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ABSTRACT

We introduce a new benchmark, LLF-Bench (Learning from Language Feedback
Benchmark; pronounced as “elf-bench”), to evaluate the ability of AI agents to in-
teractively learn from natural language feedback and instructions. Learning from
language feedback (LLF) is essential for people, largely because the rich informa-
tion this feedback provides can help a learner avoid much of trial and error and
thereby speed up the learning process. Large Language Models (LLMs) have re-
cently enabled AI agents to comprehend natural language — and hence AI agents
can potentially benefit from language feedback during learning like humans do.
But existing interactive benchmarks do not assess this crucial capability: they ei-
ther use numeric reward feedback or require no learning at all (only planning or
information retrieval). LLF-Bench is designed to fill this omission. LLF-Bench
is a diverse collection of sequential decision-making tasks that includes user rec-
ommendation, poem writing, navigation, and robot control. The objective of an
agent is to interactively solve these tasks based on their natural-language instruc-
tions and the feedback received after taking actions. Crucially, to ensure that the
agent actually learns from the feedback, LLF-Bench implements several random-
ization techniques to ensure that the task isn’t familiar to the agent and that the
agent is robust to various verbalizations. In addition, LLF-Bench allows config-
uring different types of feedback to study how agents respond to them. Together,
these features make LLF-Bench a unique research platform for developing and
testing LLF agents.

1 INTRODUCTION

Natural language provides an intuitive medium for a person to teach an AI agent, since that is also
how humans learn and teach each other. Compared with rewards, typically used in the reinforce-
ment learning (RL) paradigm (Sutton & Barto, 2018), language feedback can provide rich signals
about the agent’s behaviors, in addition to a quantitative measure of instantaneous performance. For
instance, language feedback can explain why the agent’s previous bad behaviors should be avoided,
rather than just punishing the agent without giving justification. Language feedback can also pro-
vide direct suggestions on how the agent can improve its future behavior, similar to action feedback
used in imitation learning (IL) (Ross et al., 2011; Spencer et al., 2021). However, providing action
feedback to a robot as has traditionally been done in IL requires setting up additional teleoperation
devices, which might not always be feasible, while language feedback can be given verbally by an
ordinary user (Liu et al., 2023a).

We capture the essence of using language as a feedback modality in a new learning paradigm –
Learning from Language Feedback (LLF). In an LLF problem, an agent interacts with a task en-
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vironment and receives language instructions and feedback. At the start of an episode, the agent
is first given a natural language instruction that describes the objective of the task, the rules, and
(optionally) side information that may help solve the problem. After executing an action in the en-
vironment, the agent receives teacher feedback in natural language which can be used as a learning
signal. LLF generalizes reinforcement learning (RL) from reward maximization to general problem
solving. Like in RL, LLF focuses on sequential decision problems. However, in contrast to RL, an
LLF agent does not receive rewards and is not necessarily tasked with maximizing returns. Figure 1
shows an example LLF flowchart. LLF replaces RL’s assumption of numeric rewards with generic
task instructions and feedback expressed in natural language. We can recover RL as an instance
of LLF, e.g., with the instruction “Maximize the accumulated rewards.” and the feedback template
“You’ve received a reward of X.”. But LLF covers many other scenarios that would be unnecessarily
difficult to describe in the conventional RL framing, e.g., training a robotic arm controller by giving
it general advice about the types of actions it should consider in certain situations, or asking an
agent to write a poem in a certain mood by showing a few examples. We illustrate the similarities
and differences between RL and LLF in Figure 2.

This work’s main contribution is LLF-Bench (Learning from Language Feedback Benchmark; pro-
nounced as “elf-bench”), a simulation benchmark designed to evaluate an AI agent’s ability to learn
interactively in LLF settings, from just language feedback. LLF-Bench is a collection of sequential
decision making problems (ranging from item recommendation to poem writing to robot control),
each of which has a natural-language description and a natural-language feedback generator that re-
places RL’s rewards as the learning signal. LLF-Bench differs from the vast majority of benchmarks
for evaluating LLM agents, which are either non-interactive or allow the agent designer to choose
how to verbalize the environment, which can lead to prompt hacking (i.e., an LLM agent overfitting
to a specific environment through its prompts). We envision that LLF-Bench will not only become
a useful tool for evaluating LLM agents’ ability to learn but will also lead to a better understanding
of what learning means in the era of LLMs.

2 LLF: LEARNING FROM LANGUAGE FEEDBACK

LLF is a learning paradigm that generalizes RL. As shown in Figure 2, LLF is an abstract setup1 that
models the interaction between an agent (e.g., a learning algorithm), a world (e.g., a robot hardware,
or a recommendation system based on a database), and a teacher (e.g., a person who uses or teaches
the agent mentioned in Section 5).

2.1 SETUP

The agent in the LLF is prompted by the teacher to complete a task in the world with some natural
language instruction. The instruction may be different from reward maximization and could include
information about how to interpret observations, what valid actions are, and side information (such
as examples) that may help the agent solve the problem. After receiving the instruction, the agent
sees the initial observation of the world state, and the agent starts to interact with the world by
taking actions within the problem’s prescribed action space, which like that in RL can be e.g. a
finite space, a continuous vector space, or a free-form text space. After an action is executed, the
world’s internal state may change and the agent sees the next observation of the world. As the
agent interacts and learns to solve the task, the teacher would provide natural language feedback to
guide the agent to learn better based on how the agent performs. This language feedback is a strict
generalization of the reward signal in RL and can provide richer information to help agent learn
(e.g., suggestions, explanations, etc.). If we group the world and the teacher in LLF together as
an abstract environment, we see that LLF mainly replaces the reward maximization objective and
feedback in RL with a generic task instruction and language feedback. In LLF-Bench, we simulate
LLF problems through the OpenAI Gym interface, which we will describe in Section 4. .

