counterexample due to Sam Staton

7

Under review as submission to TMLR

Since D is a discrete preorder, the behavior of K on ({∗}, d{∗}) will not affect the behavior of the left and
right Kan extensions of K along G on (R, dR). For example, the left Kan extension of K along G will map
(R, dR) to the empty set and is therefore not well-behaved.

In order to solve this problem with Kan extensions we need to add a bit more structure. Suppose Ob(D) is
the discrete preorder with the same objects as D and define the following:
Definition 4.6. The monotonic map KL : Ob(D) → Partid is equal to K on T and maps each object
(X, dX) in Ob(D) − Ob(T) to (X, {{x} | x ∈ X}).
Definition 4.7. The monotonic map KR : Ob(D) → Partid is equal to K on T and maps each object
(X, dX) in Ob(D) − Ob(T) to (X, {X}).

Intuitively, KL and KR are extensions of K to all of the objects in D. For any metric space (X, dX) ∈ Metid

not in Ob(T) the monotonic map KL maps (X, dX) to the finest possible partition of X and KR maps (X, dX)
to the coarsest possible partition of X.

Suppose we go back to the previous example in which T is the discrete preorder containing only the single-
element metric space and D is the discrete preorder containing both the single-element metric space and
(R, dR). Since:

KL(R, dR) = (R, {{x} | x ∈ R})

the left Kan extension of KL along the inclusion G : Ob(D) ↪→ D must map (R, dR) to the ≤Partid
-smallest

(X,PX) such that:

(R, {{x} | x ∈ R}) ≤Partid
(X,PX)

which is (X,PX) = (R, {{x} | x ∈ R}). Similarly, since:

KR(R, dR) = (R, {R})

the right Kan extension of KR along the inclusion G : Ob(D) ↪→ D must map (R, dR) to the ≤Partid
-largest

(X,PX) such that:

(X,PX) ≤Partid
(R, {R})

which is (X,PX) = (R, {R}). We can apply the same logic to the behavior of the Kan extensions on the
single-element metric space as well, so both Kan extensions are well-behaved monotonic maps.

We can now build on this perspective to construct optimal extensions of K.
Proposition 4.8. Consider the monotonic map LanGKL : D → Partid that sends the metric space
(X, dX) ∈ D to the partition of X defined by the transitive closure of the relation R where for x1, x2 ∈ X we
have x1 R x2 if and only if there exists some metric space (X ′, dX′) ∈ T where (X ′, dX′) ≤D (X, dX) and
x1, x2 are in the same cluster in K(X ′, dX′).

The map LanGKL : D → Part is a well-behaved monotonic map. (Proof in Appendix A.1.2)
Proposition 4.9. Consider the map RanGKR : D → Partid that sends the metric space (X, dX) ∈ D to
the partition of X defined by the transitive closure of the relation R where for x1, x2 ∈ X we have x1 R x2 if
and only if there exists no metric space (X ′, dX′) ∈ T where (X, dX) ≤D (X ′, dX′) and x1, x2 are in different
clusters in K(X ′, dX′).

The map RanGKR : D → Part is a well-behaved monotonic map (Proof in Appendix A.1.3)

We can now construct LanGKL, RanGKR as Kan extensions.
Proposition 4.10. Suppose there exists some well-behaved monotonic map F : D → Partid where F ◦ G =
K.

Then LanGKL : D → Partid (Proposition 4.8) is the left Kan extension of KL : Ob(D) → Partid along the
inclusion map G : Ob(D) ↪→ D.

8

Under review as submission to TMLR

D(⊆ Metid)

Ob(D) Partid

LanGKL
G

KL

In addition RanGKR : D → Partid (Proposition 4.9) is the right Kan extension of KR : Ob(D) → Partid

along the inclusion map G : Ob(D) ↪→ D.

D(⊆ Metid)

Ob(D) Partid

RanGKR
G

KR

(Proof in Appendix A.1.4)

We will call LanGKL the left Kan supervised clustering map and RanGKR the right Kan supervised clus-
tering map.

When Ob(T) = ∅ we have for any (X, dX) ∈ D that:

LanGKL(X, dX) = KL(X, dX) = (X, {{x} | x ∈ X})
RanGKR(X, dX) = KR(X, dX) = (X, {{X}})

In general for any metric space (X, dX) ∈ D − Ob(T) the monotonic maps LanGKL, RanGKR respectively
map (X, dX) to the finest (most clusters) and coarsest (fewest clusters) partitions of X such that for any
metric space (X ′, dX′) ∈ T we have:

K(X ′, dX′) = LanGKL(X ′, dX′) = RanGKR(X ′, dX′)

and LanGKL, RanGKR are monotonic maps. For example, suppose we have a metric space (X, dX) where
X = {x1, x2, x3}. We can form the subpreorders T ⊆ D ⊆ Metid where:

Ob(T) = {({x1, x2}, dX), ({x1, x3}, dX), ({x2, x3}, dX)}
Ob(D) = Ob(T) ∪ ({x1, x2, x3}, dX)

T is a discrete preorder and we define ≤D such that S1 ≤D S2 when S1 ≤Metid
S2. Now define K : T →

Partid to be the following monotonic map:

K({x1, x2}, dX) = {{x1, x2}}
K({x1, x3}, dX) = {{x1}, {x3}}
K({x2, x3}, dX) = {{x2}, {x3}}

In this case we have that:

KL({x1, x2, x3}, dX) = {{x1}, {x2}, {x3}} KR({x1, x2, x3}, dX) = {{x1, x2, x3}}

9

Under review as submission to TMLR

Since the only points that need to be put together are x1, x2 and there is no metric space (X, dX) in D
where ({x1, x2, x3}, dX) <D (X, dX) in D, we have:

LanGKL({x1, x2, x3}, dX) = {{x1, x2}, {x3}}
RanGKR({x1, x2, x3}, dX) = {{x1, x2, x3}}

As another example, suppose D is Metid and T is the discrete subpreorder of D whose objects are all metric
spaces with no more than 2 elements. Define the following well-behaved monotonic map:

K({x1, x2}, d) =
{

{{x1, x2}} d(x1, x2) ≤ δ

{{x1}, {x2}} else

Now for some metric space (X, dX) ∈ D with |X| > 2 and points x1, x2 ∈ X we have that LanGKL

maps x1, x2 to the same cluster if and only if there exists some chain of points x1, · · · , x2 in X where for
each pair of adjacent points x′

1, x′
2 in this chain there exists some metric space ({x′

1, x′
2}, dX′) ∈ D where

({x′
1, x′

2}, dX′) ≤D (X, dX) and x′
1, x′

2 are in the same cluster in K({x′
1, x′

2}, dX′). This is the case if and
only if dX(x′

1, x′
2) ≤ δ. Therefore, LanGKL maps x1, x2 to the same cluster if and only if x1, x2 are in the

same connected component of the δ-Vietoris Rips complex of (X, dX). That is, LanGKL performs the single
linkage clustering algorithm.

