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Abstract
Variance-dependent regret bounds have received increasing attention in recent
studies on contextual bandits. However, most of these studies are focused on upper
confidence bound (UCB)-based bandit algorithms, while sampling based bandit al-
gorithms such as Thompson sampling are still understudied. The only exception is
the LinVDTS algorithm (Xu et al., 2023), which is limited to linear reward function
and its regret bound is not optimal with respect to the model dimension. In this
paper, we present FGTS-VA, a variance-aware Thompson Sampling algorithm for
contextual bandits with general reward function with optimal regret bound. At the
core of our analysis is an extension of the decoupling coefficient, a technique com-
monly used in the analysis of Feel-good Thompson sampling (FGTS) that reflects
the complexity of the model space. With the new decoupling coefficient denoted

by dc, FGTS-VA achieves the regret of Õ
(√

dc · log |F|
∑T

t=1 σ
2
t + dc

)
, where

|F| is the size of the model space, T is the total number of rounds, and σ2
t is the

subgaussian norm of the noise (e.g., variance when the noise is Gaussian) at round
t. In the setting of contextual linear bandits, the regret bound of FGTS-VA matches
that of UCB-based algorithms using weighted linear regression (Zhou and Gu,
2022).

1 Introduction
The contextual bandit (Langford and Zhang, 2007) is a pivotal setting in interactive decision making,
and is an important generalization of the multi-armed bandit that incorporates context-dependent
reward functions. However, the standard contextual bandit setting is unable to account for hetero-
geneous and context-dependent noise of the observed rewards, which can have significant impacts
on the performance of algorithms (Auer, 2002). Additionally, algorithms designed for standard
contextual bandits (Abbasi-Yadkori et al., 2011; Chu et al., 2011) are usually incompatible with
potentially benign environments, despite achieving the minimax regret bound in the worst case. For
example, these algorithms have a worst-case regret bound of Õ(d

√
T ) for linear contextual bandits,

where T is the number of steps; however, if the reward is deterministic, then the algorithm based on
simple exploration can achieve the regret of Õ(d). To fill this gap, a number of approaches (Zhou
et al., 2021; Zhang et al., 2021; Zhou and Gu, 2022; Kim et al., 2022; Xu et al., 2023; Zhao et al.,
2023; Jia et al., 2024) have been developed to account for the heterogeneous magnitudes of the noise,
and regret bounds are established depending on σ2

t , i.e., the noise variance in step t. Most of these
approaches are based on the upper confidence bound (UCB). Notably, Zhou and Gu (2022) and Zhao

et al. (2023) established the nearly optimal regret bound of Õ
(
d
√∑T

t=1 σ
2
t + d

)
in linear bandits,

which degenerates to Õ(d) in the deterministic case, under the settings where σ2
t are known and

agnostic to the agent, respectively.
Thompson sampling (TS) (Thompson, 1933) is another technique that facilitates exploration of the
action space apart from UCB-based methods. In TS-based algorithms, an estimation of the reward
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function is sampled from the posterior distribution instead of being deterministically constructed. TS-
based algorithms have displayed better efficiency than UCB-based algorithms empirically (Chapelle
and Li, 2011; Osband and Van Roy, 2017), and have been extensively studied for both multi-armed
bandits (Agrawal and Goyal, 2012; Kaufmann et al., 2012; Agrawal and Goyal, 2017; Jin et al.,
2021) and linear bandits (Agrawal and Goyal, 2013). However, a minimax-optimal frequentist regret
bound of standard TS has been lacking, and Zhang (2022) constructed an instance such that standard
TS is suboptimal. To resolve this issue, Zhang (2022) proposed a new variant of TS called the
Feel-Good Thompson sampling (FGTS), and theoretically justifies that the frequentist regret of
FGTS is Õ(d

√
T ), which is minimax optimal and similar to UCB-based algorithms (e.g., OFUL

(Abbasi-Yadkori et al., 2011) and LinUCB (Li et al., 2010)).
Despite the success the success of TS-based algorithms in the vanilla contextual bandit setting, there
is a scarcity of results concerning variance-aware contextual bandits. A notable exception is Xu
et al. (2023), which proposed a variant of TS with weighted ridge regression. However, this result is
restricted to linear contextual bandits, and the regret is suboptimal in the model dimension d, which is
an issue shared by TS-based algorithms designed for vanilla contextual bandits (Agrawal and Goyal,
2013; Abeille and Lazaric, 2017). Therefore, the following open question arises:

Is it possible to design a FGTS-based algorithm for contextual bandits whose regret
is both optimal in d and variance-dependent, similar to UCB-based algorithms?

In this paper, we answer this question affirmatively with the first variance-aware algorithm based on
FGTS and new analysis techniques. We summarize our contributions as follows, with a comparison
of our algorithm against related algorithms shown in Table 1:
1. We propose an FGTS-based algorithm called FGTS-VA for the setting of variance-dependent

contextual bandits, which is applicable to the general reward function class. Compared with the
standard FGTS algorithm in Zhang (2022), the posterior distribution of FGTS-VA adopts not only
variance-dependent weights applied to the log-likelihoods but also a new feel-good exploration
term. When reduced to standard contextual bandits, FGTS-VA is the first FGTS-based algorithm
that does not require knowledge of the horizon T .

2. In the analysis of FGTS-VA, we propose the generalized decoupling coefficient, which is a novel
extension of the standard decoupling coefficient commonly used in the analysis of FGTS. We
relate the generalized decoupling coefficient to other complexity measures by showing that (i) the
generalized decoupling coefficient is Õ(d) for linear contextual bandits, and that (ii) it is bounded
by the generalized Eluder dimension for the general reward function class.

3. Equipped with the generalized decoupling coefficient (denoted as dc), we show that the regret

bound of FGTS-VA is O
(√

(1 +
∑T

t=1 σ
2
t ) dc log |F| + dc

)
in expectation, where |F| is the

cardinality of the function class. For linear contextual bandits, FGTS-VA enjoys the nearly optimal

regret of Õ
(
d
√∑T

t=1 σ
2
t +d

)
, similar to UCB-based algorithms (Zhou and Gu, 2022; Zhao et al.,

2023). When restricted to the deterministic case, the regret of FGTS-VA is Õ(dc), matching the
lower bound given by Xu et al. (2023).

Notation. We use 1[·] to denote the indicator function. We use KL(·||·) to denote the KL-divergence
of two distributions. We use standard asymptotic notations O(·), Ω(·), and Θ(·), with Õ(·), Ω̃(·), and
Θ̃(·) hiding logarithmic factors; f(·) ≲ g(·) means f(·) = O(g(·)). We use non-boldface letters to
denote scalars, boldface lower-case letters to denote vectors, and boldface upper-case letters to denote
matrices. We use ⟨·, ·⟩ to denote the inner product, i.e., for vectors a and b, define ⟨a,b⟩ = a⊤b; for
matrices A and B, define ⟨A,B⟩ = tr(AB⊤). For a vector v and a positive semi-definite (PSD)
matrix M, let ∥v∥M =

√
v⊤Mv. For a positive integer n, let [n] denote the set of {1, 2, . . . , n}.

