
Under review as a conference paper at ICLR 2023

EFFICIENT PROXY FOR NAS IS EXTENSIBLE NOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Architecture Search (NAS) has become a de facto approach in the recent
trend of AutoML to design deep neural networks (DNNs). Efficient or near-zero-
cost NAS proxies are further proposed to address the demanding computational
issues of NAS, where each candidate architecture network only requires one it-
eration of backpropagation. The values obtained from the proxies are considered
the predictions of architecture performance on downstream tasks. However, two
significant drawbacks hinder the extended usage of Efficient NAS proxies. (1) Ef-
ficient proxies are not adaptive to various search spaces. (2) Efficient proxies are
not extensible to multi-modality downstream tasks. Based on the observations, we
design a Extensible proxy (Eproxy) that utilizes self-supervised, few-shot training
(i.e., 10 iterations of backpropagation) which yields near-zero costs. The key com-
ponent that makes Eproxy efficient is an untrainable convolution layer termed bar-
rier layer that add the non-linearities to the optimization spaces so that the Eproxy
can discriminate the performance of architectures in the early stage. Furthermore,
to make Eproxy adaptive to different downstream tasks/search spaces, we propose
a Discrete Proxy Search (DPS) to find the optimized training settings for Eproxy
with only handful of benchmarked architectures on the target tasks. Our exten-
sive experiments confirm the effectiveness of both Eproxy and Eproxy+DPS. On
NAS-Bench-101 (∼423k architectures), Eproxy achieves 0.65 as the spearman ρ.
In contrast, the previous best zero-cost method achieves 0.45. On NDS-ImageNet
search spaces, Eproxy+DPS delivers 0.73 Spearman ρ average ranking correla-
tion while the previous efficient proxy only achieves 0.47. On NAS-Bench-Trans-
Micro search space (7 tasks), Eproxy+DPS delivers comparable performance with
early stop methods which requires 660 GPU hours per task. For the end-to-end
task such as DARTS-ImageNet-1k, our method delivers better results compared
to NAS performed on CIFAR-10 while only requiring a GPU hour with a single
batch of CIFAR-10 images.

1 INTRODUCTION

As deep neural networks (DNNs) find uses in a wide range of applications, such as computer vi-
sion (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016; Redmon et al., 2016)
and natural language processing (Vaswani et al., 2017; Schuster & Paliwal, 1997; Hochreiter &
Schmidhuber, 1997; Wu et al., 2020; Devlin et al., 2018), Neural Architecture Search (NAS) (Zoph
et al., 2018; Real et al., 2019; Tan et al., 2019; Cai et al., 2019; Liu et al., 2018b) has become
an increasingly important technique to automate the design of neural architectures for different
tasks (Weng et al., 2019; Wang et al., 2020b; Liu et al., 2022; Gong et al., 2019). Recent progress
in NAS has demonstrated superior results, surpassing those of human designs (Zoph et al., 2018;
Wu et al., 2019; Tan et al., 2019). However, one major hurdle for NAS is its high computation cost.
For example, the seminal work of NAS (Zoph et al., 2018) consumed 2000 GPU hours to obtain
a high-quality DNN, a prohibitively high cost for many researchers. The high computation cost of
NAS can be attributed to three major factors: (1) the large search space for candidate neural archi-
tectures, (2) the training of the various candidate neural architectures, and (3) the comparison of
the solution quality of candidate neural architectures to guide the NAS search process. Subsequent
NAS work has proposed various techniques to address the above issues, such as the limitation of the
search space, the weight-sharing networks to reduce the training cost, and the efficient proxies for
evaluating the candidate architectures.
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Figure 1: Comparison of Eproxy with six efficient proxies regarding evaluation speed on NAS-
Bench-101, NDS-ResNet, and NDS-DARTS search spaces. The normalized average time is plotted.

Out of the advancement, the latest efficient proxies showed that the quality of a neural architecture
could be determined by a proxy metric computed within seconds without full training. Hence they
are near zero cost. For example, Mellor et al. (2021) delivered NASWOT to analyze the activations
of an untrained network as a proxy and demonstrated some promising results. Abdelfattah et al.
(2021) proposed various proxies, such as gradients normalization (Grad norm), one-shot pruning
based on a saliency metric computed at initialization (Tanaka et al., 2020; Wang et al., 2020a; Lee
et al., 2018), and Fisher (Theis et al., 2018) that performs channel pruning by removing activation
channels that are estimated to have the most negligible effect on the loss. The above efficient prox-
ies, however, have two significant drawbacks. First, the quality of efficient proxies varies widely
for different search spaces. Most of the proxies deliver high correlations with search space limited
in the small NAS Benchmarks, while in real-life applications, the size of search spaces are order-
of-magnitude larger than the tabular benchmarks’. For example, Synflow achieves high ranking
correlation on NAS-Bench-201 Dong & Yang (2020) (0.74 Spearman ρ) but performan poorly on
NAS-Bench-101 (Ying et al., 2019) (0.37) which is 27X larger than NAS-Bench-201. (2) Efficient
proxies are not extensible to multi-modality downstream tasks. One concern is that they are im-
plicitly designed for CIFAR-10-level classification tasks where proxies deliver promising prediction
results. For example, NASWOT fails (0.03 ρ as the average ranking correlation) on NAS-Bench-
MR (Ding et al., 2021) (9 real-world tasks). Moreover, most efficient proxies apply specified algo-
rithms such as pruning to transform the weights of architectures into prediction values. The fixed
algorithm limits the adaptability of proxies towards tasks beyond classification. Besides, some ZC
proxies introduce unknown bias for their preferences for certain neural architectures (Chen et al.,
2021a). It has been shown empirically and theoretically (Ning et al., 2021) that Synflow prefers
large models.
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Figure 2: Illustration of the validation losses of two architectures on downstream task(left). A
sophisticated few-shot proxy (right) can reflect the actual performance of architectures.

