
A Guide to Robust Generalization: The Impact of
Architecture, Pre-training, and Optimization Strategy

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep learning models are vulnerable to small input perturbations. For years,1

robustness to such perturbations was pursued by training models from scratch (i.e.,2

with random initializations) using specialized loss objectives. Recently, robust fine-3

tuning has emerged as a more efficient alternative: instead of training from scratch,4

pretrained models are adapted to maximize predictive performance and robustness.5

To conduct robust fine-tuning, practitioners design an optimization strategy that6

includes the model update protocol (e.g., full or partial) and the specialized loss7

objective. Additional design choices include the architecture type and size, and the8

pretrained representation. These design choices affect robust generalization, which9

is the model’s ability to maintain performance when exposed to new and unseen10

perturbations at test time. Understanding how these design choices influence11

generalization remains an open question with significant practical implications.12

In response, we present an empirical study spanning 6 datasets, 40 pretrained13

architectures, 2 specialized losses, and 3 adaptation protocols — yielding 1, 44014

training configurations and 7, 200 robustness measurements across five perturbation15

types. To our knowledge, this is the most diverse and comprehensive benchmark of16

robust fine-tuning to date. While attention-based architectures and robust pretrained17

representations are increasingly popular, we find that convolutional neural networks18

pretrained in a supervised manner on large datasets often perform best. Our analysis19

both confirms and challenges prior design assumptions, highlighting promising20

research directions and offering practical guidance.21

1 Introduction22

Images processed by machine learning models can contain subtle perturbations that are invisible to23

the human eye. These perturbations may occur accidentally (e.g. sensor noise, blur, digital format24

conversions [Jung, 2018]) or intentionally (e.g., adversarial attacks [Szegedy et al., 2014]). Such25

perturbations can negatively affect the performance of machine learning systems, which is a serious26

obstacle to their adoption in the real world.27

In practice, it is difficult to anticipate which type(s) of perturbation(s) a system may face [Sculley28

et al., 2015]. A key challenge is therefore to maximize robustness across diverse perturbation types.29

To achieve that, a typical approach is to assume a set of possible perturbations and induce robustness30

to this specific set during training [Croce and Hein, 2022, Tramèr and Boneh, 2019, Maini et al.,31

2020]. However, this strategy is inherently limited, as models may encounter unforeseen perturbations32

post-deployment [Bashivan et al., 2021, Ibrahim et al., 2022]. In this work, we focus on robust33

generalization: it refers to the ability of models trained for robustness on a specific perturbation type34

to remain robust to other, unseen, perturbations.35
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We specifically focus on robust generalization in low data regimes. Robustness-critical applications36

often face data scarcity constraints, due to data collection costs [Rahimi et al., 2021]. In low data37

regimes, robust generalization can be induced by fine-tuning for robustness models pre-trained on38

large datasets [Hua et al., 2024, Xu et al., 2023, Hendrycks et al., 2019, Liu et al., 2023a].39

Fine-tuning for robustness involves a wide range of design choices related to the pretrained backbone40

and the fine-tuning process. When selecting a pretrained backbone, one implicitly selects an architec-41

ture type (e.g., convolutional, attention-based, or hybrid), a model size, and a pretraining strategy42

(e.g., supervised vs. self-supervised, robust vs. non-robust). As for the robust fine-tuning process,43

one must select a fine-tuning protocol (e.g., partial vs full updates) and a loss objective. A standard44

loss objective is classic adversarial training (Classic AT) [Madry et al., 2018], which minimizes45

cross-entropy on adversarially perturbed observations. Another option is the so-called TRADES46

(TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization) [Zhang et al., 2019] loss,47

which optimizes both the cross-entropy and the Kullback-Leibler (KL) divergence between predic-48

tions on perturbed and unperturbed observations. Unfortunately, there is currently limited guidance49

available for practitioners to navigate these choices effectively.50

Figure 1: Performance variation across fine-
tuning design choices (full fine tuning with 50
epochs). Accuracy averaged over 6 datasets.

Research question What are the impacts of ro-51

bust fine-tuning design choices on robust gener-52

alization? Our main hypothesis is that the pre-53

trained backbone interacts with the fine-tuning54

and optimization strategies to substantially influ-55

ence robust generalization. Figure 1 motivates56

this hypothesis by showing important performance57

variability across design choices and complex in-58

teraction patterns among design components.59

Key findings We conduct a study on 6 datasets60

and a total of 240 design choices combinations (4061

pretrained backbones ⇥ 2 robust losses ⇥ 3 fine-62

tuning protocols). We obtain 7, 200 measurements63

of robustness on 5 perturbation types. We uncover64

actionable lessons for practitioners and for future65

research on robust fine-tuning:66

1 TRADES loss performs better than Classic AT overall and significantly better in large models. 267

Despite growing interest in attention architectures, convolutional architectures show better robust68

generalization in the considered setups. 3 Hybrid architectures are a promising avenue in robust69

fine-tuning. 4 With enough compute, supervised pre-training yields best robust generalization, but70

multi-modal pre-training is also promising. 5 Robust pre-training is the clear winner in resource71

constrained fine-tuning settings. 6 When fine-tuning robust backbones with enough compute, using72

a loss different from the one used for pre-training can boost performance. 7 Robust pre-training73

yields limited returns when scaled to larger architectures. 8 Full finetuning is the best overall, and74

there exist a cost-effective proxy to guide practitioners in finding successful design choices faster.75

Related benchmarks Tang et al. [2021], Liu et al. [2023b], and Shao et al. [2021] benchmark the76

performance of different architectures and training strategies on robustness. A main difference is that77

they all consider “training from scratch” (i.e., training from random initializations). In contrast, our78

study focuses on fine-tuning from pretrained backbones. Training dynamics observed in one setting79

do not necessarily transfer to the other [Kornblith et al., 2019]. Another key difference is that the80

current benchmark analyzes configurations with optimized hyper-parameters (see details in Appendix81

B), while prior works consider fixed hyper-parameters. This study is therefore better geared towards82

practitioners. More broadly, this work is inspired by design choices studies in non-robust computer83

vision [Goldblum et al., 2024] and in robust vision-language [Bhagwatkar et al., 2024].84