In contrast, since |X| > 2 there is no (X ′, dX′) in T where (X, dX) ≤D (X ′, dX′). Therefore:
RanGKR(X, dX) = (X, {X})

We can use this strategy to learn a clustering algorithm from real-world data. Recall that the Fashion
MNIST dataset (Xiao et al., 2017) contains images of clothing and the categories that each image falls into.
Suppose that we have two subsets of this dataset: a training set Xtr in which images are grouped by category
and a testing set Xte of ungrouped images. We can use UMAP (McInnes et al., 2018) to construct metric
spaces (Xtr, dXtr

) and (Xte, dXte
) from these sets.

Now suppose we would like to group the images in Xte as similarly as possible to the grouping of the images
in Xtr.

For any collection of nonexpansive maps between (Xtr, dXtr
) and (Xte, dXte

) we can define subpreorders
T ⊆ D ⊆ Metid and monotonic map K : T → Partid as follows:

1. Initialize T to an empty preorder and D to be the discrete preorder with a single object {(Xte, dXte
)}.

2. For every nonexpansive map f : (Xtr, dXtr
) → (Xte, dXte

) in our collection and pair (x1, x2) ∈ Xtr

of samples in the same clothing category, add the object ({f(x1), f(x2)}, dXte
) to T and D where:

({f(x1), f(x2)}, dXte) ≤D (Xte, dXte)
and define K({f(x1), f(x2)}, dXte

) to map f(x1) and f(x2) to the same cluster.

3. For every nonexpansive map f : (Xte, dXte
) → (Xtr, dXtr

) in our collection define a metric space
(X ′

te, dX′
te

) where Xte = X ′
te and dXte

= dX′
te

. Add the object (X ′
te, dX′

te
) to T and D where:

(Xte, dXte
) ≤D (X ′

te, dX′
te

) and define K(X ′
te, dX′

te
) to be the partition of X ′

te defined by the preim-
ages of the function (h ◦ f) where h maps each element of Xtr to the category of clothing it belongs
to.

We can now use LanGKL and RanGKR to partition Xte.

In Figure 1 we compare the clusterings produced by LanGKL, RanGKR to the ground truth clothing cate-
gories. As a baseline we compute the δ-single linkage clustering algorithm with δ chosen via line search to
maximize the adjusted Rand score (Hubert & Arabie, 1985; Pedregosa et al., 2011) with the ground truth
labels.

As expected, we see that LanGKL produces a finer clustering (more clusters) than does RanGKR and that
the clusterings produced by LanGKL and RanGKR are better than the clustering produced by single linkage
in the sense of adjusted Rand score with ground truth.

10

Under review as submission to TMLR

Figure 1: Cluster assignments of a 100 point testing set Xte from the Fashion MNIST dataset (Xiao
et al., 2017) shown in UMAP space (McInnes et al., 2018). Each color corresponds to a unique cluster, and
points without clusters are shown as black squares. We show ground truth clothing categories, unsupervised
δ-single linkage cluster assignments (δ chosen via line search), and the LanGKL, RanGKR supervised cluster
assignments. The LanGKL, RanGKR algorithms are trained on a separate 1000 point random sample Xtr

from the Fashion MNIST dataset.

11

Under review as submission to TMLR

Frequency that Left Kan Clustering
Beats Best δ-Single Linkage

Frequency that Right Kan Clustering
Beats Best δ-Single Linkage

0.860 (±0.068) 0.680 (±0.091)

Table 2: We compare the performance of the left and right Kan supervised clustering maps on the Fashion
MNIST dataset to the performance of δ-single linkage clustering with an optimal choice of δ. We select
100 bootstrap training and testing samples of the Fashion MNIST dataset. We then train and evaluate each
method on each such sample. To perform this evaluation we use the scikit-learn implementation of the
Adjusted Rand Score (Pedregosa et al., 2011) to compare the algorithmically generated clusterings with the
ground truth categorization. We then compute the frequency with which the left and right Kan supervised
clustering maps perform better (have a higher Adjusted Rand Score with ground truth) than choosing the
optimal value of δ for single linkage. The win rates and two standard error confidence bounds from the 100
experiments are shown. We see that the left and right Kan clustering maps both perform consistently better
than single linkage.

5 Related Work

Some authors have begun to explore Kan extension structure in topological data analysis. For example,
Bubenik et al. (2017) describe how three mechanisms for interpolating between persistence modules can
be characterized as the left Kan extension, right Kan extension, and natural map from left to right Kan
extension. Similarly, McCleary & Patel (2021) use Kan extensions to characterize deformations of filtra-
tions. Furthermore, Botnan & Lesnick (2018) use Kan extensions to generalize stability results from block
decomposable persistence modules to zigzag persistence modules and Curry (2013) uses Kan extensions to
characterize persistent structures from the perspective of sheaf theory.

Other authors have explored the application of Kan extensions to databases. For example, in categorical
formulations of relational database theory (Spivak & Wisnesky, 2015; Schultz & Wisnesky, 2017; Schultz
et al., 2016), the left Kan extension can be used for data migration. Spivak & Wisnesky (2020) exploit the
characterization of data migrations as Kan extensions to apply the chase algorithm from relational database
theory to the general computation of the left Kan extension.

