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Abstract

Laser absorption spectroscopy (LAS) quantification is a popular tool used in mea-
suring temperature and concentration of gases. It has low error tolerance, whereas
current ML-based solutions cannot guarantee their measure reliability. In this work,
we propose a new framework, SPEC, to address this issue. In addition to the con-
ventional ML estimator, SPEC also includes a Physics-driven Anomaly Detection
module (PAD) to assess estimate error, and then a correction mode is designed
to correct the estimate through the guidance of error information. In correction
mode, a hybrid surrogate error model is proposed to estimate the error distribution,
which simulates reconstruction error via an ensemble of networks and calculates
feasible error via explicit formulae. A greedy ensemble search is proposed to
find the optimal correction via the error propagation of the differentiable hybrid
error model. The proposed SPEC is validated on various scenarios whether satisfy
I.I.D. or not. The results demonstrate the effectiveness of SPEC. Notably, SPEC
is reconfigurable, which can be easily adapted to different quantification tasks via
changing PAD without retraining the ML estimator.

1 Introduction

Laser Absorption Sensing (LAS) is a widely used technique for gas concentration and temperature
measurement [1], used in combustion[2], environmental monitoring [3], etc. The principle of LAS is
to shoot a laser beam through the target gas which can absorb the laser signal, and the absorption
signal is collected by a detector, known as laser absorption spectrum y ∈ Y . According to Beer-
lambert’s law [4], the absorption signal is related to gas temperature Tgas and concentration Cgas,
which is named as state x = {Tgas, Cgas} ∈ X . Estimating the state is the main task herein.

Recent advances in machine learning (ML) have provided efficient solutions for the quantification
problem. They are supervisedly trained on pre-collected paired data [5, 6, 7]. However, they cannot
guarantee the reliability of the state estimation, while LAS has a low error tolerance in its application.
Additionally, SVPEN [8], Tandem Network [9], Dummy Input Layer [10], and PSO-Network Hybrid
Model [11] attempt to improve the estimation by iteration with feedback from forward surrogate
models, however, surrogate model reliability and iteration efficiency could be concerns. Detailed
related work can be found in appendix A.
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Figure 1: The Workflow of SPEC: ML estimator G gives first estimation, which is fed to physics-
driven Anomaly Detection (PAD) Module A to calculate actual error e. If e > ϵ, correction mode
is activated. The error estimated by hybrid surrogate error model is used to guide the optimization
of candidate dataset XC. The state x̂∗ ∈ XC leading to minimal estimated error is feed to PAD for
evaluation. The process is terminated till e(x̂∗) ≤ ϵ or the iteration budget T is exhausted.

In this work, we propose a new framework, named Surrogate-based Physical Error Correction
(SPEC), to address the reliability concern. SPEC has two work modes: estimation mode and
correction mode. For a given spectrum, the estimation mode is firstly activated, which uses the
existing ML estimator for quick estimates. But instead of making ML estimator to be as powerful as
possible, we pursue to detect the unreliable state estimations via a Physics-driven Anomaly Detection
module (PAD). PAD calculates an overall physical error e ∈ E according to the given estimation x̂
and spectrum y. If e is larger than a threshold ϵ, the PAD will detect this anomaly, and the whole
framework switches to correction mode, which uses the error to correct the state, till the overall error
is smaller than ϵ. The correction mode in fact solves the optimization problem:

min
x̂

e(x̂;y) s.t. x̂ ∈ X . (1)

Our contributions are summarized as follows: (1) We harmoniously combine ML and physical
simulation into a unified inter-disciplinary framework for reliable LAS quantification. (2) The
proposed algorithm can detect and correct the anomaly of estimation efficiently and effectively, and
outperforms the existing network-based optimization algorithms. (3) The proposed SPEC framework
demonstrates its effectiveness on diverse deployment scenarios, and show its auto-configuration
property that easily adapts to different scenarios by changing PAD configuration without retraining.