2 Design choices85

We study 80 combinations (40 pre-trained backbones ⇥ 2 objective losses) using 3 fine-tuning86

protocols over 6 classification tasks with C classes. Each observation-label pair (x, y) is drawn i.i.d.87
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from a stationary distribution (X,Y ). Each configuration results in a classifier model f✓ : X ! �C ,88

where ✓ are the model parameters and �C denotes the (C � 1)-dimensional probability simplex.89

2.1 Pre-trained backbones90

Size Param. Range Type Architectures

Small 5–10M
Conv. Regnetx004, Efficientnet-b0, Ed-

genext (small)
Attn. DeiT (tiny)

Hybrid Coat (tiny), MobileViT (small)

Medium 25–30M
Conv. Convnext (tiny), Resnet50
Attn. DeiT (small), ViT (small), Eva02

(tiny), Swin (tiny)
Hybrid Coatnet-0

Large 80–90M
Conv. Convnext (base)
Attn. ViT (base), Eva02 (base), Swin

(base)
Hybrid Coatnet-2

Table 1: Overview of the 19 considered architectures.

Tremendous progress has been made in the91

development of pre-trained backbones, and92

each technique is usually followed by multi-93

ple variations. The options available in the94

open-source community are endless [Wight-95

man, 2019], which motivates an extensive96

benchmarking of pre-trained backbones.97

Architectures We consider a total of 1998

architectures, spanning into three size cat-99

egories: large (80–90 million parameters),100

medium (25–30 million), and small (5–10 mil-101

lion) – see summary in Table 1. Each archi-102

tecture is further categorized between one of three structural types: convolutional, attention-based,103

and hybrid (i.e., mixture of convolution and attention layers). Small architectures are relevant for104

deployment in low resource environments (e.g., Jetson Nano, Orion) or with low latency requirements.105

To our knowledge, this is the first study in robust fine-tuning that considers small size architectures106

(5-10M) [Hua et al., 2024, Xu et al., 2023, Hendrycks et al., 2019, Liu et al., 2023a]. The largest107

architectures considered are aligned with existing works [Goldblum et al., 2024, Hua et al., 2024].108

For larger architectures, we refer to works on scaling robustness [Wang et al., 2024].109

Category Total Technical Details
Supervised 20 ImageNet-1k/22k; variants with and with-

out data-aug. & regularization
Multistep Supervised 6 Imagenet-22k then 1k, Imagenet-12k then

1k, variants with and without data-aug. &
regularization

Robust Supervised 5 4× APGD-K, 1× PGD-K adversarial pre-
training; all based on Classic AT on In1k

Unimodal Self-Sup. 4 MAE, DINO, MIM
Multimodal Self-Sup. 3 CLIP on LAION-2B / LAION-Aesthetics

Fusion 2 CLIP (LAION-2B) followed by fine-pass
on Imagenet-1k, and Imagenet-12k/1k

Table 2: Overview of the 40 considered backbones.

Pre-training protocol Prior works have110

studied the influence of supervised pre-111

training [Hendrycks et al., 2019, Mo et al.,112

2022], robust pre-training [Hua et al., 2024,113

Xu et al., 2023, Liu et al., 2023a], and multi-114

modal self-supervised (Multi-SS) pre-training115

[Hua et al., 2024] in robust fine-tuning. How-116

ever, these studies are confined to single ar-117

chitecture types and sizes, which restricts the118

scope of conclusions. In Section 4, we will119

see that some conclusions do no not hold uni-120

formly across all architecture sizes and types.121

Furthermore, this study is the first to compare the performance of pre-training protocols such as122

supervised (multistep), unimodal self-supervised (Uni-SS), and fusion (i.e., mixture of supervised123

and self-supervised pre-training) in robust fine-tuning. Understanding how such state-of-the-art124

pre-training protocols contribute to robust generalization remains a knowledge gap for practitioners.125

Summary Based on the considered architectures and pre-training protocols, a set of 40 backbones126

are selected – see summary in Table 2. A global summary of the considered backbones, including127

exhaustive references and Hugging Face identifiers is available in Appendix A.128

2.2 Fine-tuning protocols129

Consider a pre-trained backbone g✓1 : X ! L, where L denotes an arbitrary latent space. Further130

consider a classifier h✓2 : L ! �C consisting of a linear layer followed by a softmax. The goal131

of fine-tuning is to combine the pre-trained backbone and the classifier together to obtain a final132

model f✓ : X ! �C , with ✓ = {✓1, ✓2}. An observation x is associated to a probability prediction133

f✓(x) = h✓2(g✓1(x)). The fine-tuning process consists of E epochs over the training dataset.134

Full fine-tuning (FFT) All parameters ✓ = {✓1, ✓2} are updated for the downstream task. The135

proposed FFT setup differs from prior works [Hua et al., 2024, Jeddi et al., 2020], who employ a136

single learning rate across the entire model f✓. In contrast, our setup allows for distinct learning rates,137

⌘1 and ⌘2, for g✓1 and h✓2 , respectively, as well as separate weight decay parameters, �1 and �2.138
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Linear probing (LP) Only the classifier layer h✓2 is updated, while the parameters of the feature139

extractor are frozen. The learning rate is ⌘2 and the weight decay �2.140

We consider three fine-tuning protocols: FFT with E = 50 epochs (denoted FFT-50), FFT with141

E = 5 epochs (denoted FFT-5), and LP with E = 50 epochs (denoted LP-50). These protocols142

represent different trade-offs between compute and parameter efficiency. Specifically, LP-50 is143

parameter-efficient (few trainable weights), while FFT-5 is compute-efficient (short training duration).144

We do not include LP with 5 epochs as it would combine both constraints and would be very restrictive.145

Although FFT and LP have been compared before [Hua et al., 2024, Xu et al., 2023, Liu et al., 2023a],146

there is limited understanding of the compute-efficient setting (FFT-5) and of how design choice147

combination correlates with performance across the fine-tuning protocols.148

Practical considerations. Our choice of 50 training epochs is motivated by prior robust fine-tuning149

works who employ 40 [Hua et al., 2024] to 60 epochs [Xu et al., 2023, Liu et al., 2023a]. Other150

(non-robust) fine-tuning benchmarks have considered more epochs (e.g., 100 epochs in Goldblum151

et al. [2024]) but they are not specifically focused in the low data regime setting. Additional technical152

details regarding the optimization of hyper-parameters are provided in Appendix B.153