6 Future Work

In this paper we demonstrate that Kan extensions can be used to derive many different kinds of supervised
learning algorithms. However, these algorithms are inherently focused on extreme values (minimums and
maximums) rather than averages. Averages are required to build algorithms that are robust to noise, and a
potential future direction for this work is to extend these algorithms to incorporate averages. For example,
we may be able to combine multiple Kan classifiers together to generate a robust Kan classifier ensemble. It
may even be possible to apply a boosting approach in which we minimize the ordering loss, fit Kan classifiers,
and then repeat on the samples in the disagreement region.

References
Martín. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015. URL

https://www.tensorflow.org/.

Magnus Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules. Algebraic & Geo-
metric Topology, 18(6), Oct 2018. ISSN 1472-2747. doi: 10.2140/agt.2018.18.3133.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. Course notes at Stanford University,
2003. URL https://web.stanford.edu/class/ee392o/subgrad_method.pdf.

Peter Bubenik, Vin de Silva, and Vidit Nanda. Higher interpolation and extension for persistence
modules. SIAM Journal on Applied Algebra and Geometry, 1(1), Jan 2017. ISSN 2470-6566. doi:
10.1137/16m1100472.

12

https://www.tensorflow.org/
https://web.stanford.edu/class/ee392o/subgrad_method.pdf

Under review as submission to TMLR

Justin M. Curry. Sheaves, cosheaves and applications. 2013. doi: 10.1.1.363.2881.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learning. The
annals of statistics, 36(3), 2008.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2(1), 1985.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2014. URL https:
//arxiv.org/abs/1412.6980.

Saunders Mac Lane. Categories for the Working Mathematician. New York, 1971.

Alexander McCleary and Amit Patel. Edit distance and persistence diagrams over lattices. 2021. URL
https://arxiv.org/abs/2010.07337.

Leland McInnes and John Healy. Accelerated hierarchical density clustering. 2017. URL https://arxiv.
org/abs/1705.07321.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. 2018. URL https://arxiv.org/abs/1802.03426.

Fabian Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12, 2011.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978. ISSN 0005-1098.
doi: https://doi.org/10.1016/0005-1098(78)90005-5. URL https://www.sciencedirect.com/science/
article/pii/0005109878900055.

Patrick Schultz and Ryan Wisnesky. Algebraic data integration. 2017. URL https://arxiv.org/abs/
1503.03571.

Patrick Schultz, David I Spivak, and Ryan Wisnesky. Algebraic model management: A survey. In Interna-
tional Workshop on Algebraic Development Techniques. Springer, 2016.

David I. Spivak and Ryan Wisnesky. Relational foundations for functorial data migration. 2015. URL
https://arxiv.org/abs/1212.5303.

David I Spivak and Ryan Wisnesky. Fast left-Kan extensions using the chase. Preprint. Available at www.
categoricaldata. net, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. 2017. URL https://arxiv.org/abs/1708.07747.

A Appendix

A.1 Proofs

A.1.1 Proof of Proposition 3.1

Proof. We first need to show that LanGK, RanGK are monotonic. For any x1 ≤ x2 ∈ I suppose that
LanGK(x1) = true. Then ∃x′ ∈ I′, x′ ≤ x1, K(x′) = true. By transitivity we have x′ ≤ x2, so:

LanGK(x2) =
({

true ∃x′ ∈ I′, x′ ≤ x2, K(x′) = true
false else

)
= true

and LanGK is therefore monotonic.

13

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2010.07337
https://arxiv.org/abs/1705.07321
https://arxiv.org/abs/1705.07321
https://arxiv.org/abs/1802.03426
https://www.sciencedirect.com/science/article/pii/0005109878900055
https://www.sciencedirect.com/science/article/pii/0005109878900055
https://arxiv.org/abs/1503.03571
https://arxiv.org/abs/1503.03571
https://arxiv.org/abs/1212.5303
https://arxiv.org/abs/1708.07747

Under review as submission to TMLR

Next, for any x1 ≤ x2 ∈ I suppose that RanGK(x2) = false. Then ∃x′ ∈ I′, x2 ≤ x′, K(x′) = false. By
transitivity we have x1 ≤ x′, so:

RanGK(x1) =
({

false ∃x′ ∈ I′, x1 ≤ x′, K(x′) = false
true else

)
= false

and RanGK is therefore monotonic.

Next we will show that LanGK is the left Kan extension of K along G. If for some x′ ∈ I′ we have that
K(x′) = true then:

LanGK(x′) =
({

true ∃x′′ ∈ I′, x′′ ≤ x′, K(x′′) = true
false else

)
= true

so we can conclude that K ≤ (LanGK ◦ G). Now consider any other monotonic map ML : I → {false, true}
such that ∀x′ ∈ I′, K(x′) ≤ ML(x′). We must show that ∀x ∈ I, LanGK(x) ≤ ML(x). For some x ∈ I
suppose ML(x) = false. Then since ML is a monotonic map it must be that ∀x′ ∈ I′, x′ ≤ x, ML(x′) = false.
Since K ≤ (ML ◦ G) it must be that ∀x′ ∈ I′, x′ ≤ x, K(x′) = false. Therefore LanGK(x) = false.

Next we will show that RanGK is the right Kan extension of K along G. If for some x′ ∈ I′ we have that
K(x′) = false then:

RanGK(x′) =
({

false ∃x′′ ∈ I′, x′ ≤ x′′, K(x′′) = false
true else

)
= false

so we can conclude that (RanGK ◦ G) ≤ K. Now consider any other monotonic map MR : I → {false, true}
such that ∀x′ ∈ I′, MR(x′) ≤ K(x′). We must show that ∀x ∈ I, MR(x) ≤ RanGK(x). For some x ∈ I
suppose MR(x) = true. Then since MR is a monotonic map it must be that ∀x′ ∈ I′, x ≤ x′, MR(x′) = true.
Since (MR ◦ G) ≤ K it must be that ∀x′ ∈ I′, x ≤ x′, K(x′) = true. Therefore RanGK(x) = true.