1Here we follow the convention of Sutton & Barto (2018) that “anything that cannot be changed arbitrarily
by the agent is considered to be outside of it and thus part of its environment.”. Therefore, we consider the
(physical or digital) world that the agent has effects on as well as the teacher who provides instructions and
feedback to the agent as part of the environment. As per Sutton & Barto (2018), we note that “the boundary
between agent and environment is typically not the same as the physical boundary of a robot’s or animal’s body.
Usually, the boundary is drawn closer to the agent than that.”
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Learning from Language Feedback (LLF)

action a1
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action a2
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action aH
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  Instruction:
  Your task is to go close enough to the 
  big tree near the boat. You can take 4 
  actions: forward, turn left, turn right, 
  and stop. 

   Feedback:
   You are making good progress. 
   The tree is even visible now.

Reset
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   Feedback:
   You have succeeded. You are 
   close enough to the tree.

Observation o2
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Observation o1
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Observation oH+1
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Figure 1: Shows an example navigation task to illustrate our setup, Learning from Language Feed-
back (LLF). A single episode in LLF starts with a given instruction and can be multi-step long. The
actions are taken by the agent that changes the observation and provides a text feedback to the agent.
The agent receives no reward or any other form of feedback.

Figure 2: Comparison between RL and LLF setups. LLF replaces reward feedback in RL with
language feedback and generalizes the reward maximization objective to general instructions that
can be specified via natural language.

2.2 ISN’T RL ENOUGH?

The LLF setup is motivated by the inefficiency and unnaturalness of communicating intentions with
rewards. The concept of reward maximization in RL, while giving a simple abstraction of interactive
learning, often creates a barrier for humans to transfer knowledge and convey their intention to
AI agents. Reward feedback compresses all the information that one wishes to convey down to
a single numerical value, representing signals for encouraging or penalizing certain behaviors. In
addition, rewards are received only after the agent takes actions, so the agent would have to not
only learn the task solving skill but also learn to understand the task’s objective. This bottleneck
limits the information that can be transferred to the agent and couples skill learning and intention
understanding, causing the agent to learn inefficiently in a trial-and-error manner.

Moreover, in many cases, it is difficult for human designers to fully understand the long-term effects
of reward maximization, even when each instantaneous reward makes sense. This misalignment has
led to many surprising behaviors of RL agents (Amodei et al., 2016). Consequently, reward engi-
neering has been a common practice in building RL systems, where the user iteratively tweaks the
reward to give to the agent by observing how the agent behaves after maximizing the current reward
function. However, reward engineering is an expensive process. If agents can learn directly from
language feedback (i.e. efficiently solving LLF), learning systems can be built more economically.

3



Appeared at ICLR 2024 Workshop on LLM Agents

Overall, compared to RL, LLF encapsulates the rich language feedback that is used in human-to-
human learning. The expressive nature of this rich language feedback provides a potentially more
efficient mechanism for training agents than RL.

2.3 LLF AND RL WITH TEXT/LANGUAGE OBSERVATIONS

Interactive learning settings with language-based instructions (Misra et al., 2018; Chen et al., 2019)
or observations has been extensively studied (Wang et al., 2016; Guu et al., 2017; Zhong et al.,
2021) in the literature. However, in all these settings, one assumes access to either gold actions
or rewards that are crucially necessary for understanding the textual instructions and observations,
and learning the optimal policy. In contrast, in LLF the agent is neither provided gold actions nor
rewards. This makes LLF appear as a harder learning setting than RL. We argue that this difficulty
working with general-purpose language feedback, has been the reason why LLF hasn’t received
much attention previously despite its potential benefits. Recently, Large Language Models (e.g.,
GPT4 (OpenAI, 2023), Gemini (Gemini Team, 2023)) have demonstrated impressive natural lan-
guage processing abilities. In addition, multiple LLM-agents have shown promising signs of solv-
ing text-based problems involving decision making, planning, information retrieval, tool uses (Wang
et al., 2023a; Schick et al., 2023; Wu et al., 2023). Therefore, LLMs provide a promising way to
work with the general-purpose language feedback in LLF. Further, solving LLF can also be viewed
as a way to measure the ability of LLMs to solve new learning tasks.

In fact, with access to accurate LLMs, LLF is not harder than a RL setting if the task instructions
in LLF are detailed enough such that from the observations alone (without language feedback) it is
possible for the LLM to infer if the agent has succeeded at following the instruction. Note that this
assumption does not mean that the instruction necessarily shows the agent how to solve the problem.
Under this assumption, LLF problems can always be solved without the feedback, by a reduction
to a RL problem with sparse binary reward of success (the binary reward can be computed using
a LLM to detect success based on the instruction and the observation). However, such a reduction
approach would lead to inefficient learning. The main research question of LLF is how to best
leverage the language feedback, which can convey more information than just success/failure, to
learn the optimal policy for the task in a sample-efficient manner. We next describe LLF-Bench as
our proposed research platform to measure progress in answering this question.