2.3 Loss objectives154

We consider two loss objectives, namely Classic AT and TRADES [Zhang et al., 2019] which are155

widely popular [Wang et al., 2023, Croce et al., 2020]. There is no consensus as to which loss to156

choose to perform robust fine-tuning, as suggested by inconsistent design decisions in the literature157

(e.g., Classic AT in Hua et al. [2024], Singh et al. [2024], TRADES in Xu et al. [2023]). Although158

Liu et al. [2023b] identify TRADES as most effective, their findings are based on models trained159

from scratch, which differs from fine-tuning where pre-trained backbones play a central role.160

Crafting synthetic adversarial perturbations Both Classic AT and TRADES require crafting161

synthetic adversarial perturbations throughout training. Given an observation (x, y) and a classifier162

f✓, consider the perturbation x0 given by the following maximization problem:163

arg max
x02B(x,✏,p)

LCE (f✓(x
0), y) , (1)

where LCE denotes the cross-entropy loss and B(x, ✏, p) = {x 2 X : kx0 � xkp  ✏} is the `p-164

ball around x. Projected Gradient Descent (PGD-K) [Madry et al., 2018] with K iterations finds165

an approximate solution x0
K to the perturbation x0 resulting from Eq. 1. Specifically, PGD-K166

corresponds to starting from x0
0 = x and to iteratively apply the update rule167

x0
k+1 = ⇧B(x,✏,p) (x

0
k + �sign (rxLCE (f✓(x

0
k), y))) , k = 0, . . . ,K � 1 (2)

where � � 0 is the step size and ⇧B(x,✏,p) is the projection operator to ensure that the perturbed168

input remains within the `p-ball. The APGD-K perturbation [Croce and Hein, 2020] improves upon169

PGD-K by automatically adapting the step size �, removing the need for manual tuning.170

Classic adversarial training (Classic AT) Corresponds to training a classifier f✓(·) using the171

cross-entropy loss LCE on observations perturbed by APGD-K. This corresponds to minimizing the172

loss LAT(x, y) := LCE(f✓(x0
K), y) over ✓.173

TRADES Corresponds to training a classifier f✓(·) with the TRADES loss objective [Zhang et al.,174

2019]. This corresponds to minimizing the following loss over ✓:175

LTRADES(x, y) := LCE(f✓(x), y) + � KL(f✓(x)kf✓(x0
K)), (3)

where the scalar � � 0 controls the trade-off between cross-entropy and the Kullback–Leibler (KL)176

divergence of predictions on perturbed and unperturbed inputs.177

Practical considerations To facilitate comparison between Classic AT and TRADES loss ob-178

jectives, we always consider the same process to craft synthetic adversarial perturbations, namely179

APGD-K with K = 10, ✏ = 4/255, and bounded with respect to the `1-norm. Additionally, the180

training data is augmented regardless of the loss objective using standard augmentation techniques181

(see Appendix B for more details).182
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3 Threat definition and evaluation methods for robust generalization183

Although we set a specific type of adversarial perturbation for the optimization strategy (i.e., APGD-K184

for `1-norm), deploying machine-learning systems reliably and responsibly requires generalization185

to diverse, unknown and evolving types of perturbations. We now define additional perturbation types186

that the model will face at test time, to evaluate robust generalization.187

3.1 Threat model at test time188

To study robust generalization, we define the threat model which specifies the possible perturbation189

types faced by the model at test-time [Akhtar and Mian, 2018]. We use the notation TX(z) to denote190

the distribution of observations drawn from X that contain a perturbation of type z. We consider191

a finite set of perturbation types noted ⌧ , where each type can be categorized into adversarial and192

common perturbations.193

The adversarial perturbations are bounded by a scalar ✏ with respect to the `p-norm, i.e. x ⇠194

X,x0 ⇠ TX(z) such that kx� x0kp  ✏. We include three adversarial perturbation types, generated195

from p = 1, 2,1, and ✏ = 75.0, 2.0, 4/255, respectively. The values for ✏ are standard choices in196

robustness benchmarks [Croce et al., 2020, Singh et al., 2024]. In contrast, the common perturbations197

reflect unfortunate events that commonly occur in vision systems (e.g. noise, blur, contrasts, digital198

format compressions, etc) and that hamper the predictive performance [Jung, 2018].199

In summary, the threat model is TX(z), z 2 ⌧ = {;,1, 1, 2, common}, where ⌧ comprises five200

perturbation types: no perturbations (i.e., clean observations, noted ;), adversarial perturbations201

under the `1, `2, and `1 norm (noted 1, 2 and 1), and common perturbations (noted common).202

Appendix C describes how we generate these test-time perturbations using open-source software such203

as AutoAttack [Croce and Hein, 2020] and Jung [2018].204

3.2 Evaluating robust generalization205

We measure performance against the threat model using the accuracy, which corresponds to the206

total number of correct predictions over the total number of observations in the test dataset. We207

adopt accuracy for its interpretability and widespread use in prior works Tang et al. [2021], Liu208

et al. [2023b], Shao et al. [2021] and robustness competitions Croce et al. [2020]. Recall that a209

configuration is the combination of a pretrained backbone and a loss objective that results into210

a classifier model. For each of the three fine-tuning protocols considered (FFT-50, FFT-5 and211

LP-50), we evaluate the performance of each configuration as follows. For every configuration212

i 2 {1, . . . , I} on dataset d 2 {1, . . . , D} we obtain a predictive accuracy score ai,d(z) 2 [0, 1] for213

each perturbation type z 2 ⌧ . Let ai,d :=
⇥
ai,d(z1), . . . , ai,d(z|⌧ |)

⇤
denote the vector of predictive214

accuracies of configuration i on dataset d.215

Borda score We use the Borda score to compare the relative performance of various configurations216

on the same fine-tuning protocol. Consider any pair v = (d, z), consisting of a dataset d and a217

perturbation type z as a voter. Let V = D ⇥ |⌧ | be the set of all voters. To each voter v = (d, z)218

corresponds a function rankv : I ! {1, . . . , |mv|} that ranks the configurations i 2 I based on their219

score ai,d(z), in decreasing order. The configuration itop with best performance gets rank 1 (i.e.,220

rankv(itop) = 1) and the worst one gets rank mv . We have mv  |I| to account for the possibility of221

equal scores (and so equal ranks). Then, the Borda score for each configuration i 2 I is defined by222