2 Brief Introduction of SPEC Framework

The general workflow of SPEC is sketched in Fig.1: (1) Estimation mode is first activated, and
the trained ML estimator G is used to give quick estimate x̂(0). (2) The first guess is assessed by
the Physics-driven Anomaly Detection module (PAD) A, which yields overall physical error e. If
e is no more than the predefined threshold ϵ, the estimation is accepted. (3) Otherwise, the first
estimation is detected as an anomaly and the correction mode is activated. In correction mode, a
hybrid error estimator H , which simulates the reconstruction error via an ensemble of neural networks
and calculates the feasible error via explicit formulae, is used to imitate error ê. And a set of randomly
initialized states XC ⊂ X are optimized through the backpropagation of error ê from H to reduce
ê. The state-error pairs generated in the process are used to update H for better performance. (4)
The corrected state x̂ ∈ X leading to the minimalê is fed to PAD to calculate actual e(x̂). The
process is iterated tille(x̂) no more than the predefined ϵ. A detailed description and pseudocode of
the algorithm is given in the appendix B.

3 Experiments And Analysis

We trained ML estimator G through a dataset of CO2 laser absorption spectra, which are collected
from temperature of 600 − 2000K, mole fraction of 0.05 − 0.07, more details can be found in
appendix B. It works well for Inside distribution scenarios, as our test result shows in Fig.6 in
appendix C. However, in actual deployment, the configuration may vary with training and disobeys
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Table 1: Algorithm performance on OoD test set (optimal results are marked in bold)
Threshold 0.05 0.075 0.1
Method Failure times Iteration Failure times Iteration Failure times Iteration
SVPEN 29 116.83 ±43.35 15 100.10 ±43.30 7 98.46 ±38.71

Tandem Network 8 109.36 ±40.57 94.66 ±37.79 83.80 ±33.59
Dummy input Layer 19 3.83 ±56.98 11 6.78 ±51.30 6 47.77 ±45.86

PSO-Network Hybrid Model 37 83.96 ±91.13 25 57.22 ±83.43 13 1.18 ±65.69
Proposed SPEC 7 30.33 ±54.74 2 15.57 ±39.03 0 7.63 ±20.28

I.I.D hypothesis, we demonstrate two such scenarios here: (1) Outside of Distribution (OoD) Test, (2)
Reconfigurability test, and more test results are shown in the appendix C.

Figure 2: The performance of existing ML
estimator (estimation mode) on the OoD test
set.

Figure 3: The correction performance on OoD
test set under the threshold of 0.1.

3.1 Outside of Distribution (OoD) Test

100 samples outside the distribution of the training set are tested. These samples are randomly
sampled from the temperature between 800 and 4000K, and mole fraction between 0.1 and 0.6. We
respectively set the acceptable error threshold ϵ = 0.05, 0.075, and0.1, for the experiment. As shown
in Fig. 3, the performance of estimation mode is unsatisfactory and huge errors are calculated by
PAD. Accordingly, correction mode is activated, and its performance are compared with competitors,
[8, 9, 10, 11]. Two metrics are used in this test, they are respectively the failure times and Average
iteration. The former is defined as the failure times of the model to meet the error threshold in
these 100 test cases, and the latter is defined as the average number of iterations needed to find the
acceptable state. SPEC outperforms the other algorithms in both metrics, as shown in Table 1.

Figure3 shows the corrected states under the error threshold of 0.1. Compared to Fig.3, the corrected
estimation is much closer to the ground truth, and the error is significantly reduced. We calculated
the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Relative Error (MRE),
and Pearson Correlation Coefficient (R) on the results of estimation and correction modes (Table 2),
it also indicates the effectiveness of correction mode.

Table 2: The benefits of correction mode on OoD test set under different thresholds.
State Elements Temperature Concentration

Metric RMSE MAE MRE R RMSE MAE MRE R
Estimation Mode 337.332 264.954 0.104 0.918 0.093 0.073 0.211 0.894

Correction ϵ = 0.1 65.546 47.206 0.018 0.997 0.028 0.021 0.063 0.973
Correction ϵ = 0.075 51.441 38.915 0.015 0.998 0.022 0.018 0.052 0.982
Correction ϵ = 0.05 41.814 31.022 0.012 0.999 0.017 0.014 0.041 0.990
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3.2 Reconfigurability of SPEC

Compared to the conventional ML solutions, the added correction mode in SPEC makes it reconfig-
urable, i.e., by changing the assessment way of PAD, it can handle diverse scenarios. As shown in
Fig.4, we use the absorption spectrum from another waveband, absorption spectrum from another
substance (CO), and even the emission spectrum as the test samples. They are outside the knowledge
of the trained ML estimator. However, by changing PAD to the corresponding configuration, the
correction mode can achieve reliable estimation. This property is vital in practice, because when we
deploy the model, the in-situ configuration may not be consistent with training, SPEC provides the
solution for detecting unreliable estimates and correcting them without retraining the ML estimator.
Ablation studies are provided in the appendix D.

