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ABSTRACT

Federated learning (FL) has shown great promise for time-series forecasting, yet
a key challenge in real-world applications is feature heterogeneity. Unlike prior
work that assumes uniform feature spaces, we construct a more realistic feature-
level non-independent and identically distributed (non-IID) scenario by allocating
subsets of features to each client. The number of features varies from 1 up to
a defined maximum. We introduce FedQAPer, a novel FL framework that com-
bines Query Attention Pooling (QAP) with FedPer algorithm that uses personal-
ized heads for each client to capture local patterns. QAP projects heterogeneous
client feature dimensions into a unified representational space, enabling collabo-
rative backbone training across diverse feature configurations. FedPer transforms
these aligned representations back to each client’s original feature dimension
through personalized heads, achieving both global knowledge integration and lo-
cal specialization. FedQAPer works for various backbone architectures, including
both artificial neural network (ANN) models and spiking neural network (SNN)
models. Experiments on multivariate time-series benchmarks demonstrate that
FedQAPer effectively handles feature heterogeneity and consistently improves
forecasting performance across different backbone models.

1 INTRODUCTION

Time-series forecasting is fundamental to modern data-driven systems, enabling proactive decision-
making in diverse fields such as renewable energy management (Gaboitaolelwe et al. (2023)) and
smart grid (Aslam et al. (2021)). For these tasks, deep learning models have demonstrated strong
performance. Artificial Neural Networks (ANNs), particularly recurrent and attention-based archi-
tectures, have emerged as a dominant paradigm due to their unparalleled ability to capture intri-
cate temporal dependencies and long-range patterns within data (Zhou et al. (2022);Wang et al.
(2024c)Nie et al. (2023)). Meanwhile, Spiking Neural Networks (SNNs) offer a distinct, com-
pelling advantage in energy efficiency and suitability for resource-constrained edge devices(Feng
et al. (2025);Hu et al. (2025)). By encoding temporal patterns through discrete spike events, SNNs
can dramatically reduce energy consumption and computational overhead compared to conventional
ANNs(Yu et al. (2024a);Skatchkovsky et al. (2019);Wen et al. (2023)). Recent advances in neuro-
morphic computing further demonstrate that SNN-based federated learning can maintain competi-
tive forecasting accuracy while achieving significant improvements in energy and communication
efficiency(Li et al. (2025);Venkatesha et al. (2021)). Given the complementary strengths of both
ANNs and SNNs, both are excellent candidates for various time-series forecasting tasks.

Traditional time series forecasting relies on centralized training paradigms that aggregate all data
onto a single server (Xu et al. (2024);donghao & wang xue (2024)). However, this approach raises
significant privacy concerns and creates substantial communication overhead, particularly problem-
atic in distributed environments (Abdel-Sater & Hamza (2024)). To address these limitations, fed-
erated learning (FL) such as FedAvg (McMahan et al. (2023)) has emerged as a promising solution
that enables collaborative model training across decentralized edge devices without sharing raw data,
thus preserving privacy and reducing communication costs(Zhao et al. (2018)). Yet, they largely ig-
nore a critical challenge in real-world applications: feature-level non-independent and identically
distributed (non-IID), where clients possess different sets of input features. Existing FL frame-
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works typically require a uniform feature space, making them ill-suited for such scenarios(Li et al.
(2020);Ghosh et al. (2021);Karimireddy et al. (2021)) . This limitation is particularly pronounced in
real-world deployments such as heterogeneous IoT devices in smart grids or transportation systems,
where devices may have different sensor configurations and data collection capabilities.

To overcome this critical limitation, we introduce FedQAPer, a novel FL framework specifically
designed to handle feature-level non-IID data in time-series forecasting. Our method enables clients
with diverse feature configurations to collaboratively train a global model while maintaining both
privacy and efficiency. Our key contributions are as follows:

• Realistic feature-level non-IID formulation: Unlike prior work that assumes identical
feature spaces, we explicitly construct a more realistic FL setting where each client has a
different number and type of features. This better reflects real-world deployments, such as
heterogeneous IoT devices in smart grids or transportation systems.

• Query Attention Pooling (QAP): We propose QAP to align heterogeneous client features
into a unified latent space. This alignment enables consistent backbone training across
clients despite their varying feature dimensions.