This work introduces a new efficient proxy termed Extensible proxy (Eproxy) from a different an-
gle. Unlike previous efficient proxies, Eproxy utilizes few-shot spatial-level regression on a set of
image-label pairs (see Illustration in Fig. 3). The labels are 2D synthetic features since spatial-level
regression is more challenging than one-hot classification on a tiny dataset, i.e., a batch of image-
label pairs as Li et al. (2021) suggest. The key component of the Eproxy is the barrier layer. It
takes the output of the architecture network into an untrained convolutional layer and performs the
regression with the labels. Such a simple mechanism can significantly improve the performance of
Eproxy to identify good architectures and bad ones when performing 10 iterations of backpropa-
gation, i.e., near-zero cost. (∼+0.57 ρ ranking correlation on NAS-Bench-101.) We find that the
barrier layer increases the complexity of the optimization space. Hence, poor-performance archi-
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tectures are more difficult to optimize. (See Section 3.1). Since Eproxy is a configurable few-shot
trainer, we design a novel search space for Eproxy that includes various hyperparameters such as
feature combinations, output channel numbers, and selection for barrier layers that makes Eproxy
multi-modalities. We term the search method Discrete Proxy Search (DPS) (The performance of
DPS are shown in Fig. 3). Notably, besides the evaluation performance of a handful of architectures,
DPS does not need to use any task-specific information (in our experiment, we only use a single
batch of CIFAR-10 (Krizhevsky et al., 2009) images throughout all the experiments).
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(c) DARTS-ImgNet: Eproxy+DPS

Figure 3: a: Comparison with efficient proxies and early stopping methods on NAS-Bench-Trans-
Micro Autoencoder task. It shows the effectiveness of DPS compared with early stopping methods
on either the target task or a classification task when evaluating 4096 architectures. b, c: On NDS
DARTS-ImageNet task, Eproxy and Eproxy+DPS (Searched on DARTS-CIFAR-10, transferred to
ImageNet) achieve 0.51, 0.85 ρ respectively. It shows DPS can find a search-space-aware Eproxy.
We summarize our contributions as follows:

• We propose an efficient proxy task with the barrier layer that utilizes a few-shot self-
supervised regression. The task adopts only one batch of images in CIFAR-10-level dataset
(not necessarily from the target training dataset). It uses the synthetic labels to evaluate ar-
chitectures. Eproxy significantly speeds up the traditional early stopping evaluation process
while maintaining the high ranking correlation.

• We propose the downstream-task/search-space-aware proxy search algorithm with a proxy
search space. We formulate the proxy task search as a discrete optimization problem
with only a handful of architectures, such that the performance rankings of the networks
on the ground-truth task and the proxy task should be consistent. The searched Eproxy
can accurately evaluate the quality of network architectures and make Eproxy search-
space/downstream-task aware.

• We provide thorough experiments to evaluate the performance of Eproxy and Eproxy
boosted by DPS on more than 30 search spaces/tasks. We demonstrate that our methods
have overall higher performance than existing efficient proxies in terms of all three factors:
architecture ranking correlation score, top-10%-architecture retrieve rate, and end-to-end
NAS performance. Our solid experimental results can be further utilized and benefit the
NAS community.

2 OUR APPROACHES

In Sec. 2.1, we introduce the Eproxy for efficient network evaluation; in Sec. 2.2, we discuss how to
find a downstream-task/search-space-aware Eproxy via Discrete Proxy Search.

2.1 EXTENSIBLE NAS PROXY

The Eproxy is designed for the architectures to learn the output of an untrained network on a set
of image-label pairs (See Fig. 4). We utilize the MSE-based training (Li et al., 2021) with a large
learning rate and limited backpropagation steps to make it as efficient as the existing near-zero-cost
proxies. However, directly applying a few-shot regression task with a large learning rate leads to
poor correlation based on our observations. To make the Eproxy architecture-performance-aware
within a few iterations, we propose an untrained barrier layer to make the task more involved (See
Section 3.1). The barrier layer is a randomly initialized convolution layer to the output of the train-
able components. Our experiments show that adding such a layer can significantly improve the
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Figure 4: The design of Eproxy and the searchable components. Dotted line: The configurable
components for Discrete Proxy Search. Green block: Trainable components. The configurability of
Eproxy can be further utilized by DPS to target search spaces/downstream tasks.

correlation between the predictions and the performance of neural architectures in the downstream
tasks within a few back propagations (Sec 3.1). To be more specific, the Eproxy training loss can be
described as:

min
wa,wt

LMSE(G(wb, F (wa, wt, X)), Y ) (1)

where the X ∈ Rb×cin×hin×win is the a set of input images (b is batch size; cin is number of input
channels). F is a fully convolutional neural network (FCN) with a transform layer (a convolutional
layer) that transforms the X to F (·) ∈ Rb×cmid×hout×wout . The FCN is usually obtained by utilizing
the architecture without a task-specified head in the downstream tasks. For example, the classfier
network with the classification (average pooling and linear layer) head removed. wa and wt are the
weights of architecture for evaluation and the weights of the transform layer (a convolution module)
that project the output channels of the architecture to cmid which is the number of the transform
layer’s output channels. G is the barrier layer, and wb is the weights. Note in the Eproxy without
DPS, Y ∈ Rb×cout×hout×wout is the output of an untrained 6-layer FCN (Fig. 4, ‘Net’). We interpret
that Eproxy conducts a few-shot, tiny knowledge-distillation task from an untrained teacher network.