Figure 4: The reconfigurability of SPEC, where we use (a) the absorption spectrum from another
waveband, (b) the emission spectrum instead of absorption spectrum; (c) The absorption spectrum
of CO from another waveband, as the test data, and change to their corresponding physical model
in SPEC. In each subfigure, four panels from left to right are respectively the iteration process of
temperature, concentration, overall error, and the comparison of the test and the rebuilt spectrum.

4 Conclusion

In this work, we proposed a novel framework, SPEC, to address the reliability issue of spectroscopy
quantification, by utilizing the error feedback from the Physics-driven Anomaly Detection (PAD)
module to guide the iteration of a network-based correction mode. From above experiments and
analysis, we can conclude the following points:

• SPEC is a harmonious combination of ML and physical model, which balances the efficiency
and reliability of both elements.

• SPEC provides the ML-based estimation the self-correction capability, such a design outper-
forms the competitors.

• SPEC has the property of reconfigurability, which can be easily adapted to different types of
spectra by changing the configuration of PAD.

In the following work, more complex scenarios should be considered, such as inhomogeneous
gases containing multiple elements. Accordingly, a higher dimension of optimization space will be
constructed, and how to adjust SPEC properly will be the research topic.
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A Related Work

Machine Learning for Spectroscopy Quantification: Machine Learning has been a popular tool in
spectroscopy quantification. Currently, the mean stream methodology in the field is to use supervised
learning to learn the mapping between spectra and states, both classical machine learning algorithms,
such as Support Vector Machine [6, 12], Random Forest [13], MultiLayer Perceptron [5, 14], and
Deep Learning algorithms, such as ConvNet [15, 7], LSTM+attention [16], etc. have been applied.
Without doubt, these models are fixed on the specific training set and cannot guarantee the reliability
of the quantification in unseen test sets. In order to enhance the reliability of the trained models,
some research try to increase the spectral synthesis fidelity via adding instrument noise or simulating
inhomogeneous temperature distribution [17, 18]. Some research utilizes transfer learning to fine
tune the network on little actual experimental data or different wavebands [19, 20]. These methods do
enhance the reliability and expand the application scenarios of ML models, but they are still limited
by the closed world of training and fine-tuning data, and cannot guarantee the reliability in all the
possible scenarios in the open world.

Anomaly Detection: Anomaly detection [21] is an important task in machine learning, which aims
to detect the abnormal data from the normal data. Current Anomaly detection in Machine learning
community is based on learning methodologies, including using GAN to distinguish the normal data
and abnormal data [22], finding the abnormal data via the disagreement between different models
[23], using the reconstruction error of auto-encoder [24], or learning (probabilistic) metrics which
has the predefined threshold to distinguish anomaly [25, 26]. Although these methods can detect
whether a sample is Outside of Distribution (OoD) from the perspective of data distribution, but they
cannot assess whether the estimation from model is reliable (anomaly) or not. Furthermore, their
detection cannot give reliable guidance on how to correct unreliable estimations. Therefore, in this
work, we utilize the physical error to do the work of anomaly detection and provide authoritative
guidance on how to correct the unreliable estimation.

Neural Network for Optimization: In fact, the correction mode we have is using neural network to
solve the optimization problem, and the error from anomaly detection module is in equivalent to the
objective function of the optimization problem. The prerequisite for doing so is that optimization
objective function, i.e., physical error function, should be differentiable. In OptNet or Iterative Neural
Network [27, 28], it requires the physical process is naturally differentiable and can be embedded
as a block of neural network. However, in most engineering applications including spectroscopy
quantification, the physical process is indifferentiable, as the physical models could be a hybrid of
differentiable equations and non-differentiable database and maps.