2 Related Work

Variance-aware algorithms. Audibert et al. (2009) proposed the first algorithm that utilized the
variance information through empirical estimates of the variance, with a line of works based on
similar techniques for various settings (Hazan and Kale, 2011; Wei and Luo, 2018; Ito, 2021; Ito and
Takemura, 2023). Mukherjee et al. (2018) used the variance estimates to characterize confidence
intervals and to perform arm elimination.
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Table 1: Comparison of variance-aware algorithms for bandits. We compare the regret under the
setting of both stochastic and deterministic linear bandits, where d is the model dimension, T is the
number of steps, and Λ =

∑T
t=1 σ

2
t is the sum of variances. The last column stands for whether the

variance is revealed to the learning agent at step t.

Algorithm Technique Regret (General) Regret (Deterministic) σ2
t

Weighted OFUL+
(Zhou and Gu, 2022)

UCB Õ(d
√
Λ + d) Õ(d) Known

SAVE
(Zhao et al., 2023)

UCB Õ(d
√
Λ + d) Õ(d) Unknown

LinVDTS
(Xu et al., 2023)

TS Õ(d1.5
√
Λ + d1.5) Õ(d1.5) Unknown

FGTS
(Zhang, 2022)

TS Õ(d
√
T ) Õ(d

√
T ) NA

FGTS-VA
(This work)

TS Õ(d
√
Λ + d) Õ(d) Known

A recent line of works study variance-dependent algorithms for bandits with function approximation.
For the case of known variances, a line of works have utilized the variances in weighted ridge
regression in linear bandits (Zhou et al., 2021; Zhou and Gu, 2022). For the case of unknown
variances, Zhang et al. (2021) and Kim et al. (2022) constructed variance-dependent confidence
sets, and Zhao et al. (2023) designed a SupLin-type algorithm and proposed the idea of classifying
samples into different variance levels. Di et al. (2023) used the idea of Zhao et al. (2023) to develop a
variance-aware algorithm for dueling bandits. Notably, Zhou and Gu (2022) and Zhao et al. (2023)

managed to derive the nearly optimal regret bounds of Õ
(
d
√∑T

t=1 σ
2
t + d

)
for the two cases,

respectively. For contextual bandits with the general function class, Wei et al. (2020) focused on
the case where the action space is small and derived the regret bound related to the total estimation
error. A recent work (Jia et al., 2024) studied two cases that are referred to the weak adversary and
the strong adversary, depending on whether the actions of the agent can affect variances. This work

managed to establish a regret bound of Õ
(
delu

√∑T
t=1 σ

2
t + delu

)
for the strong adversary, where

delu stands for the Eluder dimension. However, the analysis of the weak adversary setting, which is
more closely related to the setting of our work, is restricted to the case of finite action space.
Another line of works derived second-order bounds for Markov decision processes. Wang et al.
(2024a) derived the first second-order bound for distributional RL. Built on the pivotal triangle
inequality in Wang et al. (2024a), Wang et al. (2024b) proved that OMLE algorithm (Liu et al., 2023)
without weighted regression enjoys the second-order regret bound.
Feel-Good Thompson sampling (FGTS). Zhang et al. (2021) first proposed FGTS, and achieved the
minimax-optimal regret bound for linear contextual bandits by virtue of the feel-good exploration term
in the posterior distribution. Fan and Gu (2023) extended the technique to function approximation of
the policy space and applied the algorithm to a number of variants of linear contextual bandits. A
recent work by Li et al. (2024) derived an algorithm for contextual dueling bandits based on FGTS
that is efficient both theoretically and empirically. By replacing the feel-good exploration term with
the value function in the first step, Agarwal and Zhang (2022); Dann et al. (2021) applied FGTS to
model-based RL and model-free RL, respectively, with the technique of Agarwal and Zhang (2022)
more similar to Zhang (2022), and the technique of Dann et al. (2021) motivating of our algorithm.
Variance-aware Thompson sampling algorithms. Saha and Kveton (2023) proposed a variance-
aware TS-based algorithm for multi-armed bandits. Xu et al. (2023) proposed LinVDTS, which is
the only algorithm for linear bandits based on Thompson sampling. The posterior distribution in
LinVDTS is Gaussian with the mean estimated with the weighted ridge regression in Zhou and Gu

(2022). However, the regret bound of LinVDTS is Õ(d1.5
√∑T

t=1σ
2
t + d1.5), which is suboptimal in

d, similar to the regret bound of Õ(d1.5
√
T ) of standard TS algorithms for linear bandits (Agrawal

and Goyal, 2013; Abeille and Lazaric, 2017).
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3 Preliminaries

3.1 Contextual Bandits

We study the setting of contextual bandits (Langford and Zhang, 2007) which is an extension to
multi-armed bandits by adding the notion of the context set X and allowing the action set to be a
context-dependent subset of the whole action set A. In step t over a total of T steps, the agent first
receives the context xt and the action set At ⊂ A. The agent then selects an action at ∈ At and
receives randomized reward rt = f∗(xt, at) + ϵt, where f∗ : X × At → [0, 1] is the ground truth
reward function which is unknown to the agent, and ϵt is the zero-mean noise. We use Ft to denote
the filtration generated by {(xt, at, ft, rt)}t∈[T ], i.e., all the randomness up to step t (including the
randomness if the reward function ft is sampled), and Gt to denote the filtration that includes all the
randomness of Ft but rt. The goal of the agent is to minimize the total regret defined as

Regret(T ) =

T∑
t=1

[f∗(xt, a
∗
t )− f∗(xt, a

∗
t )],

where a∗t = argmaxa∈At
f∗(xt, a) is the optimal action in step t.

Subgaussian noise. Following previous works on FGTS for contextual bandits (Zhang, 2022; Fan
and Gu, 2023), we assume that the noise is subgaussian, and denote the subgaussian norm of ϵt as σ2

t
which is formalized by the following assumption:
Assumption 3.1. The noise ϵt is σ2

t -subgaussian conditioned on the history, i.e., for any λ, the
moment-generating function of ϵt conditioned on Gt satisfies

logE[exp(λϵt)|Gt] ≤ σ2
t λ

2/8.

We denote Λ :=
∑T

t=1 σ
2
t . We assume that σ2

t is revealed to the agent at the beginning of step t,
which is referred to as the setting of “weak adversary with variance revealing” in Jia et al. (2024).
Compared with the assumption used in UCB-based variance-aware algorithms (Zhou et al., 2021;
Kim et al., 2022; Zhou and Gu, 2022; Zhao et al., 2023; Xu et al., 2023) where ϵt is bounded with
variance E[ϵ2t |Gt], Assumption 3.1 subsumes that E[ϵ2t |Gt] = O(σ2

t ) (but not the boundedness of ϵt)
because

E[ϵ2t |Gt] = lim
λ→0

E[exp(λϵt)|Gt]− 1

λ2/2
≤ lim

λ→0

exp(σ2
t λ

2/8)− 1

λ2/2
=

σ2
t

4
.