2.2 DISCRETE PROXY SEARCH

Since Eproxy provides abundant configurable hyperparameters and utilizes data-agnostic spatial
labels, the different settings can be naturally adjusted for tasks/search spaces. Therefore, we propose
a semi-supervised discrete proxy search to find a setting that can be suitable for the specific modality.
As shown in Fig. 4, the searchable configurations are provided as follows:

1. Transform and barrier layer: Both layers can have kernel size selected from {1, 3, 7}, and
the channel number cmid can be selected from 16 to 512 geometrically with 2 as a multi-
plier.

2. Feature combination: a) Untrained FCN outputs. The experiment results show that an un-
trained network’s output features can be powerful for evaluating architectures on numerous
tasks/search spaces. b) Sine wave: we adopt the sine wave features with low/mid/high fre-
quency along width/height. The insight is that good CNNs can learn different frequency
signal (Li et al., 2021; Xu et al., 2019b). c) Dot: By utilizing the Rademacher distribu-
tion, we generate the synthetic features with only ±1. The features attempt to simulate
the spatial classification that is widely adopted in tasks such as detection (Girshick, 2015),
segmentation (Bertinetto et al., 2016), tracking (Bertinetto et al., 2016; Li et al., 2018a).
For more details, please refer to the Appendix. The combined features can be multiplied
by an augment coefficient selected from 0.5 to 2 with 0.5 as a step.
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3. Training hyperparameters: a) Learning rate: we adopt the SGD optimizer, and the learning
rate can be selected from 0.5 to 1.5 with 0.1 as the step. b) Initialization: we adopt two
initialization methods, Kaiming (He et al., 2015) and Xavier (Glorot & Bengio, 2010) with
either Gaussian or Uniform initialization (total 4 choices).

4. Intermediate output evaluation: We provide the choices to force the network to learn the
intermediate outputs from the layer before the first or second downsample layer. The moti-
vation is that earlier stages of the network have different learning behaviors from the deeper
stages (Alain & Bengio, 2016). Thus, monitoring the early stages can give more flexibility
for adapting Eproxy to different tasks.

5. FLOPS: As works (Javaheripi et al., 2022; Wu et al., 2019; Ning et al., 2021; White et al.,
2022) suggested that FLOPS is a good indicator for architecture performance. Hence we
incorporate the FLOPS normalized by the largest architecture in the search space with the
Eproxy loss as L·(1+α ·norm(FLOPS)). α can be selected from -0.5 to 0.5 with 0.1 steps.

The total number of configuration combinations in the proxy search space is 5e15. We utilize the
regularization evolutionary algorithm (REA) (Real et al., 2019) to conduct the exploration efficiently.
First, we randomly sample a small subset of the neural architectures in the NAS search space and
obtain their ground truth ranking on the target task or a highly correlated down-scaled task (for
example, CIFAR-10 is considered a good proxy for ImageNet). We then evaluate these networks
using Eproxy with different configurations and calculate the performance ranking correlation ρ of
the Eproxy and the target task, and the ρ is the fitness function for REA.

3 EXPERIMENTS

In this section, we perform the following evaluations for Eproxy and DPS. First, in Sec. 3.1, we
conduct the ablation study on NASBench-101 (Ying et al., 2019), the first and yet the largest tabular
NAS benchmark with over 423k CNN models and training statistics on CIFAR-10. We explain
the mechanism behind the barrier layer with empirical results. Furthermore, we compared Eproxy
and Eproxy boosted by DPS with existing efficient proxies. Second, from Sec. 3.2 to Sec. 3.4,
we use metrics including ranking correlation, top-10 architecture retrieve rate (Dey et al., 2021) to
evaluate the proposed method on NDS (Radosavovic et al., 2020) (11 search spaces on CIFAR-10,
8 search spaces on ImageNet), NAS-Bench-Trans-Micro Duan et al. (2021) (7 tasks), and NAS-
Bench-MR Ding et al. (2021) (9 tasks). Third, in Sec. 3.5, we evaluate the end-to-end NAS on
NAS-Bench-101/201. Moreover, we report the end-to-end search on the DARTS-ImageNet search
space in Sec. 3.5.
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Figure 5: The loss surfaces of regression task with/without the barrier.

3.1 ABLATION STUDY ON NAS-BENCH-101

We study the effectiveness of our barrier layer in this section. We use the tool from (Li et al.,
2018b) to visualize the loss surface of an architecture selected randomly from NAS-Bench-101 on
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Loss MSE w/o Barrier MSE w/ Barrier

LR 1 1e-1 1e-2 1 1e-1 1e-2

10 itersNZC 0.08 -0.22 -0.19 0.65 0.46 0.09
100 iters 0.07 0.67 0.76 0.65 0.79 0.79
200 iters 0.22 0.64 0.66 0.61 0.83 0.81

Table 1: Ranking correlation (Spearman’s ρ) analysis for different losses on NASBench-101. “LR”
stands for learning rate; “NZC” stands for near-zero-cost. The results suggest that regression with
barrier and large learning rate can achieve a high ranking correlation in 10 iterations near zero cost.