A.1.2 Proof of Proposition 4.8

Proof. LanGKL trivially acts as the identity on underlying sets so we simply need to show that when:

(X, dX) ≤D (Y, dY)

then

LanGKL(X, dX) ≤Partid
LanGKL(Y, dY)

Suppose there exists some x, x∗ ∈ X in the same cluster in LanGKL(X, dX). Then by the definition of
LanGKL there must exist some sequence

(X1, dX1), (X2, dX2), · · · , (Xn, dXn
) ∈ T

where x ∈ X1, x∗ ∈ Xn and each:

(Xi, dXi) ≤D (X, dX)

as well as some sequence

x1, x2, · · · , xn−1, such that xi ∈ Xi, xi ∈ Xi+1

where the pair (x, x1) is in the same cluster in K(X1, dX1), the pair (xn−1, x∗) is in the same cluster in
K(Xn, dXn

), and for each 1 < i < n the pair (xi−1, xi) is in the same cluster in K(Xi, dXi
). Since it must

be that each:

(Xi, dXi
) ≤D (Y, dY)

as well then by the definition of LanGKL it must be that x, x∗ are in the same cluster in LanGKL(Y, dY).

14

Under review as submission to TMLR

A.1.3 Proof of Proposition 4.9

Proof. RanGKR trivially acts as the identity on underlying sets so we simply need to show that when:

(X, dX) ≤D (Y, dY)

then:

RanGKR(X, dX) ≤Partid
RanGKR(Y, dY)

Suppose the points x, x∗ ∈ X are in the same cluster in RanGKR(X, dX). Then by the definition of RanGKR

there cannot be any (X ′, dX′) in T such that:

(X, dX) ≤D (X ′, dX′)

and x, x∗ are in different clusters in RanGKR(X ′, dX′). By transitivity this implies that there cannot be any
(X ′′, dX′′) in T such that:

(Y, dY) ≤D (X ′′, dX′′)

and x, x∗ are in different clusters in RanGKR(X ′′, dX′′). By the definition of RanGKR the points x, x∗ must
therefore be in the same cluster in RanGKR(Y, dY).

A.1.4 Proof of Proposition 4.10

We use the following Proposition in the proof below:
Proposition A.1. Suppose there exists some well-behaved monotonic map F : D → Partid where F ◦G = K.
Then for (X, dX) ∈ T we have that:

F (X, dX) = K(X, dX) = LanGKL(X, dX) = RanGKR(X, dX)

Proof. Since each of:

F : D → Part
RanGKR : D → Part
LanGKL : D → Part

are well-behaved monotonic maps we simply need to prove that all three maps generate the same partition
of X for any input (X, dX) ∈ T.

Consider some (X, dX) ∈ T and two points x, x∗ ∈ X. Suppose x, x∗ are in different clusters in

K(X, dX) = F (X, dX)

. Then since F is a well-behaved monotonic map it must be that for any sequence

(X1, dX1), (X2, dX2), · · · , (Xn, dXn) ∈ T

where x ∈ X1, x∗ ∈ Xn and each:

(Xi, dXi
) ≤D (X, dX)

and any sequence

x1, x2, · · · , xn−1, such that xi ∈ Xi, xi ∈ Xi+1

one of the following must be true:

15

Under review as submission to TMLR

• The pair (x, x1) are in different clusters in F (X1, dX1)

• The pair (xn−1, x∗) are in different clusters in F (Xn, dXn)

• For some 1 < i < n the pair (xi−1, xi) are in different clusters in F (Xi, dXi
)

This implies that in LanGKL(X, dX) the points x, x∗ must be in different clusters. Similarly, since
(X, dX) ≤D (X, dX), by Proposition 4.9 it must be that x, x∗ are in different clusters in RanGKR(X, dX).

Now suppose x, x∗ are in the same cluster in:

K(X, dX) = F (X, dX)

Since (X, dX) ≤D (X, dX), by Proposition 4.8 it must be that x, x∗ are in the same cluster in
LanGKL(X, dX). Similarly, since F is a well-behaved monotonic map there cannot exist any metric space
(X ′, dX′) ∈ T where:

(X, dX) ≤D (X ′, dX′)

and x, x∗ are in different clusters in:

K(X ′, dX′) = F (X ′, dX′)

Therefore x, x∗ are in the same cluster in RanGKR(X, dX).

Now we can prove Proposition 4.10:

Proof. To start, note that Proposition A.1 implies that for any (X, dX) ∈ T we have:

LanGKL(X, dX) = K(X, dX) = RanGKR(X, dX)

By the definition of KL, KR we can therefore conclude that for any (X, dX) ∈ D we have:

KL(X, dX) ≤Partid
LanGKL(X, dX)

RanGKR(X, dX) ≤Partid
KR(X, dX)

Next, consider any monotonic map ML : D → Partid such that for all (X, dX) ∈ D we have:

KL(X, dX) ≤Partid
(ML ◦ G)(X, dX)

We must show that for any (X, dX) ∈ D we have:

LanGKL(X, dX) ≤Partid
ML(X, dX)

To start, note that for any x, x∗ ∈ X that are in the same cluster in LanGKL(X, dX) by the definition of
LanGKL there must exist some sequence:

(X1, dX1), (X2, dX2), · · · , (Xn, dXn) ∈ T

where x ∈ X1, x∗ ∈ Xn and each:

(Xi, dXi
) ≤D (X, dX)

as well as some sequence

x1, x2, · · · , xn−1, such that xi ∈ Xi, xi ∈ Xi+1

16

Under review as submission to TMLR

where the pair (x, x1) is in the same cluster in KL(X1, dX1), the pair (xn−1, x∗) is in the same cluster in
KL(Xn, dXn), and for each 1 < i < n the pair (xi−1, xi) is in the same cluster in KL(Xi, dXi). Now since
for each (Xi, dXi) in this sequence we have that:

KL(Xi, dXi) ≤Partid
ML(Xi, dXi)

it must be that the pair (x, x1) is in the same cluster in ML(X1, dX1), the pair (xn−1, x∗) is in the same
cluster in ML(Xn, dXn), and for each 1 < i < n the pair (xi−1, xi) is in the same cluster in ML(Xi, dXi).