Therefore, differentiable surrogate model, i.e., neural network, is needed to approximate the objective
function, and then utilized to optimize the state. Such a paradigm is known as predict and optimize
[29]. There are different ways to utilize the surrogate model, Dummy Input Layer [10] manipulates
the input of the surrogate model in order to generate the spectrum as the same as the test spectrum,
while Tandem Network [9] and PSO-Network Hybrid Model [11] respectively using a generative
model or conventional optimization method (PSO) to generate the input of the surrogate model,
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for the same purpose. However, the reliability of forward surrogate model could be the new issue.
Although SVPEN [8] alleviate the issue by always using a high-fidelity physical model, in addition
to surrogate model, to provide the validation, it requires massive iterations as it tries to refocus the
original ML estimator. In addition, a close field for such optimization problems is reinforcement
learning[30, 31], where the surrogate model is equivalent to the world/critic model. However, the
emphasis of reinforcement learning is to training a policy model to tackle all potential conditions,
while the optimization problem faced here is to find reliable state for a given spectrum.

It is notable that considering surrogate model cannot be perfect, in this work, we insist on assessing
the corrected state by Physics-driven Anomaly Detection Module. This is different from the general
surrogate-model-based optimization [32].

B Details of Algorithm

We firstly explain the notation convention: Ordinary letters, such as x or X , represent scalars or
functions with scalar output. Bold letters, such as x or X, represent vectors or functions with vector
output. The i-th element of x is denoted by x[i], while the first k elements of x by x[1 : k]. Different
x is indicated by xi. The data updated in each iteration t is denoted by x(t). We use |x|, ∥x∥1 and
∥x∥2 to denote the dimension, l1-norm and l2-norm of the vector x.

B.1 Estimation Mode

The estimation mode has no difference with conventional applications of ML model: A existing ML
estimator G is deployed to give the first estimation of the state x̂(0) according to the given spectrum y,
i.e., G : Y → X . In principle, the model can be any regressive machine learning model. The model
is shaped offline with the training dataset Doffline = {(yi,xi)}Ki=1, where yi is the i-th measured
spectrum and xi is the corresponding state (temperature and concentration of a given species).

B.2 Physics-driven Anomaly Detection

The Physics-driven Anomaly Detection (PAD) module A is used to assess the estimation of the state
x̂. The assessment contains two parts: reconstruction error and feasible error.

Reconstruction Error eR is based on the physical forward model F : X → Y . Therefore, for a
given x̂, one can calculate the corresponding ŷ, and then compare it with the measured y to get eR:

eR(x̂,y) = ∥F (x̂)− y∥2. (2)

Feasible ErrorTo alleviate the ill-posedness of solving, we introduce the feasible error eF. It is used
to check whether the estimation of state x̂ is in the predefined feasible domain according to prior
knowledge. In our case, the feasible domain is defined as:

XF = {x ∈ X | xmin ≤ x ≤ xmax} , (3)
where xmin and xmax are the lower and upper bounds of the feasible domain, respectively. The feasible
error eF[i] for the state element x[i] is defined as:

eF(x̂)[i] =max

(
x̂[i]− xmin[i]

xmax[i]− xmin[i]
− 1, 0

)
+

max

(
− x̂[i]− xmin[i]

xmax[i]− xmin[i]
, 0

)
,

(4)

where eF[i] is the feasible error of the i-th element of the state x̂, and x̂[i] is the i-th element of the
estimated state x̂. This equation elaborates that once the estimated state element x̂[i] exceeds the
feasible domain, the corresponding estimation error eF[i] will be greater than zero.

The overall e is defined as the weighted sum of both reconstruction error eR and feasible error eF:
e(x̂,y) = wReR + wF,1eF[1] + wF,2eF[2]. (5)

In our case, the weights are set to be 1.

For a given y, the dependence of e on this spectrum is constant. Therefore,e only depends on x̂:
e(x̂,y) = e(x̂|y) = e(x̂). (6)
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B.3 Correction Mode

The correction mode is a network-based optimization algorithm. It has four steps for one iteration:(1)
Estimation: Training surrogate model with online collected data; (2) Exploitation: Search the
corrected state x̂∗; (3)Assessment: Evaluate the corrected state x̂∗ by PAD; (4) Exploration: Collect
data to update the surrogate model.