Grad norm Snip Grasp Fisher Synflow NASWOT Eproxy Eproxy+DPS

ρ 0.20 0.16 0.45 0.26 0.37 0.40 0.65 0.69
Top-10% 2% 3% 26% 3% 23% 29% 31% 38%

Table 2: Comparison with efficient proxies on NAS-Bench-101 using the Spearman ρ and top-10%
retrieve rate.

our few-shot regression task. Figure 5 (a) shows the loss surface without the barrier has a good
convexity, which indicates the task is simple, as we use a proxy task that contains very few samples
(16 image-label pairs) for a shorter evaluation period. The simplicity of the proxy task gives us
two potential problems that can affect the final results. (1) If a task is too simple, every model can
perform similarly well. (2) When the optimization is easy, models can have similar performance
at the early stage of training. As we observed, loss surfaces from different models have similar
shapes without barriers, requiring us to use more training steps to see the difference between good
and bad architectures. To mitigate these two problems, Eproxy added a barrier layer which is a
random initialized linear/convolution layer with frozen weights. As shown in Figure 4 (b), the loss
surface with the barrier has a noticeable non-convexity, which shows the increased complexity of the
proxy task, and now it can better reflect the actual performance of architecture (See A.7 for more
visualization). As the irregular shape of the loss surface varies widely from model to model, it helps
us better distinguish the model performance at the early stage of training, allowing us to use fewer
training steps to speed up the evaluation further. The results in Table 1 show that with the barrier
layer, Eproxy can reach ρ 0.65 in only 10 iterations with a learning rate of 1, and it also significantly
improves the ranking correlation score with more training iterations.

Next, we sample 20 architectures from NAS-Bench-101 and evaluate DPS. We conduct DPS for
200 epochs, and the total run time is ∼20 mins on a single A6000 GPU. In Table 2, we report
the network evaluation results in terms of Spearman’s ρ and top-10% network coverage using the
proxy task searched by DPS. Eproxy significantly outperforms existing zero-cost proxies by a large
margin. For example, Synflow, considered the stable proxy, achieves 0.45, NASWOT only achieves
0.38, Eproxy achieves 0.65 (without DPS), and Eproxy + DPS achieves 0.69. Regarding the top-
10% retrieve rate, Eproxy + DPS retrieves more architectures than DPS (38% vs. 31%). The results
support the efficiency and effectiveness of DPS. Meanwhile, Fig. 1 confirms that using Eproxy can
achieve the same evaluation speed compared with other efficient proxies.

3.2 NDS

Mellor et al. (2021) utilizes an interesting and practical dataset named Network Design Spaces
(NDS), where the original paper aims to compare the search spaces themselves. The NDS is perfect
for evaluating efficient proxies in more complex search spaces. For example, researchers benchmark
5,000 architectures on DARTS search space and over 20,000 on ResNet search space. We compared
our method with existing zero-cost proxies on 11 search spaces on CIFAR-10 and 8 search spaces
on ImageNet Deng et al. (2009). We show the results in Table 3. Compared to NASWOT (Mel-
lor et al., 2021), Eproxy (without DPS) achieves on-a-par results on both CIFAR-10 and ImageNet
search spaces. Boosted by DPS, Eproxy delivers significantly better results on target CIFAR-10
search spaces with 36% and 52% improvement on ranking correlation and top-10% retrieve rate,
respectively. Notably, Eproxy+DPS searched on CIFAR-10 with 20 architectures performs signifi-
cantly better on ImageNet search spaces without any prior knowledge of the dataset. Compared to
NWT, Eproxy+DPS gains 30% and 57% on ranking correlation and top-10% retrieve rate, respec-
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CIFAR-10 DARTS DARTS-f AMB ENAS ENAS-f NASNet PNAS PNAS-f Res ResX-A ResX-B Avg.

Synflow 0.42 -0.14 -0.10 0.18 -0.30 0.02 0.25 -0.26 0.21 0.47 0.61 0.12
9% 5% 3% 6% 2% 7% 9% 4% 4% 25% 29% 9%

NASWOT 0.65 0.31 0.29 0.54 0.44 0.42 0.50 0.13 0.29 0.64 0.57 0.43
29% 8% 20% 31% 28% 27% 24% 6% 7% 28% 21% 21%

Eproxy 0.38 0.34 0.54 0.59 0.48 0.56 0.22 0.24 0.51 0.47 0.19 0.41
12% 17% 13% 35% 31% 28% 4% 4% 36% 24% 10% 19%

Eproxy+DPS 0.72 0.39 0.56 0.63 0.47 0.54 0.60 0.48 0.56 0.65 0.60 0.56
33% 19% 29% 36% 30% 32% 35% 28% 36% 32% 19% 29%

ImageNet DARTS DARTS-f Amoeba ENAS NASNet PNAS ResX-A ResX-B Avg.

Synflow 0.21 -0.36 -0.25 0.17 0.01 0.14 0.42 0.31 0.08
0% 4% 0% 9% 0% 9% 7% 13% 6%

NASWOT 0.66 0.20 0.42 0.69 0.51 0.61 0.73 0.63 0.56
16% 8% 33% 36% 33% 10% 30% 38% 26%

Eproxy 0.51 0.31 0.66 0.58 0.56 0.36 0.73 0.70 0.55
20% 17% 60% 33% 30% 33% 55% 43% 36%

Eproxy+DPST
0.85 0.53 0.66 0.79 0.85 0.60 0.83 0.72 0.73
50% 28% 60% 33% 32% 35% 55% 36% 41%

Table 3: Comparison with efficient proxies on NDS search spaces. T denotes the DPS is conducted
on CIFAR-10 and directly transferred to ImageNet.