Since ML is a monotonic map it must therefore be that the pair x, x∗ is in the same cluster in ML(X, dX)
and therefore:

LanGKL(X, dX) ≤Partid
ML(X, dX)

Next, consider any monotonic map MR : D → Partid such that for all (X, dX) in D:

(MR ◦ G)(X, dX) ≤Partid
KR(X, dX)

We must show that for any (X, dX) in D we have:

MR(X, dX) ≤Partid
RanGKR(X, dX)

To start, note that for any x, x∗ ∈ X such that x, x∗ are not in the same cluster in RanGKR(X, dX) by the
definition of RanGKR there must exist some:

(X ′, dX′) ∈ D, (X, dX) ≤D (X ′, dX′)

where x, x∗ are not in the same cluster in KR(X ′, dX′). Now since:

MR(X ′, dX′) ≤Partid
KR(X ′, dX′)

it must be that x, x∗ are not in the same cluster in MR(X ′, dX′). Since MR is a monotonic map we have:

MR(X, dX) ≤Partid
MR(X ′, dX′)

so x, x∗ are also not in the same cluster in MR(X, dX) and therefore:

MR(X, dX) ≤Partid
RanGKR(X, dX)

A.2 Meta-Supervised Learning

Suppose I is a set and O is a partial order. A supervised learning algorithm maps a labeled dataset (set of
pairs of points in I × O) to a function f : I → O. For example, both LanGK and RanGK from Section 3
are supervised learning algorithms.

In this section we use Kan extensions to derive supervised learning algorithms from pairs of datasets and
functions. Our construction combines elements of Section 3’s point-level algorithms and Section 4’s dataset-
level algorithms.

Suppose we have a finite partial order Sf ⊆ (I → O) of functions where for f, f ′ ∈ Sf we have f ≤ f ′ when
∀x ∈ I, f(x) ≤ f ′(x).
Proposition A.2. For any subset S∗

f ⊆ Sf the upper antichain of S∗
f is the set:

{f | f ∈ S∗
f , ̸ ∃f∗ ∈ S∗

f , f < f∗}}

The upper antichain of S∗
f is an antichain in S∗

f , and for any function f ∈ S∗
f there exists some function f∗

in the upper antichain of S∗
f such that f ≤ f∗.

17

Under review as submission to TMLR

Proof. Suppose f1, f2 are in the upper antichain of S∗
f ⊆ Sf and f1 ≤ f2. Then since

̸ ∃f∗
1 ∈ S∗

f , f1 < f∗
1

it must be that f1 = f2 and we can conclude that the upper antichain is an antichain.

Next, for any function f ∈ S∗
f consider the set {f∗ ∈ S∗

f , f < f∗}. Since Sf is finite this set must have finite
size. If this set is empty then f is in the upper antichain of S∗

f . If this set has size n then for any f∗ in
this set the set {f∗∗ ∈ S∗

f , f∗ < f∗∗} must have size strictly smaller than n. We can therefore conclude by
induction that the upper antichain of S∗

f contains at least one function f∗ where f ≤ f∗.

Intuitively the upper antichain of S∗
f is the collection of all functions f ∈ S∗

f that are not strictly upper
bounded by any other function in S∗

f . The upper antichain of an empty set is of course itself an empty set.
Definition A.3. We can form the following preorders:

DC : The objects in DC are ≤-antichains of functions Xf ⊆ Sf . DC is a preorder in which Xf ≤ X ′
f

if for f ∈ Xf there must exist some f ′ ∈ X ′
f where f ≤ f ′.

DB : The objects in DB are labeled datasets, or sets of pairs U = {(x, y) | x ∈ I, y ∈ O}. DB is a
preorder such that U ≤ U ′ when for all (x, y′) ∈ U ′ there exists (x, y) ∈ U where y ≤ y′.

DA : A subpreorder of DB such that if U ≤ U ′ ∈ DB then U ≤ U ′ ∈ DA.

Proposition A.4. DB and DC are preorders.

Proof.
DC
We trivially have Xf ≤ Xf in DC. To see that ≤ is transitive in DC simply note that if Xf1 ≤ Xf2 and
Xf2 ≤ Xf3 then for f1 ∈ Xf1 there must exist f2 ∈ Xf2 , f1 ≤ f2, which implies that there must exist
f3 ∈ Xf3 , f1 ≤ f2 ≤ f3.

DB
We trivially have U ≤ U in DB. To see that ≤ is transitive in DB simply note that if U1 ≤ U2 and U2 ≤ U3
in DB then for (x, y3) ∈ U3 there must exist (x, y2) ∈ U2, y2 ≤ y3 which implies that there must exist
(x, y1) ∈ U1, y1 ≤ y2 ≤ y3.

Intuitively, DA is a collection of labeled training datasets and DB is a collection of labeled testing datasets.
We can define a monotonic map that maps each training dataset to all of the trained models that agree with
that dataset.
Proposition A.5. The map K : DA → DC that maps the object U ∈ DA to the upper antichain of the
following set:

SK(U) = {f | f ∈ Sf , ∀(x, y) ∈ U, f(x) ≤ y}

is a monotonic map.

Proof. To start, note that K maps objects in DA to objects in DC since the upper antichain of SK(U) must
be an antichain in Sf by Proposition A.2.

Next, we need to show that if U ≤ U ′ then K(U) ≤ K(U ′). For any x, y′ ∈ U ′ it must be that there exists
(x, y) ∈ U where y ≤ y′, so if f ∈ K(U) then by the definition of K we have f(x) ≤ y ≤ y′. Therefore
f ∈ SK(U ′), so by Proposition A.2 K(U ′) contains f ′ where f ≤ f ′. Therefore K(U) ≤ K(U ′).

Now define G : DA ↪→ DB to be the inclusion map. A monotonic map F : DB → DC such that F ◦ G
commutes with K will then be a mapping from the testing datasets in DB to collections of trained models.

18

Under review as submission to TMLR

DB

DA DC

F
G

K

We can take the left and right Kan extensions of K along the inclusion map G : DA ↪→ DB to find the
optimal such mapping.
Proposition A.6. The map LanGK that maps the object U ∈ DB to the upper antichain of the following
set:

SL(U) =
⋃

{U ′ | U ′∈DA,U ′≤U}

K(U ′)

is the left Kan extension of K along G.