B(i) :=
PV

v=1 mv � rankv(i).223

Sum score To account for absolute performance and to compare configurations across different224

fine-tuning protocols we use the Sum score. For each configuration i 2 I the sum score is defined225

by S(i) :=
P

(d,z)2V ai,d(z). By summing the accuracy scores across all perturbation types and226

datasets, the sum score rewards peak performance even when the accuracy is inconsistent. This227

contrasts with the Borda score that penalizes inconsistent performance through ranking degradation.228

Mean Absolute Correlation For each dataset d, we define a |⌧ | ⇥ |⌧ | Spearman correlation229

matrix C(J,d) computed over the accuracy vectors {ai,d}Jj=1 associated to a subset of configurations230

J ✓ I . The subset J can represent all the configurations (J = I) or a subset with a common231
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specific characteristic (e.g. architecture type, etc). The mean absolute correlation for dataset d232

on the subset of configurations J , is noted MAC
(d,J), and is given by 1

|⌧ |(|⌧ |�1)

P
l 6=k |C

(J,d)
l,k |. The233

MAC
(d,J) is the average absolute off-diagonal correlation between all pairs of perturbation types234

on dataset d for the subset of configurations in J . A high MAC
(d,J), close to 1, indicates that,235

on average, the performance across all perturbation types is strongly related, suggesting more236

consistent or uniform robust generalization. Lower MAC(d,J) values indicate that on average the237

performance across all perturbation types is less correlated, implying that robustness may be specific238

to certain perturbations rather than uniform. We also compute a global average across datasets:239

MAC
(avg,J) = 1

D

PD
d=1 MAC

(d,J). This informs us on the strength of the robust generalization pattern240

across datasets.241

4 Results242

We select 6 datasets that fit in the low data regime (details in Appendix B). We consider five datasets243

from the natural image domain (Caltech101 [Fei-Fei et al., 2004], Aircraft [Maji et al., 2013],244

Flowers [Nilsback and Zisserman, 2008], Oxford pet [Parkhi et al., 2012], Stanford cars [Krause245

et al., 2013] ) and one from the satellite imagery domain (Land-Use [Yang and Newsam, 2010]).246

Figure 2: Robust generalization of the best configu-
ration per dataset using FFT-50 (Borda score).

We benchmark 240 design combinations (40 pre-247

trained backbones ⇥ 2 robust losses ⇥ 3 fine-248

tuning protocols) over 6 datasets, totaling 1, 440249

evaluated configurations.250

The hyper-parameters of each configuration are251

independently optimized (details are reported in252

Appendix B). Each configuration is tested against253

5 perturbation types, unseen during (pre-) train-254

ing (Section 3.1), resulting in 7, 200 robustness255

measurements. To our knowledge, this bench-256

mark includes the most diverse and comprehen-257

sive set of design choices in the robust fine-tuning258

setting. Collected measurements, and code are259

open-sourced1.260

4.1 Which configurations perform best?261

Best performing configurations overall. Table 3 reports the best performing configurations in262

FFT-50. We see that the best performing backbone is convolutional (Convnext (base), with supervised263

pretraining on Imagenet-22k, using TRADES). FFT-50 clearly outperforms other fine-tuning protocols,264

with a best sum score of 19.79, which is 61% higher than FFT-5 and 53% higher than LP-50 (see265

Table 8 and 10 in Appendix). In the Appendix, Tables 7, 9, and 11 report the ranking of all the266

configurations across FFT-50, FFT-5, and LP-50 respectively.267

Best performing configurations per dataset. Figure 2 displays the best performing configuration268

per dataset, when using FFT-50. We observe that convolutional architectures outperform other269

options on all considered datasets. Despite growing attention on the robustness of attention-based270

architectures [Bai et al., 2021, Liu et al., 2023b, Shao et al., 2021], our findings show that the271

robust generalization capacity of well tuned convolutional architectures should not be underestimated.272

Additionally, on two datasets (Caltech101, and Land-Use), the best configurations achieve accuracy273

above 0.8 on all perturbation types, demonstrating strong robust generalization. This performance274

is remarkably high for the field [Croce et al., 2020], demonstrating the practical potential of robust275

fine-tuning and the importance of carefully identifying best design choices.276

Low-cost proxies exist in robust fine-tuning. Given the evolving set of available design choices,277

practitioners need to be equipped with low-cost tools to rapidly identify design choices that are more278

promising than others. The identification of low-cost proxies helped practitioners in natural language279

1https://anonymous.4open.science/r/robust_training-636C/README.md
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modeling [Zhu et al., 2022], and can also benefit costly protocols such as robust learning. Between280

LP-50 and FFT-5, we find that LP-50 is the most reliable low-cost proxy to FFT-50 (see Figure 8a),281

especially when using TRADES over Classic AT. Indeed, the correlation between LP-50 and FFT-50282

using TRADES is the highest.283

Size Gold (1st) Silver (2nd) Bronze (3rd)

small
coat_t,sup,in1k, TRADES
(GR:18, BS:1653, SS:15.83)

edgenetx_s,sup,in1k, TRADES
(GR:23, BS:1552, SS:14.66)

edgenetx_s,sup,in1k, Classic AT
(GR:33, BS:1356, SS:12.88)

medium
convnext_t,sup,in22k-in1k, TRADES

(GR:14, BS:1773, SS:16.49)
convnext_t,sup,in1k, TRADES

(GR:15, BS:1681, SS:15.6)
convnext_t,sup,in22k, TRADES

(GR:20, BS:1650, SS:15.07)

large
convnext_b,sup,in22k, TRADES

(GR:1, BS:2281, SS:19.79)
coatnet_2,sup,in12k-in1k, TRADES

(GR:2, BS:2127, SS:18.74)
coatnet_2,sup,in12k, TRADES

(GR:3, BS:2116, SS:18.87)

Table 3: Top FFT-50 configurations, with global ranking (GR) based on Borda score (BS), sum score
(SS) also reported below.