Cls. Scene Cls Obj Room Layout Jigsaw Seg Normal AE Avg.

Synflow 0.46/16% 0.50/16% 0.45/28% 0.49/19% 0.32/3% 0.52/19% 0.52/34% 0.47/19%
NASWOT 0.57/21% 0.53/21% 0.30/2% 0.41/11% 0.52/30% 0.59/30% -0.02/2% 0.41/17%

Eproxy 0.15/14% 0.45/34% 0.06/8% 0.17/33% 0.36/46% 0.25/38% 0.61/80% 0.29/36%
Eproxy + DPS 0.70/30% 0.56/44% 0.56/13% 0.64/45% 0.81/53% 0.81/63% 0.80/74% 0.69/46%

ES∼ 660GPU hrs/task 0.73/25% 0.01/7% 0.15/7% 0.74/21% 0.39/7% 0.65/27% 0.35/11% 0.43/15%

Table 4: Comparison with efficient proxies and the early stopping method on TransNAS-Bench-
Micro. Eproxy+DPS outperforms efficient proxies and early stopping method.

tively. The ImageNet experiment demonstrates the efficiency by utilizing the architectures trained
on down-scaled dataset (CIFAR-10) for DPS.

3.3 NAS-BENCH-TRANS-MICRO

Previous experiments suggest that DPS can optimize Eproxy across different search spaces. We
further evaluate Eproxy and DPS on NAS-Bench-Trans-Micro, a benchmark that contains 4096
architectures across 7 large tasks from the Taskonomy Zamir et al. (2018) dataset. The tasks
include object classification, scene classification, unscrambling the image, and image upscaling.
The search space is similar to NAS-Bench-201 but has 4 operator choices per edge instead of 6. We
conduct the DPS on each task using only 20 architectures. We do not have any prior knowledge
of the tasks besides the 20 architecture’s ground truth performance since DPS only utilizes a batch
of CIFAR-10 images as input. We compare our method with NASWOT, Synflow, and the early
stopping method shown in Table 4. Note that though Eproxy underperforms regarding the ranking
correlation, it achieves an 89% higher top-10% retrieve rate compared to Synflow. It also tells
that the global ranking correlation is not the golden metric for evaluating the performance of proxies
since it merely reflects the difference of top architectures. With the help of DPS, the average ranking
correlation and top 10% retrieve rate are significantly improved and substantially better than other
methods. Compared to the early stopping method, DPS requires 7.6X less regarding GPU hours
(>99% time for obtaining the performance of 20 architectures while the DPS only takes 0.5 GPU
hour).

3.4 NAS-BENCH-MR

We try the Eproxy and DPS on a more complex search space, NAS-Bench-MR (Ding et al., 2021),
with 9 high-resolution tasks such as 3d detection, ImageNet-level classification, segmentation, and
video recognition Deng et al. (2009); Cordts et al. (2016); Geiger et al. (2012); Kuehne et al. (2011).
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Cls-A Cls-B Cls-C Cls-10c Seg Seg-4x 3dDet Video Video-p Avg.

Synflow 0.25 0.05 0.37 0.21 0.43 0.22 0.22 0.45 0.52 0.30
11% 14% 20% 15% 17% 9% 8% 18% 17% 14.3%

NASWOT 0.37 -0.20 -0.15 -0.39 0.50 0.38 0.48 -0.36 -0.36 0.03
18% 4% 2% 0% 10% 8% 10% 1% 0% 6%

Eproxy 0.52 0.06 0.02 0.29 0.38 0.31 0.34 0.31 0.23 0.27
18% 10% 10% 15% 17% 13% 23% 11% 11% 14%

Eproxy + DPS 0.57 0.53 0.30 0.48 0.60 0.51 0.39 0.65 0.59 0.51
16% 35% 18% 32% 24% 13% 29% 33% 27% 25%

Cls-C Full training 0.29 0.51 1.0 0.53 0.21 0.35 0.17 0.35 0.37 n/a
(∼4000GPU hrs) 24% 26% 100% 34% 16% 26% 14% 22% 25% N/A

Table 5: Comparison with efficient proxies and Cls-C full training on NAS-Bench-MR.
Eproxy+DPS is comparable with the full training on Cls-C task.

RS NAO RE Semi WeakNAS Synflow NASWOT Eproxy+DPS

Queries 2000 2000 2000 1000 200 150 100 0 0 150 60 0

Test Acc. 93.64 93.90 93.96 94.01 94.18 94.10 93.69 92.20 90.06 94.23 93.92 93.07

Table 6: Comparison with predictor-based methods and efficient proxies on NAS-Bench-101.
Eproxy+DPS can find near-optimal architectures with lower queries.

Randomly sampled ∼2,500 architectures are evaluated on the tasks from the entire search space.
Each architecture is fully trained (>100 epochs) and follows a multi-resolution paradigm, where
each network contains four stages. Each stage comprises modularized blocks (parallel and fusion
modules). Hence, the benchmark is unprecedentedly complicated. Our work is the first to investigate
this benchmark with efficient proxies. We compared Eproxy and Eproxy+DPS with NASWOT,
Synflow, and full training on Cls-C task ( 4000GPU hrs 1). The results are shown in Table 5. Note
that NASWOT, which performs well on NAS-Bench-Trans-Micro, delivers poor performance on
most tasks, implying the inconsistent performance of current efficient proxies. Also, we observed
that classification rankings are inconsistent with other tasks, such as segmentation and 3D detection.
Our Eproxy+DPS experiments suggest that with a 20-architecture set, the ranking correlation and
top-10% retrieve rate are considerably improved (+89%/+78%).

