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ABSTRACT

Fully test-time adaptation aims at adapting a pre-trained model to the test stream
during real-time inference, which is urgently required when the test distribution
differs from the training distribution. Several efforts have been devoted to improv-
ing adaptation performance. However, we find that two unfavorable defects are
concealed in the prevalent adaptation methodologies like test-time batch normal-
ization (BN) and self-learning. First, we reveal that the normalization statistics
in test-time BN are completely affected by the currently received test samples,
resulting in inaccurate estimates. Second, we show that during test-time adap-
tation, the parameter update is biased towards some dominant classes. In addi-
tion to the extensively studied test stream with independent and class-balanced
samples, we further observe that the defects can be exacerbated in more compli-
cated test environments, such as (time) dependent or class-imbalanced data. We
observe that previous approaches work well in certain scenarios while show per-
formance degradation in others due to their faults. In this paper, we provide a
plug-in solution called DELTA for Degradation-freE fuLly Test-time Adaptation,
which consists of two components: (i) Test-time Batch Renormalization (TBR),
introduced to improve the estimated normalization statistics. (ii) Dynamic Online
re-weighTing (DOT), designed to address the class bias within optimization. We
investigate various test-time adaptation methods on three commonly used datasets
with four scenarios, and a newly introduced real-world dataset. DELTA can help
them deal with all scenarios simultaneously, leading to SOTA performance.

1 INTRODUCTION

Models suffer from performance decrease when test and training distributions are mis-
matched (Quinonero-Candela et al., 2008). Numerous studies have been conducted to narrow the
performance gap based on a variety of hypotheses/settings. Unsupervised domain adaptation meth-
ods (Ganin et al., 2016) necessitate simultaneous access to labeled training data and unlabeled target
data, limiting their applications. Source-free domain adaptation approaches (Liang et al., 2020) only
need a trained model and do not require original training data when performing adaptation. Nonethe-
less, in a more difficult and realistic setting, known as fully test-time adaptation (Wang et al., 2021),
the model must perform online adaptation to the test stream in real-time inference. The model
is adapted in a single pass on the test stream using a pre-trained model and continuously arriving
test data (rather than a prepared target set). Offline iterative training or extra heavy computational
burdens beyond normal inference do not meet the requirements.

There have been several studies aimed at fully test-time adaptation. Test-time BN (Nado et al.,
2020) / BN adapt (Schneider et al., 2020) directly uses the normalization statistics derived from test
samples instead of those inherited from the training data, which is found to be beneficial in reducing
the performance gap. Entropy-minimization-based methods, such as TENT (Wang et al., 2021),
further optimize model parameters during inference. Contrastive learning (Chen et al., 2022), data
augmentation (Wang et al., 2022a) and uncertainty-aware optimization (Niu et al., 2022) have been
introduced to enhance adaptation performance. Efforts have also been made to address test-time
adaptation in more complex test environments, like LAME (Boudiaf et al., 2022).
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Figure 1: IS+CB / DS+CB: the test stream which is inde-
pendently / dependently sampled from a class-balanced test
distribution; IS+CI/ DS+CI: independently / dependently
drawn from a class-imbalanced test distribution. Each bar
represents a sample, each color represents a category.

Table 1: Comparison of fully test-time
adaptation methods against the pre-
trained model on CIFAR100-C. DELTA
achieves improvement in all scenarios.

Scenario TENT LAME DELTA (Ours)

IS+CB
DS+CB
IS+CI
DS+CI

Despite the achieved progress, we find that there are non-negligible defects hidden in the popular
methods. First, we take a closer look at the normalization statistics within inference (Section 3.2).
We observe that the statistics used in BN adapt is inaccurate in per batch compared to the actual pop-
ulation statistics. Second, we reveal that the prevalent test-time model updating is biased towards
some dominant categories (Section 3.3). We notice that the model predictions are extremely imbal-
anced on out-of-distribution data, which can be exacerbated by the self-learning-based adaptation
methods. Besides the most common independent and class-balanced test samples considered in ex-
isting studies, following Boudiaf et al. (2022), we investigate other three test scenarios as illustrated
in Figure 1 (please see details in Section 3.1) and find when facing the more intricate test streams,
like dependent samples or class-imbalanced data, the prevalent methods would suffer from severe
performance degradation, which limits the usefulness of these test-time adaptation strategies.

To address the aforementioned issues, we propose two powerful tools. Specifically, to handle the in-
accurate normalization statistics, we introduce test-time batch renormalization (TBR) (Section 3.2),
which uses the test-time moving averaged statistics to rectify the normalized features and considers
normalization during gradient optimization. By taking advantage of the observed test samples, the
calibrated normalization is more accurate. We further propose dynamic online re-weighting (DOT)
(Section 3.3) to tackle the biased optimization, which is derived from cost-sensitive learning. To bal-
ance adaptation, DOT assigns low/high weights to the frequent/infrequent categories. The weight
mapping function is based on a momentum-updated class-frequency vector that takes into account
multiple sources of category bias, including the pre-trained model, the test stream, and the adap-
tation methods (the methods usually do not have an intrinsic bias towards certain classes, but can
accentuate existing bias). TBR can be applied directly to the common BN-based pre-trained mod-
els and does not interfere with the training process (corresponding to the fully test-time adaptation
setting), and DOT can be easily combined with other adaptation approaches as well.

Table 1 compares our method to others on CIFAR100-C across various scenarios. The existing
test-time adaptation methods behave differently across the four scenarios and show performance
degradation in some scenarios. While our tools perform well in all four scenarios simultaneously
without any prior knowledge of the test data, which is important for real-world applications. Thus,
the whole method is named DELTA (Degradation-freE fuLly Test-time Adaptation).

The major contributions of our work are as follows. (i) We expose the defects in commonly used
test-time adaptation methods, which ultimately harm adaptation performance. (ii) We demonstrate
that the defects will be even more severe in complex test environments, causing performance degra-
dation. (iii) To achieve degradation-free fully test-time adaptation, we propose DELTA which com-
prises two components: TBR and DOT, to improve the normalization statistics estimates and mit-
igate the bias within optimization. (iv) We evaluate DELTA on three common datasets with four
scenarios and a newly introduced real-world dataset, and find that it can consistently improve the
popular test-time adaptation methods on all scenarios, yielding new state-of-the-art results.

2 RELATED WORK

Unsupervised domain adaptation (UDA). In reality, test distribution is frequently inconsistent with
the training distribution, resulting in poor performance. UDA aims to alleviate the phenomenon with
the collected unlabeled samples from the target distribution. One popular approach is to align the sta-
tistical moments across different distributions (Gretton et al., 2006; Zellinger et al., 2017; Long et al.,
2017). Another line of studies adopts adversarial training to achieve adaptation (Ganin et al., 2016;
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Long et al., 2018). UDA has been developed for many tasks including object classification (Saito
et al., 2017)/detection (Li et al., 2021) and semantic segmentation (Hoffman et al., 2018).

Source-free domain adaptation (SFDA). SFDA deals with domain gap with only the trained model
and the prepared unlabeled target data. To be more widely used, SFDA methods should be built on
a common source model trained by a standard pipeline. SHOT (Liang et al., 2020) freezes the
source model’s classifier and optimizes the feature extractor via entropy minimization, diversity
regularization, and pseudo-labeling. SHOT incorporates weight normalization, 1D BN, and label-
smoothing into backbones and training, which do not exist in most off-the-shelf trained models, but
its other ideas can be used. USFDA (Kundu et al., 2020) utilizes synthesized samples to achieve
compact decision boundaries. NRC (Yang et al., 2021b) encourages label consistency among local
target features with the same network architecture as SHOT. GSFDA (Yang et al., 2021a) further
expects the adapted model performs well not only on target data but also on source data.

Fully test-time adaptation (FTTA). FTTA is a more difficult and realistic setting. In the same way
that SFDA does not provide the source training data, only the trained model is provided. Unlike
SFDA, FTTA cannot access the entire target dataset; however, the methods should be capable of do-
ing online adaptation on the test stream and providing instant predictions for the arrived test samples.
BN adapt (Nado et al., 2020; Schneider et al., 2020) replaces the normalization statistics estimated
during training with those derived from the test mini-batch. On top of it, TENT (Wang et al., 2021)
optimizes the affine parameters in BN through entropy minimization during test. EATA (Niu et al.,
2022) and CoTTA (Wang et al., 2022a) study long-term test-time adaptation in continually changing
environments. ETA (Niu et al., 2022) excludes unreliable and redundant samples from the opti-
mization. AdaContrast (Chen et al., 2022) resorts to contrastive learning to promote feature learning
along with a pseudo label refinement mechanism. Both AdaContrast and CoTTA utilize heavy data
augmentation during test, which will increase inference latency. Besides, AdaContrast modifies the
model architecture as in SHOT. Different from them, LAME (Boudiaf et al., 2022) does not rectify
the model’s parameters but only the model’s output probabilities via the introduced unsupervised
objective laplacian adjusted maximum-likelihood estimation.

Class-imbalanced learning. Training with class-imbalanced data has attracted widespread atten-
tion (Liu et al., 2019). Cost-sensitive learning (Elkan, 2001) and resampling (Wang et al., 2020) are
the classical strategies to handle this problem. Ren et al. (2018) designs a meta-learning paradigm
to assign weights to samples. Class-balanced loss (Cui et al., 2019) uses the effective number of
samples when performing re-weighting. Decoupled training (Kang et al., 2020b) learns the feature
extractor and the classifier separately. Menon et al. (2021) propose logit adjustment from a statis-
tical perspective. Other techniques such as weight balancing (Alshammari et al., 2022; Zhao et al.,
2020), contrastive learning (Kang et al., 2020a), knowledge distillation (He et al., 2021), etc. have
also been applied to solve this problem.

3 DELTA: DEGRADATION-FREE FULLY TEST-TIME ADAPTATION

3.1 PROBLEM DEFINITION

Assume that we have the training data Dtrain = {(xi, yi)}N
train

i=1 ∼ P train(x, y), where x ∈X is the input
and y ∈ Y = {1, 2, · · · ,K} is the target label; f{θ0,a0} denotes the model with parameters θ0 and
normalization statistics a0 learned or estimated on Dtrain. Without loss of generality, we denote the
test stream as Dtest = {(xj , yj)}N

test

j=1 ∼ P test(x, y), where {yj} are not available actually, the subscript
j also indicates the sample position within the test stream. When P test(x, y) ̸= P train(x, y) (the
input/output space X /Y is consistent between training and test data), f{θ0,a0} may perform poorly
on Dtest. Under fully test-time adaptation scheme (Wang et al., 2021), during inference step t ≥ 1,
the model f{θt−1,at−1} receives a mini-batch of test data {xmt+b}Bb=1 with B batch size (mt is the
number of test samples observed before inference step t), and then elevates itself to f{θt,at} based
on current test mini-batch and outputs the real-time predictions {pmt+b}Bb=1 (p ∈ RK). Finally,
the evaluation metric is calculated based on the online predictions from each inference step. Fully
test-time adaptation emphasizes performing adaptation during real-time inference entirely, i.e., the
training process cannot be interrupted, the training data is no longer available during test, and the
adaptation should be accomplished in a single pass over the test stream.
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The most common hypothesis is that Dtest is independently sampled from P test(x, y). However, in
real environment, the assumption does not always hold, e.g., samples of some classes may appear
more frequently in a certain period of time, leading to another hypothesis: the test samples are depen-
dently sampled. Most studies only considered the scenario with class-balanced test samples, while
in real-world, the test stream can be class-imbalanced1. We investigate fully test-time adaptation
under the four scenarios below, considering the latent sampling strategies and the test class distri-
bution. For convenience, we denote the scenario where test samples are independently/dependently
sampled from a class-balanced test distribution as IS+CB / DS+CB; denote the scenario where test
samples are independently/dependently sampled from a class-imbalanced test distribution as IS+CI/
DS+CI, as shown in Figure 1. Among them, IS+CB is the most common scenario within FTTA
studies, and the other three scenarios also frequently appear in real-world applications.

3.2 A CLOSER LOOK AT NORMALIZATION STATISTICS

We revisit BN (Ioffe & Szegedy, 2015) briefly. Let v ∈ RB×C×S×S′
be a mini-batch of features

with C channels, height S and width S′. BN normalizes v with the normalization statistics µ, σ
∈ RC : v∗ = v−µ

σ , v⋆ = γ · v∗ + β, where γ, β ∈ RC are the learnable affine parameters,
{γ, β} ⊂ θ. We mainly focus on the first part v → v∗ (all the discussed normalization meth-
ods adopt the affine parameters). In BN, during training, µ, σ are set to the empirical mean µbatch

and standard deviation σbatch calculated for each channel c: µbatch[c] = 1
BSS′

∑
b,s,s′ v[b, c, s, s

′],

σbatch[c] =
√

1
BSS′

∑
b,s,s′(v[b, c, s, s

′]− µbatch[c])2 + ϵ, where ϵ is a small value to avoid division
by zero. During inference, µ, σ are set to µema, σema which are the exponential-moving-average
(EMA) estimates over training process (a0 is formed by the EMA statistics of all BN modules).
However, when P test(x, y) ̸= P train(x, y), studies found that replacing µema, σema with the statistics
of the test mini-batch: µ̂batch, σ̂batch can improve model accuracy (Nado et al., 2020) (for clarify,
statistics estimated on test samples are denoted with ‘ˆ ’). The method is also marked as “BN
adapt” (Schneider et al., 2020).
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(b) µ, DS+CB
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(c) σ, IS+CB
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Figure 2: Normalization statistics in
different scenarios on CIFAR100-C.

Diagnosis I: Normalization statistics are inaccurate
within each test mini-batch. We conduct experiments on
CIFAR100-C. From Figure 2 we can see that the statistics
µ̂batch, σ̂batch used in BN adapt fluctuate dramatically during
adaptation, and are inaccurate in most test mini-batches. It
should be noted that for BN adapt, predictions are made
online based on real-time statistics, so poor estimates can
have a negative impact on performance. More seriously,
the estimates in the DS+CB scenario are worse. In Ta-
ble 2, though BN adapt and TENT can improve accuracy
compared to Source (test with the fixed pre-trained model
f{θ0,a0}) in IS+CB scenario, they suffer from degradation
in the DS+CB cases. Overall, we can see that the poor
statistics severely impede test-time adaptation because they
are derived solely from the current small mini-batch.

Table 2: Average accuracy (%) of 15
corrupted sets on CIFAR100-C.