Reward function class. The agent may estimate the reward function that belongs to a function class
F . We focus on the realizable setting where the ground truth reward function satisfies f∗ ∈ F . An
example of the reward function class is the family of linear functions denoted by F lin

d = {fθ : θ ∈ Θ},
where fθ(x, a) = ⟨θ,ϕ(x, a)⟩ ∈ [0, 1], Θ ⊂ {w ∈ Rd : ∥w∥2 ≤ 1} is the parameter space, and
ϕ : X ×A → Rd is a feature mapping. We also consider the function class with finite generalized
Eluder dimension (Agarwal et al., 2023), defined as follows:
Definition 3.2. Let Z = {zt}t∈[T ] be a sequence of context-action pairs, and β = {βt}t∈[T ]

be positive numbers. The generalized Eluder dimension of the function class F is given by
dimλ,ϵ,T (F) := supZ,β≤ϵ dimλ(F , Z,β), where

dimλ(F , Z,β) =

T∑
t=1

min{1, βtD2
λ,F (zt, z[t−1],β[t−1])},

D2
λ,F (z, z[t−1],β[t−1]) = sup

f1,f2∈F

(f1(z)− f2(z))
2

λ+
∑t−1

s=1 βs(f1(zs)− f2(zs))2
.

3.2 Feel-Good Thompson Sampling

In Thompson Sampling (Thompson, 1933), instead of deterministically estimating the reward function,
an estimation of the reward function ft is sampled in step t from the posterior distribution defined as

pTS
t (f |St−1) ∝ p0(f) exp

(
−

t−1∑
s=1

Ls(f, xs, as, rs)

)
, (3.1)
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where p0(f) is a prior distribution, and Ls is the log-likelihood often set as the square loss
Ls(f, xs, as, rs) = η(rs − f(xs, as))

2 with η being a hyperparameter. An action is then selected
from At to maximize ft(xt, ·). However, Zhang (2022) showed that the frequentist regret of vanilla
Thompson sampling is suboptimal in the worst case, and proposed Feel-Good Thompson sampling
(FGTS) to fill this gap. At the core of FGTS is a modification to the posterior distribution called the
feel-good exploration term of the form maxa∈At

f(xt, a). Two types of feel-good exploration terms
have been developed:

Type A. Augment the log-likelihood of each step with the feel-good exploration term (Zhang, 2022;
Agarwal and Zhang, 2022), i.e.,

pFGTS−A
t (f |St−1) ∝ p0(f) exp

( t−1∑
s=1

[−η(rs − f(xs, as))
2 + λmax

a∈As

f(xs, a)]

)
. (3.2)

Type B. Only add the feel-good exploration term of the current step (Dann et al., 2021), i.e.,

pFGTS−B
t (f |St−1) ∝ p0(f) exp

(
−

t−1∑
s=1

η(rs − f(xs, as))
2 + λmax

a∈At

f(xt, a)

)
. (3.3)

Different from (Zhang, 2022) that applied Type A of FGTS to contextual bandits, our algorithm is
more closely related to Type B. We will present details of our posterior distribution in Section 4, show
the effectiveness of Type B applied to (variance-aware) contextual bandits in Section 5 (although
it is originally developed for model-free RL), and explain the reason why Type B is preferred for
variance-aware FGTS in Section 6.

4 Variance Aware Feel-Good Thompson Sampling

In this section, we sketch our algorithm FGTS-VA in Algorithm 1 for contextual bandits with heteroge-
neous noise levels. FGTS-VA adopts the general framework of FGTS algorithms where an estimation
of the reward function ft is sampled from the posterior distribution augmented with the feel-good
exploration term, and then the action at is selected to maximize the reward function.
Algorithm 1 FGTS-VA

1: Given hyperparameter α and γ. Initialize S0 = ∅.
2: for t = 1 to T do
3: Receive context xt.
4: Set parameters {ηs}s∈[t−1] and λt according to (4.2).
5: Sample ft ∼ pt(·|St−1), with the posterior distribution pt(f |St−1) defined in (4.1).
6: Select at = argmaxa∈At

ft(xt, a).
7: Observe reward rt; update St = St−1 ∪ {(xt, at, rt)}.
8: end for

Posterior distribution. Motivated by (3.3), the posterior distribution is designed as

pt(f |St−1) ∝ p0(f) exp

(
−

t−1∑
s=1

ηs(rs − f(xs, as))
2 + λt max

a∈At

f(xt, a)

)
, (4.1)

where parameters ηs and λt are chosen as

ηs = σ̄−2
s , λt = c

√
Λt/σ̄

2
t , where σ̄t = max{σt, α}, Λt =

t∑
s=1

σ̄2
s . (4.2)

with α and c being hyperparameters. We explain the design of ηt and λt as follows:
• The constructions of ηs and σ̄s are similar to Zhou et al. (2021), with α > 0 being a hyperparameter

that controls ηs in case of vanishing σ2
s and can be set as O(1/poly(T )). The coefficient ηs

functions as a preconditioner that balances the squared error (rs − f(xs, as))
2 across different

steps. Compared with our algorithm, Zhou and Gu (2022) and Xu et al. (2023) set σ̄t as the
maximum of not only σt and α, but also a quantity called the “uncertainty” that depends on the
action at. However, this approach is prohibitive in our algorithm due to the occurrence of σ̄t in λt

which is required before the choice of at.
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• The parameter λt controls the magnitude of the feel-good exploration term. λt scales with σ̄−2
t

because intuitively, if the reward of the current step is small, then exploration should be encouraged
due to the more informative reward feedback. Setting λt = c

√
Λt/σ̄

2
t achieves the same regret

as setting λt = c
√
Λ/σ̄2

t (explained in Section 6), and avoids requiring the total variance Λ at
initialization.

5 Main Results

We first introduce the generalized decoupling coefficient, an extension of the standard decoupling
coefficient in Dann et al. (2021) which is a crucial tool in the analysis of algorithms based on FGTS:
Definition 5.1 (Generalized decoupling coefficient). Let Z = {zt}t∈[T ] be a sequence of context-
action pairs, and β = {βt}t∈[T ] be positive numbers. The decoupling coefficient is defined as
dcλ,ϵ,T (F) := supZ,β≤ϵ dcλ(F , Z,β), where dcλ(F , Z,β) is the smallest number that satisfies

T∑
t=1

(ft(zt)− f∗(zt)) ≤
T∑

t=1

γ

βt

t−1∑
s=1

βs(ft(zs)− f∗(zs))
2 + γλ

T∑
t=1

1

βt
+

(
1 +

1

4γ

)
dcλ(F , Z,β),

(5.1)

for any sequence {ft}t∈[T ] where ft ∈ F and any γ > 0.

The generalized decoupling coefficient is used to analyze ft(xt, at) − f∗(xt, at) where at and ft
are dependent random variables because at is selected to maximize ft(xt, ·) in the algorithm design.
It relates the error of the current step to the error of historic steps ft(zs)− f∗(zs), and generalizes
the standard decoupling coefficient (Dann et al., 2021) by introducing undermined parameters βt.
We discuss the relationships of the generalized decoupling coefficient with the standard decoupling
coefficient and with other complexity measures as follows:
Relationship with standard decoupling coefficient. By fixing βt = 1, the generalized decoupling
coefficient is closely related to the standard decoupling coefficient in Dann et al. (2021): For any
γ ≤ 1, the standard decoupling coefficient is defined as dc′T (F) = supZ dc′(F , Z), where dc′(F , Z)
is the smallest number that satisfies

T∑
t=1

(ft(zt)− f∗(zt)) ≤ γ

T∑
t=1

T∑
s=1

(ft(zs)− f∗(zs))
2 +

dc′(F , Z)

4γ
. (5.2)

Comparing (5.1) and (5.2), two additional terms occur in the definition of the generalized decoupling
coefficient: (i) The term γλ

∑T
t=1 β

−1
t is a technical artifact and can be shaved by choosing small

λ; (ii) The term dcλ(F , Z,β) is shadowed by dcλ(F , Z,β)/(4γ) when γ ≤ 1 as is the case in (5.2).
However, as more flexible choices of both β and γ (possibly > 1) are required, this additional term is
unavoidable in the variance-aware setting. The occurrence of this term is due to the possibly large
values of βt, and will be explained in detail in Appendix A (see (A.1)).
Relationship with other complexity measures. For the linear reward function class, we can upper
bound the generalized reward function as follows:
Proposition 5.2. For the linear function class F lin

d , the generalized decoupling coefficient satisfies

dcλ,ϵ,T (F lin
d ) ≤ 2d log(1 + (ϵT )/(dλ)).