4.2 Design Choices Favoring TRADES in Robust Fine-Tuning.284

Overall, TRADES outperforms Classic AT. It has been shown previously that TRADES out-285

performs Classic AT when training from scratch [Liu et al., 2023b]. Our results show that these286

conclusions hold in the fine tuning setting as well (see Figure 4 in the Appendix). We next extend287

these results by identifying strong interactions between the loss and other design choices in the288

FFT-50 setting (see Figure 3). The identification of such interactions with TRADES is particularly289

valuable, given its frequent association with state-of-the-art performance on robustness benchmarks290

[Wang et al., 2023, Croce et al., 2020].291

TRADES interacts positively with architecture size. On average, TRADES achieves higher292

returns compared to Classic AT when architecture size grows (see Figure 3a). Additionally, the293

odds ratio of TRADES outperforming Classic AT increases steeply with architecture scale, which294

is a significant effect in FFT-50 (see Figure 5 in Appendix E). These results suggest that TRADES295

is a promising approach to improve the robustness of large systems, a setting where Classic AT is296

currently the preferred approach [Wang et al., 2024]. Existing implementations of TRADES require297

the storage of two forward passes in memory, which motivates an avenue to improve this algorithmic298

limitation to fully reveal the potential of TRADES on large architectures.299

TRADES interacts best with convolutional and hybrid architectures. While TRADES and300

Classic AT yield equivalent outcomes (similar mean Borda score) for attention-based architectures,301

convolutional and hybrid architectures benefit most from using TRADES over Classic AT (see Figure302

3b). Since convolutional architectures tend to overfit more local features and patterns [Bhojanapalli303

et al., 2021], this result suggests that TRADES regularizes convolutional architectures more efficiently304

than Classic AT in computer vision tasks.305

4.3 Distinct robust generalization patterns across architectures sizes and types.306

Larger architectures are consistently better. Large architectures clearly outperform medium and307

small architectures in FFT-50 (see Table 3) and generalize better (see Table 7). Large convolutional308

and hybrid architectures outperform attention-based ones on average (see Figure 3d), though attention309

models may show their full potential at larger scales [Wang et al., 2024]. Because model scale is310

often subject to limitations in practice, we also provide analysis at specific architecture sizes to guide311

practitioners with such limitations.312

If constrained to small architectures, hybrid architectures are the best option. Among small313

architectures, hybrid architectures achieve significantly higher scores than fully convolutional ones314

(see Figure 3d). Using TRADES loss, Coat (tiny) and EdgeNetx rival larger architectures and315

achieve impressive rankings of GR:18 and GR:23, corresponding to tier-1 performance among 80316

configurations (see Table 3). Prior works on robustness are generally focused on larger architectures317

[Liu et al., 2023b], but this result extends knowledge by highlighting the practical potential of hybrid318

architectures for robust fine-tuning using small architectures on data scarce regimes. The result also319
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constitutes valuable motivations for the community that supports hybrid architectures [Dai et al.,320

2021, Maaz et al., 2022, Dai et al., 2021].321

Promising generalization properties of hybrid architectures. Table 4 shows that hybrid archi-322

tectures achieve the highest MAC values compared to attention and convolutional architectures in323

FFT-50. This finding complements prior work demonstrating strong robustness of hybrid architectures324

trained from scratch [Liu et al., 2023b], extending these conclusions to the robust fine-tuning setting.325

We also generalize the observation across diverse scales and types of hybrid architectures, while the326

previous observation held only for CoatNet (16M). Finally, Table 4 provides a precise characterization327

on the robust generalization capability of hybrid architectures, beyond accuracy score.328

(a) Loss Function ⇥ Arch. Size (b) Loss Function ⇥ Arch. type (c) Loss Function ⇥ Pre-training

(d) Arch. Type ⇥ Size (e) Pre-training ⇥ Arch. Size (f) Pre-training ⇥ Arc. Type

Figure 3: Nested Welch’s ANOVA of the form A ⇥ B testing the main effect of A and how the
effect of B varies within each level of A (p-value on top). Post-hoc groupings from Tukey HSD tests
are annotated with letters above the bars: bars with different letters belong to significantly different
groups, at the 90% confidence level. Results for FFT-50.

4.4 Influence of the pre-training strategy on robust generalization329

Multi-modal self-supervised pretraining is beneficial for convolutional architectures. In FFT-330

50, the Convnext (base) architecture with multimodal self-supervised pre-training using the TRADES331

loss achieves the fourth best ranking in terms of Borda score, and top-2 in terms of sum score (see332

Table 7 in Appendix E). This performance is surprising given prior results [Hua et al., 2024] showing333

that supervised and robust pre-training often outperform Multi-SS. However, prior works focus334

on Multi-SS of attention-based architectures, while the reported performance improvement targets335

Multi-SS on convolutional architectures (see Figure 3e). The potential of Multi-SS pre-training is336

further evidenced in Figure 3c, where Fusion (which is based on Multi-SS) pre-training achieves337

second best average performance, behind Multi-SS.338

Robust pre-training performs best in constrained fine-tuning protocols. In FFT-5, the global339

gold (global rank GR:1), silver (GR:2), and bronze (GR:3) are achieved with robust pretraining (see340

Table 8 in Appendix E). Similarly, the top-3 in LP-50 (GR:1,2 and 3) are also achieved with robust341

pre-training (see Table 10 in Appendix E). Note that this competitive performance does not hold342

in the less constrained FFT-50 protocol, where the best configuration based on robust pre-training343

achieves a global ranking of 9 (see Table 7). Our results are aligned with prior results showing that344

robust pre-training helps in parameter-efficient settings such as low-rank adaptation [Xu et al., 2023,345

Liu et al., 2023a] and linear probing [Hua et al., 2024]. We further show that robust pre-training is346

also beneficial in fine-tuning protocols constrained on the number of updates, a setting not covered347

by prior works.348
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Robust pre-training of larger architectures (may) have limited returns. Given its high compu-349

tational cost, robust pre-training prompts critical evaluation of its return on investment relative to350

alternative pre-training protocols. The performance gains from medium to large architectures are351

relatively modest for robust pre-training (see Figure 3e). The rate of improvement 2 is +12% for352

robust pre-training, whereas it reaches +43% for supervised, +44% for multi-step, and +80% for353