Method IS+CB DS+CB

Source 53.5±0.00 53.5±0.00

BN adapt 64.3±0.05 27.3±1.12

BN adapt+TEMA 64.8±0.04 63.5±0.51

TENT 68.5±0.13 23.7±1.04

TENT+TEMA 21.8±0.84 26.2±1.27

TENT+TBR 68.8±0.13 64.1±0.57

Treatment I: Test-time batch renormalization (TBR) is
a simple and powerful tool to improve the normaliza-
tion. It is natural to simply employ the test-time moving
averages µ̂ema, σ̂ema to perform normalization during adap-
tation, referring to as TEMA, where µ̂ema

t = α · µ̂ema
t−1 +

(1−α) · sg(µ̂batch
t ), σ̂ema

t = α · σ̂ema
t−1 + (1−α) · sg(σ̂batch

t ),
sg(·) stands for the operation of stopping gradient, e.g., the
Tensor.detach() function in PyTorch, α is a smoothing coef-

1Regarding training class distribution, in experiments, we primarily use models learned on balanced training
data following the benchmark of previous studies. Furthermore, when P train(y) is skewed, some techniques are
commonly used to bring the model closer to the one trained on balanced data, such as on YTBB-sub (Section 4),
where the trained model is learned with logit adjustment on class-imbalanced training data.
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ficient. TEMA can consistently improve BN adapt: the normalization statistics in Figure 2 become
more stable and accurate, and the test accuracy in Table 2 is improved as well.

However, for TENT which involves parameters update, TEMA can destroy the trained model as
shown in Table 2. As discussed in Ioffe & Szegedy (2015), simply employing the moving averages
would neutralize the effects of gradient optimization and normalization, as the gradient descent
optimization does not consider the normalization, leading to unlimited growth of model parameters.
Thus, we introduce batch renormalization (Ioffe, 2017) into test-time adaptation, leading to TBR,
which is formulated by

v∗ =
v − µ̂batch

σ̂batch · r + d, where r =
sg(σ̂batch)

σ̂ema , d =
sg(µ̂batch)− µ̂ema

σ̂ema , (1)

We present a detailed algorithm description in Appendix A.2. Different from BN adapt, we use the
test-time moving averages to rectify the normalization (through r and d). Different from the TEMA,
TBR is well compatible with gradient-based adaptation methods (e.g., TENT) and can improve them
as summarised in Table 2. For BN adapt, TEMA is equal to TBR. Different from the original batch
renormalization used in the training phase, TBR is employed in the inference phase which uses the
statistics and moving averages derived from test batches. Besides, as the adaptation starts with a
trained model f{θ0,a0}, TBR discards the warm-up and truncation operation to r and d, thus does
not introduce additional hyper-parameters. TBR can be applied directly to a common pre-trained
model with BN without requiring the model to be trained with such calibrated normalization.

3.3 A CLOSER LOOK AT TEST-TIME PARAMETER OPTIMIZATION
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Figure 3: Per-class number of predictions under combina-
tions of [data, scenario, method].

Table 3: Standard Deviation (STD), Range (R) of per-class
number of predictions and accuracy (Acc, %) on Gauss data.

Method
IS+CB DS+CB

STD R Acc STD R Acc

Source 158.3±0.0 956.0±0.0 27.0±0.0 158.3±0.0 956.0±0.0 27.0±0.0

BN adapt+TEMA 18.4±0.2 121.6±3.7 58.0±0.2 19.8±1.1 130.0±13.6 56.7±0.5

TENT+TBR 35.8±2.9 269.8±44.0 62.2±0.4 52.4±9.1 469.2±104.2 57.1±0.8

TENT+TBR+DOT 20.4±1.1 122.0±15.2 63.9±0.2 25.5±2.1 164.6±43.0 60.4±0.5

Building on BN adapt, TENT (Wang
et al., 2021) further optimizes the
affine parameters γ, β through en-
tropy minimization and shows that
test-time parameter optimization can
yield better results compared to em-
ploying BN adapt alone. We further
take a closer look at this procedure.

Diagnosis II: the test-time op-
timization is biased towards
dominant classes. We evaluate
the model on IS+CB and DS+CB
gaussian-noise-corrupted test data
(Gauss) of CIFAR100-C. We also
test the model on the original clean
test set of CIFAR100 for comparison.
Figure 3 depicts the per-class number
of predictions, while Table 3 shows the corresponding standard deviation, range (maximum subtract
minimum), and accuracy. We draw the following five conclusions.

• Predictions are imbalanced, even for a model trained on class-balanced training data and tested
on a class-balanced test set with P test(x, y) = P train(x, y): the “clean” curve in Figure 3 (left) with
standard deviation 8.3 and range 46. This phenomenon is also studied in Wang et al. (2022b).

• Predictions becomes more imbalanced when P test(x, y) ̸= P train(x, y) as shown in Figure 3 (left):
the ranges are 46 and 956 on the clean and corrupted test set respectively.

• BN adapt+TEMA improves accuracy (from 27.0% to 58.0%) and alleviates the prediction imbal-
ance at the same time (the range dropped from 956 to 121.6).

• Though accuracy is further improved with TENT+TBR (from 58.0% to 62.2%), the predictions
become more imbalanced inversely (the range changed from 121.6 to 269.8). The entropy mini-
mization loss focuses on data with low entropy, while samples of some classes may have relatively
lower entropy owing to the trained model, thus TENT would aggravate the prediction imbalance.

• On dependent test streams, not only the model accuracy drops, but also the predictions become
more imbalanced (range 269.8 / range 469.2 on independent/dependent samples for TENT+TBR),
as the model may be absolutely dominated by some classes over a period of time in DS+CB
scenario.
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Algorithm 1: Dynamic Online reweighTing (DOT)
Input: inference step t := 0; test stream samples {xj}; pre-trained model f{θ0,a0}; class-frequency

vector z0; loss function L; smooth coefficient λ.
1 while the test mini-batch {xmt+b}Bb=1 arrives do
2 t = t+ 1

3 {pmt+b}Bb=1, f{θt−1,at}← Forward({xmt+b}Bb=1, f{θt−1,at−1}) // output predictions
4 for b = 1 to B do
5 k∗

mt+b = argmaxk∈[1,K] pmt+b[k] // predicted label
6 wmt+b = 1/(zt−1[k

∗
mt+b]+ϵ) // assign sample weight

7 w̄mt+b = B · wmt+b/
∑B

b′=1 wmt+b′ , b = 1, 2, · · · , B // normalize sample weight

8 l = 1
B

∑B
b=1 w̄mt+b · L(pmt+b) // combine sample weight with loss

9 f{θt,at} ← Backward & Update(l, f{θt−1,at}) // update θ

10 zt ← λzt−1 +
(1−λ)

B

∑B
b=1 pmt+b // update z

The imbalanced data is harmful during the normal training phase, resulting in biased models and
poor overall accuracy (Liu et al., 2019; Menon et al., 2021). Our main motivation is that the test-time
adaptation methods also involve gradient-based optimization which is built on the model predictions;
however, the predictions are actually imbalanced, particularly for dependent or class-imbalanced
streams and the low-entropy-emphasized adaptation methods. Therefore, we argue that the test-time
optimization is biased towards some dominant classes actually, resulting in inferior performance. A
vicious circle is formed by skewed optimization and imbalanced predictions.

Treatment II: Dynamic online re-weighting (DOT) can alleviate the biased optimization.
Many methods have been developed to deal with class imbalance during the training phase, but
they face several challenges when it comes to fully test-time adaptation: (i) Network architectures
are immutable. (ii) Because test sample class frequencies are dynamic and agnostic, the common
constraint of making the output distribution uniform (Liang et al., 2020) is no longer reasonable.
(iii) Inference and adaptation must occur in real-time when test mini-batch arrived (only a single
pass through test data, no iterative learning).

Given these constraints, we propose DOT as presented in Algorithm 1. DOT is mainly derived
from class-wise re-weighting (Cui et al., 2019). To tackle the dynamically changing and unknown
class frequencies, we use a momentum-updated class-frequency vector z ∈ RK instead (Line 10
of Algorithm 1), which is initiated with z[k] = 1

K , k = 1, 2, · · · ,K. For each inference step,
we assign weights to each test sample based on its pseudo label and the current z (Line 5,6 of
Algorithm 1). Specifically, when z[k] is relatively large, during the subsequent adaptation, DOT
will reduce the contributions of the kth class samples (pseudo label) and emphasize others. It is
worth noting that DOT can alleviate the biased optimization caused by the pre-trained model (e.g.,
inter-class similarity), test stream (e.g., class-imbalanced scenario) simultaneously.

DOT is a general idea to tackle the biased optimization, some parts in Algorithm 1 have multi-
ple options, so it can be combined with different existing test-time adaptation techniques. For
the “Forward (·)” function (Line 3 of Algorithm 1), the discussed BN adapt and TBR can be in-
corporated. For the loss function L(·) (Line 8 of Algorithm 1), studies usually employ the en-
tropy minimization loss: L(pb) = −

∑K
k=1 pb[k] log pb[k] or the cross-entropy loss with pseudo

labels: L(pb) = −Ipb[k∗
b ]≥τ · log pb[k∗b ] (commonly, only samples with high prediction con-

fidence are utilized, τ is a pre-defined threshold). Similarly, for entropy minimization, Ent-
W (Niu et al., 2022) also discards the high-entropy samples and emphasizes the low-entropy ones:
L(pb) = −IHb<τ · eτ−Hb ·

∑K
k=1 pb[k] log pb[k], where Hb is the entropy of sample xb.

4 EXPERIMENTS

Datasets and models. We conduct experiments on common datasets CIFAR100-C, ImageNet-
C (Hendrycks & Dietterich, 2019), ImageNet-R (Hendrycks et al., 2021), and a newly introduced
video (segments) dataset: the subset of YouTube-BoundingBoxes (YTBB-sub) (Real et al., 2017).
CIFAR100-C / ImageNet-C contains 15 corruption types, each with 5 severity levels; we use the
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highest level unless otherwise specified. ImageNet-R contains various styles (e.g., paintings) of Ima-
geNet categories. Following Wang et al. (2022a); Niu et al. (2022), for evaluations on CIFAR100-C,
we adopt the trained ResNeXt-29 (Xie et al., 2017) model from Hendrycks et al. (2020) as f{θ0,a0};
for ImageNet-C / -R, we use the trained ResNet-50 model from Torchvision. The models are trained
on the corresponding original training data. For YTBB-sub, we use a ResNet-18 trained on the
related images of COCO. Details of the tasks, datasets and examples are provided in Appendix A.1.

Metrics. Unless otherwise specified, we report the mean accuracy over classes (Acc, %) (Liu et al.,
2019); results are averaged over 15 different corruption types for CIFAR100-C and ImageNet-C in
the main text, please see detailed performance on each corruption type in Appendix A.5, A.6.

Implementation. The configurations are mainly followed previous work Wang et al. (2021; 2022a);
Niu et al. (2022) for comparison, details are listed in Appendix A.3. Code is available online.

Table 4: Acc in IS+CB scenario.
Method CIFAR100-C ImageNet-C

Source 53.5±0.00 18.0±0.00

TTA – 17.7
BN adapt 64.6±0.03 31.5±0.02

MEMO – 23.9
ETA 69.3±0.14 48.0±0.06

LAME 50.8±0.06 17.2±0.01

CoTTA 65.5±0.04 34.4±0.11

CoTTA* 67.3±0.13 34.8±0.53

PL 68.0±0.13 40.2±0.11

+DELTA 68.7±0.12 41.8±0.03

+0.7 +1.6
TENT 68.7±0.16 42.7±0.03

+DELTA 69.5±0.03 45.1±0.03

+0.8 +2.4
Ent-W 69.3±0.15 44.3±0.41

+DELTA 70.1±0.05 49.9±0.05

+0.8 +5.6

Baselines. We adopt the following SOTA methods as base-
lines: pseudo label (PL) (Lee et al., 2013), test-time aug-
mentation (TTA) (Ashukha et al., 2020), BN adaptation (BN
adapt) (Schneider et al., 2020; Nado et al., 2020), test-time en-
tropy minimization (TENT) (Wang et al., 2021), marginal en-
tropy minimization with one test point (MEMO) (Zhang et al.,
2021), efficient test-time adaptation (ETA) (Niu et al., 2022),
entropy-based weighting (Ent-W) (Niu et al., 2022), lapla-
cian adjusted maximum-likelihood estimation (LAME) (Boudiaf
et al., 2022), continual test-time adaptation (CoTTA/CoTTA*:
w/wo resetting) (Wang et al., 2022a). We combine DELTA with
PL, TENT, and Ent-W in this work.

Evaluation in IS+CB scenario. The results on CIFAR100-C
are reported in Table 4. As can be seen, the proposed DELTA
consistently improves the previous adaptation approaches PL
(gain 0.7%), TENT (gain 0.8%), and Ent-W (gain 0.8%), achiev-
ing new state-of-the-art performance. The results also indi-
cate that current test-time adaptation methods indeed suffer from the discussed drawbacks, and
the proposed methods can help them obtain superior performance. Then we evaluate the meth-
ods on the more challenging dataset ImageNet-C. Consistent with the results on CIFAR100-
C, DELTA remarkably improves the existing methods. As the adaptation batch size (64) is
too small compared to the class number (1,000) on ImageNet-C, the previous methods un-
dergo more severe damage than on CIFAR100-C. Consequently, DELTA achieves greater gains
on ImageNet-C: 1.6% gain over PL, 2.4% gain over TENT, and 5.6% gain over Ent-W.

Table 5: Acc in DS+CB scenario with varying ρ.