For the general reward function class, the generalized decoupling coefficient can be bounded by the
generalized Eluder dimension (Agarwal et al., 2023) as follows:
Proposition 5.3. For a reward function class with finite generalized Eluder dimension, the generalized
decoupling coefficient satisfies dcλ,ϵ,T (F) ≤ dimλ,ϵ,T (F).

The proofs of Propositions 5.2 and 5.3 are given in Appendix A.
We now present the regret upper bound of FGTS-VA:
Theorem 5.4. Suppose that Assumption 3.1 holds, the function class F has finite cardinality, and the
prior distribution p0 is the uniform distribution on F . Assume that parameters ηt and λt are chosen
according to (4.2), and the hyperparameters are chosen as

α = 1/
√
T , λ = 1, ϵ = α−2, c = 2

√
dc−1

λ,ϵ,T (F) log |F|.
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Then the total regret of FGTS-VA satisfies

E[Regret(T )] ≲
√
(1 + Λ) dcλ,ϵ,T (F) log |F|+ dcλ,ϵ,T (F).

The proof of Theorem 5.4, as well as a more general version of Theorem 5.4 that extends to the case
of infinite function class, is given in Appendix B.
Remark 5.5. Under the setting of linear contextual bandits, F can be chosen as the ε-net of the unit
ball whose cardinality satisfies log |F| = Õ(d). Additionally, the generalized decoupling coefficient
satisfies dc = Õ(d) as is shown in Proposition 5.2. Therefore, when applied to linear contextual
bandits, FGTS-VA has a nearly-optimal regret of Õ(d

√
Λ + d), similar to UCB-based algorithms

(Zhou and Gu, 2022; Zhao et al., 2023).
Remark 5.6. Under the setting of deterministic reward, the total variance is Λ = 0, and the regret
of FGTS-VA is O(dc)1. Note that the generalized decoupling coefficient is upper bounded by the
generalized Eluder dimension, which reduces to the standard Eluder dimension (Russo and Van Roy,
2013) in the deterministic case. Therefore, the regret of FGTS-VA is minimax-optimal in the
deterministic case for the general reward function class (Jia et al., 2024).
Remark 5.7. When σ2

t = 1 for all t ∈ [T ], the setting reduces to the standard contextual bandits,
and the reward of FGTS-VA is Õ(

√
T dc · log |F| + dc), which is Õ(d

√
T ) for linear contextual

bandits. Therefore, although Dann et al. (2021) only studied FGTS in model-free RL, we have shown
that a similar posterior distribution in (3.3), is applicable to the setting of contextual bandits, and
enjoys the minimax-optimal regret bound for the linear regret function class similar to Zhang (2022).
Additionally, since the parameters are ηt = 1 and λt = Θ(dc−1

√
t log |F|), FGTS-VA is reduced to

the first FGTS-based algorithm that does not require knowledge of the horizon T .

6 Overview of Proof
We first define several shorthand notations: We use dc to denote the (generalized) decoupling
coefficient, and denote

∆L(f, x, a, r) = (r − f(x, a))2 − (r − f∗(x, a))
2, FGt(f) = max

a∈At

f(xt, a)− f∗(xt, a
∗
t ),

LSt(f) = (f(xt, at)− f∗(xt, at))
2,

then the posterior distribution (4.1) is equivalent to

p(f |St−1) ∝ p0(f) exp

(
−

t−1∑
s=1

∆L(f, xs, as, rs) + λt FGt(f)

)
. (6.1)

Note that the regret at step t can be decomposed as

E[f∗(xt, a
∗
t )− f∗(xt, at)] = E[ft(xt, at)− f∗(xt, at)]− [ft(xt, at)− f∗(xt, a

∗
t )]

= E[ft(xt, at)− f∗(xt, at)]︸ ︷︷ ︸
Bellman Error

−E[FGt(ft)],

where the second equality holds because at is the maximizer of ft(xt, ·). The Bellman error term
E[ft(xt, at) − f∗(xt, at)] is then bounded using the (generalized) decoupling coefficient, which
has two versions corresponding to the two types of posterior distributions. In the remaining of this
section, we will explain the reason why Type B of the posterior distribution in (3.3) is the basis of our
algorithm instead of Type A in (3.2) by first explaining the obstacles in the analysis based on Type A,
and then showing how FGTS-VA built on Type B manages to overcome the obstacle. We will also
explain the technical trick in the construction of λt.

6.1 Technical Obstacle when Applying Type A of FGTS

When applying the posterior distribution similar to (3.2), i.e.

pt(f |St−1) ∝ p0(f) exp

( t−1∑
s=1

[−ηs∆L(f, xs, as, rs) + λs FGs(f)]

)
,

1Although there is a 1 +Λ term in the regret bound of Theorem 5.4, it can be further suppressed by setting α
to be an even smaller number.
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the proof developed based on Zhang (2022) requires that ηt is upper bounded by an absolute constant
that is irrelevant to T , which results in the regret bound polynomial in T because of the occurrence of∑

1/ηt in the regret bound. In detail, by applying the decoupling coefficient for this type of posterior
distribution, we have

E[f(xt, at)− f∗(xt, at)] ≤
dc

4γt
+ γtESt−1,xt

Eat|St−1,xt
Ef̃∼pt

LSt(f̃).

Therefore, it suffices to prove an upper bound for

T∑
t=1

dc

4γt
+

T∑
t=1

ESt−1,xtEf̃∼pt

[
γtEat|St−1,xt

LSt(f̃)− FGt(f̃)
]
. (6.2)

We define the potential as

Zt = ESt
logEf∼p0

exp

( t∑
s=1

[−ηs∆L(f, xs, as, rs) + λs FGs(f, xs)]

)
.