B.3.1 Hybrid Surrogate Error Model H

Considering PAD A contains indifferentiable eR and differentiable eF, a hybrid surrogate error model
is used to respectively process them. We use an ensemble of L base neural networks to provide robust
and accurate estimations of eR, and directly calculate eF via its explicit expression.

Each base neural network herein is fully connected with a mapping function ϕ(x,w) : R|x|×R|w| →
R.The network weights are stored in the vector w. As a result, given a x̂, the estimate of reconstruction
error is computed by

êR
(
x̂, {wi}Li=1

)
=

1

L

L∑
i=1

ϕ (x̂,wi) , (7)

and thus, e is approximated by

ê
(
x̂, {wi}Li=1

)
=

1

L

L∑
i=1

ϕ (x̂,wi)︸ ︷︷ ︸
approximated reconstruction error

+

2∑
j=1

eF(x̂)[j]︸ ︷︷ ︸
true feasible error

.

(8)

The weights {wi}Li=1 are trained using a set of online collected state-error pairs, e.g., D =
{(x̂i, eR,i)}Zi=1, bootstrapping sampling is used and the loss function is defined as:

min
wi

E(x̂,eR)∼D [dist (ϕ (x̂,wi) , eR)] . (9)

Where distance function dist(·, ·) is defined as Euclidean Distance.

B.3.2 Greedy Ensemble Search

We propose a greedy ensemble search, which searches the state leading to lowest ê among a set of
candidate states XC ⊂ X , and utilizes the gradient information of H to guide the search.

The initial candidate set X is generated by Monte-Carlo Search , i.e., XC
(0) = {x̂i}NC

i=1 ⊂ XF, where
NC is the number of candidate states.

They can be updated iteratively by

XC
(t) = arg min

XC⊂X
ExC∈XC

[
ê

(
xC,

{
w

(t−1)
i

}L

i=1

)]
, (10)

Finally, among the candidates in X
(t)
C , we select the following state

x̂
(t)
C = arg min

x̂C∈XC
(t)

ê

(
x̂C,

{
w

(t−1)
i

}L

i=1

)
, (11)

to be the candidate state, and fed to PAD for assessment (Eq. (5)), resulting in the state-error pair(
x̂
(t)
C , e

(t)
C

)
.

However, such an updating style (Eq.10) may lead to neural collapse [33], i.e., all states in XC are
converged to one state. To avoid this, we add an error element, diversity error eD, into the update rule
(Eq.10, i.e.,

eD(XC) =
max(0.288c1 − σ( XC−xmin

xmax−xmin
), 0)

0.288c1
∗ ϵ

c2
, (12)
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where σ(·) is the standard deviation of the normalized candidate set bounded by the feasible domain.
0.288 is the standard deviation of a uniform distribution bounded by [0, 1], which is a referred baseline.
c1 is used to decide when to activate the diversity error, c2 controls the magnitude of the diversity
error, which are respectively 5 and 2. Accordingly, we modified Eq. (10) as:

XC
(t) =arg min

XC⊂X

ExC∈XC

[
ê

(
xC,

{
w

(t−1)
i

}L

i=1

)]
︸ ︷︷ ︸

Estimated Overall Error

+ eD(XC)︸ ︷︷ ︸
diversity error

. (13)

Such a greedy ensemble search can significantly improve the search efficiency and avoid being
trapped in local minimum, and the structure information of error is used to improve the search
efficiency.

B.3.3 Assessment and Data Collection

The correction mode is activated by sample one batch-size (N ) states through Monte-Carlo sampling
for initializing training of H , theses states are assessed by PAD, to collect state-reconstruction error
pairs, i.e.,

x̂M = U [xmin,xmax]

eR,M = eR (x̂M) ,

eF,M = eF (x̂M) ,

eM = eR,M + eF,M.

(14)

The pairs are stored into buffer D(t), t is the iteration number, and t = 0 herein, i.e.,

D(0) = {(x̂M,i, eR,M,i)}Ni=1 , (15)

In following t, the corrected state x̂
(t)
C generated from greedy search are also assessed by PAD. If

e is less than the feasibility threshold ϵ, the correction mode is stopped and the corrected state is
accordingly x̂∗. Otherwise, Monte-Carlo sampling will generate one state x̂

(t)
M to query PAD again.