Method
CIFAR100-C ImageNet-C

1.0 0.5 0.1 1.0 0.5 0.1

Source 53.5±0.00 53.5±0.00 53.5±0.00 18.0±0.00 18.0±0.00 18.0±0.00

BN adapt 53.0±0.48 49.0±0.32 35.2±0.64 21.8±0.12 19.2±0.09 12.1±0.13

ETA 55.4±0.63 50.5±0.34 34.5±0.83 27.6±0.31 22.4±0.20 9.7±0.24

LAME 60.3±0.25 61.8±0.26 65.4±0.41 21.9±0.03 22.7±0.05 24.7±0.03

CoTTA 53.8±0.51 50.0±0.23 36.3±0.63 23.4±0.15 20.5±0.05 12.6±0.15

CoTTA* 54.1±0.65 50.2±0.23 36.1±0.71 23.5±0.27 20.3±0.55 12.8±0.26

PL 54.9±0.54 50.1±0.29 34.8±0.76 25.9±0.18 22.5±0.14 13.0±0.09

+DELTA 68.0±0.25 67.5±0.30 66.0±0.45 40.5±0.05 39.9±0.07 37.3±0.10

+13.1 +17.4 +31.2 +14.6 +17.4 +24.3
TENT 54.6±0.52 49.7±0.40 33.7±0.70 26.0±0.20 22.1±0.12 12.1±0.10

+DELTA 68.9±0.20 68.5±0.40 67.1±0.47 43.7±0.06 43.1±0.07 40.3±0.06

+14.3 +18.8 +33.4 +17.7 +21.0 +28.2
Ent-W 55.4±0.63 50.5±0.35 34.5±0.83 17.4±0.40 13.0±0.22 4.1±0.22

+DELTA 69.4±0.22 68.8±0.35 67.1±0.45 48.3±0.12 47.4±0.04 43.2±0.11

+14.0 +18.3 +32.6 +30.9 +34.4 +39.1

Evaluation in DS+CB scenario. To simu-
late dependent streams, following Yurochkin
et al. (2019), we arrange the samples via
the Dirichlet distribution with a concentra-
tion factor ρ > 0 (the smaller ρ is, the more
concentrated the same-class samples will be,
which is detailed in Appendix A.1). We test
models with ρ ∈ {1.0, 0.5, 0.1}. The exper-
imental results are provided in Table 5 (we
provide the results of more extreme cases
with ρ = 0.01 in Appendix A.4). The repre-
sentative test-time adaptation methods suffer
from performance degradation in the depen-
dent scenario, especially on data sampled
with small ρ. DELTA successfully helps
models adapt to environments across different concentration factors. It is worth noting that DELTA’s
DS+CB results are close to the IS+CB results, e.g., TENT+DELTA achieves 69.5% and 68.5% ac-
curacy on IS+CB and DS+CB (ρ = 0.5) test streams from CIFAR100-C.

Evaluation in IS+CI and DS+CI scenarios. Following Cui et al. (2019), we resample the test
samples with an imbalance factor π (the smaller π is, the more imbalanced the test data will be,
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Table 6: Mean acc in IS+CI, DS+CI scenarios with different π.

Method

IS+CI DS+CI (ρ = 0.5)

CIFAR100-C ImageNet-C CIFAR100-C ImageNet-C

0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

Source 53.3±0.00 53.3±0.00 17.9±0.00 17.9±0.00 53.3±0.00 53.3±0.00 17.9±0.00 17.9±0.00

BN adapt 64.3±0.16 64.2±0.48 31.5±0.24 31.4±0.19 49.8±0.47 49.9±0.63 20.0±0.22 20.5±0.22

ETA 68.2±0.24 68.2±0.59 47.4±0.23 47.1±0.18 51.1±0.45 51.0±0.54 21.7±0.52 21.0±0.40

LAME 50.6±0.18 50.8±0.39 17.2±0.10 17.2±0.07 60.4±0.34 59.6±0.43 21.8±0.12 21.5±0.07

CoTTA 65.1±0.13 65.1±0.58 34.2±0.26 34.2±0.16 50.5±0.47 50.5±0.60 21.4±0.21 22.0±0.26

CoTTA* 67.0±0.17 66.9±0.66 34.6±0.78 34.3±0.51 50.7±0.52 50.6±0.63 21.6±0.56 22.1±0.24

PL 67.2±0.21 67.3±0.57 39.4±0.21 39.3±0.18 50.7±0.41 50.6±0.53 22.8±0.35 23.1±0.25

+DELTA 67.6±0.36 67.6±0.46 40.9±0.26 40.7±0.22 66.6±0.39 66.3±0.57 38.8±0.27 38.5±0.21

+0.4 +0.3 +1.5 +1.4 +15.9 +15.7 +16.0 +15.4
TENT 67.7±0.29 67.7±0.58 42.2±0.26 42.0±0.21 50.3±0.41 50.2±0.56 22.3±0.25 22.5±0.23

+DELTA 68.5±0.31 68.6±0.60 44.4±0.25 44.2±0.22 67.7±0.41 67.5±0.70 42.1±0.28 41.9±0.24

+0.8 +0.9 +2.2 +2.2 +17.4 +17.3 +19.8 +19.4
Ent-W 68.3±0.26 68.2±0.58 40.8±0.76 39.5±0.82 51.1±0.44 51.0±0.53 11.3±0.81 10.8±0.40

+DELTA 69.1±0.25 69.2±0.53 48.4±0.31 47.7±0.21 68.0±0.30 67.8±0.60 45.4±0.53 44.8±0.24

+0.8 +1.0 +7.6 +8.2 +16.9 +16.8 +34.1 +34.0

Table 7: Results on in-distri-
bution test set of CIFAR100.

Method Accuracy

Source 78.9±0.00

BN adapt 76.1±0.15

TENT 78.5±0.16

+DELTA 78.9±0.03 (+0.4)
Ent-W 78.6±0.19

+DELTA 79.1±0.09 (+0.5)
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Figure 4: Across architecture.

which is detailed in Appendix A.1). We test models with π ∈ {0.1, 0.05} (similarly, we show the
extreme experiments with π = 0.001 in Appendix A.4). Table 6 summarizes the results in IS+CI
and DS+CI scenarios, with the following observations: (i) Under class-imbalanced scenario, the
performance degradation is not as severe as under dependent data. This is primarily because the
imbalanced test data has relatively little effect on the normalization statistics. DELTA works well on
the imbalanced test stream. (ii) The hybrid DS+CI scenario can be more difficult than the individual
scenarios. DELTA can also boost baselines in the hybrid scenario. (iii) Though the low-entropy-
emphasized method Ent-W improves TENT in IS+CB scenario (Table 4), it can be inferior to TENT
in dependent or class-imbalanced scenarios (the results on ImageNet-C in Table 5,6). The reason
is that Ent-W leads to a side effect — amplifying the class bias, which would neutralize or even
overwhelm its benefits. DELTA eliminates Ent-W’s side effects while retaining its benefits, so Ent-
W+DELTA always significantly outperforms TENT+DELTA.

Table 8: Mean acc on
ImageNet-R and YTBB-sub.

Method ImageNet-R YTBB-sub

Source 38.4±0.00 74.0±0.00

BN adapt 41.9±0.15 51.4±0.29

ETA 48.3±0.37 51.5±0.32

TENT 44.7±0.23 51.7±0.27

+DELTA 45.3±0.08 75.7±0.21

+0.6 +24.0
Ent-W 48.3±0.26 51.5±0.28

+DELTA 49.6±0.09 76.2±0.23

+1.3 +24.7

Evaluation on realistic out-of-distribution datasets ImageNet-R
and YTBB-sub. ImageNet-R is inherently class-imbalanced and
consists of mixed variants such as cartoon, art, painting, sketch,
toy, etc. As shown in Table 8, DELTA also leads to consistent im-
provement on it. While compared to ImageNet-C, ImageNet-R is
collected individually, which consists of more hard cases that are
still difficult to recognize for DELTA, the gain is not as great as on
ImageNet-C. For YTBB-sub, dependent and class-imbalanced sam-
ples are encountered naturally. We see that classical methods suffer
from severe degradation, whereas DELTA assists them in achieving
good performance.

Evaluation on in-distribution test data. A qualified FTTA method should be “safe” on in-
distribution datasets, i.e., P test(x, y) = P train(x, y). According to Table 7, (i) DELTA continues to
improve performance, albeit slightly; (ii) most adaptation methods can produce comparable results
to Source, and the combination with DELTA even outperforms Source on in-distribution data.

Evaluation with different architectures. Figure 4 indicates that DELTA can help improve previous
test-time adaptation methods with different model architectures. More analyses (e.g., evaluations
with small batch size, different severity levels) are provided in Appendix A.4.

Contribution of each component of DELTA. DELTA consists of two tools: TBR and DOT. In
Table 9, we analyze their contributions on the basis of TENT with four scenarios and two datasets.
Row #1 indicates the results of TENT. Applying either TBR or DOT alone on TENT brings gain
in most scenarios and datasets. While, we find that TBR achieves less improvement when the test
stream is IS+CB and the batch size is large (e.g., performing adaptation with TBR alone on the
IS+CB data of CIFAR100-C with batch size of 200 does not improve TENT). However, when the
batch size is relatively small (e.g., ImageNet-C, batch size of 64), the benefits of TBR will be-
come apparent. More importantly, TBR is extremely effective and necessary for dependent samples.
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Table 9: Ablation on the effectiveness of each component
(on top of TENT) measured in various scenarios: IS+CB,
DS+CB (ρ=0.5), IS+CI (π=0.1), DS+CI (ρ=0.5, π=0.05).

# TBR DOT
CIFAR100-C ImageNet-C

IS+CB DS+CB IS+CI DS+CI IS+CB DS+CB IS+CI DS+CI

1 68.7±0.16 49.7±0.40 67.7±0.29 50.2±0.56 42.7±0.03 22.1±0.12 42.0±0.21 22.5±0.23

2 ✓ 68.9±0.03 67.4±0.41 67.9±0.27 66.6±0.72 43.4±0.05 40.9±0.11 42.8±0.25 39.6±0.24

3 ✓ 69.1±0.07 50.6±0.37 68.1±0.27 51.0±0.60 44.3±0.02 23.7±0.17 43.9±0.25 24.8±0.26

4 ✓ ✓ 69.5±0.03 68.5±0.40 68.5±0.31 67.5±0.70 45.1±0.03 43.1±0.07 44.2±0.22 41.9±0.24

DOT can consistently promote TENT
or TENT+TBR in all scenarios, espe-
cially when the class number is large.
These results demonstrate that both
the inaccurate normalization statis-
tics and the biased optimization are
detrimental, TBR and DOT can effec-
tively alleviate them.

Table 10: Ablation on different techniques for class imbal-
ance (on top of Ent-W+TBR) measured in various scenarios
(same as in Table 9).

Method
CIFAR100-C ImageNet-C

IS+CB DS+CB IS+CI DS+CI IS+CB DS+CB IS+CI DS+CI

Div-W (0.05) 67.5±0.12 68.1±0.30 66.8±0.31 67.1±0.59 48.8±0.02 45.1±0.25 47.9±0.25 41.0±0.49

Div-W (0.1) 69.3±0.09 68.6±0.34 68.3±0.30 67.6±0.53 48.4±0.08 43.0±0.28 47.7±0.29 39.6±0.56

Div-W (0.2) 69.7±0.10 68.2±0.37 68.6±0.28 67.4±0.61 46.4±0.46 40.3±0.18 46.5±0.38 37.5±0.48

Div-W (0.4) 69.7±0.08 68.0±0.41 68.4±0.23 67.2±0.63 43.6±0.54 37.5±0.35 44.1±0.47 35.1±0.54

LA 70.0±0.06 66.9±0.36 69.0±0.27 66.4±0.63 42.2±0.73 28.6±0.57 43.1±0.73 27.5±0.86

KL-div (1e2) – – – – 47.6±1.11 39.9±0.94 46.6±0.62 36.5±1.21

KL-div (1e3) – – – – 48.9±0.07 27.7±0.36 43.1±0.30 22.5±0.60

Sample-drop 70.1±0.08 68.7±0.34 69.0±0.26 67.5±0.55 49.5±0.06 46.9±0.09 48.2±0.34 42.6±0.28

DOT 70.1±0.05 68.8±0.35 69.1±0.25 67.8±0.60 49.9±0.05 47.4±0.04 48.4±0.31 44.8±0.24

Comparing DOT with other tech-
niques for class imbalance. On
the basis of Ent-W+TBR, Table 10
compares DOT against the follow-
ing strategies for solving class imbal-
ance. Diversity-based weight (Div-
W) (Niu et al., 2022) computes the
cosine similarity between the arrived
test samples’ prediction and a moving
average one like z, then only employs
the samples with low similarity to up-
date model. Although the method is
proposed to reduce redundancy, we find it can resist class imbalance too. The method relies on a pre-
defined similarity threshold to determine whether to use a sample. We report the results of Div-W
with varying thresholds (shown in parentheses). We observe that the threshold is very sensitive and
the optimal value varies greatly across datasets. Logit adjustment (LA) (Menon et al., 2021) shows
strong performance when training on imbalanced data. Following Wang et al. (2022b), we can per-
form LA with the estimated class-frequency vector z in test-time adaptation tasks. While we find
that LA does not show satisfactory results here. We speculate that this is because the estimated class
distribution is not accurate under the one-pass adaptation and small batch size, while LA requires a
high-quality class distribution estimate. KL divergence regularizer (KL-div) (Mummadi et al., 2021)
augments loss function to encourage the predictions of test samples to be uniform. While, this is
not always reasonable for TTA, e.g., for the class-imbalanced test data, forcing the outputs to be
uniform will hurt the performance conversely. We examine multiple regularization strength options
(shown in parentheses) and report the best two. The results show that KL-div is clearly inferior in
dependent or class-imbalanced scenarios. We further propose another strategy called Sample-drop.
It records the (pseudo) categories of the test samples that have been employed, then Sample-drop
will directly discard a newly arrived test sample (i.e., not use the sample to update the model) if its
pseudo category belongs to the majority classes among the counts. This simple strategy is valid but
inferior to DOT, as it completely drops too many useful samples.
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Figure 5: Impacts of α and λ.

Impacts of α in TBR and λ in DOT. Similar to most
exponential-moving-average-based methods, when the
smoothing coefficient α (or λ) is too small, the adaptation
may be unstable; when α (or λ) is too large, the adapta-
tion would be slow. Figure 5 provides the ablation studies
of α (left) and λ (right) on the DS+CB (ρ = 0.5) samples
of CIFAR100-C (from the validation set). We find that
TBR and DOT perform reasonably well under a wide range of α and λ.

5 CONCLUSION

In this paper, we expose the defects in test-time adaptation methods which cause suboptimal or even
degraded performance, and propose DELTA to mitigate them. First, the normalization statistics
used in BN adapt are heavily influenced by the current test mini-batch, which can be one-sided and
highly fluctuant. We introduce TBR to improve it using the (approximate) global statistics. Second,
the optimization is highly skewed towards dominant classes, making the model more biased. DOT
alleviates this problem by re-balancing the contributions of each class in an online manner. The
combination of these two powerful tools results in our plug-in method DELTA, which achieves
improvement in different scenarios (IS+CB, DS+CB, IS+CI, and DS+CI) at the same time.
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Figure 6: Different renditions of class n01694178 (African chameleon) from ImageNet-R.