Uni-SS in FFT-50. This relatively low gain is due to already high performance of robust pre-training at354

the medium scale, leaving less room for improvement at the larger scale. Although recent works have355

emphasized scaling robust pretraining to large architectures Singh et al. [2024], there are currently356

no robust pre-trained small architectures. This finding suggests that robust pre-training at smaller357

architecture scales could be a promising and underexplored direction for future research.358

Influence of loss objective switches between robust pre-training and robust fine-tuning. When359

specifically considering robust pre-trained architectures, a question for practitioners is: should we360

use the same robust loss objective for fine-tuning as for pre-training? With FFT-50, configurations361

that use a different loss objective for robust fine-tuning than for robust pre-training significantly362

outperform configurations that use the same loss for both phases. While the global mean between363

both choices are not statistically different (e.g., p = 0.42 with the Mann–Whitney test), we observe364

that switched configurations are strongly overrepresented among top performers across the 6 datasets365

considered: 5 out of 6 top-1 configurations use a loss switch, with a binomial p-value of 0.041 < 0.05.366

Previous works have used switching [Xu et al., 2023, Liu et al., 2023a] and non-switching strategies367

[Hua et al., 2024]. Our finding provides the first evidence that switching losses between pre-training368

and fine-tuning can be beneficial with enough compute (result holds only in FFT-50).369

Caltech101 Aircraft Flowers-102 Oxford-pet Stanford-cars Land-use Global MACavg
MAC per dataset MACd over
the 80 configs. 0.847 0.782 0.805 0.681 0.849 0.807 0.795

Classic AT 0.876 0.702 0.842 0.778 0.844 0.890 0.822Loss
objective TRADES 0.823 0.884 0.830 0.669 0.896 0.777 0.813

Large 0.825 0.882 0.860 0.859 0.871 0.803 0.850
Medium 0.743 0.628 0.743 0.436 0.701 0.833 0.681Architecture

size Small 0.911 0.531 0.503 0.467 0.575 0.678 0.611
Attention 0.884 0.800 0.761 0.713 0.856 0.882 0.816
Convolutional 0.762 0.756 0.811 0.574 0.818 0.719 0.740Architecture

type Hybrid 0.951 0.815 0.892 0.798 0.889 0.879 0.871
Fusion 0.760 0.760 0.920 0.660 0.920 1.000 0.837
Uni-SS 0.821 0.902 0.860 0.619 0.878 0.668 0.791
Multi-SS 0.911 0.742 0.760 0.589 0.855 0.703 0.760
Supervised 0.937 0.760 0.727 0.682 0.806 0.789 0.783
Multistep 0.867 0.809 0.846 0.893 0.856 0.798 0.845

Pre-training
protocol

Robust 0.568 0.641 0.841 0.670 0.685 0.877 0.714

Table 4: Summary table of the Mean Absolute Correlation in FFT-50, measured over the 80 configu-
rations as well as on subsets of configurations based on design choices.

5 Conclusion370

Among other findings, we find that convolutional architectures perform best for robust fine-tuning371

in the low-data regime. Despite growing interest in the robustness of attention-based architectures372

[Bhojanapalli et al., 2021], our study suggests they are more difficult to fine-tune for robustness in373

practice. Our findings have broader design impacts for vision systems: for example, vision-language374

models predominantly rely on attention-based backbones [Radford et al., 2021].375

Limitations The insights from this study are contingent to the set of datasets, backbones, and376

optimization strategies considered. We acknowledge that such insights need to continually evolve377

with the development of new design choices. In this study, the configurations were optimized based378

on a total compute budget, rather than on an equal number of trials across backbones. This choice379

reflects the practical reality that some backbones are more challenging to tune due to their compute380

requirements. This compute-aware tuning approach reflects real-world deployment constraints and381

promotes energy-conscious model selection [Courty et al., 2024].382

2Rate measured using the relative change w.r.t. the average of the two scores, and computed as large�medium
(large+medium)/2 .

This rate to ensures a symmetric and unbiased comparison that does not privilege either model scale.
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Guidelines:590
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made in the paper.592
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contributions made in the paper and important assumptions and limitations. A No or594

NA answer to this question will not be perceived well by the reviewers.595
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• The paper should point out any strong assumptions and how robust the results are to608

violations of these assumptions (e.g., independence assumptions, noiseless settings,609

model well-specification, asymptotic approximations only holding locally). The authors610

should reflect on how these assumptions might be violated in practice and what the611

implications would be.612

• The authors should reflect on the scope of the claims made, e.g., if the approach was613

only tested on a few datasets or with a few runs. In general, empirical results often614

depend on implicit assumptions, which should be articulated.615

• The authors should reflect on the factors that influence the performance of the approach.616

For example, a facial recognition algorithm may perform poorly when image resolution617

is low or images are taken in low lighting. Or a speech-to-text system might not be618

used reliably to provide closed captions for online lectures because it fails to handle619

technical jargon.620

• The authors should discuss the computational efficiency of the proposed algorithms621

and how they scale with dataset size.622

• If applicable, the authors should discuss possible limitations of their approach to623

address problems of privacy and fairness.624

• While the authors might fear that complete honesty about limitations might be used by625

reviewers as grounds for rejection, a worse outcome might be that reviewers discover626

limitations that aren’t acknowledged in the paper. The authors should use their best627

judgment and recognize that individual actions in favor of transparency play an impor-628

tant role in developing norms that preserve the integrity of the community. Reviewers629

will be specifically instructed to not penalize honesty concerning limitations.630

3. Theory assumptions and proofs631

Question: For each theoretical result, does the paper provide the full set of assumptions and632

a complete (and correct) proof?633

Answer: [NA]634
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Justification: The paper does not include theoretical results.635

Guidelines:636

• The answer NA means that the paper does not include theoretical results.637

• All the theorems, formulas, and proofs in the paper should be numbered and cross-638

referenced.639

• All assumptions should be clearly stated or referenced in the statement of any theorems.640

• The proofs can either appear in the main paper or the supplemental material, but if641

they appear in the supplemental material, the authors are encouraged to provide a short642

proof sketch to provide intuition.643

• Inversely, any informal proof provided in the core of the paper should be complemented644

by formal proofs provided in appendix or supplemental material.645

• Theorems and Lemmas that the proof relies upon should be properly referenced.646