3 LLF-BENCH

We design LLF-Bench as a research platform to facilitate the development and testing of LLF agents
(e.g., LLM-agents). LLF-Bench consists of 8 diverse sets of decision-making problems (see Fig-
ure 3), with different action spaces (discrete, continuous, and free-form text spaces) and decision
horizons. Their brief descriptions follow below, with more details in Appendix B:

• llf-bandit is a verbalized version of the classic multi-armed bandit problem, which
we implement based on gym-bandits. llf-bandit tests the agent’s learning ability in an
unknown environment with a finite number of actions.

• llf-poem consists of a set of poem writing tasks, where the agent needs to write a poem
satisfying certain syllable- and line-constraints. These problems tests the agent’s learning
ability to infer and solve constraint satisfaction problems.

• llf-reco-movie simulates a classic recommendation scenario where a user wants
movie or TV show recommendations based on some preferences. The user specifies their
preferences in text, and any recommendation made by the agent is matched to a movie
database for checking whether the preferences are matched correctly.

• llf-optimization consists of 8 loss functions (Rosenbrock, Bohachevsky, etc.) and
provides an interface to give verbal feedback for the task of optimization on any loss func-
tion.

• llf-parking extends the Highway gym environment, providing a long horizon goal-
conditioned continuous control task. The agent must control an ego-vehicle to park in a
given location without colliding with any obstacles in the environment.
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Figure 3: LLF-Bench (“Elf-bench”) includes 8 sets of LLF problems. Image by Bing Chat.

• llf-gridworld evaluates the agent’s ability to navigate in a graph-based environment.
Each node of the graph is a room and the edges are doors connecting the rooms. The agent’s
goal is to navigate from the room it starts in to the room with treasure.

• llf-alfworld adds a wrapper on top of the Alfworld text-based environment (Shridhar
et al., 2021) to provide language feedback instead of reward. In llf-alfworld, the
agent is tasked to solve problems in a text-based house environment. The agent is tested
for generalization as each episode can contain a new task in a new house environment.

• llf-metaworld is a low-dimensional state-based version of the existing Meta-World v2
benchmark (Yu et al., 2019). It comprises 50 simulated robotic manipulation tasks featuring
a Sawyer arm and various objects that this arm needs to bring into desired configurations,
such as opening doors, placing cubes in boxes, etc.

When designing a learning benchmark, an important consideration is whether the evaluation can
truthfully reflect an agent’s learning and generalization abilities and separate them from overfitting.
To this end, we make two important design choices:

1. Following the framing of LLF, LLF-Bench implements the task instruction as part of the
environment, as opposed to as part of the agent. The latter is common in the current lit-
erature of LLM-agents, and many LLM-agents heavily rely on using task-specific prompt
templates (Yao et al., 2023; Wang et al., 2023a). By this design, we encourage users of
LLF-Bench to develop agents that can simultaneously work well across different problems
sets in LLF-Bench. We hope that this paradigm shift would facilitate the development of
more generic learning agents that can solve multiple tasks, rather than being engineered for
solving just a single task.

2. LLF-Bench provides the option to further randomize the textual description of task in-
struction and feedback that the agent receives. In addition, for several environments, we
randomize the environment’s latent parameters (e.g., to permute the action ordering in
llf-bandit or change the room connectivity in llf-gridworld) when the envi-
ronment is reset. Sensitivity to different phrasing of the same instruction is often used to
measure the robustness of a text-based model (Ribeiro et al., 2018; Wallace et al., 2019).
This design is motivated by the observation that LLMs as of now, do not always perfectly
understand semantics and can be sensitive to the exact texts that are presented (Zhu et al.,
2023). It has been shown LLMs suffer from recency bias and can give drastic different out-
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puts for semantically similar inputs (Arora et al., 2023; Leidinger et al., 2023). To combat
that, for each problem instance in LLF-Bench, we manually curate a set of syntax templates
via paraphrasing, which are used to produce a diverse yet semantically equivalent set of task
instructions and feedback during interactions. By introducing randomization, LLF-Bench
can better evaluate the agent’s ability of task solving and prevent the agent from overfitting
a specific text realization.

One prominent feature of LLF-Bench is its configurable feedback system. Taking inspiration from
the education research literature (Shute, 2008), we classify the language feedback into 3 different
types: 1) feedback of the current performance (similar to reward scalars and success booleans),
2) suggestions of future behaviors (e.g., hints or things to avoid) 3) explanation of past behavior
(e.g., why some behaviors are bad and should not be repeated). By default, a testing environment in
LLF-Bench provides a mix of these feedback (when appropriate). It can also be easily configured to
provide feedback based on any subset of these categories.

For ease of use, LLF-Bench adopts the OpenAI Gym API (Brockman et al., 2016), which abstracts
the interaction with reset and step API functions. LLF-Bench environments return the natural
language instruction and feedback as the observation (a python dict) and the action spaces vary
across problems. LLF-Bench environments also return rewards per the Gym step API. While
agents in the LLF setup do not use rewards, the returned rewards can be used to evaluate an LLF
agent’s performance; this feature makes the LLF-Bench environments also usable as typical RL
environments. LLF-Bench also provides a text-mode option (where both the observation and the
action are free-form texts), so that it can also be used as a benchmark for evaluating LLM-agents as
well.