A APPENDIX

A.1 DATASETS

Examples of ImageNet-R and ImageNet-C are shown in Figure 6 and Figure 7 respectively.
ImageNet-R Hendrycks et al. (2021) holds a variety of renditions (sketches, graphics, paint-
ings, plastic objects, cartoons, graffiti, origami, patterns, deviantart, plush objects, sculptures,
art, tattoos, toys, embroidery, video game) of 200 ImageNet classes, resulting in 30,000 images.
CIFAR100-C and ImageNet-C are established in Hendrycks & Dietterich (2019). CIFAR100-C
contains 10,000 images with 15 corruption types: Gaussian Noise (abbr. Gauss), Shot Noise (Shot),
Impulse Noise (Impul), Defocus Blur (Defoc), Frosted Glass Blur (Glass), Motion Blur (Motion),
Zoom Blur (Zoom), Snow, Frost, Fog, Brightness (Brit), Contrast (Contr), Elastic, Pixelate (Pixel),
JPEG. There are 50,000 images for each corruption type in ImageNet-C, others are the same as
CIFAR100-C.

For the real-word applications with dependent and class-imbalanced test samples, we consider an
automatic video content moderation task (e.g., for the short-video platform), which needs to recog-
nize the categories of interest from the extracted frames. It is exactly a natural DS+CI scenario. We
collect 1686 test videos from YouTube, which are annotated in YouTube-BoundingBoxes dataset.
49006 video segments are extracted from these videos and form the test stream in this experiment,
named YTBB-sub here. We consider 21 categories. For the trained model, we adopt a model
(ResNet18) trained on the related images from COCO dataset. Thus, there is a natural difference
between the training domain and test domain. The consecutive video segments form the natural
dependent samples (an object usually persists over several frames) as shown in Figure 8. Moreover,
the test class distribution is also skewed naturally as shown in Figure 8.

To simulate dependent test samples, for each class, we sample qk ∼DirJ(ρ), qk ∈ RJ and allocate
a qk,j proportion of the kth class samples to piece j, then the J pieces are concatenated to form a
test stream in our experiments (J is set to 10 for all experiments); ρ > 0 is a concentration factor,
when ρ is small, samples belong to the same category will concentrate in test stream.

To simulate class-imbalanced test samples, we re-sample data points with an exponential decay in
frequencies across different classes. We control the degree of imbalance through an imbalance factor
π, which is defined as the ratio between sample sizes of the least frequent class and the most frequent
class.

For DS+CI scenario, we mimic a class-imbalanced test set first, then the final test samples are
dependently sampled from it.
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Figure 7: Different corruption types of class n01694178 (African chameleon) from ImageNet-C.
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category. The videos can be found at “https://www.youtube.com/watch?v={the above video ID}”.

0 10 20
Class ID

0

1000

2000

3000

4000

# 
Sa

m
pl

es

(b) The test class distribution.

Figure 8: Characters of YTBB-sub dataset.

A.2 THE ALGORITHM DESCRIPTION OF TBR

We present the detailed algorithm description of TBR in Algorithm 2.
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Algorithm 2: Test-time Batch Renormalization (TBR) module

Input: mini-batch test features v ∈ RB×C×S×S′
with batch size B, C channels, height S and width S′;

learnable affine parameters γ ∈ RC , β ∈ RC ; current test-time moving mean µ̂ema ∈ RC and
standard deviation σ̂ema ∈ RC ; smoothing coefficient α.

1 µ̂batch[c] = 1
BSS′

∑
b,s,s′ v[b, c, s, s

′], c = 1, 2, · · · , C // get mean (for each channel)

2 σ̂batch[c] =
√

1
BSS′

∑
b,s,s′(v[b, c, s, s

′]− µ̂batch[c])2 + ϵ, c = 1, 2, · · · , C // get standard

deviation (for each channel)

3 r = sg(σ̂batch)
σ̂ema // get r

4 d = sg(µ̂batch)−µ̂ema

σ̂ema // get d

5 v∗ = v−µ̂batch

σ̂batch · r + d // normalize
6 v⋆ = γ · v∗ + β // scale and shift

7 µ̂ema ← α · µ̂ema + (1− α) · sg(µ̂batch) // update µ̂ema

8 σ̂ema ← α · σ̂ema + (1− α) · sg(σ̂batch) // update σ̂ema

Output: v⋆, µ̂ema, σ̂ema

A.3 IMPLEMENTATIONS

We use Adam optimizer with learning rate of 1e-3, batch size of 200 for CIFAR100-C; SGD opti-
mizer with learning rate of 2.5e-4, batch size of 64 for ImageNet-C/-R; SGD optimizer with learn-
ing rate of 2.5e-4, batch size of 200 for YTBB-sub. For DELTA, the hyper-parameters α and λ
are roughly selected from {0.9, 0.95, 0.99, 0.999} on validation sets, e.g., the extra sets with cor-
ruption types outside the 15 types used in the benchmark. The smoothing coefficient α in TBR is
set to 0.95 for CIFAR100-C and ImageNet-C/-R, 0.999 for YTBB-sub, λ in DOT is set to 0.95 for
ImageNet-C/-R and 0.9 for CIFAR100-C / YTBB-sub.

Then, we summarize the implementation details of the compared methods here, including BN adapt,
PL, TENT, LAME, ETA, Ent-W, and CoTTA (CoTTA*). Unless otherwise specified, the optimizer,
learning rate, and batch size are the same as those described in the main paper. For BN adapt, we fol-
low the operation in Nado et al. (2020) and the official code of TENT (https://github.com/
DequanWang/tent), i.e., using the test-time normalization statistics completely. Though one
can introduce a hyper-parameter to adjust the trade-off between current statistics and those inherited
from the trained model (a0) (Schneider et al., 2020), we find this strategy does not lead to significant
improvement and its effect varies from dataset to dataset. For PL and TENT, besides the normaliza-
tion statistics, we update the affine parameters in BN modules. The confidence threshold in PL is set
to 0.4, which can produce acceptable results in most cases. We adopt/modify the official implemen-
tation https://github.com/DequanWang/tent to produce the results of TENT/PL. For
LAME, we use the k-NN affinity matrix with 5 nearest neighbors following Boudiaf et al. (2022)
and the official implementation https://github.com/fiveai/LAME. For ETA, the entropy
constant threshold is set to 0.4 × lnK (K is the number of task classes), and the similarity threshold
is set to 0.4/0.05 for CIFAR/ImageNet experiments following the authors’ suggestion and official
implementation https://github.com/mr-eggplant/EATA. For Ent-W, the entropy con-
stant threshold is set to 0.4 or 0.5 times lnK. For CoTTA, the used random augmentations include
color jitter, random affine, gaussian blur, random horizontal flip, and gaussian noise. 32 augmen-
tations are employed in this method. The learning rate is set to 0.01 for ImageNet experiments
following official implementation https://github.com/qinenergy/cotta. The restora-
tion probability is set to 0.01 for CIFAR experiments and 0.001 for ImageNet experiments. The
augmentation threshold is set to 0.72 for CIFAR experiments and 0.1 for ImageNet experiments.
The exponential-moving-average factor is set to 0.999 for all experiments. CoTTA optimizes all
learnable parameters during adaptation.

A.4 ADDITIONAL ANALYSIS

Fully test-time adaptation with small (test) batch size. In the main paper, we report results with
the default batch size following previous studies. Here, we study test-time adaptation with a much
smaller batch size. The small batch size brings two serious challenges: the normalization statistics
can be inaccurate and fluctuate dramatically; the gradient-based optimization can be noisy. Previ-
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ous study (Niu et al., 2022) employs a sliding window with L samples in total (including L − B
previous samples, assuming L > B, L%B = 0 here) to perform adaptation. However, this strat-
egy significantly increases the computational cost: L

B× forward and backward, e.g., 64× when
B = 1, L = 64. We employ another strategy, called “fast-inference and slow-update”. When the
samples arrive, infer them instantly with the current model but do not perform adaptation; the model
is updated with the recent L samples every L

B mini-batches. Thus, this strategy only needs 2× for-
ward and 1× backward. Note that the two strategies both need to cache some recent test samples,
which may be a bit against the “online adaptation”. We evaluate TENT and DELTA on the IS+CB
test stream of CIFAR100-C with batch sizes 128, 16, 8, and 1. The results are listed in Table 11. We
find that TENT suffers from severe performance degeneration when the batch size is small, which
is due to TENT always using the normalization statistics derived from the test mini-batches, thus
it is still affected by the small batch size during “fast-inference”. With the assistance of DELTA,
the performance degradation can be significantly alleviated: it only drops by 0.7% (from 69.8% to
69.1%) when B = 1.

Table 11: Results (classification accuracy, %) with different batch sizes on IS+CB test stream of
CIFAR100-C.

Method 128 16 8 1

Source 53.5 53.5 53.5 53.5
TENT 68.7 64.9 59.9 1.6
TENT+DELTA 69.8 69.4 69.0 69.1

The initialization of TBR’s normalization statistics. As described in Section 3.2, TBR keeps
the moving normalization statistics µ̂ema, σ̂ema, we usually have two ways to initialize them: using
the statistics µ̂batch

1 , σ̂batch
1 derived from the first test mini-batch (First); using the statistics µema,

σema inherited from the trained model (Inherit). In the main paper, we use the “First” initialization
strategy. However, it is worth noting that “First” is not reasonable for too small batch size. We
perform TENT+DELTA with the above two initialization strategies and different batch sizes on the
IS+CB test stream of CIFAR100-C. Figure 9 summaries the results, we can see that when the batch
size is too small, using the inherited normalization statistics as initialization is better; when the batch
size is acceptable (just > 8 for CIFAR100-C), using the “First” initialization strategy is superior.

128 16 8 1
Batch size
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70.0
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Figure 9: Comparison of two TBR initialization strategies on top of TENT+DELTA in IS+CB sce-
nario on CIFAR100-C.

Performance under different severity levels on CIFAR100-C and ImageNet-C. In the main pa-
per, for CIFAR100-C and ImageNet-C, we report the results with the highest severity level 5 follow-
ing previous studies. Here, we investigate DELTA on top of TENT with different severity levels on
CIFAR100-C (IS+CB scenario). Figure 10 presents the results. We observe that (i) as the corruption
level increases, the model accuracy decreases; (ii) DELTA works well under all severity levels.

Performance in extreme cases. We examine the performance of DELTA with more extreme con-
ditions: DS+CB with ρ = 0.01, IS+CI with π = 0.001. Table 12 shows DELTA can manage the
intractable cases.

Influence of random seeds. As fully test-time adaptation is established based on a pre-trained
model, i.e., does not need random initialization; methods like PL, TENT, Ent-W, and our DELTA
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Figure 10: Comparison under different severity levels on CIFAR100-C.

Table 12: Performance in extreme cases.

DS+CB (ρ = 0.01) IS+CI (π = 0.001)

Source 18.0 17.9
BN adapt 6.8 31.1
ETA 3.3 44.1
LAME 26.0 17.4
CoTTA 7.0 33.5
CoTTA* 7.2 33.6
PL 6.6 37.9
+DELTA 34.2 38.9
TENT 6.0 39.8
+DELTA 36.7 41.8
Ent-W 1.4 39.9
+DELTA 36.5 45.1

also do not bring random initialization. As a result, the adaptation results are always the same on
one fixed test stream. However, the random seeds can affect sample order in our experiments. We
study the influence of random seeds on Gauss and Shot data (IS+CB scenario) of ImageNet-C with
seeds {2020, 2021, 2022, 2023}. The results of TENT and DELTA are summarized in Table 13,
from which one can see the methods are not greatly affected by the sample order within the same
scenario. For fair comparison, all methods are investigated under the same sample order for each
specific scenario in our experiments.

Table 13: Influence of random seeds. Classification accuracies (%) are reported on two kinds of
corrupted data (IS+CB) of ImageNet-C under four random seeds (2020, 2021, 2022, and 2023).

Data TENT TENT+DELTA

2020 2021 2022 2023 2020 2021 2022 2023

Gauss 28.672 28.434 28.774 28.796 31.186 30.916 31.270 31.208
Shot 30.536 30.496 30.370 30.458 33.146 33.140 33.124 32.994

Ablation on DOT. We examine the performance of DOT with another way to get the sample weights
(Line 5,6 in Algorithm 1). One can discard line 5 and modify line 6 to adopt the original soft
probabilities: ωmt+b =

∑K
k=1 1/(zt−1[k] + ϵ) · pmt+b[k]. We compare the hard label strategy

(Algorithm 1) with the soft one in Table 14 (on the basis of Enw-W+TBR, on ImageNet-C). We find
that both strategies work well in all scenarios, demonstrating the effectiveness of the idea of DOT.
The performance of the soft strategy is slightly worse than the hard strategy in some scenarios.
However, we think it is difficult to say “hard labels are necessarily better than soft labels” or “soft
labels are necessarily better than hard labels”, for example, the two strategies both exist in recent
semi-supervised methods: hard label in FixMatch, soft label in UDA.
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Table 14: Ablation on DOT.

IS+CB DS+CB DS+CB DS+CB IS+CI IS+CI DS+CI DS+CI
ρ = 1.0 ρ = 0.5 ρ = 0.1 π = 0.1 π = 0.05 ρ = 0.5, π = 0.1 ρ = 0.5, π = 0.05

Hard 49.9 48.3 47.4 43.2 48.4 47.7 45.4 44.8
Soft 49.7 48.0 47.3 43.0 48.3 47.5 45.1 44.5

A.5 RESULTS OF EACH CORRUPTION TYPE ON CIFAR100-C.

Table 2 has compared the usages of different normalization statistics, we further provide the detailed
results of all corruption types in Table 15.

Table 16 presents the results of all corruption types under different batch sizes and the two initial-
ization strategies for normalization statistics in TBR, the averaged results have been illustrated in
Table 11 and Figure 9 respectively.

Table 17 summarises the detailed performance on IS+CB test stream with different severity levels.

Table 18 compares the test-time adaptation methods in IS+CB scenario; Table 19 for DS+CB test
stream (ρ = 1.0), Table 20 for DS+CB test stream (ρ = 0.5), Table 21 for DS+CB test stream (ρ =
0.1); Table 22, 23 for IS+CI data with π = 0.1, π = 0.05; Table 24 / Table 25 for DS+CI test data
with ρ = 0.5 and π = 0.1 / π = 0.05.

A.6 RESULTS OF EACH CORRUPTION TYPE ON IMAGENET-C.

Table 26 compares the test-time adaptation methods in IS+CB scenario and Table 27 further com-
pares them with different model architectures; Table 28, Table 29, and Table 30 for DS+CB test
streams with ρ = 1.0, ρ = 0.5 and ρ = 0.1, respectively; Table 31, 32 for IS+CI data with π = 0.1, π
= 0.05; Table 33 / Table 34 for DS+CI test data with ρ = 0.5 and π = 0.1 / π = 0.05. The results in
Table 15-Table 34 are obtained with seed 2020.