The proof proceeds by bounding Zt − Zt−1 and applying the telescope sum. Note that

Zt − Zt−1 = ESt
logEf̃∼pt

exp
(
− ηs∆L(f, xt, at, rt) + λt FGt(f, xs)

)
≤ 1

2
ESt

[
logEf̃∼p(·|St−1)

exp(−2ηs∆L(f, xt, at, rt))︸ ︷︷ ︸
I1

+ logEf̃∼p(·|St−1)
exp(2λt FGt(f̃ , xt))︸ ︷︷ ︸
I2

]
,

where the inequality holds due to Hölder’s inequality. By using the Hoeffding’s Lemma, the term I2
can be bounded by 2λtEf̃∼p(·|St−1)

FGt(f̃ , xt)+2λ2
t . For the term I1, By first taking the conditional

expectation on Gt and using Assumption 3.1, we have

E[I1|Gt] ≤ logEf̃∼pt
exp(−2ηt(1− σ2

t ηt) LSt(f̃)). (6.3)

By choosing ηt ≤ σ−2
t /2, the coefficient 2ηt(1 − σ2

t ηt) can be lower bounded by ηt. To connect
(6.3) with (6.2), the RHS of (6.3) has to be bounded by −Cηt · Ef̃∼p(·|St−1)

LSt(f̃) where C is an

absolute constant. This is possible only when ηt LSt(f̃) = O(1). Since LSt(f̃) = Θ(1) in the worst
case, ηt should be an absolute constant. Comparing what we obtain against (6.2), we note that (i)
λt has to be a constant λ to enable the telescope sum of Zt − Zt−1, and (ii) to make coefficients
match, we require γt = Cηt/λ = Θ(λ−1). Thus, the first term of (6.2) becomes O(λT dc), with
an undesirable factor of T . Therefore, Type A of FGTS in (3.2) cannot yield variance-aware regret
bounds with existing techniques, even if inhomogeneous parameters ηt and λt are allowed.

6.2 Highlight of Proof Techniques

By proceeding through a sharply different path, the analysis of FGTS-VA avoids the aforementioned
obstacle that stems from bounding the expectation of the exponential term on RHS of (6.3). The
following two techniques work together to relate the posterior distribution with the desired form of
the decoupling coefficient:
Technique 1: Prioritizing expectation over the randomness of reward. Although the expectation
of an exponential term over the randomness of posterior sampling causes trouble, the expectation
over the randomness of ϵt adopts a simple form due to Assumption 3.1. Therefore, by defining

ξs(f̃ , xs, as, rs) = −ηs∆L(f̃ , xs, as, rs)− logE[exp(−ηs∆L(f̃ , xs, as, rs))|Gs],

we have the following property (following Dann et al. (2021); formalized in Lemma D.1):

ESt
exp

( t∑
s=1

ξs(f̃ , xs, as, rs)

)
= 1.

By using the Jensen’s inequality, we have

0 = logEf̃∼p0
ESt−1,xt

exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)
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≥ ESt−1,xt
logEf̃∼p0

exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)
. (6.4)

Technique 2: KL-regularized optimality. The following lemma is used to remove the exponential
on the RHS of (6.4):
Lemma 6.1 (Donsker–Varadhan duality, see e.g., Proposition 7.16 in Zhang (2023)). Let (X ,F , P0)
be a probability space and U(x) be a measurable function. Then for any distribution P on (X ,F),
we have

Ex∼P [U(x)] + KL(P ||P0) ≥ − logEx∼P0
exp(−U(x)),

and the infimum is attained when P (x) ∝ P0(x) exp(−U(x)).

The RHS of Lemma 6.1 contains the expectation of the exponential term, similar to the RHS of (6.4),
and the LHS is the simple expectation of U(·), free of exponential terms. The price of the removal of
the exponential is an additional KL-divergence term, so we use Lemma 6.1 twice to cancel out the
KL-divergence, one using the inequality itself, and the other using the optimality condition:

logEf̃∼p0
exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)
≥

t−1∑
s=1

Ef̃∼pt
ξs(f̃ , xs, as, rs)−KL(pt||p0); (6.5)

−KL(δf∗ ||p0) ≤ Ef̃∼pt

[
−

t−1∑
s=1

ηs∆L(f̃ , xs, as, rs) + λt FGt(f̃)

]
−KL(pt||p0). (6.6)

Plugging (6.5) and (6.6) into (6.4), noting that KL(δf∗ ||p0) = log |F|, we have

log |F| ≥ ESt−1,xt
Ef̃∼pt

[
−

t−1∑
s=1

logE[exp(−ηs∆L(f̃ , xs, as, rs)|Gs]− λt FGt(f̃)

]

≥ ESt−1,xt
Ef̃∼pt

[ t−1∑
s=1

ηs
2
LSs(f̃)− λt FGt(f̃)

]
, (6.7)

where the second inequality holds due to Assumption 3.1 with an argument similar to (6.3). (6.7) is
thus completely free of the expectation of exponential terms.
Avoiding Λ in parameters. If we follow the proof of Dann et al. (2021), then we require λt =
1/(2γσ̄2

t ) where γ scales with Λ−0.5, which is unknown to the agent. To resolve this issue, we observe
that the proof can proceed by replacing the total variance Λ with the partial sum Λt. Specifically,
dividing λt = c

√
Λt/σ̄

2
t on both sides of the (6.7), noting that Λt ≤ ΛT , we have

σ̄2
t

c
√
Λt

log |F| ≥ ESt−1,xtEf̃∼pt

[
σ̄2
t

2c
√
ΛT

t−1∑
s=1

σ̄−2
s LSs(f̃)− FGt(f̃)

]
.

Plugging the inequality into the definition of the decoupling coefficient, we have

E[Regret(T )] ≲
log |F|

c

T∑
t=1

σ̄2
t√
Λt

+

(
1 +

c
√
ΛT

2

)
dc ≤ 2

√
ΛT log |F|

c
+

(
1 +

c
√
ΛT

2

)
dc,

where we use the crucial technical lemma (Lemma D.2) stating that
∑T

t=1 σ̄
2
t /
√
Λt ≤ 2

√
ΛT . Finally,

by choosing c = 2
√
dc−1 log |F| (which is irrelevant to Λ) and noting that ΛT = Θ(α2T + Λ), the

regret can be bounded by O(
√
(α2T + Λ)dc · log |F|+ dc).

7 Experiments
In this section, we examine our algorithm, FGTS-VA, against baselines (including Weighted OFUL+,
FGTS, and SAVE) in experiments with synthetic data. The code can be found at https://github.
com/xuheng-li99/FGTS-VA.
Environment. We focus on the setting of linear bandits with d = 5 and X = {x}, so we omit the
context x for simplicity. The action set is At = A = {±1/

√
d}d, and the ground truth parameter

θ∗ is sampled from the uniform distribution on the unit sphere. We consider two noise models with
heterogeneous noise magnitudes. In both cases, the noise ϵt is sampled from N (0, σ2

t ).
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1. The noise is sparse: σ2
t = 1 with probability p, and σ2

t = 0 with probability 1− p. We set p = 0.1
in our experiments.

2. The noise is dense: σ2
t is sampled from a χ2 distribution with degree of freedom equal to 1.

Implementation details. For FGTS-VA, in the linear bandit setting, we let the prior distribution be
the Gaussian distribution N (0, Id/d). We use Langevin dynamics to sample from this distribution:

θ
(k+1)
t = θ

(k)
t + δ(k)∇ log p(θ|St−1) +

√
2δ(k)ϵt,

where ϵt is the standard Gaussian noise, and δ(k) is the stepsize. We use K = 20 SGLD steps in our
experiments, and initialize θ

(0)
t+1 = θ

(K)
t .
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Figure 1: Comparison of different algorithms. Error bands are plotted over 100 runs.
Comparison of different algorithms. We first compare FGTS-VA with c = 0.003 against Weighted
OFUL+ (Zhou and Gu, 2022), SAVE (Zhao et al., 2023), and FGTS (Zhang, 2022) with results in
Figure 1. For both data models, FGTS-VA outperforms the baselines by a large margin.
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Figure 2: Comparison of different choices of c. The averages of regret over 100 runs are plotted.
Ablation studies. We then perform ablation studies of the algorithm with different choices of c. It
is worth noting that c is the only tunable parameter of FGTS-VA, and c = Θ̃(1) for linear bandits
according to Theorem 5.4. The results are shown in Figure 2. For the case of sparse noise, we observe
the advantage of choosing c bounded away from 0, i.e., advantage of the feel-good exploration. For
the case of dense noise, the optimal choice of c is close to 0.