The corresponding two new state-error pairs are stored into buffer D(t) = D(t−1) ∪
(
x̂
(t)
C , e

(t)
R,C

)
∪(

x̂
(t)
M , e

(t)
R,M

)
, where eR,C is the reconstruction error of the corrected state x̂

(t)
C . Then, the base neural

network weights w(t−1)
i obtained from the previous iteration are further fine-tuned using the two

added samples
(
x̂
(t)
C , e

(t)
R,C

)
and

(
x̂
(t)
M , e

(t)
R,M

)
, as well as N examples sampled from the previous

training set D(t−1).

B.3.4 Balance between training and exploitation

We set maximum epochs Te in every iteration, and used early stopping when training loss (Eq. 9)
is smaller than a predefined ϵe. Accordingly, a higher number ne of early stopped ϕ indicates a
potentially more accurate error estimation. This strengthens the confidence in exploitation via greedy
ensemble search in the next iteration. Therefore, we set maximum iteration number TG for updating
greedy ensemble search in proportional to ne, i.e., TG = δG⌊ 2ne

L +1⌋, where δG is training frequency
coefficient, which is a hyperparameter to be tuned.

B.4 Implementation Details

Estimation Mode Because of our emphasis on correction mode, we merely trained an ordinary
VGG-13 [34] to be G, which is modified to fit 1D spectral signal. The training data is synthesized
via HITEMP [35] and Radis[36]. The molecule chosen is CO2. The states, i.e., temperature and
mole fraction, were assigned randomly in the range of 600-2000 K, and 0.05-0.07, respectively. The
waveband selected is 2375-2395 cm−1,the generated spectrum has 200 dimensions, i.e.,|y| = 200.
We synthesize 10,000 samples and split it into training, validation and test sets with the partitions of
70%, 15%, 15%, respectively. The experiments are done on a RTX4090 GPU.
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Algorithm 1 SPEC
Require: A spectrum y, existed ML estimator G, physical anomaly detection Module A, base

networks {θi}Li=1, feasibility threshold ϵ > 0, training frequency coefficient δG, maximal
iteration numbers T and maximal epoch Te, early stopping threshold ϵe > 0, batch size N

Ensure: An acceptable state x̂∗ with e(x̂∗) ≤ ϵ
1: ESTIMATION MODE
2: x̂0 = G(y), eR = eR(x̂), eF = eF(x̂)
3: x̂∗ = x̂0
4: if eR + eF ≤ ϵ then
5: Stop the algorithm
6: end if
7: CORRECTION MODE
8: Initialize: iteration index t = 0, initial base neural network weights

{
w

(0)
i

}L

i=1
, number of early

stopped base neural networks ne = 0, initial data buffer D(0) = {(x̂M,i, eR,M,i)}Ni=1
9: for t ≤ T do

10: Update
{
w

(t)
i

}L

i=1
by training each base neural network using D(t) by Eq. (9) for up to Te

iterations, and count the number of early stopped base neural networks ne

11: Update XC by greedy ensemble search with Eq. (13) for up to TG = δG⌊ 2ne

L + 1⌋ iterations
12: Select state x̂C by Eq. (11)
13: eR,C = eR(x̂C), eF = eF(x̂C)
14: x̂∗ = x̂C
15: do line 4-6
16: x̂M = U [xmin,xmax], eR,M = eR(x̂M)
17: D(t) = D(t) ∪ (x̂C, eR,M) ∪ (x̂M, eR,M)
18: end for

Physics-Driven Anomaly Detection Module We use Radis as F to calculate the reconstruction error
(Eq. 2). Of course, one can also choose any other forward model [37].

Correction Mode. In correction Mode, we use a simple MultiLayer Perceptron to be the base
network ϕ, which has the architecture of 2 → 512 → 1024 → 512 → 1. The activation function
is ReLU except the output layer, which is sigmoid for non-negative output,four base networks are
trained and maximal epochs Te = 40 in one iteration, and the batch size N is 32. We set the number
of candidate states NC = 128 for search.

The pseudocode of SPEC is shown in Algorithm 1.