Table 15: Comparison of the normalization statistics on IS+CB and DS+CB test streams of
CIFAR100-C with B = 128 in terms of classification accuracy (%).

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5
IS+CB scenario
BN adapt 57.6 59.0 56.9 72.3 58.0 70.3 71.8 64.8 64.8 58.1 73.3 69.7 64.0 66.7 58.4 64.4
BN adapt+TEMA 58.0 59.7 57.1 72.5 58.6 70.3 72.5 65.3 65.5 58.3 74.1 70.2 64.4 67.0 59.2 64.9
TENT 62.4 64.7 67.3 74.3 62.5 72.4 74.2 69.4 67.6 66.8 75.6 71.8 66.9 71.3 62.6 68.7
TENT+TEMA 19.4 14.9 16.4 31.9 14.8 25.0 28.9 24.3 25.0 19.3 31.1 24.3 25.5 26.0 18.2 23.0
TENT+TBR 62.1 64.7 67.7 74.6 62.0 72.6 74.0 69.7 67.9 67.8 76.2 71.6 67.1 71.8 63.3 68.9
DS+CB scenario
BN adapt 24.1 24.7 23.4 30.2 23.2 29.9 29.8 26.6 27.2 24.2 30.0 28.6 25.7 27.8 23.8 26.6
BN adapt+TEMA 56.0 57.8 55.2 70.7 56.7 68.6 70.2 63.2 63.6 56.6 71.7 67.8 62.2 64.8 57.2 62.8
TENT 21.2 22.7 21.9 26.6 20.0 25.5 26.6 23.0 22.2 21.7 26.3 21.6 21.7 24.7 20.3 23.1
TENT+TEMA 18.0 17.3 15.2 34.2 18.6 26.3 36.6 18.9 27.2 24.6 36.2 25.8 26.5 28.6 20.4 25.0
TENT+TBR 55.8 60.0 58.8 70.7 57.2 67.4 69.7 64.4 62.8 60.2 71.5 64.0 60.9 67.1 56.4 63.1
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Table 16: Comparison of different batch sizes and the initialization strategies for TBR’s normaliza-
tion statistics on IS+CB test stream of CIFAR100-C in terms of classification accuracy (%).

Method Init Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source – 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5
TENT, B=128 – 62.4 64.7 67.3 74.3 62.5 72.4 74.2 69.4 67.6 66.8 75.6 71.8 66.9 71.3 62.6 68.7
TENT, B=16 – 58.7 61.0 63.8 70.8 58.7 68.8 70.3 65.8 64.1 63.3 72.2 66.9 62.7 67.6 59.4 64.9
TENT, B=8 – 54.0 56.1 58.6 65.9 53.0 64.1 65.4 61.0 58.6 57.8 67.1 62.9 58.1 62.8 53.8 59.9
TENT, B=1 – 1.5 1.5 1.6 1.6 1.6 1.8 1.7 1.8 1.6 1.5 1.6 1.6 1.5 1.8 1.6 1.6
TENT+DELTA, B=128 Inherit 62.4 63.9 69.0 75.3 63.2 73.2 74.8 69.8 69.2 66.6 76.0 71.3 67.4 69.7 64.3 69.1
TENT+DELTA, B=128 First 64.0 66.0 69.1 75.3 63.3 73.0 74.6 70.3 69.4 68.1 76.7 72.9 67.6 72.3 64.6 69.8
TENT+DELTA, B=16 Inherit 62.3 64.0 69.1 75.2 63.1 73.3 74.8 69.6 69.3 66.7 76.0 70.8 67.3 69.7 64.3 69.0
TENT+DELTA, B=16 First 63.5 65.5 68.2 74.8 63.2 72.7 74.6 70.2 69.3 67.7 76.2 72.4 67.5 71.9 63.9 69.4
TENT+DELTA, B=8 Inherit 62.4 64.0 69.0 75.2 63.1 73.3 74.8 69.7 69.4 66.6 75.9 71.2 67.3 69.6 64.2 69.0
TENT+DELTA, B=8 First 63.1 65.1 67.1 74.8 62.4 72.6 74.3 69.9 69.2 67.2 75.7 71.2 67.0 71.6 63.0 68.9
TENT+DELTA, B=1 Inherit 62.2 64.0 68.9 75.3 63.1 73.2 74.7 69.7 69.4 66.6 76.1 71.6 67.4 69.6 64.4 69.1
TENT+DELTA, B=1 First 60.0 62.0 64.4 71.4 59.5 69.0 71.4 65.6 65.7 62.9 72.6 64.0 63.6 68.6 59.8 65.4

Table 17: Classification accuracy (%) on IS+CB test stream of CIFAR100-C with different severity
levels (B = 128).

Method Level Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 1 64.2 70.9 77.6 78.9 54.4 77.0 76.8 76.5 74.2 78.4 78.7 78.2 74.4 76.5 70.5 73.8
2 49.3 63.6 75.3 78.1 56.6 75.1 76.6 69.9 69.7 76.1 77.7 75.2 75.0 72.3 65.8 70.4
3 36.5 47.2 73.1 76.8 60.6 72.3 75.4 69.6 62.1 72.3 76.6 71.9 73.7 69.1 64.1 66.8
4 31.2 40.6 68.0 75.2 39.5 72.4 74.0 65.2 61.1 65.8 74.9 65.7 68.9 52.3 62.5 61.2
5 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5

TENT 1 73.8 75.8 77.2 77.9 69.4 76.6 77.1 76.3 75.8 78.0 77.9 77.3 73.3 76.3 71.3 75.6
2 70.2 73.7 76.0 77.9 69.6 75.6 76.8 73.4 74.0 76.2 77.8 75.2 74.8 76.0 68.5 74.4
3 66.7 70.0 74.5 77.4 68.7 73.7 76.4 72.1 71.4 74.9 77.3 74.4 73.9 75.6 66.3 72.9
4 64.4 68.3 70.9 76.3 62.6 74.2 75.3 70.5 70.4 72.2 76.9 74.1 70.5 74.3 65.2 71.1
5 62.4 64.7 67.3 74.3 62.5 72.4 74.2 69.4 67.6 66.8 75.6 71.8 66.9 71.3 62.6 68.7

TENT+DELTA 1 74.4 76.1 78.0 78.7 70.3 77.2 77.7 77.1 76.6 78.6 78.5 78.3 74.5 77.1 72.0 76.3
2 70.9 74.7 76.4 78.4 70.3 75.8 77.4 74.5 74.8 76.9 78.4 76.9 75.4 77.0 69.8 75.2
3 67.8 70.2 75.3 77.9 69.8 74.5 76.8 73.1 72.5 75.6 78.1 76.6 74.8 76.5 67.6 73.8
4 65.6 69.2 72.5 76.9 63.4 74.9 76.0 71.0 71.3 73.2 77.9 75.8 71.3 75.1 66.4 72.0
5 64.0 66.0 69.1 75.3 63.3 73.0 74.6 70.3 69.4 68.1 76.7 72.9 67.6 72.3 64.6 69.8

Table 18: Classification accuracy (%) on IS+CB test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5
BN adapt 57.9 59.3 57.3 72.4 58.2 70.3 72.1 65.1 65.0 58.5 73.5 69.7 64.3 67.1 58.8 64.6
ETA 63.2 65.3 66.9 75.1 63.2 73.1 74.9 70.0 69.7 66.9 76.5 73.6 67.7 72.0 64.0 69.5
LAME 24.1 29.0 59.2 69.0 42.8 67.0 68.9 58.3 50.7 46.5 67.6 39.2 60.3 21.4 56.7 50.7
CoTTA 60.0 61.8 60.1 72.6 60.2 70.5 72.3 64.8 65.5 56.7 73.6 69.9 64.3 68.4 62.6 65.5
CoTTA* 60.0 62.2 60.8 73.2 62.3 71.9 73.7 67.0 67.9 59.8 75.4 72.9 67.5 72.0 66.6 67.5
PL 61.8 64.5 65.0 74.6 62.0 72.1 74.2 68.9 68.4 64.8 75.5 72.0 66.8 70.8 61.9 68.2
PL+DELTA 62.8 64.8 66.3 74.3 62.7 72.7 74.6 69.4 68.5 65.7 75.5 72.8 66.8 71.3 62.7 68.7
TENT 62.8 65.4 66.3 74.8 62.3 72.8 74.6 69.6 68.6 66.8 76.1 72.3 67.3 71.6 63.5 69.0
TENT+TBR 62.5 64.9 67.0 74.8 62.1 72.9 74.3 69.8 68.3 66.8 76.6 72.0 67.1 71.9 63.0 68.9
TENT+DOT 63.6 65.7 66.9 75.1 63.0 73.1 74.8 69.8 69.0 67.1 76.2 73.2 67.6 71.8 63.8 69.4
TENT+DELTA 63.5 65.7 67.8 75.1 63.3 73.1 74.7 70.3 69.3 67.4 76.8 72.8 67.8 72.3 63.6 69.6
Ent-W 63.5 65.5 67.2 75.1 63.2 73.1 74.8 70.1 69.8 67.1 76.6 73.5 67.7 72.0 64.1 69.6
Ent-W+TBR+Div-W(0.05) 60.3 63.5 63.8 73.5 60.8 71.8 73.7 68.6 66.2 63.8 74.9 71.8 66.7 69.9 61.7 67.4
Ent-W+TBR+Div-W(0.1) 63.5 65.3 67.0 75.2 62.7 72.8 74.7 70.0 69.4 66.7 76.1 73.2 67.1 71.7 63.8 69.3
Ent-W+TBR+Div-W(0.2) 63.8 65.6 68.1 75.3 63.1 73.4 75.0 70.7 70.0 67.4 77.0 73.5 67.3 72.5 64.1 69.8
Ent-W+TBR+Div-W(0.4) 63.6 65.4 68.2 75.3 63.1 73.3 75.0 70.8 69.9 67.3 76.9 73.6 67.1 72.6 64.0 69.7
Ent-W+TBR+LA 64.0 65.9 68.4 75.4 63.5 73.6 75.1 71.0 70.2 67.6 77.0 73.8 67.6 72.8 64.5 70.0
Ent-W+TBR+Sample-drop 64.1 66.2 68.6 75.8 63.8 73.5 75.5 70.9 70.2 67.7 77.0 73.9 68.2 72.8 64.4 70.2
Ent-W+DELTA 64.2 66.1 68.5 75.6 63.6 73.5 75.2 71.2 70.3 68.0 77.1 74.0 68.0 72.8 64.7 70.2
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Table 19: Classification accuracy (%) on DS+CB (ρ = 1.0) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5
BN adapt 47.2 47.8 46.2 59.5 47.2 57.4 58.8 52.2 53.2 46.7 59.9 57.4 51.9 54.4 46.9 52.4
ETA 50.1 51.2 52.6 60.3 49.4 58.7 60.2 55.2 54.7 51.2 61.0 58.0 53.2 56.8 50.1 54.9
LAME 28.0 34.2 68.6 80.1 52.1 78.6 80.7 70.5 61.1 57.4 79.3 49.2 73.3 26.1 68.7 60.5
CoTTA 49.1 51.2 49.7 57.7 49.3 56.8 58.6 52.8 53.6 46.6 60.0 53.6 52.6 57.3 50.9 53.3
CoTTA* 49.1 51.3 49.5 57.4 49.8 56.6 58.4 53.1 54.1 46.9 59.1 54.2 53.3 57.1 52.8 53.5
PL 49.9 50.5 51.5 60.0 48.3 58.2 60.4 54.2 54.6 50.4 60.7 57.4 53.0 56.5 49.2 54.3
PL+DELTA 61.3 62.9 64.4 73.9 61.8 71.7 74.0 68.1 68.0 63.9 74.9 71.2 66.2 70.1 62.2 67.6
TENT 49.3 50.7 52.6 59.9 48.7 57.8 59.5 53.8 53.5 50.7 60.2 56.8 52.7 56.1 49.4 54.1
TENT+DELTA 62.3 64.4 66.7 74.5 62.6 72.0 74.3 68.9 68.5 65.8 75.6 72.0 66.8 71.4 63.4 68.6
Ent-W 50.0 51.3 52.9 60.3 49.3 58.9 60.3 54.9 54.9 51.1 61.0 57.8 53.1 56.7 50.0 54.8
Ent-W+DELTA 62.7 64.9 67.4 74.6 62.7 72.6 74.4 69.6 69.2 66.1 75.7 72.4 66.8 71.7 64.2 69.0

Table 20: Classification accuracy (%) on DS+CB (ρ = 0.5) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5
BN adapt 43.8 45.2 43.9 56.2 44.5 54.7 55.5 49.1 50.0 43.9 57.0 54.2 48.7 51.2 45.0 49.5
ETA 45.8 47.5 48.9 56.4 45.3 54.5 55.8 51.2 51.2 48.1 57.4 53.8 49.4 53.1 45.9 50.9
LAME 28.5 34.8 69.7 80.8 53.5 79.6 81.8 71.9 62.7 58.6 81.1 50.6 74.5 26.9 69.5 61.6
CoTTA 46.9 48.3 46.5 55.1 46.6 54.2 55.2 49.3 50.6 43.4 56.9 50.8 49.3 54.2 48.3 50.4
CoTTA* 46.9 48.4 46.5 54.5 47.2 53.8 54.4 50.0 51.2 43.9 56.1 51.5 50.3 53.9 49.4 50.5
PL 45.4 47.0 47.8 56.0 45.7 54.3 55.7 50.8 51.3 47.2 57.1 52.6 49.4 52.7 45.9 50.6
PL+DELTA 61.3 62.5 63.2 73.1 61.3 70.8 73.6 68.0 67.0 63.3 74.5 70.0 65.7 69.7 61.2 67.0
TENT 44.8 46.7 48.4 55.9 45.5 54.0 55.2 50.0 50.1 47.3 56.6 52.2 48.4 52.6 45.6 50.2
TENT+TBR 59.7 62.4 64.6 73.3 60.7 70.7 72.9 67.3 66.6 64.2 74.2 68.9 65.0 69.5 61.0 66.7
TENT+DOT 45.9 47.5 49.3 56.8 46.4 54.8 55.8 50.8 51.1 48.2 57.4 53.6 49.6 53.0 46.4 51.1
TENT+DELTA 61.3 63.5 65.5 73.9 62.2 71.5 73.8 68.3 67.5 65.6 74.8 70.8 66.1 70.4 62.0 67.8
Ent-W 45.8 47.5 49.0 56.3 45.5 54.5 55.6 51.6 51.1 48.3 57.2 53.8 49.3 53.0 45.9 51.0
Ent-W+TBR+Div-W(0.05) 61.5 64.0 64.1 73.8 60.7 71.7 73.5 67.6 68.2 64.2 74.8 71.0 66.4 70.3 62.2 67.6
Ent-W+TBR+Div-W(0.1) 62.4 63.9 65.7 74.3 61.9 71.8 73.8 68.3 68.5 65.0 75.0 71.1 66.2 70.5 62.4 68.1
Ent-W+TBR+Div-W(0.2) 61.0 63.5 65.5 73.6 60.8 71.2 72.9 68.0 67.9 65.1 74.5 70.7 65.7 70.2 62.2 67.5
Ent-W+TBR+Div-W(0.4) 60.5 63.4 65.2 73.4 60.3 71.2 72.9 67.6 67.9 65.0 74.4 70.6 65.3 69.9 61.8 67.3
Ent-W+TBR+LA 60.0 62.8 64.2 72.3 59.5 69.9 71.7 66.8 66.8 63.9 73.3 69.4 64.7 69.1 61.0 66.4
Ent-W+TBR+Sample-drop 61.9 64.2 65.6 74.2 61.8 71.7 73.8 68.3 68.4 65.5 74.9 71.4 66.2 70.7 62.7 68.1
Ent-W+DELTA 61.9 64.2 66.0 74.3 61.9 71.9 73.9 68.3 68.5 65.9 74.9 71.5 66.4 70.9 62.9 68.2