4. Experimental result reproducibility647

Question: Does the paper fully disclose all the information needed to reproduce the main ex-648

perimental results of the paper to the extent that it affects the main claims and/or conclusions649

of the paper (regardless of whether the code and data are provided or not)?650

Answer: [Yes]651

Justification: The paper explains the design choices made to obtain the results. The code652

and data is open-sourced. All the code to generate paper’s figures is open-sourced.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• If the paper includes experiments, a No answer to this question will not be perceived656

well by the reviewers: Making the paper reproducible is important, regardless of657

whether the code and data are provided or not.658

• If the contribution is a dataset and/or model, the authors should describe the steps taken659

to make their results reproducible or verifiable.660

• Depending on the contribution, reproducibility can be accomplished in various ways.661

For example, if the contribution is a novel architecture, describing the architecture fully662

might suffice, or if the contribution is a specific model and empirical evaluation, it may663

be necessary to either make it possible for others to replicate the model with the same664

dataset, or provide access to the model. In general. releasing code and data is often665

one good way to accomplish this, but reproducibility can also be provided via detailed666

instructions for how to replicate the results, access to a hosted model (e.g., in the case667

of a large language model), releasing of a model checkpoint, or other means that are668

appropriate to the research performed.669

• While NeurIPS does not require releasing code, the conference does require all submis-670

sions to provide some reasonable avenue for reproducibility, which may depend on the671

nature of the contribution. For example672

(a) If the contribution is primarily a new algorithm, the paper should make it clear how673

to reproduce that algorithm.674

(b) If the contribution is primarily a new model architecture, the paper should describe675

the architecture clearly and fully.676

(c) If the contribution is a new model (e.g., a large language model), then there should677

either be a way to access this model for reproducing the results or a way to reproduce678

the model (e.g., with an open-source dataset or instructions for how to construct679

the dataset).680

(d) We recognize that reproducibility may be tricky in some cases, in which case681

authors are welcome to describe the particular way they provide for reproducibility.682

In the case of closed-source models, it may be that access to the model is limited in683

some way (e.g., to registered users), but it should be possible for other researchers684

to have some path to reproducing or verifying the results.685

5. Open access to data and code686

Question: Does the paper provide open access to the data and code, with sufficient instruc-687

tions to faithfully reproduce the main experimental results, as described in supplemental688

material?689
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Answer: [Yes]690

Justification: We have released anonymized Github, with all the instructions to re-create691

the environment, download datasets and models, and their preparation, and how to launch692

experiments.693

Guidelines:694

• The answer NA means that paper does not include experiments requiring code.695

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/696

public/guides/CodeSubmissionPolicy) for more details.697

• While we encourage the release of code and data, we understand that this might not be698

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not699

including code, unless this is central to the contribution (e.g., for a new open-source700

benchmark).701

• The instructions should contain the exact command and environment needed to run to702

reproduce the results. See the NeurIPS code and data submission guidelines (https:703

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.704

• The authors should provide instructions on data access and preparation, including how705

to access the raw data, preprocessed data, intermediate data, and generated data, etc.706

• The authors should provide scripts to reproduce all experimental results for the new707

proposed method and baselines. If only a subset of experiments are reproducible, they708

should state which ones are omitted from the script and why.709

• At submission time, to preserve anonymity, the authors should release anonymized710

versions (if applicable).711

• Providing as much information as possible in supplemental material (appended to the712

paper) is recommended, but including URLs to data and code is permitted.713

6. Experimental setting/details714

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-715

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the716

results?717

Answer: [Yes]718

Justification: We provide the code to reproduce the data splits. All hyper-parameters used to719

train each configuration are also open-sourced in the configs folder on the codebase.720

Guidelines:721

• The answer NA means that the paper does not include experiments.722

• The experimental setting should be presented in the core of the paper to a level of detail723

that is necessary to appreciate the results and make sense of them.724

• The full details can be provided either with the code, in appendix, or as supplemental725

material.726

7. Experiment statistical significance727

Question: Does the paper report error bars suitably and correctly defined or other appropriate728

information about the statistical significance of the experiments?729

Answer: [Yes]730

Justification: The results in the paper have been tested for statistical significance using731

p-values whenever possible. The thresholds for statistical confidence are also reported in the732

paper.733

Guidelines:734

• The answer NA means that the paper does not include experiments.735

• The authors should answer "Yes" if the results are accompanied by error bars, confi-736

dence intervals, or statistical significance tests, at least for the experiments that support737

the main claims of the paper.738

• The factors of variability that the error bars are capturing should be clearly stated (for739

example, train/test split, initialization, random drawing of some parameter, or overall740

run with given experimental conditions).741
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• The method for calculating the error bars should be explained (closed form formula,742

call to a library function, bootstrap, etc.)743

• The assumptions made should be given (e.g., Normally distributed errors).744

• It should be clear whether the error bar is the standard deviation or the standard error745

of the mean.746

• It is OK to report 1-sigma error bars, but one should state it. The authors should747

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis748

of Normality of errors is not verified.749

• For asymmetric distributions, the authors should be careful not to show in tables or750

figures symmetric error bars that would yield results that are out of range (e.g. negative751

error rates).752

• If error bars are reported in tables or plots, The authors should explain in the text how753

they were calculated and reference the corresponding figures or tables in the text.754

8. Experiments compute resources755

Question: For each experiment, does the paper provide sufficient information on the com-756

puter resources (type of compute workers, memory, time of execution) needed to reproduce757

the experiments?758

Answer: [Yes]759

Justification: Details on the compute setup are reported in the Appendix.760

Guidelines:761

• The answer NA means that the paper does not include experiments.762

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,763

or cloud provider, including relevant memory and storage.764

• The paper should provide the amount of compute required for each of the individual765

experimental runs as well as estimate the total compute.766

• The paper should disclose whether the full research project required more compute767

than the experiments reported in the paper (e.g., preliminary or failed experiments that768

didn’t make it into the paper).769

9. Code of ethics770

Question: Does the research conducted in the paper conform, in every respect, with the771

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?772

Answer: [Yes]773

Justification: Our research addresses the safety and reliability of machine learning models774

under distribution shifts and adversarial perturbations—key concerns under the NeurIPS775