• Personalized Federated Learning via FedPer: We incorporate the FedPer algo-
rithm(Arivazhagan et al. (2020)), equipping each client with lightweight personalized
heads. These heads map the QAP-aligned representations back to the client’s original fea-
ture space, achieving both global knowledge sharing and local specialization.

• Backbone-Agnostic Design: FedQAPer is compatible with a wide range of backbone
architectures, including both ANN and SNN models, ensuring flexibility and broad appli-
cability.

2 RELATED WORKS

2.1 FEATURE DISTRIBUTION IN FEDERATED TIME-SERIES FORECASTING

FL has recently been explored in time-series forecasting, where distributed clients such as sensors,
base stations, or smart meters collaboratively learn forecasting models without centralizing raw
data (Fekri et al. (2022)). A key challenge in this domain is the inherent non-IID nature of local
data. Prior studies typically assume that clients share identical feature spaces, while heterogeneity
primarily arises from different in data distribution, sample sizes, or temporal dynamics.

For instance, Fed-TREND (Yuan et al. (2024)) addresses data heterogeneity by treating each fea-
ture (or a subset of features) from a single dataset as a distinct client, which then collectively trains
various forecasting models. Some approaches may partition a single dataset to match the number
of clients, ensuring that each client holds the same set of features(Maher et al. (2025)). Other stud-
ies treat an entire dataset as a single client for cross-domain feature heterogeneity. For example,
TIME-FFM(Liu et al. (2024a)) uses general time-series datasets like ETT(Zhou et al. (2021) and
Electricity(Lai et al. (2018)) as individual clients, while HSTFL(Cai & Liu (2024)) holds a unique
type of time series data, with the data types varying among different clients. It is also possible to
configure clients with multiple datasets from the same domain, rather than from different domains.
FedWindT(Arooj (2024)) considers the dataset from each wind power plant, which contains data
on wind speed, temperature, and output, as a separate client to predict the power generation of that
plant.These methods implement non-IID conditions by creating differences in the feature charac-
teristics of clients. FedAtt (Thwal et al. (2023)) predicts the next day’s closing price returns for
each of the 45 publicly traded companies using their stock-related data. Non-IID data can also be
achieved by varying the time frequency of data across clients, as seen in works like MVFL(Yang
et al. (2025)) and FedForecast(Liu et al. (2023)). However, there is limited research on distributing
a different number of features from a single dataset to clients.

2.2 SPIKING NEURAL NETWORK IN FEDERATED LEARNING

The integration of SNNs with FL offers a promising direction for streamlined, privacy-preserving AI
on resource-constrained edge devices. SNNs’ event-driven, sparse communication inherently pro-
vides high computational performance and low power consumption. Capitalizing on these advan-
tages, FedLEC (Yu et al. (2025)) presented an effective FL algorithm that utilizes SNNs to mitigate
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Figure 1: Overview of the proposed FEDQAPER framework.

label skewness and improve convergence in non-IID settings. Xie et al. (2022) demonstrated SNNs’
effectiveness in FL for specific appli-cation, such as traffic sign recognition in resource-limited Inter-
net of Vehicles scenarios. Beyond homogeneous model architectures, heterogeneous FL combining
convolutional and SNNs has also been explored Yu et al. (2024b). These collective efforts highlight
SNNs’ significant potential for enabling robust and resource-friendly FL deployments, particularly
where computational and communication resources are limited. Despite these advancements, the
predominant focus of current SNN-FL research largely remains on classification tasks.

3 FEDQAPER

Figure 1 provides an overview of the proposed FedQAPer framework, illustrating the end-to-end
pipeline from heterogeneous client inputs through QAP alignment and backbone training to person-
alized heads for forecasting.

3.1 FEATURE ALLOCATION FOR HETEROGENEOUS CLIENT DATA

To simulate feature-level heterogeneity across clients, we construct each client by randomly assign-
ing it a subset of features from a universal dataset, where each feature corresponds to a variate in the
multivariate time series. Specifically, given the number of clients N and a maximum feature count
Fmax, each client is assigned a unique feature subset. The size of this subset is sampled uniformly,
ranging from a single feature up to Fmax features. This design ensures that the dimensionality of
the input space varies across clients. For example, some clients may observe only a single variable,
while others access a much richer set of features. Feature assignment is performed independently for
each client, without coordination or alignment. This random assignment reflects real-world deploy-
ments where local devices or sensors monitor distinct and potentially disjoint subsets of variables,
depending on hardware constraints or installation context. Once clients are constructed, each client
directly feeds its raw features into the federated model.