4 GYM INTERFACE OF LLF-BENCH

LLF-Bench formalizes a wide variety of decision-making problems by extending the popular Ope-
nAI Gym API. The API contains three key functions — make, reset, step — that are seman-
tically similar to their Gym namesakes and detailed below. A sample code snippet for interaction
with LLF-Bench’s Gym interface can be found in Listing 1 in Appendix A.

• make: Returns an Environment object similar to gym.make. An LLF-Bench Environ-
ment extends classic Gym Environments (e.g., with well-defined ActionSpace and
ObservationSpace) with two additional concepts, instruction and feedback,
that are explained below.

• reset: After an environment is initialized using make, it should be reset to receive
the initial Observation from the Environment. LLF-Bench Observation is a python dic-
tionary containing gym.Observation (i.e., an observation that is contained in the
environment.ObservationSpace) as well as instruction and feedback
keys. If the environment uses randomization, then the random number generator can be
seeded with the seed parameter as input.

• step: Takes as input an action that is contained in the environment.ActionSpace,
and returns a LLF-Bench Observation dictionary which includes the instruction and
feedback keys. In addition to the Observation, step also returns scalar reward, boolean
flags truncated and terminated and a miscellaneous info dictionary which have the same
semantics as Gymnasium environments. An agent for LLF-Bench is expected to solve
tasks using the feedback contained within Observation, without using the reward signal.
Signals like reward and info are provided for backward compatibility with Gymnasium and
for automated evaluation.

Note that under the hood, LLF-Bench implements all Environment objects as compatible with the
Gymnasium standard. We provide EnvironmentCompatibility wrappers if the Environment
is instead otherwise compatible with the deprecated Gym (pre-0.21 version) standard. We simi-
larly include TextWrapper wrappers that can convert any LLF-Bench Environment with bespoke
ObservationSpace and ActionSpace into one with text as the observation and action spaces.
This wrapper allows one to directly interface LLM-based agents with LLF-Bench environments and
assess their learning and decision-making behavior.
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Although each step also returns a scalar reward, the convention we follow (and recommend to
users of LLF-Bench) is that the agent never sees the reward. It can only access the information in
observation, instruction and feedback to decide its actions (e.g., see line 17 in Listing 1).

4.1 INSTRUCTION AND FEEDBACK

Instruction is a string that is defined inside the Environment and describes in natural language the
problem that a decision-maker must solve. We recommend that agent-designers should not inspect
and overfit to a specific instruction describing the desired task in an environment; the default be-
havior of LLF-Bench environments is to paraphrase instructions in different ways to minimize the
chances of prompt overfitting. Three different types of Instruction are supported in LLF-Bench,
and can be toggled by passing an appropriate instruction_type to the make command of a
LLF-Bench environment:

• Basic: instruction_type = ‘b’. This is the default instruction type for LLF-Bench
environments. The instructions provide an agent with the goal, semantics of its action
space, as well as the expected syntax of its responses. The instruction provides enough
information for a competent agent (e.g., a literate human) to begin interacting with the
environment.

• Complete: instruction_type = ‘c’. The instructions additionally provide infor-
mation to reliably infer (e.g., by a literate human) an optimal policy for achieving the goal.

• Practical: instruction_type = ‘p’. It contains the Basic instructions, and ad-
ditionally includes Feedback for previously executed actions. The goal of a learning
agent is to infer the optimal policy (i.e., comparable in performance to the one with
instruction_type = ‘c’) as quickly as possible.

Feedback is a string that provides the signal for an agent to learn from its interaction. LLF-Bench
implements two kinds of feedback: an atomic feedback, and a composite feedback. The type of
feedback an environment provides to an agent is set by passing an appropriate feedback_type
parameter to make. Atomic feedbacks are inspired by the education research literature (Shute,
2008). LLF-Bench currently supports 5 different types and we plan to include new styles (to include
e.g., questioning) in the future:

• feedback_type = ‘r’: This is the textualization of the scalar reward signal or suc-
cess signal from classical RL. By using the text-wrapper and this feedback type, several
classical RL environments (implemented in OpenAI Gym or Gymnasium) can be compa-
rably tested with LLF agents in LLF-Bench.

• feedback_type = ‘hp’: This hindsight positive feedback provides an explanation
about a past action by the agent that was desirable.

• feedback_type = ‘hn’: This hindsight negative feedback provides an explanation
about a past action by the agent that was undesirable.

• feedback_type = ‘fp’: This future positive feedback provides a suggestion for a
potential future action that could be desirable.

• feedback_type = ‘fn’: This future negative feedback provides a suggestion for po-
tential future actions that should be avoided.

feedback_type = ‘r’ corresponds to the current performance evaluation from the educa-
tion research literature, whereas feedback_type = ‘fp’, ‘fn’ correspond to future be-
havior suggestion. Finally, feedback_type = ‘hp’, ‘hn’ correspond to the past behavior
explanation style of feedback studied in the education research literature.

Composite feedback types allow the environment to provide the agent multiple kinds of atomic
feedbacks. This makes for a more realistic learning problem, rather than the same type of atomic
feedback at every step of the environment.

• feedback_type = ‘a’: All of the Atomic feedback types that are supported by the
environment are provided to the agent at each round of interaction.