3.5 END-TO-END NAS WITH EPROXY

We evaluate Eproxy and DPS on the end-to-end NAS tasks, aiming to find high-performance archi-
tectures within the search space.

Random Search Regularized Evolution MCTS LaNAS WeakNAS Eproxy+DPS

C10 7782.1 563.2 528.3 247.1 182.1 58.0 + 20

C100 7621.2 438.2 405.4 187.5 78.4 13.7T

TinyImg 7726.1 715.1 578.2 292.4 268.4 74.0T

Table 7: Comparison with predictor-based methods on NAS-Bench-201 regarding the average
queries required for retrieving the global optimal architectures. Eproxy+DPS uses substantially
lower queries to find the global optimal architectures.

On NAS-Bench-101, we utilize the Eproxy as the fitness function for Regularized Evolutionary (RE)
algorithm. Our results are shown in Table 6 compared with NAO (Luo et al., 2018), Semi-NAS (Luo
et al., 2020), WeakNAS (Wu et al., 2021), Synflow (Abdelfattah et al., 2021), NASWOT (Mellor
et al., 2021). Note that Eproxy, without any query (near-zero-cost) from the benchmark, can find
architectures that are significantly better than current SoTA efficient proxies, Synflow (+ 0.87%) and
NASWOT (+3.01%). With 20 architectures for DPS and 40 queries (total of 60) to retrieve the top
architectures during RE, Eproxy+DPS achieves better results than existing SoTA predictor-based
NAS WeakNAS with 100 queries (+0.23%). Furthermore, we explore the 70 neighbors of the top
architectures (a total of 150 queries) and find architectures with an average of 94.23% accuracy.

1https://github.com/dingmyu/NCP
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Method Test Err. (%) Params FLOPS Search Cost Searched Searched
top-1 top-5 (M) (M) (GPU days) Method dataset

NASNet-A Zoph et al. (2018) 26.0 8.4 5.3 564 2000 RL CIFAR-10
AmoebaNet-C Real et al. (2019) 24.3 7.6 6.4 570 3150 evolution CIFAR-10
PNAS Liu et al. (2018a) 25.8 8.1 5.1 588 225 SMBO CIFAR-10

DARTS(2nd order) Liu et al. (2018b) 26.7 8.7 4.7 574 4.0 gradient-based CIFAR-10
SNAS Xie et al. (2018) 27.3 9.2 4.3 522 1.5 gradient-based CIFAR-10
GDAS Dong & Yang (2019) 26.0 8.5 5.3 581 0.21 gradient-based CIFAR-10
P-DARTS Chen et al. (2019) 24.4 7.4 4.9 557 0.3 gradient-based CIFAR-10
P-DARTS 24.7 7.5 5.1 577 0.3 gradient-based CIFAR-100
PC-DARTS Xu et al. (2019a) 25.1 7.8 5.3 586 0.1 gradient-based CIFAR-10
TE-NAS Chen et al. (2021b) 26.2 8.3 6.3 - 0.05 training-free CIFAR-10

PC-DARTS 24.2 7.3 5.3 597 3.8 gradient-based ImageNet
ProxylessNAS Cai et al. (2018) 24.9 7.5 7.1 465 8.3 gradient-based ImageNet
TE-NAS Chen et al. (2021b) 24.5 7.5 5.4 599 0.17 training-free ImageNet

Eproxy 25.7 8.1 4.9 542 0.02 evolution+proxy CIFAR-10
Eproxy+DPST 24.4 7.3 5.3 578 0.06 evolution+proxy CIFAR-10

Table 8: Comparison with state-of-the-art NAS methods on ImageNet. T stands for DPS is conducted
in NDS search space and directly transferred to the target. Note Eproxy+DPS achieves the best
results among NAS methods on CIFAR-10.

Note that Semi-NAS with 1000 queries can only reach 94.01%. On NAS-Bench-201, we perform
the DPS on the CIFAR-10 dataset, and the found proxy is directly transferred to CIFAR-100 and
Tiny-ImageNet. We compare with MCTS (Wang et al., 2019), LaNAS (Wang et al., 2021), Weak-
NAS (Wu et al., 2021). In Table 7, we show that Eproxy+DPS can find optimal global architectures
within the RE search history. Compared to RE, which directly queries the benchmark, our approach
reduced 7x/32x/9x query times on three datasets. Compared to predictor-based NAS, Eproxy+DPS
also requires fewer queries to discover the optimal architectures. Our results offer an exciting yet
promising direction besides pure predictor-based NAS.

Open DARTS-ImageNet search space On DARTS search space (Liu et al., 2018b), we perform
the end-to-end search on ImageNet-1k (Deng et al., 2009) dataset. The networks’ depth (number of
micro-searching blocks) is 14. The input channel number is 48, and architectures are with FLOPs
between 500M to 600M. We utilize the 20 samples from the NDS-DARTS search space (not the
same search space as the target) and conduct DPS on CIFAR-10 for 200 epochs in a GPU hour.
Then we perform the NAS by adopting regularized evolutionary algorithm with the loss of the zero-
cost proxy as the fitness function in 0.4 GPU hour. We compare our method with (a) existing
works on the DARTS search space Liu et al. (2018b); Xie et al. (2018); Dong & Yang (2019);
Chen et al. (2019); Xu et al. (2019a); Chen et al. (2021b) and (b) works on the similar search
spaces Zoph et al. (2018); Real et al. (2019); Liu et al. (2018a); Cai et al. (2018). The results are
shown in Table 8. Eproxy achieves a top-1/5 test error of 25.2/8.1 using Eproxy with only 0.5 GPU
hours for NAS. With DPS, Eproxy explores the architecture with 24.4%/7.3% as a top-1/top5 test
error. Eproxy+DPS significantly outperforms existing NAS on CIFAR-10, such as PC-DARTS, and
achieves a comparable result with NAS on ImageNet, demonstrating Eproxy and DPS’s efficiency.
By utilizing the existing performance of architectures on another dataset/search space, DPS shows
the transferability between tasks and search spaces.