8 Conclusion

In this work, we present FGTS-VA, a variance-aware algorithm for general contextual bandits based on
Feel-Good Thompson sampling. In the posterior distribution, we incorporate not only variance-related
weights, but also a feel-good exploration term that adopts the idea from model-free RL (Dann et al.,
2021). The generalized decoupling coefficient is the pivotal technique in our analysis, with which
we show that FGTS-VA achieves a nearly optimal regret bound similar to UCB-based algorithms. A
restriction of our work is the setting of variance revealing, so it is interesting to explore the possibility
of designing FGTS-based algorithms without requiring the variance of the current step as in Zhou and
Gu (2022), and ultimately without knowing the variance at all similar to Zhao et al. (2023). Extending
of the techniques in this work to reinforcement learning is also an interesting future direction.
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A Generalized Decoupling Coefficient

A.1 Linear Reward Function Class

In this section, we prove the decoupling coefficient for linear contextual bandits. We assume that
θ∗ = 0 without loss of generality. We use the shorthand notation ϕt := ϕ(xt, at), and define

Σt := λI+

t∑
s=1

βsϕsϕ
⊤
s .

The following lemma, known as the elliptical potential lemma, is a well-known result in previous
works (Abbasi-Yadkori et al., 2011; Zhou and Gu, 2022):

Lemma A.1. For any λ > 0, we have

T∑
t=1

min
{
βt∥ϕt∥2Σ−1

t−1

, 1
}
≤ 2(log det(ΣT )− log det(Σ0)) ≤ 2d log(1 + (ϵT )/(dλ))︸ ︷︷ ︸

ι

.

With Lemma A.1, we decompose the sum of ⟨θt,ϕt⟩ into cases based on whether βt∥ϕt∥2Σ−1
t−1

is

smaller than 1, i.e.,

T∑
t=1

⟨θt,ϕt⟩ =
T∑

t=1

⟨θt,ϕt⟩1
[
βt∥ϕt∥2Σ−1

t−1

≤ 1
]

︸ ︷︷ ︸
I1

+

T∑
t=1

⟨θt,ϕt⟩1
[
βt∥ϕt∥2Σ−1

t−1

> 1
]

︸ ︷︷ ︸
I2

. (A.1)

For any γ > 0, the term I1 satisfies

I1 ≤
T∑

t=1

β
−1/2
t ∥θt∥Σt−1

· β1/2
t ∥ϕt∥Σ−1

t−1
· 1

[
βt∥ϕt∥2Σ−1

t−1

≤ 1
]

≤
T∑

t=1

β
−1/2
t ∥θt∥Σt−1 ·min

{
β
1/2
t ∥ϕt∥Σ−1

t−1
, 1
}

≤
T∑

t=1

γ

βt
∥θt∥2Σt−1

+
1

4γ

T∑
t=1

min
{
βt∥ϕt∥2Σ−1

t−1

, 1
}

≤
T∑

t=1

γ

βt

(
λ∥θt∥22 +

t−1∑
s=1

βs⟨θt,ϕs⟩2
)
+

dι

2γ

≤ γλ

T∑
t=1

1

βt
+

T∑
t=1

γ

βt

t−1∑
s=1

βs⟨θt,ϕs⟩2 +
dι

2γ
, (A.2)

where the first inequality holds due to AM-GM inequality, the second inequality holds because
z · 1[z ≤ 1] ≤ min{z, 1}, the third inequality holds due to Cauchy-Schwarz inequality, the fourth
inequality holds due to Lemma A.1, and the last inequality holds because ∥θt∥2 ≤ 1. The term I2
satisfies

I2 ≤
T∑

t=1

1
[
βt∥ϕt∥2Σ−1

t−1

> 1
]
≤

T∑
t=1

min
{
βt∥ϕt∥2Σ−1

t−1

, 1
}
≤ 2dι, (A.3)

where the first inequality holds because min{|θt,ϕt|, 1} ≤ 1, the second inequality holds because
1[z > 1] ≤ min{z, 1}, and the last inequality holds due to Lemma A.1. Plugging (A.2) and (A.3)
into (A.1), we have

T∑
t=1

⟨θt,ϕt⟩ ≤ γ

T∑
t=1

t−1∑
s=1

βs

βt
⟨θt,ϕs⟩2 + γλ

T∑
t=1

1

βt
+ 2dι

(
1 +

1

4γ

)
.
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A.2 General Reward Function Class

In this section, we relate the generalized decoupling coefficient to the generalized Eluder dimension
(Agarwal et al., 2023). The proof is similar to that of the linear reward function. We first make the
following decomposition:

T∑
t=1

(ft(zt)− f∗(zt)) =

T∑
t=1

(ft(zt)− f∗(zt))1
[
β
1/2
t DF (zt; z[t−1],β[t−1]) ≤ 1

]
︸ ︷︷ ︸

I1

+

T∑
t=1

(ft(zt)− f∗(zt))1
[
βtD2

F (zt; z[t−1],β[t−1]) > 1
]

︸ ︷︷ ︸
I2

. (A.4)

The term I1 satisfies

I1 =

T∑
t=1

β
−1/2
t (ft(z)− f∗(z))

DF (zt; z[t−1],β[t−1])
·
(
β
1/2
t DF (zt; z[t−1],β[t−1])1[β

1/2
t DF (zt; z[t−1],β[t−1]) ≤ 1]

)
≤

T∑
t=1

β
−1/2
t (ft(zt)− f∗(zt))

DF (zt; z[t−1],β[t−1])
·min

{
β
1/2
t DF (zt; z[t−1],β[t−1]), 1

}
≤

T∑
t=1

γ

βt
· (ft(zt)− f∗(zt))

2

D2
F (zt, z[t−1];β[t−1])

+
1

4γ

T∑
t=1

min
{
βtD2

F (zt; z[t−1],β[t−1]), 1
}

≤
T∑

t=1

γ

βt

(
λ+

t−1∑
s=1

βs(ft(zs)− f∗(zs))
2

)
+

dim(F , Z,β)

4γ

≤
T∑

t=1

γ

βt

t−1∑
s=1

βs(ft(zs)− f∗(zs))
2 + γλ

T∑
t=1

1

βt
+

dimϵ,T (F)

4γ
(A.5)

where the first inequality holds because z 1[z ≤ 1] ≤ min{z, 1}, the second inequality holds due
to AM-GM inequality, the third inequality holds due to the definition of D2

F (zt, z[t−1],β[t−1])
and the definition of dim(F , Z,β), and the last inequality holds because dimϵ,T (F) =
supZ,β≤ϵ dim(F , Z,β). The term I2 satisfies

I2 ≤
T∑

t=1

min
{
βtD2

F (zt; z[t−1],β[t−1]), 1
}
= dim(F , Z,β) ≤ dimϵ,T (F), (A.6)

where the first inequality holds because ft(zt)−f∗(zt) ≤ 1, the equality holds due to the definition of
dim(F , Z,β), and the last inequality holds because because dimϵ,T (F) = supZ,β≤ϵ dim(F , Z,β).
Plugging (A.5) into (A.6), we have

T∑
t=1

(ft(zt)− f∗(zt)) ≤
T∑

t=1

γ

βt

t−1∑
s=1

βs(ft(zs)− f∗(zs))
2 + γλ

T∑
t=1

1

βt
+

(
1 +

1

4γ

)
dimϵ,T (F).