7
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• feedback_type = ‘m’: The agent receives a Mix of different atomic feedbacks. A
random subset of the supported feedback types are sampled by LLF-Bench to provide to
the agent at each step.

• feedback_type = ‘n’: The agent receives No feedback, this mode is provided for
debugging purposes.

The make API accepts any of the composite feedback types, or any subset of the atomic feedback
types to allow fine-grained control of the learning signal that an agent can receive from LLF-Bench
environments. The default behavior in make for any environment uses feedback_type = ’a’.
See Listing 1 for sample code that creates a LLF-Bench environment and instantiates an agent to
interact with it using make, reset and step API calls.

4.2 INSTRUCTION AND FEEDBACK RANDOMIZATION

To reduce the sensitivity of learning agents to a specific text realization, LLF-Bench implements a
template-based paraphrasing system, by which users can randomize the instruction and the feedback
that the agent receives. For each problem in LLF-Bench, we implement about 4-20 paraphrased
templates for each instruction and each feedback type. When the randomization options are turned
on, the LLF-Bench environment will randomly choose one from these curated templates to formulate
the language instruction and feedback returned to the agent. LLF-Bench also provides the option to
deterministically use a particular template. The randomness of paraphrasing can be controlled by
setting the seed parameter in the OpenAI Gym reset function.

5 RELATED WORK

In this section, we describe other benchmarks that focus on language-based agents. Works related
to the LLF are covered in Appendix C.

RL Benchmarks with Natural Language Many RL environments incorporate natural language.
We provide a list summarizing their main features in Table 1. The RL environments can use lan-
guage to describe the reward/goal (instructions), the observations, or the actions. Commonly,
language is used as goal-specifying instructions (which is essentially a reward function) for an RL
agent (e.g., GridLU by Bahdanau et al. (2019), ViZDoom Text by Chaplot et al. (2018), ISI Block
by Misra et al. (2017), and Puddle World by Janner et al. (2018)). In this context, understanding and
mapping instructions/goals to the state of the environment is the key challenge. Some RL environ-
ments naturally have observations in text; these include text-based adventure games (Text World
by Côté et al. (2019) and NetHack by Küttler et al. (2020)) and HTML webpages (MiniWoB by Shi
et al. (2017), MiniWOB++ by Liu et al. (2018), and WebShop by Yao et al. (2022)). Other RL envi-
ronments have action spaces in text, i.e. an RL agent can generate a sequence of tokens as an action,
such as a structured text representing a short executable program (e.g. SHRDLURN by Wang et al.
(2016)). However, this was considered challenging due to the relatively large vocabulary space and
the difficulty of learning to generate a sequence. None of these environments provide rewards as text
and do not provide feedback on actions. They also do not consider variations in language expres-
sions – such as different phrasing or writing that represent the same underlying goal or state of the
environment. Many of these environments are unsuitable for testing LLM agents due to having an
observation space that is pixel or vector-based, and the types of tasks are dissimilar to what people
use LLMs for today.

LLM Agent Benchmarks Building agents using LLM has ushered in a new set of challenges.
In general, the environments included in these benchmarks only concern planning and information
retrieval with sparse reward signals at the end. Very few of these benchmarks measure the ability
of an agent to learn and adapt to a task (e.g., the Abstraction and Reasoning Corpus by Chollet
(2019)). Liu et al. (2023b) proposed a set of environments that cover a few popular types of task
setups, such as web browsing, game, and code generation. Their focus is on the diversity of tasks,
not the robustness of LLMs or how well they can incorporate feedback, which is dissimilar to how
LLMs are currently being used in a user-centered environment. Ge et al. (2023) constructed a set

2The scalar reward is for evaluation, not for agent learning in the LLF setup.
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Environment Observation
Space

Action
Space

Reward
Space

Language
Variations

(Robustness)

Language
Feedback

Language Grounding Envs

SHRDLURN (Wang et al., 2016) Vector Text Scalar None No
GridLU (Bahdanau et al., 2019) Pixel Discrete Scalar None No

VizDoom Text (Chaplot et al., 2018) Pixel Discrete Scalar None No
ISI Block (Misra et al., 2017) Pixel Discrete Scalar None No

Puddle World (Janner et al., 2018) Pixel Discrete Scalar None No

Text-based Games

BabyAI (C-Boisvert et al., 2018) Pixel Discrete Scalar None No
Zork (Narasimhan et al., 2015) Text Text Scalar None No

TextWorld (Côté et al., 2019) Text Text Scalar None No
NetHack (Küttler et al., 2020) Pixel Discrete Scalar None No

Web-Navigation Envs

MiniWoB (Shi et al., 2017) Pixel/Text Disc/Cont Scalar None No
MiniWOB++ (Liu et al., 2018) Pixel/Text Disc/Cont Scalar Observation No

WebShop (Yao et al., 2022) Pixel/Text Text Scalar None No

LLM Agent Benchmark Envs

AgentBench (Liu et al., 2023b) Text Text Scalar None No
OpenAGI (Ge et al., 2023) Text Text Scalar None No

MINT (Wang et al., 2023b) Text Text Scalar None Yes (LLM)
LMRL Gym (Abdulhai et al., 2023) Text Text Scalar None No

LLF-Bench (Ours) Text All Scalar2+Text All Yes (Synthetic)