Table 21: Classification accuracy (%) on DS+CB (ρ = 0.1) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 27.0 32.0 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.5
BN adapt 31.5 32.8 31.4 40.4 31.0 39.3 40.0 35.3 35.7 31.5 40.7 38.0 34.5 36.7 31.7 35.4
ETA 31.2 32.2 32.6 38.4 30.4 37.7 38.4 34.6 34.7 32.2 39.4 36.3 33.2 36.3 31.2 34.6
LAME 30.3 36.9 73.2 84.3 57.2 83.3 85.0 76.7 66.4 63.1 84.7 54.3 79.2 28.6 73.9 65.1
CoTTA 33.7 34.8 34.1 39.5 33.2 39.3 40.1 36.3 36.8 31.8 39.9 36.8 35.8 39.6 35.3 36.5
CoTTA* 33.7 35.0 33.7 39.0 33.2 38.7 39.4 35.8 36.6 31.8 39.1 36.1 35.6 38.8 35.5 36.1
PL 32.2 32.0 32.5 39.2 30.7 37.8 39.2 35.0 35.0 32.1 39.5 36.8 33.5 36.9 31.2 34.9
PL+DELTA 59.2 61.0 61.6 72.0 58.8 70.1 72.2 66.2 65.2 61.6 72.8 69.2 63.5 67.4 59.6 65.4
TENT 29.9 31.1 32.1 37.8 30.0 36.6 37.6 33.6 33.3 31.4 38.1 34.4 32.0 36.0 30.1 33.6
TENT+DELTA 60.3 62.7 63.1 72.7 60.2 70.7 72.1 66.7 65.9 63.4 73.6 69.8 64.5 68.5 60.2 66.3
Ent-W 31.0 32.1 32.7 38.3 30.1 37.7 38.5 34.5 34.5 32.0 39.3 36.0 32.9 36.2 30.6 34.4
Ent-W+DELTA 60.2 62.3 63.5 72.3 59.6 70.0 72.3 67.3 66.3 63.2 73.7 70.3 64.2 69.2 60.5 66.3
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Table 22: Classification accuracy (%) on IS+CI (π = 0.1) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 26.2 31.7 60.1 70.3 45.7 69.5 71.2 60.1 53.9 49.7 69.7 45.1 62.5 25.6 58.9 53.3
BN adapt 58.0 58.8 56.7 71.6 58.3 69.6 71.5 64.9 65.1 58.6 72.9 68.7 64.4 66.3 58.5 64.3
ETA 62.6 63.7 65.2 73.6 62.9 71.6 73.8 68.6 68.9 65.6 75.2 72.1 65.9 70.7 62.7 68.2
LAME 23.5 28.6 59.4 68.8 43.3 67.1 68.8 58.2 50.9 46.6 67.1 39.4 60.4 21.6 56.7 50.7
CoTTA 59.8 61.3 59.7 71.8 59.8 69.6 71.6 64.4 65.3 56.5 73.1 68.5 64.2 68.2 62.5 65.1
CoTTA* 59.8 61.9 60.1 72.0 61.7 70.9 72.6 66.2 67.4 59.1 74.5 71.3 67.3 71.5 66.3 66.8
PL 61.7 62.3 62.8 73.1 61.7 71.1 73.6 67.2 68.1 63.7 74.3 71.3 65.5 69.7 61.3 67.2
PL+DELTA 62.4 63.0 63.2 73.4 61.3 71.9 73.5 67.2 68.3 64.0 75.0 71.5 65.6 70.1 62.2 67.5
TENT 61.7 63.3 63.9 73.0 62.3 71.4 73.1 67.6 68.1 65.1 74.9 71.4 65.5 70.7 62.5 67.6
TENT+TBR 61.6 63.8 64.4 73.3 62.2 71.5 73.6 68.0 68.0 64.9 74.8 71.4 65.5 71.0 63.0 67.8
TENT+DOT 62.4 63.6 64.7 73.1 62.6 71.6 73.7 68.0 68.6 65.3 74.7 71.8 66.1 70.7 63.0 68.0
TENT+DELTA 62.5 64.3 65.3 73.8 62.4 71.3 73.6 68.3 69.0 66.1 75.1 71.6 66.2 71.1 63.9 68.3
Ent-W 62.5 63.8 65.2 73.6 62.9 71.7 73.7 68.5 68.9 65.5 75.3 72.0 66.3 70.7 62.9 68.2
Ent-W+TBR+Div-W(0.05) 61.1 62.0 62.6 73.0 60.8 71.1 73.1 66.9 66.9 63.4 74.1 70.2 65.6 68.6 60.5 66.7
Ent-W+TBR+Div-W(0.1) 62.5 63.5 64.8 73.7 62.8 72.0 74.2 68.5 68.7 65.5 75.2 71.7 66.7 70.7 62.4 68.2
Ent-W+TBR+Div-W(0.2) 63.3 64.1 66.2 73.9 63.2 72.0 73.8 68.9 69.5 65.8 75.7 72.5 66.8 71.2 62.9 68.7
Ent-W+TBR+Div-W(0.4) 62.7 63.7 65.7 73.5 62.9 71.8 74.2 68.3 69.5 65.5 75.6 73.1 66.5 70.9 62.9 68.5
Ent-W+TBR+LA 63.6 64.6 66.4 74.2 63.7 72.1 74.2 69.0 70.1 66.0 76.0 73.3 67.2 71.8 63.4 69.0
Ent-W+TBR+Sample-drop 63.3 64.6 65.8 73.8 63.6 72.2 74.0 69.5 69.7 66.4 75.6 72.5 67.0 71.5 63.1 68.8
Ent-W+DELTA 63.9 64.8 66.4 74.1 63.7 72.2 74.4 69.2 70.5 66.2 75.6 73.3 67.0 71.6 63.3 69.1

Table 23: Classification accuracy (%) on IS+CI (π = 0.05) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 26.2 31.8 60.5 70.5 46.4 68.9 70.6 59.8 53.7 50.3 70.4 44.9 61.8 24.7 58.2 53.3
BN adapt 56.7 58.0 55.5 71.4 57.5 69.5 71.1 64.7 64.1 57.5 72.5 69.0 63.1 66.2 58.0 63.6
ETA 61.3 63.2 64.6 73.6 61.5 72.2 73.3 68.1 67.7 65.0 74.4 71.4 65.6 70.2 62.8 67.7
LAME 23.2 28.9 59.0 67.9 43.8 66.7 67.8 58.2 50.5 47.1 67.7 39.8 59.7 20.6 56.9 50.5
CoTTA 58.4 60.6 58.8 71.6 58.2 69.4 71.2 63.5 64.2 55.6 72.5 68.6 62.4 67.9 61.0 64.3
CoTTA* 58.4 60.9 59.1 72.0 59.9 70.9 71.8 65.2 66.5 58.6 73.9 71.0 65.7 70.5 65.2 66.0
PL 60.4 62.1 62.9 72.8 60.8 71.4 72.7 67.7 67.1 62.6 73.5 71.3 65.4 69.4 61.4 66.8
PL+DELTA 61.0 63.1 62.8 73.2 61.8 71.6 73.2 67.9 67.6 63.5 74.2 71.4 65.3 69.6 62.0 67.2
TENT 61.0 63.4 64.0 73.3 60.6 71.7 73.2 68.7 66.9 64.9 73.9 71.0 65.1 70.0 62.0 67.3
TENT+DELTA 61.7 64.8 65.6 73.5 62.1 71.2 73.4 69.0 68.6 65.4 74.6 71.1 66.1 70.6 63.1 68.1
Ent-W 61.4 63.2 64.7 73.7 61.5 72.1 73.2 68.4 67.8 64.9 74.4 71.3 65.6 70.1 62.7 67.7
Ent-W+DELTA 62.8 64.4 65.6 74.4 62.5 72.3 74.1 69.1 68.9 66.2 75.5 73.0 66.1 71.7 63.0 68.6

Table 24: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.1) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 26.2 31.7 60.1 70.3 45.7 69.5 71.2 60.1 53.9 49.7 69.7 45.1 62.5 25.6 58.9 53.3
BN adapt 44.9 45.6 44.7 56.1 44.8 54.4 56.4 49.4 50.8 44.3 56.5 53.4 49.2 51.7 46.0 49.9
ETA 46.5 47.0 48.6 56.2 46.1 55.1 56.5 51.4 51.9 47.1 56.7 53.5 49.3 53.4 46.7 51.1
LAME 27.2 34.0 68.5 80.0 52.5 78.9 80.5 70.3 60.5 56.6 78.2 49.9 72.7 26.4 68.6 60.3
CoTTA 47.0 48.3 47.5 55.0 47.0 54.6 55.5 49.7 51.6 44.0 55.9 50.3 50.5 55.2 49.0 50.7
CoTTA* 47.0 48.3 47.6 54.7 48.0 54.1 54.7 49.7 51.7 45.1 55.2 50.1 50.6 54.7 50.6 50.8
PL 46.0 45.9 47.7 56.0 45.8 55.4 56.4 50.7 50.7 46.4 56.3 53.5 48.8 53.2 46.8 50.6
PL+DELTA 60.3 62.1 62.9 72.6 60.9 70.9 72.4 66.6 67.4 62.2 73.5 69.9 65.6 69.3 62.5 66.6
TENT 46.3 46.1 47.6 55.8 45.2 54.7 55.6 49.8 50.5 47.4 56.7 51.3 48.6 52.4 45.2 50.2
TENT+DELTA 62.5 63.7 64.9 73.5 62.2 70.8 72.1 67.6 68.0 65.7 75.0 70.5 66.6 69.9 63.4 67.8
Ent-W 46.7 46.9 48.7 56.1 46.1 55.0 56.3 51.2 51.9 47.7 57.1 53.5 49.2 53.2 46.6 51.1
Ent-W+DELTA 62.4 63.9 65.0 73.5 61.9 71.4 73.5 68.1 68.8 65.4 74.7 70.7 66.2 70.4 63.3 67.9
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Table 25: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.05) test stream of CIFAR100-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 26.2 31.8 60.5 70.5 46.4 68.9 70.6 59.8 53.7 50.3 70.4 44.9 61.8 24.7 58.2 53.3
BN adapt 43.0 45.0 42.3 55.4 44.0 54.2 54.9 49.1 49.4 43.8 56.2 53.1 48.5 51.3 44.3 49.0
ETA 45.4 46.4 46.8 56.2 45.3 54.7 54.8 50.7 50.1 46.5 56.4 52.2 48.8 53.0 45.5 50.2
LAME 27.1 33.3 67.6 78.7 51.7 77.1 78.9 68.5 59.7 56.0 77.5 49.3 70.1 25.1 66.6 59.2
CoTTA 46.5 47.3 45.3 54.5 45.5 53.7 55.0 48.6 49.9 42.4 56.0 49.0 49.1 53.5 47.2 49.6
CoTTA* 46.5 47.8 45.5 54.1 46.2 53.4 54.2 48.8 50.6 43.5 54.2 49.4 49.6 52.8 48.7 49.7
PL 44.3 45.8 46.4 55.8 45.2 54.2 54.8 50.7 49.3 45.8 56.5 52.4 49.1 52.0 45.5 49.9
PL+DELTA 59.3 61.1 62.2 71.6 59.4 70.3 70.8 66.3 65.5 61.4 74.0 69.0 64.5 67.5 59.8 65.5
TENT 44.7 46.7 45.7 55.3 44.6 53.8 53.7 50.0 48.6 46.1 55.5 50.0 48.9 52.0 44.6 49.3
TENT+TBR 58.8 61.6 62.5 72.2 58.6 70.3 70.9 67.0 64.8 62.5 73.5 68.1 63.4 68.5 59.4 65.5
TENT+DOT 45.2 47.1 46.7 55.6 45.4 54.3 54.3 50.9 49.7 47.3 56.1 51.7 49.2 52.9 45.6 50.1
TENT+DELTA 60.3 62.3 63.7 72.9 60.3 70.3 71.3 67.8 66.2 64.1 74.2 68.7 64.3 69.1 60.7 66.4
Ent-W 45.6 46.4 47.0 56.0 45.4 54.9 54.9 50.7 50.1 46.8 56.3 52.2 48.6 53.1 45.1 50.2
Ent-W+TBR+Div-W(0.05) 60.9 62.3 62.9 73.0 59.5 70.7 72.0 67.0 66.2 62.4 74.5 69.8 64.9 69.0 60.7 66.4
Ent-W+TBR+Div-W(0.1) 61.2 62.8 64.5 73.5 59.9 71.3 71.8 67.4 66.4 63.7 74.5 70.6 65.2 69.5 61.0 66.9
Ent-W+TBR+Div-W(0.2) 60.4 62.4 63.6 73.5 59.4 70.7 72.0 67.1 65.8 63.4 74.4 70.1 64.5 69.5 60.4 66.5
Ent-W+TBR+Div-W(0.4) 59.7 62.3 63.3 72.9 59.4 70.6 71.9 67.0 65.8 63.1 74.3 69.6 63.9 69.4 60.3 66.2
Ent-W+TBR+LA 59.2 61.6 62.3 71.9 58.9 69.5 71.3 65.7 65.1 62.8 73.2 69.0 63.3 68.2 60.0 65.5
Ent-W+TBR+Sample-drop 60.9 62.6 63.7 73.2 60.0 70.6 72.0 66.9 66.6 64.1 74.9 69.4 64.6 69.9 61.1 66.7
Ent-W+DELTA 61.2 62.9 64.0 73.7 60.4 71.1 72.3 67.4 67.0 64.2 74.7 70.2 64.7 69.8 61.0 67.0