B Proof of Main Theorem
In this section, we first provide a more general version of Theorem 5.4:
Theorem B.1. Define

Zt = −ESt−1,xt
logEf̃∼p0

exp

(
−

t−1∑
s=1

σ̄−2
s ∆L(f̃ , xs, as, rs) +

c
√
Λt

σ̄2
t

FGt(f̃)

)
(B.1)

Z = 1 ∨ sup
{σ̄t}t∈[T ]

max
t∈[T ]

Zt. (B.2)

Suppose that the parameters are set as in (4.2), and the hyperparameters are

λ = 1, ϵ = α−2, c = 2
√

Z/ dcλ,ϵ,T (F)
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Then the total regret satisfies

E[Regret(T )] ≤ 9

4

√
(α2T + Λ)Z dcλ,ϵ,T (F) + dcλ,ϵ,T (F).

To prove Theorem B.1, we need the following lemma:
Lemma B.2. Under the conditions of Theorem B.1, the following inequality holds:

ESt−1,xt
Ef̃∼pt

[
σ̄2
t

2c
√
Λ

t−1∑
s=1

σ̄−2
s LSs(f̃)− FGt(f̃)

]
≤ σ̄2

t

c
√
Λt

Zt.

We show the proof of Lemma B.2 in Appendix C.1. We now provide the proof of Theorem B.1:

Proof of Theorem B.1. The regret can be decomposed as

Regret(t) =

T∑
t=1

[f∗(xt, a
∗
t )− f∗(xt, at)] =

T∑
t=1

[ft(xt, at)− f∗(xt, at)− FGt(ft)]

≤
T∑

t=1

[
γ

βt

t−1∑
s=1

βs LSs(ft)− FGt(ft)

]
+ γλ

T∑
t=1

1

βt
+
(
1 +

1

4γ

)
dcλ,ϵ,T (F), (B.3)

where the equality holds due to the optimality of at, and the inequality holds due to the definition of
the generalized decoupling coefficient. Taking the expectation on both sides of (B.3), we have

E[Regret(T )] ≤
T∑

t=1

E
[
γ

βt

t−1∑
s=1

βs LSs(ft)− FGt(ft)

]
+ γλ

T∑
t=1

1

βt
+

(
1 +

1

4γ

)
dcλ,ϵ,T (F)

=

T∑
t=1

ESt−1,xtEf̃∼pt

[
γ

βt

t−1∑
s=1

βs LSs(f̃)− FGt(f̃)

]
+ γλ

T∑
t=1

1

βt
+

(
1 +

1

4γ

)
dcλ,ϵ,T (F),

where the equality holds due to the double expectation theorem and because neither LSs(ft) nor
FGt(ft) explicitly contain at. By selecting βt = σ̄−2

t and γ = 1/(2c
√
ΛT ), we can use Lemma B.2

to further bound the regret:

E[Regret(T )] ≤ λ
√
ΛT

2c
+

(
1 +

c
√
ΛT

2

)
dcλ,ϵ,T (F) +

T∑
t=1

σ̄2
t

c
√
Λt

Zt

≤ λ
√
ΛT

2c
+

(
1 +

c
√
ΛT

2

)
dcλ,ϵ,T (F) + Z

T∑
t=1

σ̄2
t

c
√
Λt

≤ λ
√
ΛT

2c
+

(
1 +

c
√
ΛT

2

)
dcλ,ϵ,T (F) + 2

Z
√
ΛT

c

where the second inequality holds due to the definition of Z, and the last inequality holds due to
Lemma D.2. Plugging in c = 2

√
Z/ dcλ,ϵ,T (F), we have

E[Regret(T )] ≤ λ

4

√
dcλ,ϵ,T (F)ΛT

Z
+ 2

√
Z dcλ,ϵ,T (F)ΛT + dcλ,ϵ,T (F)

≤ 9

4

√
Z dcλ,ϵ,T (F)ΛT + dcλ,ϵ,T (F)

≤ 9

4

√
(α2T + Λ)Z dcλ,ϵ,T (F) + dcλ,ϵ,T (F),

where the second inequality holds because λ = 1 and Z ≥ 1, and the last inequality holds because
ΛT =

∑T
t=1 max{σ2

t , α
2} ≤

∑T
t=1(σ

2
t + α2).

In order to prove Theorem 5.4 from Theorem B.1, we note that Z ≤ log |F| using the argument in
Section 6. By selecting α = 1/

√
T , we can prove Theorem B.1, and by selecting α to be a even

smaller number, we can prove further shave the term α2T + Λ.
In order to deal with the infinite function class, we need the following lemma to characterize Z:
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Lemma B.3. Suppose that σt is uniformly bounded by σ, and the hyperparameter α satisfies α ≤ 1.
Define

δ =
α2

2T
min{1, σ−1}.

Then Z satisfies

Z ≤ log
1

p0(Fδ(f∗))
+

α

2
+

c√
T
.

For the linear reward function class where Θ is the unit ball, we have − log p0(Fδ(f∗)) = Õ(d)

according to Zhang (2022). Therefore, the regret of FGTS-VA in linear contextual bandits is Õ(d
√
Λ+

d), even if F is not the ϵ-net. 2

C Proof of Lemmas in Appendix B
C.1 Proof of Lemma B.2

Proof. We aim to apply Lemma D.1, so for any s ∈ [t − 1], we define Fs(f̃ , xs, as, rs) =

σ̄−2
s ∆L(f̃ , xs, as, rs), then by Lemma D.1, we have

0 = − logEf̃∼p0
ESt−1,xt

exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)

≤ −ESt−1,xt
logEf̃∼p0

exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)
, (C.1)

where the inequality holds due to the Jensen’s inequality. We then use Lemma 6.1 twice:

− logEf̃∼p0
exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)
≤ Ef̃∼pt

[
−

t−1∑
s=1

ξs(f̃ , xs, as, rs)

]
+KL(pt||p0),

(C.2)

− logEf̃∼p0
exp

(
−

t−1∑
s=1

σ̄−2
s ∆L(f̃ , xs, as, rs) + λt FGt(f̃)

)

= Ef̃∼pt

[ t−1∑
s=1

σ̄−2
s ∆L(f̃ , xs, as, rs)− λt FGt(f̃)

]
+KL(pt||p0). (C.3)

Furthermore, since

Fs(f̃ , xs, as, rs) = σ̄−2
s [(rs − f̃(xs, as))

2 − (rs − f∗(xs, as))
2]

= σ̄−2
s [(ϵs + f∗(xs, as)− f̃(xs, as))

2 − ϵ2s]

= σ̄−2
s LSs(f̃)− 2ϵsσ̄

−2
s (f̃(xs, as)− f∗(xs, as)),

we have

logE[exp(−Fs(f̃ , xs, as, rs)|Gs)]