4 CONCLUSION

In this work, we proposed Eproxy that utilizes a self-supervised few-shot regression task within near-
zero cost. The Eproxy is benefited from the barrier layer that significantly improves the complexity
of the proxy task. To overcome the drawbacks of current efficient proxies that are not adaptive to
various tasks/search spaces, we proposed DPS incorporating various settings and hyperparameters
in a proxy search space and leveraging REA to conduct efficient exploration. Our experiments on
numerous NAS benchmarks demonstrate that Eproxy is a robust, efficient proxy. Moreover, with
the help of DPS, Eproxy achieves state-of-the-art results and outperforms existing state-of-the-art
efficient proxies, early stopping methods and predictor-based NAS. Our work significantly amelio-
rates the inconsistency of efficient proxies and sets up a series of solid baselines while pointing out
a novel direction for the NAS community.
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A APPENDIX

A.1 EXPERIMENT SETUP

Eproxy The learning rate is 1.0, and the weight decay is 1e−5. Each architecture is trained for ten
iterations with 16 images randomly sampled from the CIFAR-10 training set as a mini-batch (tiny
dataset). The SGD optimizer is used for training.

DPS The total evolution cycle is 200. The number of architectures sampled for ranking is 20. The
population size is 40. The sample size is 10. The mutation rate is 0.2.
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Search space NB101 NB201 DARTS DARTS-fix-w-d Amoeba

Avg. Eval. Time (ms) 414.1 324.0 719.2 1198.3 1191.3

GPU Util. (MB) 4137 1603 3221 2275 3365

Search space ENAS ENAS-fix-w-d NASNet PNAS PNAS-fix-w-d

Avg. Eval. Time (ms) 908.2 1408.2 878.7 1041.4 1824.7

GPU Util. (MB) 3245 2577 3129 3391 3447

Search space ResNet ResNeXt-A ResNeXt-B NAS-Bench-Trans-Micro NAS-Bench-MR

Avg. Eval. Time (ms) 242.3 314.5 298.7 355.2 1011.9

GPU Util. (MB) 2765 2423 2777 2081 4229

Table 9: Average time for evaluating an architecture with Eproxy in the target search space and
Maximum GPU utilization. The results suggest that Eproxy is efficient and computation-friendly.

A.2 GPU BENCHMARK

We benchmark the average evaluation time for architecture with Eproxy and GPU utilization on
different search spaces (shown in Table 9). For DPS, it’s straightforward to estimate the total time.
For example, if we conduct DPS on NDS-DARTS search space with 20 architectures to get each
proxy’s ranking correlation and 200 total evolution cycles, the time is ∼ 20 × 200 × 0.72 = 2880
seconds. All experiments are done on a single A6000 GPU.

A.3 SEARCH SPACES

NAS-Bench-101 (Ying et al., 2019): 423K CNN architectures are trained on CIFAR-10 dataset.

NAS-Bench-201 (Dong & Yang, 2020): 15625 CNN architectures are trained on CIFAR-10/CIFAR-
100/TinyImageNet.

NDS dataset (Radosavovic et al., 2020): DARTS: A DARTS (Liu et al., 2018b) style search space
including 5000 sampled architectures trained on CIFAR-10. DARTS-fix w d: A DARTS style
search space with fixed width and depth including 5000 sampled architectures trained on CIFAR-
10. AmoebaNet: An AmoebaNet (Real et al., 2019) style search space including 4983 sampled
architectures trained on CIFAR-10. ENAS: An ENAS (Pham et al., 2018) style search space includ-
ing 4999 sampled architectures trained on CIFAR-10. ENAS-fix w d: An ENAS style search space
with fixed width and depth including 5000 sampled architectures trained on CIFAR-10. NASNet:
A NASNet (Zoph et al., 2018) style search space including 4846 sampled architectures trained on
CIFAR-10. PNAS: A PNAS (Liu et al., 2018a) style search space including 4999 sampled archi-
tectures trained on CIFAR-10. PNAS-fix w d: A PNAS style search space with fixed width and
depth including 4559 sampled architectures trained on CIFAR-10. ResNet: A ResNet (He et al.,
2016) style search space including 25000 sampled architectures trained on CIFAR-10. ResNeXt-A:
A ResNeXt Xie et al. (2017) style search space including 24999 sampled architectures trained on
CIFAR-10. ResNeXt-B: Another ResNeXt style search space including 25508 sampled architec-
tures trained on CIFAR-10. DARTS in: A DARTS style search space including 121 sampled archi-
tectures trained on ImageNet-1k. DARTS-fix w d-in: A DARTS style search space with fixed width
and depth including 499 sampled architectures trained on ImageNet-1k. Amoeba in: An Amoe-
baNet style search space including 124 sampled architectures trained on ImageNet-1k. ENAS in:
A ENAS style search space including 117 sampled architectures trained on ImageNet-1k. NAS-
Net in: A NASNet style search space including 122 sampled architectures trained on ImageNet-1k.
PNAS in: A PNAS style search space including 119 sampled architectures trained on ImageNet-
1k. ResNeXt-A in: A ResNeXt style search space including 130 sampled architectures trained on
ImageNet-1k. ResNeXt-B in: Another ResNeXt style search space including sampled 164 archi-
tectures trained on ImageNet-1k.