Next, the map RanGK that maps the object U ∈ DB to the upper antichain of the following set:

SR(U) = {f | f ∈ Sf , ∀U ′ ∈ {U ′ | U ′ ∈ DA, U ≤ U ′}, ∃f ′ ∈ K(U ′), f ≤ f ′}

is the right Kan extension of K along G.

Proof. We first need to show that LanGK is a monotonic map DB → DC. Note that LanGK maps objects
in DB to objects in DC since the upper antichain of SL(U) must be an antichain in Sf .

Next, suppose U1 ≤ U2 and that f ∈ LanGK(U1). Consider the set of all U ′ ∈ DA where U ′ ≤ U1. Since
U1 ≤ U2 this is a subset of the set of all U ′ ∈ DA where U ′ ≤ U2. Since SL(U1) is defined to be a union of
the elements in the set we have that SL(U1) ⊆ SL(U2). Since f ∈ LanGK(U1) implies that f ∈ SL(U1) this
implies that f ∈ SL(U2) as well. Proposition A.2 then implies that there must exist f ′ ∈ LanGK(U2) where
f ≤ f ′ and therefore LanGK(U1) ≤ LanGK(U2).

Next, we will show that LanGK is the left Kan extension of K along G.

• Consider some U ∈ DA and f ∈ K(U). Since U ≤ U we have by the definition of SL that
f ∈ SL(U). Proposition A.2 then implies that ∃f ′ ∈ LanGK(U) such that f ≤ f ′. This implies that
K ≤ LanGK ◦ G.

• Now consider any monotonic map ML : DB → DC such that K ≤ (ML ◦ G). We must show that
LanGK ≤ ML. For some U ∈ DB suppose f ∈ LanGK(U). By the definition of SL there must
exist some U ′ ∈ DA where U ′ ≤ U such that f ∈ K(U ′). Since K(U ′) ≤ ML(U ′) there must exist
some f ′ ∈ ML(U ′) where f ≤ f ′. Since ML is a monotonic map we have ML(U ′) ≤ ML(U) which
implies that there must exist some f∗ ∈ ML(U) where f ≤ f ′ ≤ f∗. Therefore LanGK ≤ ML.

Next, we need to show that RanGK is a monotonic map DB → DC. Note that RanGK maps objects in
DB to objects in DC since the upper antichain of SR(U) must be an antichain in Sf .

Next, suppose U1 ≤ U2 and that f ∈ RanGK(U1). Consider the set of all U ′ ∈ DA where U2 ≤ U ′. Since
U1 ≤ U2 this is a subset of the set of all U ′ ∈ DA where U1 ≤ U ′. Therefore by the definition of SR we
have that SR(U1) ⊆ SR(U2). Since f ∈ RanGK(U1) implies that f ∈ SR(U1) this implies that f ∈ SR(U2)
as well. Proposition A.2 then implies that there must exist f ′ ∈ RanGK(U2) where f ≤ f ′ and therefore
RanGK(U1) ≤ RanGK(U2).

Next, we will show that RanGK is the right Kan extension of K along G.

19

Under review as submission to TMLR

• For U ∈ DA since U ≤ U when f ∈ SR(U) we have by the definition of SR that ∃f ′ ∈ K(U) such
that f ≤ f ′. Since RanGK(U) is a subset of SR(U) this implies that RanGK ◦ G ≤ K.

• Now consider any monotonic map MR : DB → DC such that (MR ◦ G) ≤ K. We must show
that MR ≤ RanGK. For some U ∈ DB suppose f ∈ MR(U). Since MR is a monotonic map
it must be that for all U ′ ∈ DA where U ≤ U ′ we have that MR(U) ≤ MR(U ′) and therefore
∃f ′

MR
∈ MR(U ′), f ≤ f ′

MR
. Since (MR ◦ G) ≤ K this implies that for all U ′ ∈ DA where U ≤ U ′

we have that ∃f ′
K ∈ K(U ′), f ≤ f ′

MR
≤ f ′

K . By the definition of SR this implies that f ∈ SR(U).
Proposition A.2 therefore implies that there exists f ′

R ∈ RanGK(U) such that f ≤ f ′
R, and therefore

MR(U) ≤ RanGK(U).

Intuitively the functions in RanGK(U) and LanGK(U) are as large as possible subject to constraints imposed
by the selection of sets in Ob(DA). The functions in LanGK(U) are subject to a membership constraint and
grow smaller when we remove objects from Ob(DA). The functions in RanGK(U) are subject to an upper
boundedness-constraint and grow larger when we remove objects from Ob(DA).

Consider the extreme case where Ob(DA) = ∅. For any U ∈ DB we have that:

SL(U) =
⋃

{U ′ | U ′∈∅,··· }

K(U ′) = ∅

SR(U) = {f | f ∈ Sf , ∀U ′ ∈ ∅, · · · } = Sf

so LanGK(U) is empty and RanGK(U) is the upper antichain of Sf .

Now consider the extreme case where Ob(DA) = Ob(DB). For any U ∈ DB and f ∈ K(U) the monotonicity
of K implies that:

∀U ′ ∈ {U ′ | U ′ ∈ DA, U ≤ U ′}, ∃f ′ ∈ K(U ′), f ≤ f ′

and therefore f ∈ SR(U). This implies K(U) ≤ RanGK(U). Similarly, for any f ∈ LanGK(U) it must be
that:

∃U ′ ∈ DA, U ′ ≤ U, f ∈ K(U ′)

which by the monotonicity of K implies that:

∃f∗ ∈ K(U), f ≤ f∗

and therefore LanGK(U) ≤ K(U). Therefore in this extreme case we have:

RanGK(U) = LanGK(U) = K(U)

Let’s now consider a more concrete example. Suppose I = R2
≥0, O = {false, true}, and Sf is the finite set of

linear classifiers l : R2
≥0 → {false, true} that can be expressed as:

la,b(x1, x2) =
{

true x2 ≤ a ∗ x1 + b

false else

where a, b are integers in (−100, 100). Intuitively:

• The classifiers in LanGK(U) are selected to be the classifiers that predict true as often as possible
among the set of all classifiers that have no false positives on some U ′ ∈ DA where U ′ ≤ U .