Table 1: We list several decision-making environments that involve natural language. Language is
used to instruct model behavior, represent observation, or is part of the action output. “Language
Variations” refers to whether there are multiple descriptions of the same instruction, observation, or
reward. “Disc/Cont” means the output is a mix of discrete and continuous variables. LLF-Bench
offers text representation for instruction, observation, and reward, generates paraphrasing to prevent
prompt hacking, and offers procedurally generated synthetic feedback for fast and cheap evaluation.

of tasks where LLMs are prompted to use language or vision-related models to solve a complex
task that requires multiple steps. The task-level feedback they provide is a numerical score from
a domain-specific evaluation method. MINT (Wang et al., 2023b) is a benchmark that also offers
natural language style feedback. However, MINT synthesizes user feedback by prompting LLMs.
This incurs additional costs, introduces additional variability in the evaluation process, and makes it
challenging to represent the diversity of human feedback styles. LMRL Gym (Abdulhai et al., 2023)
provides a set of 8 environments that include full and partial observability. The tasks are similar to
language-grounding tasks and text games. However, no interim feedback is provided during multi-
round interactions.

On the other hand, several benchmarks have been proposed to evaluate LLM-based agents for
decision-making (AgentBench by Liu et al. (2023b), OpenAGI by Ge et al. (2023), MINT by Wang
et al. (2023b), and LMRL Gym by Abdulhai et al. (2023)). However, many tasks in these bench-
marks center around planning and information retrieval problems. Few require the agent to learn and
adapt beyond what an LLM can already do. A real-life user would leverage an LLM-based agent
to solve challenging tasks but also give intermediate feedback, such as “make the title text larger”
or “wrap the code with an error-catching block.” LLF-Bench supports such intermediate feedback
as well. Also, due to the lack of language variations, developers might identify a specific prompt
that solves an instantiation of the task, over-fitting to a particular writing of the task specification.
Lastly, because an LLM-based agent interacts with human users, the specification of reward from
a user can often be text. Are LLM-based agents capable of learning and adaptation from rewards
represented as text? LLF-Bench aims to provide a set of environments to help answer this question
while addressing the challenges in reliably benchmarking LLM-based agents.
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crete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
and Christopher Re. Ask me anything: A simple strategy for prompting language models. In
ICLR, 2023.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Pushmeet Kohli, and Edward Grefen-
stette. Learning to understand goal specifications by modelling reward. In ICLR, 2019.

Chandrayee Basu, Erdem Bıyık, Zhixun He, Mukesh Singhal, and Dorsa Sadigh. Active learning of
reward dynamics from hierarchical queries. In IROS, 2019.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. Natural language communication with robots. In
NAACL-HLT, 2016.

Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In
CORL, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Ra-
jagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In AAAI, 2018.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In CVPR, 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In ICLR, 2019.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.
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A SAMPLE CODE FOR INTERACTING WITH LLF-BENCH

1 import llfbench as gym
2

3 # Environments in the benchmark are registered following
4 # the naming convention of verbal-*
5 env = gym.make(’verbal-gridworld-v0’)
6

7 done = False
8 cumulative_reward = 0.
9

10 # First observation is acquired by resetting the environment
11 observation = env.reset()
12

13 while not done:
14

15 # Observation is dict having ’observation’, ’instruction’, ’feedback’
16 # Here we print the observation and ask the user for an action
17 action = input( observation[’observation’] + ’\n’ +
18 observation[’instruction’] + ’\n’ +
19 observation[’feedback’] + ’\n’ +
20 ’Action: ’ )
21

22 # Gridworld has a text action space, so TextWrapper is not needed
23 # to parse a valid action from the input string
24 observation, reward, terminated, truncated, info = env.step(action)
25

26 # reward is never revealed to the agent; only used for evaluation
27 cumulative_reward += reward
28

29 # terminated and truncated follow the same semantics as in Gymnasium
30 done = terminated or truncated
31

32 print(f’Episode reward: {cumulative_reward}’)

Listing 1: Sample python code snippet for interacting with LLF-Bench environments.

B TASKS IN LLF-BENCH

LLF-Bench consists of 8 different problem sets, ranging from user-recommendation, poem-writing,
navigation, to robot control. In the LLF setup, the reward is masked out (though the environments
in LLF-Bench still return rewards for evaluation purposes). To solve these problem efficiently, an
LLF agent needs to have sufficient common sense understanding of the natural language instruction
and the feedback. In addition, the agent needs to be able to learn from environmental interactions
and feedback. We intentionally design these suites of problems such that, while the agent can tell
success from the instruction and the environmental observation, it is difficult for the agent to infer
the optimal policy from them without additional learning.

These problem sets feature different action spaces, problem horizons, and test different abilities of
LLF agents. We provide a summary in Table 2 and next describe each problem set in more detail.