C More experiments

C.1 Inside Distribution (ID) Test

In very often cases, we prefer the training and test sets satisfy the hypothesis of independent and
identical distribution (I.I.D), and we often assess the model under this condition. Such test data does
exist in the deployment, so we first test SPEC with 100 samples randomly picked from the test set we
acquired along with the training set generation. The distribution of this tiny test set is shown in Fig. 5.
Under such case, the feasible domain XF is as the same as the data generation range, i.e., temperature
range is 600 to 2000 K, mole fraction range is 0.05 to 0.07.

We set the error threshold ϵ = 0.05. The test results are shown in Fig. 6. Because the test set is
thoroughly consistent with the training set. Therefore, Estimation Mode, i.e., a well-trained ML
estimator G, can work well on the test set. Visually, the estimation of temperature and concentration
are basically overlapped to their ground truth (upper and middle panel in Fig.6). However, it is
worth noting that the ground truth is not available in the deployment, after all, ML models are
designed to estimate the ground truth when ground truth is not available. That is exact the reason why
conventional ML methodology lacks the tool to assess their estimation reliability. But PAD offers
the route to assess the reliability of estimations without the ground truth. From the calculation of
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Figure 5: The distribution of the ID test set.

PAD, the highest error is merely 0.01, much smaller than 0.05 (lower panel in Fig.6). Therefore, the
proposed SPEC does not need to activate the correction mode under this test scenario.

Figure 6: The performance of existed ML estimator (estimation mode) on the ID test set. The upper
panel shows the comparison of the temperature estimation of ML estimator G and the ground truth.
The middle panel shows the comparison of the concentration estimation of ML estimator G and the
ground truth. The lower panel shows the overall error calculated via PAD.

C.2 Samples inconsistented with physical model

Real-world phenomena are not often exactly same as the simulation via physical model due to
the simulation fidelity limitation, measure error, etc. Therefore, for a given state x, the spectrum
measured in actual deployment may be different from the spectrum simulated by physical model. In
this case, the inconsistency between test data and physical model is introduced, i.e.,

y = G(x) + ∆y, (16)

where, ∆y is the inconsistency between test data and physical model.

In this experiment, we use 10% Gaussian noise to be the inconsistency, and add it to the ID test data
to simulate the actual measurement y, which is defined as:

y[i] = G(x)[i](1 + 0.1N (0, 1)), i ∈ [1, |y|]. (17)

We set the threshold to be 0.05. Because of the existence of inconsistency, the estimation mode
cannot provide accurate estimation. As shown in Fig.7, the estimation of temperature is fine but
the estimation of concentration is visually inaccurate. The minimal overall error is more than 0.4,
and maximal error is even about 1.8. Such an estimation peformance is intolerable, and thus the
correction mode is activated.
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Figure 7: The performance of existing ML model on the noise-added ID test set. The upper panel
shows the comparison of the temperature estimation of ML estimator G and the ground truth. The
middle panel shows the comparison of the concentration estimation of ML estimator G and the
ground truth. The lower panel shows the overall error calculated via PAD.

Meanwhile, because of the existence of the inconsistency, the ideal error measured by PAD is not zero
anymore, but it is unknown to us. Therefore, the predefined error threshold could be inappropriate.
Therefore, under such condition, we use the average lowest error emin in limited iteration budget T
to judge algorithms. In this experiment, the iteration budget T is defined as 25, 50,100, and 200. The
results shown in Fig.8 tells that all algorithms converge to a similar level of error eventually, but their
convergence speeds are significantly different. For example, dummy layer method needs more than
100 iterations to reach a similar performance of SPEC, while SPEC has consistent performance in
various iteration budget settings. This indicates that most of the methods compared here are kind
of iteration-budget dependent, their performance may be unsatisfactory without giving sufficient
iteration budget. Such a condition creates more difficulty in iteration budget setting in practice, which
may impede the utilization of the methods.

Figure 8: The performance of ML on the noise-added ID test set.

We plot the corrected estimation of SPEC after 200 iterations into Fig.9. Compared to Fig.7, we can
visually observe that the estimation of concentration is significantly improved. The maximal overall
error is also reduced from 1.8 to no more than 0.7.