Table 26: Classification accuracy (%) on IS+CB test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.2 2.9 1.9 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 17.0 20.6 31.6 18.0
TTA 4.1 4.9 4.5 12.5 8.2 12.9 25.8 14.0 19.1 21.3 53.0 12.4 14.6 24.6 33.6 17.7
BN adapt 15.2 15.8 15.8 15.0 15.3 26.4 38.8 34.3 33.1 47.8 65.3 16.8 43.9 48.9 39.7 31.5
MEMO 7.5 8.7 9.0 19.7 13.0 20.7 27.6 25.3 28.8 32.1 61.0 11.0 23.8 33.0 37.5 23.9
ETA 35.6 37.5 36.2 33.7 33.1 47.7 52.5 51.9 45.8 60.0 67.8 44.7 57.8 60.9 55.2 48.0
LAME 1.6 2.4 1.3 17.6 9.1 13.9 21.9 15.6 22.5 22.8 58.6 5.2 15.2 19.9 31.1 17.2
CoTTA 17.6 18.0 17.4 15.6 18.2 31.2 43.6 36.6 35.1 53.0 66.5 19.5 46.3 54.9 42.6 34.4
CoTTA* 17.6 22.1 24.3 19.8 22.7 29.7 38.1 36.0 37.2 45.2 60.1 26.4 46.6 53.4 46.8 35.1
PL 26.2 26.2 27.0 25.2 24.3 37.2 46.5 43.3 39.5 55.0 66.7 30.2 51.2 55.7 49.1 40.2
PL+DELTA 27.7 29.4 28.5 27.0 26.1 38.1 47.9 44.1 40.7 55.9 67.4 34.1 52.9 56.6 50.3 41.8
TENT 28.7 30.5 30.1 28.0 27.2 41.4 49.4 47.2 41.2 57.4 67.4 26.5 54.6 58.5 52.5 42.7
TENT+TBR 29.5 31.4 30.9 28.8 28.0 41.9 50.3 47.7 41.8 58.3 68.1 26.9 55.4 59.3 53.3 43.5
TENT+DOT 30.5 32.3 31.6 29.6 29.3 42.5 49.9 47.8 42.2 57.5 67.5 37.5 55.4 58.8 52.9 44.4
TENT+DELTA 31.2 33.1 32.1 30.5 30.2 42.9 50.9 48.2 43.0 58.5 68.1 37.9 56.2 59.5 53.6 45.1
Ent-W 34.5 29.0 33.1 29.6 26.3 47.4 52.2 51.9 45.6 59.9 67.8 17.8 57.8 60.9 55.0 44.6
Ent-W+TBR+Div-W(0.05) 36.1 37.9 37.8 34.4 33.5 49.1 53.3 53.2 46.7 60.9 68.5 45.1 58.9 61.7 56.0 48.9
Ent-W+TBR+Div-W(0.1) 35.3 37.3 36.3 33.6 32.2 49.1 53.4 53.1 46.6 61.0 68.4 43.1 58.7 61.7 55.9 48.4
Ent-W+TBR+Div-W(0.2) 32.5 35.4 33.5 26.7 25.8 48.9 53.0 52.9 46.2 60.9 68.4 31.1 58.7 61.7 56.0 46.1
Ent-W+TBR+Div-W(0.4) 28.7 32.8 31.7 20.3 19.3 48.9 53.0 52.7 46.2 60.8 68.4 13.9 58.7 61.7 56.0 43.5
Ent-W+TBR+LA 26.7 22.4 29.6 20.3 20.0 49.2 53.4 52.9 46.7 60.7 68.0 10.1 58.8 61.5 56.0 42.4
Ent-W+TBR+Sample-drop 37.0 38.9 38.2 35.8 35.4 49.6 53.8 53.3 47.4 61.0 68.5 46.4 59.1 62.0 56.4 49.5
Ent-W+DELTA 38.1 39.6 39.0 36.3 36.5 49.9 54.0 53.5 47.6 61.1 68.4 46.9 59.2 61.9 56.6 49.9
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Table 27: Classification accuracy (%) on IS+CB test stream of ImageNet-C with different architec-
tures.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

ResNet18
Source 1.2 1.8 1.0 11.4 8.7 11.2 17.6 10.9 16.5 14.3 51.3 3.4 16.8 23.1 29.6 14.6
TENT 22.3 24.7 22.2 20.3 21.1 32.2 41.1 37.8 33.7 49.0 59.2 19.5 46.9 50.6 45.8 35.1
TENT+DELTA 24.5 26.8 24.4 22.6 23.7 34.0 42.7 38.9 35.4 50.2 60.3 27.5 48.5 51.9 47.0 37.2
Ent-W 27.1 30.7 24.3 22.3 17.5 37.6 44.2 42.5 37.8 51.5 59.9 5.5 49.5 52.9 48.5 36.8
Ent-W+DELTA 31.7 33.8 32.0 29.0 30.3 40.2 46.1 44.2 39.7 53.1 60.9 36.9 51.5 54.7 49.8 42.3
ResNet50
Source 2.2 2.9 1.9 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 17.0 20.6 31.6 18.0
TENT 28.7 30.5 30.1 28.0 27.2 41.4 49.4 47.2 41.2 57.3 67.4 26.7 54.6 58.5 52.5 42.7
TENT+DELTA 31.2 33.1 32.1 30.5 30.2 42.9 50.9 48.2 43.0 58.5 68.1 37.9 56.2 59.5 53.6 45.1
Ent-W 34.5 29.0 33.1 29.6 26.3 47.4 52.2 51.9 45.6 59.9 67.8 17.8 57.8 60.9 55.0 44.6
Ent-W+DELTA 38.1 39.6 39.0 36.3 36.5 49.9 54.0 53.5 47.6 61.1 68.4 46.9 59.2 61.9 56.6 49.9
ResNet101
Source 3.5 4.3 3.5 21.9 13.1 19.2 26.5 21.0 26.7 28.1 61.4 7.2 24.3 35.0 42.3 22.5
TENT 32.6 34.0 33.2 32.2 32.4 45.1 53.0 50.8 45.0 59.6 69.1 33.8 58.6 61.1 55.8 46.4
TENT+DELTA 35.1 37.4 35.6 34.9 35.1 46.8 54.6 51.8 46.7 60.7 69.9 42.6 60.1 62.3 57.2 48.7
Ent-W 36.1 20.8 37.3 33.6 31.7 50.3 55.6 54.9 46.8 62.4 69.8 19.7 61.1 63.2 58.2 46.8
Ent-W+DELTA 40.9 43.0 41.9 39.8 40.1 53.1 57.4 56.5 50.8 63.4 70.2 50.6 62.3 64.2 59.8 53.0
ResNet152
Source 3.6 4.4 3.3 22.1 11.9 24.8 25.5 22.1 28.9 27.7 63.1 5.2 24.9 27.1 42.2 22.5
TENT 34.0 36.8 35.3 34.1 34.0 46.9 54.0 52.4 47.0 61.3 70.7 35.5 59.9 62.4 57.2 48.1
TENT+DELTA 36.6 39.2 37.7 36.7 36.3 48.7 55.6 54.0 48.4 62.4 71.2 44.0 61.3 63.3 58.4 50.2
Ent-W 38.7 33.4 34.6 36.6 33.2 52.9 57.4 56.9 46.5 64.2 71.0 29.3 62.7 64.8 60.0 49.5
Ent-W+DELTA 42.6 45.4 44.5 42.0 42.2 55.5 58.9 58.5 52.7 65.5 71.4 51.9 63.7 65.8 61.2 54.8
WideResNet50
TENT 34.5 37.2 34.7 30.6 31.6 45.2 52.0 51.1 45.8 60.5 69.9 38.4 58.3 61.7 54.9 47.1
TENT+DELTA 36.7 39.6 37.2 33.5 34.6 47.4 54.5 53.0 47.6 62.2 71.2 44.1 60.3 63.4 56.9 49.5
Ent-W 34.0 37.1 33.6 25.0 27.7 51.0 54.7 55.5 49.9 62.8 70.4 24.9 60.7 63.9 57.6 47.3
Ent-W+DELTA 41.1 44.9 42.9 38.6 39.3 53.4 57.3 57.6 51.8 64.7 71.4 52.0 62.4 65.7 59.8 53.5
ResNeXt50
TENT 33.3 36.2 34.2 32.3 30.9 45.5 52.2 51.1 45.9 59.6 69.3 39.0 57.1 61.5 53.8 46.8
TENT+DELTA 35.3 38.5 36.1 34.5 33.5 46.6 53.7 52.1 47.0 60.5 69.9 43.9 58.4 62.4 55.0 48.5
Ent-W 31.4 37.5 34.7 34.0 25.2 51.0 54.6 55.1 49.1 62.2 70.0 49.1 60.3 64.3 57.1 49.0
Ent-W+DELTA 40.7 43.6 42.0 39.5 39.1 53.1 56.7 56.6 51.1 63.2 70.4 50.7 61.5 64.9 58.2 52.8

Table 28: Classification accuracy (%) on DS+CB (ρ = 1.0) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.2 2.9 1.9 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 17.0 20.6 31.6 18.0
BN adapt 10.6 10.9 10.9 10.2 10.3 17.5 25.8 23.5 23.1 33.0 46.5 11.3 30.2 33.3 27.0 21.6
ETA 17.0 19.2 18.2 14.1 12.0 25.9 31.1 30.9 26.8 38.6 46.1 18.9 36.0 38.7 33.5 27.1
LAME 1.8 2.7 1.5 22.4 11.3 17.2 28.4 19.8 28.4 29.8 74.4 5.9 20.0 25.6 40.4 22.0
CoTTA 12.2 12.5 12.8 9.5 11.2 19.7 28.4 24.7 23.9 35.9 47.4 12.8 31.1 37.0 28.4 23.2
CoTTA* 12.2 14.9 16.2 12.3 14.2 18.9 24.2 24.4 25.2 30.0 41.5 15.3 30.8 35.5 31.2 23.1
PL 15.9 15.6 16.4 14.4 13.9 23.1 29.8 28.1 26.2 37.3 47.2 12.8 34.2 37.2 32.2 25.6
PL+DELTA 26.3 27.4 27.1 25.5 25.1 37.4 46.5 43.0 39.8 54.8 66.6 32.7 51.4 55.6 48.6 40.5
TENT 16.1 16.8 16.8 15.1 14.1 23.3 30.2 28.8 24.9 37.5 46.7 9.3 34.9 37.8 33.0 25.7
TENT+DELTA 29.6 31.7 30.4 29.1 28.6 41.5 49.8 47.0 42.1 57.6 67.5 35.7 54.9 58.5 52.0 43.7
Ent-W 4.2 2.8 3.1 2.9 3.6 11.3 20.2 20.0 12.5 34.4 44.7 1.7 32.0 37.1 21.5 16.8
Ent-W+DELTA 35.6 37.9 36.0 34.4 34.4 47.9 52.8 51.9 46.5 60.1 67.8 44.2 57.9 60.8 55.4 48.3
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Table 29: Classification accuracy (%) on DS+CB (ρ = 0.5) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.2 2.9 1.9 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 17.0 20.6 31.6 18.0
BN adapt 9.6 9.9 9.8 8.8 9.1 15.8 22.8 21.0 20.8 29.5 41.9 10.3 26.7 29.5 24.2 19.3
ETA 13.9 15.5 13.3 11.1 10.3 21.4 26.2 26.1 22.9 33.4 40.5 13.4 30.9 33.2 29.3 22.8
LAME 1.9 2.8 1.6 23.6 11.7 17.8 29.4 20.4 29.4 30.5 76.1 6.2 20.8 26.4 41.5 22.7
CoTTA 10.8 11.0 11.0 7.8 10.4 17.4 25.0 22.0 21.6 32.0 42.6 9.9 27.9 32.5 25.8 20.5
CoTTA* 10.8 13.3 14.3 11.0 12.9 17.1 22.0 21.8 22.8 27.6 38.0 14.8 27.8 32.6 28.0 21.0
PL 14.2 13.4 14.5 12.5 11.5 20.0 26.3 24.9 23.4 33.2 42.4 11.1 30.5 33.1 28.5 22.6
PL+DELTA 25.6 27.3 26.2 25.2 24.6 36.0 45.7 42.9 39.3 54.4 66.5 31.0 50.6 55.0 47.9 39.9
TENT 13.9 14.6 14.5 12.6 11.7 19.0 26.1 25.2 21.5 33.2 41.6 6.5 30.5 33.1 28.9 22.2
TENT+TBR 27.3 28.5 28.2 26.0 25.4 38.9 48.5 46.0 39.6 57.1 67.3 18.5 53.6 57.6 51.2 40.9
TENT+DOT 15.5 16.5 15.9 14.2 14.0 20.9 27.1 25.9 23.5 33.7 41.8 15.2 31.4 33.5 29.5 23.9
TENT+DELTA 29.1 30.9 29.7 28.2 27.8 40.3 49.0 46.7 41.5 57.3 67.3 33.9 54.4 58.1 51.6 43.1
Ent-W 2.9 2.5 3.5 1.4 1.0 7.1 11.9 15.1 8.5 27.7 37.0 1.3 22.2 31.1 20.1 12.9
Ent-W+TBR+Div-W(0.05) 32.4 34.6 33.3 27.2 28.3 45.2 51.3 50.5 44.3 59.3 67.4 36.0 57.0 60.1 54.3 45.4
Ent-W+TBR+Div-W(0.1) 30.1 33.4 31.1 25.5 21.7 44.8 51.1 50.4 43.4 59.3 67.4 16.3 56.9 60.2 54.3 43.1
Ent-W+TBR+Div-W(0.2) 23.7 30.5 26.5 19.7 12.2 44.3 51.1 50.5 41.1 59.4 67.4 7.0 56.8 60.2 54.2 40.3
Ent-W+TBR+Div-W(0.4) 17.1 15.3 22.2 11.2 4.8 43.7 51.1 50.2 36.5 59.5 67.4 6.1 56.7 60.3 54.2 37.1
Ent-W+TBR+LA 10.9 7.2 14.3 5.1 5.0 35.0 39.9 39.3 23.2 46.8 53.6 4.1 44.6 47.2 42.4 27.9
Ent-W+TBR+Sample-drop 33.7 36.4 35.1 31.9 30.8 46.7 52.2 51.2 45.6 60.0 67.6 40.4 57.3 60.6 54.7 46.9
Ent-W+DELTA 34.9 37.5 35.8 32.7 32.3 46.7 52.3 51.5 46.0 59.7 67.3 42.8 57.3 60.4 54.9 47.5