NAS-Bench-Trans-Micro Duan et al. (2021): A NAS-Bench-201 style search space including 4096
architectures trained on 7 different tasks on the subsets of Taskonomy dataset (Zamir et al., 2018).
Tasks including: Object Classification for 75 classes of objects. Scene Classification for 47 classes
of scenes. Room Layout for estimating and aligning a 3D bounding box by utilizing a 9-dimension
vector. Jigsaw Content Prediction by dividing the input image into 9 patches and shuffling accord-
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ing to one of 1000 preset permutations. Semantic Segmentation for 17 semantic classes. Autoen-
coding for reconstructing the input images.

NAS-Bench-MR (Ding et al., 2021): A complex search space for multi-resolution networks includ-
ing 2507 trained architectures on 9 different tasks. Tasks including: ImageNet-50-1000 (Cls-A)
with 50 classes and 1000 samples from each class from ImageNet-1k. ImageNet-50-100 (Cls-B)
with 50 classes and 100 samples from each class from ImageNet-1k. ImageNet-10-1000 (Cls-A)
with 10 classes and 1000 samples from each class from ImageNet-1k. ImageNet-10c same as Cls-A
but architectures are trained for 10 epochs. Seg for Cityscapes dataset (Cordts et al., 2016). Seg-4x
for Cityscapes dataset with 4x downsampled resolution. 3dDet on KITTI dataset (Geiger et al.,
2012). Video for HMDB51 dataset Kuehne et al. (2011). Video-p for HMDB51 but architectures
are pretrained with ImageNet-50-1000.

A.4 SEARCHED ARCHITECTURES

The searched architectures for DARTS-ImageNet search space are shown in Fig 6.
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Figure 6: Visualize the architecture found by Eproxy and Eproxy+DPS on ImageNet-DARTS search
space.

A.5 PSEUDO CODE FOR EPROXY

1

2 def Eproxy(model, barrier, img, label, t_iter = 10):
3 # img shape: B, C = 3, W_in, H_in
4 # label shape: B, C_out, W_out, H_out
5 optimizer = torch.optim.SGD(model.parameters(),
6 lr=1.0,
7 momentum=0.9,
8 weight_decay=4e-5)
9 for i in range(t_iter):

10 output_mid = model(img) # B, C_mid, W_out, H_out
11 output = barrier(output_mid) # B, C_out, W_out, H_out
12 loss = ((output - label)**2).mean()
13 optimizer.zero_grad()
14 loss_m.backward()
15 optimizer.step()
16 return loss

Listing 1: Pseudo PyTorch-sytle Paszke et al. (2019) code for Eproxy.

A.6 PSEUDO CODE FOR DPS
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17

18 def DPS(archs_accs, cycle, population = 40, sample = 10, mutation_rate =
0.2):

19 # len(archs_accs): 20
20 # config: including lr, channel number, feature combination, etc.
21 config_history = []
22 rea = REAEngine(population, sample, mutation_rate)
23 # generate initial pool
24 for _ in range(population):
25 config = rea.get_random_config()
26 rank = rea.get_rank(config, archs_accs)
27 config_history.append({’config’: config, ’rank’: rank})
28 # evolution
29 for _ in range(cycle):
30 new_config = rea.get_mutate_config()
31 rank = rea.get_rank(new_config, archs_accs)
32 config_history.append({’config’: new_config, ’rank’: rank})
33 # rea.get_config_pool().size(): 40
34 # rea.get_config_pool_rank().max(): the proxy in the pool with

highest ranking correlation on the archs_accs set)
35 return config_history

Listing 2: Pseudo PyTorch-sytle code for DPS.

A.7 MORE LOSS LANDSCAPES

We listed more loss landscapes from the best and the worst models in NAS-Bench-101 (Ying et al.,
2019) search space on our proxy task, either with or without the barrier in Fig. 7 and Fig. 8. From
Fig. 8, we can observe that the best model has a much smoother loss surface than the worst model.
From Fig. 7, we can observe that the best model’s can achieve lower loss compared to worst model
even though the loss surface is sophisticated. Besides, the loss surfaces are significantly different
which means the optimization directions for both models are distinctive. We can also observe from
Fig. 8 that the best and worst models have similar convexity and shape, which makes the proxy task
produce a much worse ranking correlation score compared with the proxy task that uses the barrier.

A.8 LIMITATIONS

1. Though empirical results strongly support Eproxy and DPS, there is no strict mathematical proof
of the upper bound of the similarity between a few-shot proxy task and a large-scale task. 2. Our
experiments are limited to Computer Vision tasks. It is unknown whether the Eproxy can be ex-
tended to Natural Language Processing tasks (Vaswani et al., 2017; Hochreiter & Schmidhuber,
1997; Schuster & Paliwal, 1997; Devlin et al., 2018). 3. We didn’t notice any works concurrent to
our methods (According to ICLR’s policy of recent work, papers appearing less than two months
are considered concurrent.).
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(a) Best model with the barrier.
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(b) Worst model with the barrier.

Figure 7: The loss surfaces of best and worst model from NAS-Bench-101 regression task with
barrier.
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(a) Best model without barrier.
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Figure 8: The loss surfaces of best and worst model from NAS-Bench-101 regression task without
barrier.
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