3.2 QUERY ATTENTION POOLING

In federated time-series forecasting, each client observes a distinct subset of features, leading to
heterogeneous input dimensionalities. Let x(i) ∈ RB×L×Fi denote the input of client i with batch
size B, sequence length L, and feature count Fi. Since Fi varies across clients, directly sharing a
backbone is infeasible without reconciling dimensional mismatch. We introduce Query Attention
Pooling (QAP), a lightweight module that maps arbitrary client features into a unified representa-
tional space of dimension dqap. The QAP procedure consists of five steps:

(1) Value projection with slot embedding. Each raw feature value at each time step is projected
from scalar to dqap dimensions through a linear transformation, Linear(1, dqap). Each feature chan-
nel is then augmented with a learnable client-specific slot embedding s

(i)
j ∈ Rdqap for client i and
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feature j:
vt,j = Linear(x

(i)
t,j) + s

(i)
j ,

where x
(i)
t,j is the raw value of feature j at time t for client i.

(2) Cross-attention with shared queries. For each time step independently, the projected feature
representations serve as keys and values, while a small set of learnable query vectors Q ∈ RQ×dqap

(typically Q = 1) attend to them through multi-head cross-attention with h heads:

zt = MultiHeadAttention(Q, {vt,j}Fi
j=1, {vt,j}Fi

j=1).

(3) Statistical side-channel fusion. To ensure robustness when feature counts vary drastically or
when attention becomes unstable, QAP incorporates statistical summaries across the feature dimen-
sion at each time step:

meant =
1
Fi

Fi∑
j=1

vt,j , maxt = max
j=1,...,Fi

vt,j .

These are concatenated with the attention output and fused through a two-layer feedforward net-
work:

z′t = FFN([zt;meant;maxt]),

where [·; ·; ·] denotes concatenation.

(4) Query dimension removal. When using a single query (Q = 1), the query dimension is re-
moved, yielding the aligned representation

z
(i)
t = z′t ∈ Rdqap .

The complete sequence representation becomes Z(i) ∈ RB×L×dqap .

(5) Time feature integration. To incorporate temporal context while maintaining dimensional con-
sistency, time features t(i) ∈ RB×L×tdim are linearly projected into the same latent space:

t
(i)
emb = Linear(t(i)) ∈ RB×L×dqap .

The QAP-processed features Z(i) and time embeddings t(i)emb are then concatenated and projected to
maintain the target dimensionality:

Z
(i)
final = Linear

(
[Z(i); t

(i)
emb]

)
∈ RB×L×dqap .

To summarize, we apply Layer Normalization to vt,j (the value projection with slot embedding)
before attention, and dropout to the attention output. Multi-head attention uses h heads with dot-
product scaling. The side-channel feed-forward network (FFN) maps the concatenation

[zt;meant;maxt] ∈ R3dqap

back to Rdqap . After concatenating time embeddings, a linear layer maps from R2dqap back to Rdqap ,
ensuring that the backbone always receives inputs in

RB×L×dqap .

This design ensures that both raw feature information and temporal context are jointly encoded in
the unified dqap-dimensional space, enabling seamless integration with any backbone architecture.
The complete QAP procedure is also summarized in Algorithm 1.

3.3 PERSONALIZED FEDERATED LEARNING WITH FEDPER

To integrate the aligned latent representations produced by QAP into federated learning, we adopt
FedPer (Arivazhagan et al., 2020), a widely used personalization strategy. FedPer separates the
model parameters into two groups:
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Algorithm 1 Query Attention Pooling (QAP) for Feature-Dimension Alignment

Input: Client data x(i) ∈ RB×L×Fi , target dimension dqap
Output: Aligned representation z(i) ∈ RB×L×dqap

1. Value projection + slot embedding:
V = LayerNorm

(
Wv(x

(i)) + Ei

)
2. Flatten for attention:
xflat = reshape(V, [B ·L, Fi, dqap])

3. Cross-attention pooling:
z = Attention(Q, xflat, xflat)

4. Statistical fusion:
µ = mean(xflat), m = max(xflat)
z = MLP

(
[ z; µ; m ]

)
5. Restore temporal structure:
z(i) = reshape

(
z, [B, L, dqap]

)
return z(i)

Notation: B = batch size, L = sequence length, Fi = number of features for client i, dqap = latent dimension
after QAP alignment, Wv = value projection, Ei = slot embeddings, Q = shared query vector.