Code of Ethics. By analyzing robust generalization across architectures and pretraining776

strategies, our work contributes to the development of more trustworthy and secure AI777

systems.778

Guidelines:779

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.780

• If the authors answer No, they should explain the special circumstances that require a781

deviation from the Code of Ethics.782

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-783

eration due to laws or regulations in their jurisdiction).784

10. Broader impacts785

Question: Does the paper discuss both potential positive societal impacts and negative786

societal impacts of the work performed?787

Answer: [Yes]788

Justification: The societal impacts are discussed in the first paragraph of the introduction.789

The technical impacts are discussed in the Conclusion.790

Guidelines:791

• The answer NA means that there is no societal impact of the work performed.792
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• If the authors answer NA or No, they should explain why their work has no societal793

impact or why the paper does not address societal impact.794

• Examples of negative societal impacts include potential malicious or unintended uses795

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations796

(e.g., deployment of technologies that could make decisions that unfairly impact specific797

groups), privacy considerations, and security considerations.798

• The conference expects that many papers will be foundational research and not tied799

to particular applications, let alone deployments. However, if there is a direct path to800

any negative applications, the authors should point it out. For example, it is legitimate801

to point out that an improvement in the quality of generative models could be used to802

generate deepfakes for disinformation. On the other hand, it is not needed to point out803

that a generic algorithm for optimizing neural networks could enable people to train804

models that generate Deepfakes faster.805

• The authors should consider possible harms that could arise when the technology is806

being used as intended and functioning correctly, harms that could arise when the807

technology is being used as intended but gives incorrect results, and harms following808

from (intentional or unintentional) misuse of the technology.809

• If there are negative societal impacts, the authors could also discuss possible mitigation810

strategies (e.g., gated release of models, providing defenses in addition to attacks,811

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from812

feedback over time, improving the efficiency and accessibility of ML).813

11. Safeguards814

Question: Does the paper describe safeguards that have been put in place for responsible815

release of data or models that have a high risk for misuse (e.g., pretrained language models,816

image generators, or scraped datasets)?817

Answer: [NA]818

Justification: This paper is based on already open-sourced and widely used tools.819

Guidelines:820

• The answer NA means that the paper poses no such risks.821

• Released models that have a high risk for misuse or dual-use should be released with822

necessary safeguards to allow for controlled use of the model, for example by requiring823

that users adhere to usage guidelines or restrictions to access the model or implementing824

safety filters.825

• Datasets that have been scraped from the Internet could pose safety risks. The authors826

should describe how they avoided releasing unsafe images.827

• We recognize that providing effective safeguards is challenging, and many papers do828

not require this, but we encourage authors to take this into account and make a best829

faith effort.830

12. Licenses for existing assets831

Question: Are the creators or original owners of assets (e.g., code, data, models), used in832

the paper, properly credited and are the license and terms of use explicitly mentioned and833

properly respected?834

Answer: [Yes]835

Justification: We have bibliographical references for all the datasets, and backbones, and836

open source software used for this study.837

Guidelines:838

• The answer NA means that the paper does not use existing assets.839

• The authors should cite the original paper that produced the code package or dataset.840

• The authors should state which version of the asset is used and, if possible, include a841

URL.842

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.843

• For scraped data from a particular source (e.g., website), the copyright and terms of844

service of that source should be provided.845
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• If assets are released, the license, copyright information, and terms of use in the846

package should be provided. For popular datasets, paperswithcode.com/datasets847

has curated licenses for some datasets. Their licensing guide can help determine the848

license of a dataset.849

• For existing datasets that are re-packaged, both the original license and the license of850

the derived asset (if it has changed) should be provided.851

• If this information is not available online, the authors are encouraged to reach out to852

the asset’s creators.853

13. New assets854

Question: Are new assets introduced in the paper well documented and is the documentation855

provided alongside the assets?856

Answer: [NA]857

Justification: We provide all the code base to reproduce the study and the dataset of the858

collected results. These support the study but are not new assets.859

Guidelines:860

• The answer NA means that the paper does not release new assets.861

• Researchers should communicate the details of the dataset/code/model as part of their862

submissions via structured templates. This includes details about training, license,863

limitations, etc.864

• The paper should discuss whether and how consent was obtained from people whose865

asset is used.866

• At submission time, remember to anonymize your assets (if applicable). You can either867

create an anonymized URL or include an anonymized zip file.868

14. Crowdsourcing and research with human subjects869

Question: For crowdsourcing experiments and research with human subjects, does the paper870

include the full text of instructions given to participants and screenshots, if applicable, as871

well as details about compensation (if any)?872

Answer: [NA]873

Justification: The paper is based on open sourced datasets and backbones.874

Guidelines:875

• The answer NA means that the paper does not involve crowdsourcing nor research with876

human subjects.877

• Including this information in the supplemental material is fine, but if the main contribu-878

tion of the paper involves human subjects, then as much detail as possible should be879

included in the main paper.880

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,881

or other labor should be paid at least the minimum wage in the country of the data882

collector.883

15. Institutional review board (IRB) approvals or equivalent for research with human884

subjects885

Question: Does the paper describe potential risks incurred by study participants, whether886

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)887

approvals (or an equivalent approval/review based on the requirements of your country or888

institution) were obtained?889

Answer: [NA]890

Justification: No research with human subjects or crowdsourcing.891

Guidelines:892

• The answer NA means that the paper does not involve crowdsourcing nor research with893

human subjects.894

• Depending on the country in which research is conducted, IRB approval (or equivalent)895

may be required for any human subjects research. If you obtained IRB approval, you896

should clearly state this in the paper.897
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• We recognize that the procedures for this may vary significantly between institutions898

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the899

guidelines for their institution.900

• For initial submissions, do not include any information that would break anonymity (if901

applicable), such as the institution conducting the review.902

16. Declaration of LLM usage903

Question: Does the paper describe the usage of LLMs if it is an important, original, or904

non-standard component of the core methods in this research? Note that if the LLM is used905

only for writing, editing, or formatting purposes and does not impact the core methodology,906

scientific rigorousness, or originality of the research, declaration is not required.907

Answer: [NA]908

Justification: LLM use does not impact core methodology.909

Guidelines:910

• The answer NA means that the core method development in this research does not911

involve LLMs as any important, original, or non-standard components.912

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)913

for what should or should not be described.914
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