B.1 LLF-BANDIT

llf-bandit is a verbalized version of the classic multi-armed bandit problem. We built
llf-bandit based on gym-bandits by adding natural language task instruction and feedback.
There are a total of 8 bandit problems in llf-bandit. For each problem, the task instruction tells
the task name from the underlying gym-bandits, that the goal is a bandit problem, as well as the
feasible actions. While being a bandit problem, llf-bandit’s feedback does not necessarily con-
vey the reward value in text (it depends on the configuration of the feedback type). When reset,
the environment randomizes the order of actions and, if applicable, the underlying reward function.
The agent here needs to learn to explore and exploit in multiple rounds of interactions to find the
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Problem Set Action Space Horizon Stateful Instruction Feedback
llf-bandit Discrete 1 No b, p, c all
llf-poem Text 1 No b all
llf-reco-movie Text 1 No b, c all
llf-optimization Continuous 10 Yes b all
llf-parking Continuous 100 Yes b r, hp, hn
llf-gridworld Finite 20 Yes b, p, c all
llf-alfworld Text 100 Yes b all
llf-metaworld Continuous 30 Yes b r, hp, hn, fp

Table 2: Properties of problem sets included in LLF-Bench. Instruction and Feedback column
denote the types of instruction and feedback that are supported by the environment. If feedback is
all, then it means that all 5 feedback (r, hn, hp, fn, and fp) are supported.

best arm as fast as possible with small regret (measured in terms of the hidden rewards). Overall,
llf-bandit tests the agent’s learning ability in an unknown environment with a finite number of
actions.

B.2 LLF-POEM

llf-poem is a collection of text-generation tasks requiring a poem to be written that conforms to a
particular number of lines and number of syllables for each line. Even though there are many types
of formal poems, the current set of tasks supports basic types that follow syllable and line-based
constraints. Such formal poems include Haiku (a three-line short poem following a 5-7-5 syllable
pattern), Tanka (a five-line short poem following a 5-7-5-7-7 pattern), and custom environments
where a user can specify the number of lines and how many syllables per line. We use the CMU
Pronouncing Dictionary for syllable verification3. llf-poem provides detailed fine-grained feed-
back on each line – a good environment to test whether the LLM-based agents can improve quickly
given feedback.

B.3 LLF-RECO-MOVIE

llf-reco-movie is an environment that simulates user-recommendation system interactions on
the topic of recommending movies. To simulate a user, the environment will first randomly sample a
user preference profile over a set of attributes such as the type of entertainment (TV show or movie),
year range (80s, 90s, 2000s, or recent), preferred genres (Action, Comedy, Documentary, etc.), and
age restriction (child/family-friendly or R-rated). An agent needs to recommend a few items (no
restriction on the number of items) that all satisfy the stated preference. An item-by-item feedback
is provided in this environment to point out detailed preference violations that can allow LLMs to
improve their recommendations.

B.4 LLF-OPTIMIZATION

llf-optimization provides an easy-to-use interface with automatic procedurally generated
feedback that examines LLMs’ ability to make a series of proposals x to minimize a particular loss
function y = f(x). The feedback provided in this environment is created by computing gradient dy

dx
and then verbalizing this information based on the change in input between the previously proposed
x and the current chosen x. We provide implementations of 8 classic loss functions (Rosenbrock,
Bohachevsky, etc.), and the base class is easily extendable to cover other loss functions. This is an
environment where we can measure LLM’s ability to make decisions with observed information on
an unknown loss landscape.

B.5 LLF-PARKING

llf-parking extends the Highway gym environment to LLF-Bench. It is a long horizon goal-
conditioned continuous control task where the agent can manipulate the throttle and steering input to

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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an ego-vehicle. It must park the ego-vehicle in a given location without colliding with any obstacles
in the environment. We extended the environment by (1) describing the observation and action
spaces in text, and (2) verbalizing the per-time-step reward (distance to goal) to provide text feedback
about goal progress and obstacle collisions. An agent must learn how its control inputs affect the
vehicle’s dynamics, and plan to accomplish the eventual parking goal.

B.6 LLF-GRIDWORLD

The llf-gridworld domain models a navigation agent in a graph-based gridworld. The world is
represented by a graph where rooms are denoted by nodes and edges denote doors. A room can have
at most 4 doors along the north, south, east and west direction. These directions form the agent’s
action space. At any given time, the agent is in exactly one of the rooms. If the agent takes an action,
such as a = north, then it will transition from its current room, to the room connected by the door
along the north direction, if one exists. If no such door exists, then the agent stays in the same room.
All transitions are deterministic. A room can contain many different types of objects. A unique
room, called the treasure room, contains the treasure object. The agent starts in a start room and its
goal is to navigate to the treasure room. The number of rooms, objects, object type, and distance to
the treasure, can be easily customized.

The agent’s observation describes the current room including all the objects in it, and the different
doors that are available. The agent can get all 5 types of feedback: r, hn, hp, fn, and fp. For
example, for the fn feedback, the agent will be told which action, i.e., a door, to avoid going
through in the next step.

B.7 LLF-ALFWORLD

The llf-alfworld environment is a wrapper built on top of the popular AlfWorld text-game
environment (Shridhar et al., 2021) which itself is built as a parallel to the embodied Alfred
dataset (Shridhar et al., 2020). llf-alfworld contains multi-step reasoning tasks, where in each
episode, the agent is given an instruction in a house setting and must take a sequence of actions to
fulfill this instruction. In each step, the agent is given a textual description of what it sees and a
list of valid actions. The agent generates a text action (e.g., open drawer 1), which if it is valid can
change the agent’s observation, and if it is invalid then results in no change. The agent additionally
gets a reward for each action. The goal of the agent is to maximize the total reward by solving the
task. Unlike the llf-gridworld setting, the agent is tested for generalization as each episode
can contain a new task in a possibly new house environment.