(1) Shared backbone—trained collaboratively across all clients through federated aggregation.

(2) Personalized heads—remain local to each client and are never transmitted to the server.

In our setting, once QAP maps a client’s raw input with feature dimension Fi into a unified latent
space of size dqap, the shared backbone processes this aligned representation. Importantly, because
QAP already ensures consistent dimensionality across clients, the output can be directly fed into a
wide range of backbone architectures (e.g., transformers, mixers, spiking networks) without requir-
ing any additional preprocessing layers. Each client then applies its own lightweight prediction head
to transform the backbone output back to its original feature dimension Fi.

During training, backbone parameters and shared QAP components (queries, value projection, at-
tention layers, fusion networks, normalization, time feature projection, and concatenation fusion)
are uploaded to the server and aggregated. Client-specific components—including slot embeddings
and prediction heads—remain local, ensuring personalized adaptation to each client’s unique fea-
ture space and output requirements. The federated training procedure with QAP-aligned inputs and
FedPer is detailed in Algorithm ??.

4 EXPERIMENTS

We evaluate FedQAPer on two widely used multivariate time-series benchmarks: Electricity (321
features) and Traffic (862 features). Both datasets are publicly available through the extensive
repository of Wang et al. (2024b). Importantly, their high-dimensional feature spaces provide a suf-
ficiently large number of variables to construct diverse clients, making them particularly suitable
for our feature-level non-IID experimental design. For our experiments, we set the input sequence
length (look-back window) to 96 time steps, and evaluate forecasting performance under three hori-
zons: 48, 96, and 192 steps. The federated learning setup involves 20 clients, and each client receives
up to 20 features from the total feature space. All clients participate in every global communication
round, ensuring full federation. To ensure reproducibility, we fix the random seed to 42. Each dataset
is split into 80% training, 10% validation, and 10% testing. For feature alignment, we apply QAP
with query count=1 and latent dimension dqap=128. As backbones, we evaluate both ANN-based
models: iTransformer(Liu et al. (2024b)), TimeMixer(Wang et al. (2024a)), DLinear(Zeng et al.
(2022)) and SNN-based models: Spikeformer, SpikeRNN (Lv et al. (2024)) . For SNN models, we
apply SNN time step=4.
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Algorithm 2 Federated Training with FedPer using QAP
Input: Global epochs G, local epochs E, learning rate η, clients C
Output: Shared parameters θs, personalized parameters {θpi }i∈C

Initialization:
θs = {θback, θqap-shared, θtime} ▷ Shared parameters
θpi = {θslot

i , θhead
i } ▷ Personalized parameters per client

for round t = 1 to G do
Sample subset St ⊆ C
Server broadcasts θs to clients i ∈ St
for all client i ∈ St do in parallel

θi ← θs ∪ θpi ▷ Combine shared and personalized params
for epoch e = 1 to E do

for batch (xi, ti, yi) ∈ Di do
1. Forward pass with QAP:
zi = QAP(xi; θ

qap-shared, θslot
i )

zfus
i = zi + Linear(ti; θtime)
ŷi = Head(Backbone(zfus

i ; θback); θhead
i )

2. Update parameters:
θi ← θi − η∇L(ŷi, yi) ▷ Update all params locally

end for
end for
Send updated θsi (subset of θi) to server ▷ Keep θpi local

end for
Server Aggregation:
θs ←

∑
i∈St

wi · θsi ▷ FedAvg on shared parameters only
end for

Notation: St = sampled clients, Di = client i’s data, wi = |Di|/
∑

|Dj |.
Shared parameters: Backbone, Time proj, QAP modules (value proj, queries, attn, fuse, norm).
Personalized parameters: Client-specific Slot Embeddings, Prediction Head.

4.1 MAIN RESULTS

As shown in Table 1, FedQAPer consistently outperforms baseline approaches across all backbones
and datasets. In particular, the method achieves the best or second-best results in almost every
setting, showing both strong accuracy and robustness to different horizons and model architectures.