20

Under review as submission to TMLR

• The classifiers in RanGK(U) are constructed to predict true as often as possible subject to a con-
straint imposed by the selection of sets in DA. For every set U ′ ∈ DA where U ≤ U ′ it must be
that each classifier in RanGK(U) is upper bounded at each point in I by some classifier in Sf with
no false positives on U ′.

A concrete example will demonstrate this. Suppose that DA is:

{((2, 2), true), ((1, 3), true), ((4, 4), false)}

{((2, 2), true), ((1, 3), false), ((4, 4), true)} {((2, 2), false), ((1, 3), false), ((4, 4), false)}≤

≤

and that DB is:

{((2, 2), true), ((1, 3), true), ((4, 4), false)}

{((2, 2), true), ((1, 3), false), ((4, 4), true)} {((2, 2), true), ((1, 3), false), ((4, 4), false)}

{((2, 2), false), ((1, 3), false), ((4, 4), false)}

≤

≤

≤

We can see the following:

• l(1,1) ∈ K({((2, 2), true), ((1, 3), false), ((4, 4), true)}) since:

l(1,1)(1, 3) =
({

true 3 ≤ 1 ∗ 1 + 1
false else

)
= false

but we have that:

l(1,2)(1, 3) =
({

true 3 ≤ 1 ∗ 1 + 2
false else

)
= true

l(2,1)(1, 3) =
({

true 3 ≤ 2 ∗ 1 + 1
false else

)
= true

• l(0,2) ∈ K({((2, 2), true), ((1, 3), false), ((4, 4), true)}) since:

l(0,2)(1, 3) =
({

true 3 ≤ 0 ∗ 1 + 2
false else

)
= false

but we have that:

l(0,3)(1, 3) =
({

true 3 ≤ 0 ∗ 1 + 3
false else

)
= true

l(1,2)(1, 3) =
({

true 3 ≤ 1 ∗ 1 + 2
false else

)
= true

21

Under review as submission to TMLR

• l(0,3) ∈ K({((2, 2), true), ((1, 3), true), ((4, 4), false)}) since:

l(0,3)(4, 4) =
({

true 4 ≤ 0 ∗ 4 + 3
false else

)
= false

but we have that:

l(1,3)(4, 4) =
({

true 4 ≤ 1 ∗ 4 + 3
false else

)
= true

l(0,4)(4, 4) =
({

true 4 ≤ 0 ∗ 4 + 4
false else

)
= true

• l(0,1) ∈ K({((2, 2), false), ((1, 3), false), ((4, 4), false)}) since:

l(0,1)(2, 2) =
({

true 2 ≤ 0 ∗ 2 + 1
false else

)
= false

l(0,1)(1, 3) =
({

true 3 ≤ 0 ∗ 1 + 1
false else

)
= false

l(0,1)(4, 4) =
({

true 4 ≤ 0 ∗ 4 + 1
false else

)
= false

but we have that:

l(1,1)(4, 4) =
({

true 4 ≤ 1 ∗ 4 + 1
false else

)
= true

l(0,2)(2, 2) =
({

true 2 ≤ 0 ∗ 2 + 2
false else

)
= true

By the definition of LanGK we have that:
LanGK({((2, 2), true), ((1, 3), false), ((4, 4), false)})

must contain l(0,1) since we have that:
l(0,1) ∈ K({((2, 2), false), ((1, 3), false), ((4, 4), false)})

but:
l(0,2) ̸∈ K({((2, 2), false), ((1, 3), false), ((4, 4), false)})
l(1,1) ̸∈ K({((2, 2), false), ((1, 3), false), ((4, 4), false)})

Similarly, by the definition of RanGK we have that:
RanGK({((2, 2), true), ((1, 3), false), ((4, 4), false)})

must contain l(0,2) since we have that:
l(0,2) ≤ l(0,3) l(0,2) ≤ l(1,2)

but that there is no l(a,b) such that l(0,2) < l(a,b) that is in both:
K({((2, 2), true), ((1, 3), true), ((4, 4), false)})

and:
K({((2, 2), true), ((1, 3), false), ((4, 4), true)})

since:
l(1,2) ̸∈ K({((2, 2), true), ((1, 3), true), ((4, 4), false)})
l(0,3) ̸∈ K({((2, 2), true), ((1, 3), false), ((4, 4), true)})

22

Under review as submission to TMLR

Figure 2: The decision boundaries defined by l(1,1), l(0,3), and l(0,1).

A.3 Function Approximation

In many learning applications there may be multiple functions in a class that fit a particular set of data
similarly well. In such a situation Occam’s Razor suggests that we are best off choosing the simplest such
function. For example, we can choose the function with the smallest Kolmogorov complexity, also known as
the minimum description length (MDL) function (Rissanen, 1978). In this section we will explore how we
can use Kan extensions to find the MDL function that fits a dataset.

Suppose I is a set, O is a partial order, and S is a finite subset of I. We can define the following preorder:
Definition A.7. Define the preorder ≤S on (I → O) such that f1 ≤S f2 if and only if ∀x ∈ S, f1(x) ≤ f2(x).
If f1 ≤S f2, f2 ̸≤S f1 then write f1 <S f2 and if f1 ≤S f2 ≤S f1 then write f1 =S f2.

Now suppose also that C≤c
is some finite subset of the space of all functions (I → O) equipped with a total

order ≤c such that f1 ≤c f2 whenever the Kolmogorov complexity of f1 is no larger than that of f2. Note
that functions with the same Kolmogorov complexity may be ordered arbitrarily in C≤c

.
Proposition A.8. Given a set of functions Sf ⊆ C≤c

we can define a map that sends each function f ∈ Sf

to the function:

fc = min
≤c

{f ′ | f ′ ∈ Sf , f ′ =S f}

where fc satisfies fc ≤c f .

This map is guaranteed to exist and we can define the minimum Kolmogorov subset Sfc of Sf to be the image
of this map. Sfc

contains exactly one function fc where f =S fc.