= −σ̄−2
s ∆Ls(f̃) + E[exp(2ϵsσ̄−2

s (f̃(xs, as)− f∗(xs, as)))|Gt]

≤ −σ̄−2
s LSs(f̃) + σ2

s σ̄
−4
s /2LSs(f̃)

≤ −σ̄−2
s /2 · LSs(f̃), (C.4)

where the first inequality holds due to Assumption 3.1, and the second inequality holds because
σs ≤ σ̄s. Plugging (C.2), (C.3), and (C.4) into (C.1), we have

0 ≤ ESt−1,xt

[
Ef̃∼pt

[
−

t−1∑
s=1

ξs(f̃ , xs, as, rs)

]
+KL(pt||p0)

]
2Although ZT has additional terms in α and c, they can be shaved by carefully choosing hypermeters in

Theorem B.1.
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= ESt−1,xt

[
Ef̃∼pt

[ t−1∑
s=1

∆L(f̃ , xs, as, rs)− λt FGt(f̃)

]
+KL(pt||p0)

+

t−1∑
s=1

Ef̃∼pt
logE[exp(−∆L(f̃ , xs, as, rs))|Gt] + λtEf̃∼pt

FGt(f̃)

]

≤ −ESt−1,xt logEf̃∼p0
exp

(
−

t−1∑
s=1

σ̄−2
s ∆L(f̃ , xs, as, rs) + λt FGt(f̃)

)

+ ESt−1,xt
Ef̃∼pt

[
−

t−1∑
s=1

σ̄−2
s

2
LSs(f̃) + λt FGt(f̃)

]
.

Rearranging terms and plugging in λt = cσ̄−2
t

√
Λt, we obtain

ESt−1,xtEf̃∼pt

[
σ̄2
t

2c
√
Λ

t−1∑
s=1

σ̄−2
s LSs(f̃)− FGt(f̃)

]

≤ ESt−1,xt
Ef̃∼pt

[
σ̄2
t

2c
√
Λt

t−1∑
s=1

σ̄−2
s LSs(f̃)− FGt(f̃)

]

≤ −σ̄2
t

c
√
Λt

ESt−1,xt logEf̃∼p0
exp

(
−

t−1∑
s=1

σ̄−2
s ∆L(f̃ , xs, as, rs) +

c
√
Λt

σ̄2
t

FGt(f̃)

)
.

where the first inequality holds because Λt ≤ Λ.

C.2 Proof of Lemma B.3

Proof of Lemma B.3. We note that for any f ∈ Fδ(f∗), we have

−
t−1∑
s=1

σ̄−2
s ∆L(f, xs, as, rs) +

c
√
Λt

σ̄2
t

FGt(f)

=

t−1∑
s=1

σ̄−2
s [2ϵs(f(xs, as)− f∗(xs, as))− LSs(f)] +

c
√
Λt

σ̄2
t

FGt(f)

≥ −
t−1∑
s=1

σ̄−2
s (|ϵs|δ + δ2)− cδ

√
Λt

σ̄2
t

(C.5)

Therefore, −Zt can be lower bounded as

−Zt = ESt−1,xt
logEf̃∼p0

exp

(
−

t−1∑
s=1

σ̄−2
s ∆L(f̃ , xs, as, rs) +

c
√
Λt

σ̄2
t

FGt(f̃)

)

≥ ESt−1,xt
log

(
p0(Fδ(f∗)) inf

f∈Fδ

exp

(
−

t−1∑
s=1

σ̄−2
s ∆L(f, xs, as, rs) +

c
√
Λt

σ̄2
t

FGt(f)

))

≥ log p0(Fδ(f∗)) + ESt−1,xt

[
−

t−1∑
s=1

σ̄−2
s (|ϵs|δ + δ2)− cδ

√
Λt

σ̄2
t

]

≥ log p0(Fδ(f∗))−
t−1∑
s=1

( δ

2σ̄s
+

δ2

σ̄2
s

)
− cδ

√
Λt

σ̄2
t

,

where the first inequality holds because for any function F (x) ≥ 0, we have E[F (x)] ≥
E[F (x)1[x ∈ C]] ≥ p(C)E[infx∈C F (x)], the second inequality holds due to (C.5), and the last in-
equality holds because E|ϵs| ≤

√
Eϵ2s ≤

√
σ2
s/4 ≤ σ̄s/2. By choosing δ = α2 min{1/σ, 1}/(2T ),

we have

Zt ≤ log
1

p0(Fδ(f∗))
+

α

4
+

α2

4T
+

c

2
√
T

≤ log log
1

p0(Fδ(f∗))
+

α

2
+

c√
T
,

where the second inequality holds because α ≤ and T ≥ 1.
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D Auxiliary Lemmas

Lemma D.1. For any function Ft : F × X ×A× R → R, define

ξt(f̃ , xt, at, rt) = −Ft(f̃ , xt, at, rt)− logE[exp(−Ft(f̃ , xt, at, rt))|Gt].

Then for all t and all f̃ ∈ F , we have

ESt exp

( t∑
s=1

ξs(f̃ , xs, as, rs)

)
= 1.

Proof. We prove the lemma by induction. The property holds trivially for t = 0. Now suppose that
the lemma holds for t− 1, then note that

E[exp(ξt(f̃ , xt, at, rt))|Gt]

= E
[
exp

(
− Ft(f̃ , xt, at, rt)− logE[exp(−Ft(f̃ , xt, at, rt))|Gt]

)∣∣∣Gt

]
= E

[
exp(−Ft(xt, at, rt))

E[exp(−Ft(f̃ , xt, at, rt))|Gt]

∣∣∣∣Gt

]
= 1, (D.1)

where the first equality holds due to the definition of ξt, and the last equality holds because the
denominator belongs to Gt. We then have

ESt
exp

( t∑
s=1

ξs(f̃ , xs, as, rs)

)

= E
[
exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)
· E[exp(ξt(f̃ , xs, as, rs))|Gt]

]

= E
[
exp

( t−1∑
s=1

ξs(f̃ , xs, as, rs)

)]
= 1

where the first equality holds due to the double expectation theorem and because ξs(s̃, xs, as, rs) ∈ Gt

for all s ∈ [t − 1], the second equality holds due to (D.1), and the last equality holds due to the
induction hypothesis. Combining all the above, the lemma holds for all t by induction.

Lemma D.2. Let σ̄t and Λt be defined in (4.2). Then the following property holds:

T∑
t=1

σ̄2
t√
Λt

≤ 2
√

ΛT .

Proof. We note that

√
ΛT =

T∑
t=1

(
√
Λt −

√
Λt−1) =

T∑
t=1

Λt − Λt−1√
Λt +

√
Λt−1

≥
T∑

t=1

σ̄2
t

2
√
Λt

,

where the first equality holds due to the telescope sum and because Λ0 = 0, and the inequality holds
because Λt−1 ≤ Λt and σ̄2

t = Λt − Λt−1.

19



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are based on the main theorems (Theorem 5.4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our main limitation of the setting of weak adversary with variance revealing
has been discussed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide Assumption 3.1 as well as other assumptions in Theorem 5.4 for
the main results. We also include a section of proof sketch.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have introduced the details of the implementation of FGTS-VA, and further
details can be found at the GitHub repo.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have uploaded the code to GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided the experiment details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We included the error bands.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and ensured compliance of the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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