Table 30: Classification accuracy (%) on DS+CB (ρ = 0.1) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.2 2.9 1.9 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 17.0 20.6 31.6 18.0
BN adapt 6.3 6.4 6.2 5.6 5.6 9.8 13.9 13.6 13.4 18.4 26.1 6.4 16.5 18.1 15.0 12.1
ETA 4.6 5.2 5.1 2.3 2.8 7.0 12.3 11.6 10.9 17.5 22.5 2.3 14.5 17.1 14.4 10.0
LAME 1.9 2.9 1.6 26.2 12.8 19.8 32.7 22.8 32.5 33.8 80.0 6.6 22.5 29.0 45.5 24.7
CoTTA 7.1 7.0 7.1 5.0 6.2 10.5 15.0 14.1 13.7 19.3 26.5 6.4 17.1 19.6 15.8 12.7
CoTTA* 7.1 8.2 8.7 6.3 7.3 10.3 13.4 14.3 14.5 17.9 23.7 7.9 16.9 19.4 17.3 12.9
PL 7.7 7.6 8.3 6.4 6.1 10.8 15.4 15.0 14.0 20.0 25.9 5.0 17.5 19.4 17.0 13.1
PL+DELTA 23.4 24.6 24.0 22.0 21.5 33.3 43.4 40.0 37.3 52.2 65.0 26.1 47.8 52.5 45.4 37.2
TENT 7.4 7.8 7.8 6.2 5.9 8.9 14.7 12.5 11.6 19.0 24.5 3.0 16.8 18.5 16.5 12.1
TENT+DELTA 26.7 28.2 27.3 25.0 24.8 37.1 46.6 43.6 39.6 55.1 65.7 27.2 51.6 55.6 49.0 40.2
Ent-W 1.5 0.6 1.4 1.1 0.8 2.3 4.6 4.4 3.1 8.4 15.5 0.5 7.0 9.7 5.7 4.4
Ent-W+DELTA 30.4 33.1 31.4 26.8 28.1 42.2 48.9 48.2 42.6 56.9 65.4 31.5 54.4 57.8 51.5 43.3

Table 31: Classification accuracy (%) on IS+CI (π = 0.1) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.4 3.0 1.9 17.8 9.7 14.7 22.4 16.5 23.1 24.2 58.9 5.5 16.9 20.4 31.5 17.9
BN adapt 15.0 15.8 15.4 14.7 15.1 25.6 39.1 34.4 33.2 47.8 65.1 17.5 44.4 48.8 39.8 31.5
ETA 34.6 36.7 35.7 33.1 32.5 46.5 51.9 51.3 45.4 59.5 67.6 44.8 57.3 60.9 55.1 47.5
LAME 1.8 2.5 1.5 17.5 9.0 13.9 21.8 15.1 22.3 22.6 58.5 5.3 14.9 19.8 30.9 17.2
CoTTA 17.1 17.8 17.5 15.9 16.7 30.2 43.2 36.8 35.7 51.9 66.4 17.7 47.1 54.0 42.8 34.1
CoTTA* 17.1 22.0 24.1 19.0 22.2 28.0 35.7 35.2 35.8 42.8 57.8 22.9 44.8 50.4 45.3 33.5
PL 24.9 24.8 25.9 24.3 23.4 36.2 45.7 42.3 39.5 54.6 66.5 28.6 49.9 55.5 48.5 39.4
PL+DELTA 26.4 27.7 27.0 26.3 24.9 37.5 46.9 43.3 40.2 55.3 66.8 33.3 52.1 56.5 49.8 40.9
TENT 27.8 29.3 29.2 28.1 26.6 40.8 48.7 46.5 41.0 57.2 67.3 25.7 53.6 58.2 51.9 42.1
TENT+TBR 28.5 30.1 29.7 28.7 27.3 41.3 49.9 47.0 41.7 57.6 67.9 25.1 54.5 59.0 52.9 42.7
TENT+DOT 29.8 31.6 30.9 29.4 28.8 41.7 49.4 47.0 42.1 57.3 67.3 36.8 54.9 58.6 52.4 43.9
TENT+DELTA 30.7 32.5 31.3 30.3 29.3 42.0 50.5 47.5 42.9 57.8 67.7 36.4 55.7 59.2 53.1 44.4
Ent-W 23.2 21.7 29.4 19.1 19.6 46.7 51.7 51.0 39.0 58.9 67.5 10.1 57.2 60.5 54.9 40.7
Ent-W+TBR+Div-W(0.05) 34.1 37.4 36.4 32.5 32.9 47.7 52.9 52.1 45.7 60.0 67.9 42.6 57.8 61.7 55.7 47.8
Ent-W+TBR+Div-W(0.1) 34.5 36.1 35.9 32.4 32.0 48.0 52.9 52.1 45.8 59.8 68.0 40.2 57.9 61.5 55.7 47.5
Ent-W+TBR+Div-W(0.2) 32.5 34.1 35.3 30.0 29.7 47.6 52.7 51.9 45.5 59.7 68.0 30.2 57.9 61.5 55.7 46.1
Ent-W+TBR+Div-W(0.4) 29.2 27.5 34.3 27.4 25.1 47.8 52.8 51.8 44.7 59.5 68.0 6.1 58.0 61.4 55.8 43.3
Ent-W+TBR+LA 24.8 23.5 34.6 25.1 20.4 48.2 52.9 52.2 45.0 59.7 67.3 4.2 58.0 61.3 55.8 42.2
Ent-W+TBR+Sample-drop 36.1 37.8 37.3 33.7 33.2 47.3 52.9 52.1 46.0 59.7 68.0 43.7 57.9 61.5 55.5 48.2
Ent-W+DELTA 36.6 38.6 37.8 34.9 34.4 47.7 52.6 51.9 46.1 59.5 67.4 44.6 57.9 60.9 55.4 48.4
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Table 32: Classification accuracy (%) on IS+CI (π = 0.05) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.2 2.9 1.9 18.0 10.0 14.6 22.5 16.6 23.1 24.4 58.4 5.5 16.9 20.6 31.5 17.9
BN adapt 15.1 15.2 15.6 14.9 15.8 25.6 39.0 34.6 33.2 47.8 64.7 17.2 44.1 48.2 39.9 31.4
ETA 34.2 36.1 35.0 32.0 32.0 46.1 52.0 50.6 45.0 59.4 67.3 43.4 57.0 60.3 54.5 47.0
LAME 1.6 2.4 1.4 17.7 9.1 13.9 21.9 15.4 22.3 22.7 58.0 5.2 15.1 19.8 30.9 17.2
CoTTA 17.3 17.4 17.8 15.4 17.1 29.8 43.1 37.5 35.4 51.9 65.8 19.3 46.8 53.3 42.5 34.0
CoTTA* 17.3 21.6 23.8 19.9 22.9 29.3 37.4 35.7 36.6 44.5 59.0 24.2 45.5 51.8 45.9 34.4
PL 24.2 24.6 25.8 24.7 23.5 36.2 45.8 42.7 38.9 54.3 65.9 27.0 49.0 55.0 48.0 39.0
PL+DELTA 26.1 27.3 27.1 25.8 25.3 36.2 46.8 43.2 39.9 54.8 66.4 32.6 51.1 55.4 48.8 40.5
TENT 27.1 29.0 28.8 27.7 27.1 40.3 49.1 46.4 40.7 57.1 66.6 24.8 53.1 57.8 51.3 41.8
TENT+DELTA 30.1 32.3 31.2 29.6 29.6 41.4 50.0 47.4 42.4 57.6 67.2 35.3 55.1 58.5 52.6 44.0
Ent-W 17.2 13.4 25.6 15.8 12.1 45.9 51.0 50.4 44.6 59.3 66.9 10.0 56.5 60.0 54.1 38.9
Ent-W+DELTA 35.7 38.2 37.1 34.1 33.8 46.5 51.7 51.1 45.6 58.4 66.0 43.5 57.0 59.3 54.5 47.5

Table 33: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.1) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.4 3.0 1.9 17.8 9.7 14.7 22.4 16.5 23.1 24.2 58.9 5.5 16.9 20.4 31.5 17.9
BN adapt 9.7 10.1 10.1 9.3 9.5 16.1 24.2 21.7 21.4 30.8 43.5 11.2 27.0 30.9 25.7 20.1
ETA 11.9 12.7 12.7 8.6 7.3 18.8 27.1 25.9 22.8 34.0 41.9 7.9 30.7 34.9 30.3 21.8
LAME 2.0 2.8 1.5 22.4 11.4 17.1 27.5 19.4 28.0 29.5 73.1 6.0 19.8 24.9 40.0 21.7
CoTTA 11.4 11.6 11.7 9.8 10.4 17.9 26.4 22.9 22.6 33.3 44.4 11.6 28.6 33.8 27.3 21.6
CoTTA* 11.4 13.9 14.9 11.7 13.3 17.9 22.8 22.7 23.5 29.2 39.4 14.6 28.2 33.1 29.6 21.7
PL 14.4 12.5 14.0 12.6 11.8 20.2 27.2 25.3 24.1 34.1 43.9 10.7 29.8 34.2 29.8 23.0
PL+DELTA 24.8 25.5 25.4 23.6 23.0 34.9 44.8 41.0 38.8 53.2 65.9 29.6 49.7 54.1 47.3 38.8
TENT 12.9 13.9 14.3 12.8 11.7 18.5 27.0 25.0 21.7 34.1 42.9 6.6 30.1 34.5 30.1 22.4
TENT+DELTA 28.3 30.1 29.1 27.5 27.2 39.3 48.3 45.2 41.2 56.3 66.8 31.0 53.6 57.2 51.2 42.2
Ent-W 1.6 1.6 2.4 2.3 1.3 5.6 12.9 13.5 11.1 16.7 40.4 1.1 16.8 17.4 16.6 10.8
Ent-W+DELTA 32.2 35.0 34.1 30.5 29.4 44.8 50.7 49.5 44.5 58.1 66.6 36.6 55.7 58.4 53.7 45.3

Table 34: Classification accuracy (%) on DS+CI (ρ = 0.5, π = 0.05) test stream of ImageNet-C.

Method Gauss Shot Impul Defoc Glass Motion Zoom Snow Frost Fog Brit Contr Elastic Pixel JPEG Avg

Source 2.2 2.9 1.9 18.0 10.0 14.6 22.5 16.6 23.1 24.4 58.4 5.5 16.9 20.6 31.5 17.9
BN adapt 9.8 9.9 10.5 9.6 9.5 15.8 23.8 22.1 21.8 31.4 43.9 11.2 26.9 30.6 25.8 20.2
ETA 9.1 11.2 12.5 3.9 7.8 18.2 26.3 25.6 22.4 34.4 41.9 6.4 30.7 33.7 29.7 20.9
LAME 1.8 2.7 1.6 21.9 11.5 16.9 27.3 19.3 28.3 29.3 71.4 5.8 20.2 24.6 39.1 21.5
CoTTA 11.3 11.4 12.1 8.9 10.0 17.9 26.3 23.4 23.0 33.9 44.6 10.1 29.0 34.1 27.6 21.6
CoTTA* 11.3 13.6 14.9 12.1 13.4 17.8 23.1 23.3 23.5 29.1 40.0 13.9 28.4 33.1 29.8 21.8
PL 13.3 11.2 14.7 12.4 12.4 19.6 27.1 25.7 24.2 34.7 44.4 8.4 29.7 34.0 30.0 22.8
PL+DELTA 23.8 25.0 25.1 23.4 22.6 33.6 44.3 41.2 38.7 53.1 65.4 27.9 48.9 53.6 46.6 38.2
TENT 12.6 13.6 14.3 12.6 11.4 17.2 26.6 25.2 21.7 34.6 43.0 6.0 29.6 34.2 30.3 22.2
TENT+TBR 24.7 26.6 26.9 24.8 24.7 37.1 47.0 44.4 39.0 55.5 66.2 15.5 51.0 56.3 50.0 39.3
TENT+DOT 15.4 16.6 16.4 14.6 14.5 20.1 27.7 26.5 24.1 35.4 43.3 13.6 31.4 35.2 31.3 24.4
TENT+DELTA 27.5 29.4 28.9 26.3 27.2 38.4 47.7 45.3 40.8 56.0 66.4 29.1 52.7 56.8 50.5 41.5
Ent-W 0.9 1.5 3.6 0.8 1.4 5.9 11.7 10.8 8.9 23.0 36.2 0.5 18.0 23.5 13.9 10.7
Ent-W+TBR+Div-W(0.05) 27.0 28.5 29.4 21.3 23.3 40.1 48.5 48.1 42.1 57.3 66.1 13.4 54.4 58.3 52.6 40.7
Ent-W+TBR+Div-W(0.1) 24.3 28.8 28.8 16.5 22.0 40.0 48.6 48.1 41.5 57.1 66.2 6.9 54.7 58.5 52.5 39.6
Ent-W+TBR+Div-W(0.2) 20.6 22.6 24.4 9.4 15.0 39.9 49.2 48.5 42.4 57.2 66.4 3.2 54.7 58.7 52.5 37.6
Ent-W+TBR+Div-W(0.4) 12.5 10.7 15.0 7.4 13.4 41.0 49.3 48.5 37.9 57.1 66.4 2.1 54.9 58.6 52.7 35.2
Ent-W+TBR+LA 7.5 7.6 13.0 3.6 6.4 33.8 39.7 39.3 30.4 46.3 54.1 1.7 44.3 47.3 42.7 27.8
Ent-W+TBR+Sample-drop 27.9 32.2 30.9 24.3 27.0 40.8 48.9 48.2 41.9 56.4 65.8 29.3 54.0 58.0 52.2 42.5
Ent-W+DELTA 30.8 34.4 33.0 28.7 29.3 42.8 49.7 49.1 43.9 57.2 65.3 36.7 54.9 58.6 52.7 44.5

25


	introduction
	related work
	delta: degradation-free fully test-time adaptation
	problem definition
	a closer look at normalization statistics
	a closer look at test-time parameter optimization

	experiments
	conclusion
	appendix
	datasets
	the algorithm description of TBR
	implementations
	additional analysis
	results of each corruption type on CIFAR100-C.
	results of each corruption type on ImageNet-C.