Proof. For any function f ∈ Sf there must exist some fc = min≤c
{f ′ | f ′ ∈ Sf , f ′ =S f} since {f ′ | f ′ ∈

Sf , f ′ =S f} is a nonempty finite total ≤c-order. Therefore we can define a map that sends each f ∈ Sf to
fc and we can define Sfc to be the image of this map.

23

Under review as submission to TMLR

Since this map will send all f ∈ Sf in the same =S equivalence class to the same function in that =S

equivalence class, Sfc contains exactly one function fc where f =S fc. This function fc satisfies fc ≤c f .

We can use these constructions to define the following preorders:
Definition A.9. Given the sets of functions S1

f ⊆ S2
f ⊆ C≤c define S1

fc
to be the minimum Kolmogorov

subset of S1
f . We can construct the preorders FA, FB, FC as follows.

• The set of objects in the discrete preorder FA is S1
fc

.

• The set of objects in FB is S2
f . FB is a preorder under ≤S.

• FC is the subpreorder of FB under ≤S in which objects are functions in S1
fc

.

Intuitively a monotonic map FB → FC acts as a choice of a minimum Kolmogorov complexity function
in S1

fc
for each function in S2

f . For example, if S1
f contains all linear functions and S2

f is the class of all
polynomials then we can view a monotonic map FB → FC as selecting a linear approximation for each
polynomial in S2

f .
Proposition A.10. For some function g ∈ S2

f define its minimal S-overapproximation to be the function
h ∈ S1

fc
where g ≤S h and ∀h′ ∈ S1

fc
where g ≤S h′ we have h ≤S h′. If this function exists it is unique.

Proof. Suppose h1, h2 are both minimal S-overapproximations of g. Then h1 ≤S h2 and h2 ≤S h1 which by
the definition of S1

fc
implies that h1 = h2.

Proposition A.11. For some function g ∈ S2
f define its maximal S-underapproximation to be the function

h ∈ S1
fc

where h ≤S g and ∀h′ ∈ S1
fc

where h′ ≤S g we have h′ ≤S h. If this function exists it is unique.

Proof. Suppose h1, h2 are both maximal S-underapproximations of g. Then h2 ≤S h1 and h1 ≤S h2 which
by the definition of S1

fc
implies that h1 = h2.

Proposition A.12. Suppose that for some g ∈ S2
f there exists some h ∈ S1

fc
such that h =S g. Then h will

be both the minimal S-overapproximation and the maximal S-underapproximation of g.

Proof. To start, note that h must satisfy g ≤S h and for any h′ ∈ S1
fc

where g ≤S h′ we have:

h =S g ≤S h′

so h is the minimal S-overapproximation of g.

Next, note that h must satisfy h ≤S g and for any h′ ∈ S1
fc

where h′ ≤S g we have:

h′ ≤S g =S h

so h is also the maximal S-underapproximation of g.

We can now show the following:
Proposition A.13. Define both K : FA ↪→ FC and G : FA ↪→ FB to be inclusion maps. Then:

• Suppose that for any function g ∈ S2
f there exists a minimal S-overapproximation h of g. Then the

left Kan extension of K along G is the monotonic map LanGK that maps g to h.

• Suppose that for any function g ∈ S2
f there exists a maximal S-underapproximation h of g. Then

the right Kan extension of K along G is the monotonic map RanGK that maps g to h.

24

Under review as submission to TMLR

FB

FA FC

F
G

K

Proof. We first show that LanGK is monotonic when it exists. Since FB, FC are preorders we simply need
to show that when f1 ≤S f2 then LanGK(f1) ≤S LanGK(f2). Since f2 ≤S LanGK(f2) by the definition of
the minimal S-overapproximation of f2 we have that f1 ≤S LanGK(f2). Then LanGK(f1) ≤S LanGK(f2)
by the definition of the minimal S-overapproximation of f1.

We next show that RanGK is monotonic when it exists. Since FB, FC are preorders we simply need to show
that when f1 ≤S f2 then RanGK(f1) ≤S RanGK(f2). Since RanGK(f1) ≤S f1 by the definition of the
maximal S-underapproximation of f1 we have that RanGK(f1) ≤S f2. Then RanGK(f1) ≤S RanGK(f2)
by the definition of the maximal S-underapproximation of f2.

Next, we will show that LanGK and RanGK are respectively the left and right Kan extensions when they
exist. First, by Proposition A.12 if f ∈ S1

fc
then f must be both the minimal S-overapproximation and

maximal S-underapproximation of f . Therefore we have:

K(f) = LanGK(f) = RanGK(f)

Next, consider any monotonic map ML : FB → FC such that ∀f ∈ S1
fc

, K(f) ≤S ML(f). Since f =S K(f)
this implies f ≤S ML(f) so by the definition of the minimal S-overapproximation LanGK(f) ≤S ML(f).

Next, consider any monotonic map MR : FB → FC such that ∀f ∈ S1
fc

, MR(f) ≤S K(f). Since K(f) =S f
this implies MR(f) ≤S f so by the definition of the maximal S-underapproximation MR(f) ≤ RanGK(f).

Intuitively, the Kan extensions of the inclusion map K : FA → FC along the inclusion map G : FA → FB
map a function g ∈ S2

f to its best S1
f -approximations over the points in S.

For example, suppose I = O = R, g is a polynomial, S1
f is the set of lines defined by all pairs of points in S

and S2
f = S1

f ∪ g. LanGK and RanGK may or may not exist depending on the choice of S and g. In Figure
3 we give an example S, g in which LanGK exists and RanGK does not (left) and an example S, g in which
RanGK exists and LanGK does not (right).

As another example, suppose I = O = R, S1
f is a subset of all polynomials of degree |S| − 1 and S2

f is a
subset of all functions R → R. Since there always exists a unique n − 1 degree polynomial through n unique
points, for any S there exists some S1

f so that both LanGK and RanGK exist and map g ∈ S2
f to the unique

|S| − 1 degree polynomial that passes through the points {(x, g(x)) | x ∈ S}.

25

Under review as submission to TMLR

Figure 3: Left and right Kan extensions of K : FA ↪→ FC along G : FA ↪→ FB for two example sets S and
polynomials g where S1

f is the class of lines and S2
f = S1

f ∪ g.

26