More quantitative assessment is provided in Table 3. Similar to the result shown in Table 2, the results
tell that the correction mode can significantly improve the estimation accuracy. After activating
correction mode with a threshold of 0.05, the RMSE, MAE, RE and R on temperature are respectively
improved by 80.0%, 82.3%, 83.7% and 0.022, and the RMSE, MAE, RE and R on concentration
are respectively improved by 80%,75%, 81.1% and 0.604. Of course, one can design more capable
estimator G to be robust for noise, which is welcomed in practice and not conflict with the proposed
SPEC, the emphasis of the results herein is to demonstrate the capability of correction mode.
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Figure 9: The performance of correction mode on the noise-added ID test set. The upper panel shows
the comparison of the temperature estimation of the correction mode and the ground truth. The
middle panel shows the comparison of the concentration estimation of the correction mode and the
ground truth. The lower panel shows the overall error calculated via PAD.

Table 3: The benefits of correction mode on noise-added ID test set.
State Elements Temperature Concentration

Metric RMSE MAE MRE R RMSE MAE MRE R
Estimation Mode 133.485 117.647 0.098 0.977 0.010 0.008 0.148 0.327

Correction Mode T = 200 26.777 20.831 0.016 0.999 0.002 0.002 0.028 0.931

D Ablation Study

We mainly did three ablation studies herein: (1) The effect of ways to estimate error; (2) The effect of
sampling methods; (3) The effect of diversity error.

The effect of ways to estimate error. In this study, we respectively use base networks to estimate
all three error elements, overall error, and merely reconstruction error. The results shown in Table 4
tells that merely estimating reconstruction error can achieve the best performance. The reason is that
estimating all error elements will add more estimation uncertainty and thus confuse the optimization
direction, while estimating the overall error will lose the information of error structure. Notably,
the difference between estimating overall error and estimating reconstruction error is limited, this is
because our states are sampled from the feasible domain at the beginning, thus, very few states will
activate the feasible error, therefore, the overall error is mainly affected by the reconstruction error.

Table 4: The effect of ways to estimate error

Ways of estimating error Failure times Iteration
Estimate all error elements 19 56.72 ±77.42

Estimate overall error 8 30.88 ±56.92
Estimate reconstruction error 7 30.33 ±54.74

The effect of sampling methods. In this study, we compare the used simple Monte-Carlo sampling
with active sampling via disagreement [38]. The latter is an active sampling method which uses a ML
model to find the states lead to the maximal disagreement between the estimation of base networks.
The logic behind this method is that the states with maximal disagreement are the most uncertain
states which need to enhance. The results shown in Table 5 tells that the active sampling method
is not suitable for SPEC, because the most uncertain state does not mean the most important state.
In fact, active sampling will frequently shift the focus of surrogate model and accordingly make
the optimization process unstable. This is also indicated by the high standard deviation of active
sampling method in Table 5.

The effect of diversity error. In this study, we compare cases of using diversity error and not
using diversity error in greedy ensemble search (Eq.13). The results shown in Table 6 tells that
using diversity error reduces the failure times and iteration standard deviation. The reason is that
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Table 5: The effect of different sampling methods

Sampling method Failure times Iteration
Active sampling 25 59.48 ±83.46

Monte-Carlo sampling 7 30.33 ±54.74

the diversity error can help the ensemble search to avoid the local optimum, and thus improve the
stability of the optimization process.

Table 6: The effect of diversity error

diversity error Failure times Iteration
w/o diversity error 9 30.50 ±59.96
with diversity error 7 30.33 ±54.74
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D3S3@NeurIPS Paper Checklist (Optional)

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: One can check section3 and Appendix C for more details, which are consistent
with the main claims we made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is mentioned in the end of conclusion part.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The design effectiveness are proved in ablation study (appendix D)
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: One can check the details of the algorithm in appendix B, a github repo will be
provided later after acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: we will share the code after the acceptance of the paper.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please check the appendix C, we have a section of implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: in experiment setting mentioned in Experiment and Analysis (section 3), we
use the metrics that are statistics-based, and the deviation of the experiment results are
reported, as shown in tables ??. The same for ablation study.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mentioned it in implementation details of appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the Neurips code of Ethics, and the work satisfies.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The purpose of work herein is to provide reliable and safe application of AI, as
we mentioned in the introduction and conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not have this risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we cite the resource of the model and the software.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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