The main addition in llf-alfworld is the capability to provide text feedback instead of reward.
The text feedback is generated using an optimal trajectory for that episode, as well as the instanta-
neous reward and the list of valid commands for each time step. Similar to llf-gridworld, the
agent can get all 5 types of feedback: r, hn, hp, fn, and fp.

B.8 LLF-METAWORLD

llf-metaworld wraps the low-dimensional fully observable state-based version of the existing
Meta-World v2 benchmark (Yu et al., 2019) into a textual interface. Meta-World consists of 50
simulated robotic manipulation tasks, in each of which a robotic Sawyer arm needs to move an
object into a specified position, e.g., push a puck to a goal location or press a button. An agent
trying to accomplish an llf-metaworld task is presented with an instruction stating that the task
is about getting a robotic manipulator to successfully handle an object and explaining what each
dimension of the agent’s 4D state space means. By default, the environment interprets an agent’s
action as a target pose where the arm should move4, and tries to move the arm there using Meta-
World’s built-in P-controller. At each time step, the agent receives as observation a description of

4The dynamics of llf-metaworld differs from the one in the original Meta-World. Here the agent
controls the target location (the simulator runs the P-controller to act in the original Meta-World environment
for several steps until the target location is reached or it is timed out), whereas in the original environment
the agent controls force to incrementally change the end-effector. This design is to make the problem horizon
shorter and more closely mimic the common use cases of industrial robotic manipulators.
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the current state mentioning the pose of the arm and all relevant objects in the scene. The language
feedback here may include advice on where to move the arm next and where not to move it.

C RELATED WORK

Grounded Language Learning Reinforcement learning with textual information has been stud-
ied under the branch of multi-modal representation learning. This branch of study has several fo-
cuses that are both similar and different from our goal with LLF-Bench. One focus deals with
ambiguity and difficulty in understanding instructions or goals specified by natural language (Wang
et al., 2016; Bahdanau et al., 2019; Chaplot et al., 2018). While the ambiguity of instructions is a
concern, we focus more on robustly behaving under different instructions that all represent the same
underlying goal. Another focus of this body of work is to ground visual information with textual
instruction – a core aim of multi-modal representation learning (Bisk et al., 2016; Misra et al., 2017),
with an extension to robotic interaction (Karamcheti et al., 2022; 2023). Language provides a natu-
ral shared representation that enables easier transfer between different tasks (Hanjie et al., 2021) or
supplies important information such as safety constraints for a policy (Yang et al., 2021). In previ-
ous work, feedback is often not considered. When feedback is considered, it is usually framed as
error messages from a syntax parser (if the action space is text) and can indeed be incorporated into
learning (Côté et al., 2019). This type of feedback corresponds to feedback_type = ‘hn’ in
our setup.

Text-based Games Extending from using reinforcement learning for solving complex games,
there are many text-based games that include challenges such as the navigation of space, manip-
ulation of the environment to achieve goals, and reaction to random events. Narasimhan et al.
(2015) repurposed a classic text adventure game, Zork, where both observation and action space
are text. Côté et al. (2019) proposed a set of text-based game environments and included a few
carefully designed challenges for RL to solve, such as large state and action space (determined by
the vocabulary size) and long credit assignment. On the other spectrum, Küttler et al. (2020) cre-
ated a learning environment from the game NetHack. Although the game state is represented with
hundreds of text symbols, policy learning is conducted on the screenshot of the terminal. Similarly,
BabyAI (Chevalier-Boisvert et al., 2019) is a set of procedurally generated grid-like maze environ-
ments – the objects and representation in the environment are a fixed set of symbols. None of these
environments consider providing language feedback on the agent’s action.

Learning from Language Feedback Providing feedback to an RL agent’s action as part of the
learning signal beyond task rewards has been studied in robotics. However, most of the efforts
were limited to eliciting binary preference feedback (Sadigh et al., 2017; Biyik & Sadigh, 2018) or
ranking-based feedback from real people (Basu et al., 2019). Sumers et al. (2021) crowd-sourced
a small feedback dataset on a small game. They considered three types of feedback, evaluative
feedback (which corresponds to feedback_type = ‘r’), descriptive feedback (which in our
setup is decomposed into feedback_type = ‘hp’, ‘hn’), and imperative feedback (which
corresponds to feedback_type = ‘fp’, ‘fn’). They then used a sentiment classifier to
extract coarse information from this feedback to improve the policy’s behavior. Nguyen et al. (2021)
proposed an approach to map textual instructions to trajectories in embodied settings by assuming
that a user can label a generated trajectory with the instruction that is likely to generate the trajectory
under the optimal policy. More recently, Cui et al. (2023); Liu et al. (2023a) studied the case of
language feedback as corrections to a robotic arm at any time of the task execution, which is an
instance of the LLF setup that we are considering.

LLM Sensitivity to Prompts A long line of work has investigated smaller-scale language-based
systems’ sensitivity to different expressions that have the same underlying meaning. They can be
categorized as adversarial attacks to text-based systems (Ribeiro et al., 2018; Wallace et al., 2019)
or as mechanisms to improve language-based systems’ output via self-consistency (Edunov et al.,
2018). More recently, the lack of robustness to prompts has been found on large language models
as well (Liu et al., 2023c; Wolf et al., 2023). Zhu et al. (2023) proposed a benchmark dataset to
investigate the robustness of LLMs on different types of prompts that can contain user errors for
tasks related to natural language.
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