Metrics. Since clients possess heterogeneous output feature dimensions, direct aggregation of raw
prediction tensors is structurally infeasible. We therefore compute global metrics using dataset-size
weighted averaging of locally computed scalar metrics. Specifically, each client i first computes its
local MAE averaged over all dimensions, and the server aggregates these as:

MAEglobal =

N∑
i=1

MAEi ×
|Di|∑N
j=1 |Dj |

where |Di| denotes the size of client i’s local dataset. All metrics are computed on a normalized
scale using a StandardScaler fitted on each training split.

On the Traffic dataset, FedQAPer combined with iTransformer delivers the lowest error rates,
achieving a top performance with an average MSE of 0.378. For the Electricity dataset, the frame-
work paired with DLinear achieves an impressive result with an average MSE of 0.182. This demon-
strates FedQAPer’s ability to find the most effective model backbone for diverse datasets and max-
imize its performance. Notably, our framework is proven to be applicable to both ANN and SNN
backbones. While ANN models generally exhibit lower error rates and superior performance, the
SNN models, although showing slightly higher errors, demonstrate very competitive performance
when considering their potential for optimization on neuromorphic hardware.

6
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Overall, FedQAPer consistently improves prediction accuracy compared to baselines, demonstrating
that feature-level alignment through QAP combined with personalized heads provides an effective
and versatile solution for federated time-series forecasting.

Table 1: Main results on Electricity and Traffic. Values are global test metrics (MSE, MAE). Lower
is better.

Model SNN ANN

iSpikeformer SpikeRNN Spikeformer iTransformer TimeMixer DLinear

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

48 0.371 0.350 0.380 0.340 0.384 0.356 0.358 0.332 0.356 0.333 0.372 0.348
96 0.401 0.359 0.401 0.354 0.406 0.358 0.387 0.343 0.390 0.348 0.340 0.359
192 0.416 0.370 0.398 0.352 0.428 0.376 0.392 0.340 0.391 0.338 0.398 0.350
Avg 0.396 0.360 0.392 0.349 0.409 0.365 0.378 0.337 0.380 0.341 0.391 0.352

Electricity

48 0.229 0.337 0.219 0.331 0.232 0.339 0.216 0.323 0.220 0.325 0.169 0.281
96 0.244 0.347 0.221 0.331 0.247 0.353 0.215 0.323 0.216 0.322 0.180 0.292
192 0.231 0.340 0.241 0.341 0.251 0.359 0.229 0.333 0.219 0.327 0.198 0.309
Avg 0.235 0.342 0.227 0.334 0.244 0.350 0.220 0.326 0.219 0.325 0.182 0.294

4.2 INFERENCE ENERGY ANALYSIS

To validate the energy efficiency of SNN models, we compare the inference energy consumption be-
tween the proposed iSpikeformer and the ANN-based iTransformer model. Inference energy is cal-
culated based on operation energy units at the 45nm technology node. MAC (Multiply-Accumulate)
operations consume 4.6 pJ, while AC (Accumulate) operations consume 0.9 pJ.

The inference pipeline of iSpikeformer consists of three stages. In the pre-backbone stage, QAP,
Slot Embedding, and Time Projection are performed with float operations, consuming MAC energy.
In the backbone stage, spike generation by LIF neurons, sparse matmul operations in SSA (Spiking
Self-Attention), and MLP blocks are executed with AC operations proportional to the firing rate. In
the final head stage, MAC operations are performed again for mean pooling and final prediction.
The key energy savings of SNNs stem from the firing rate. While ANNs perform MAC operations
for all computations, SNNs perform AC operations only when spikes are fired, achieving energy
efficiency through sparsity.

For a fair apple-to-apple comparison, we exclude the pre-backbone and head portions as they are
identical for both models, and compare only the backbone energy.

Figure 2: Inference energy comparison between iTransformer and iSpikeformer

The experimental results show that the backbone of iSpikeformer consumes 8.51 × 108 pJ, which
is approximately 113× lower than iTransformer’s 9.64 × 1010 pJ. This empirically demonstrates
that the spike-based sparse computation of SNNs is advantageous for energy-efficient deployment
on edge devices.
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4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF FEDERATED LEARNING

To isolate the effect of FedPer, we compare federated training, against a local-only setting, where
each client trains its own model independently for 100 epoch with an early-stopping patience of 20.
For local-only results, we report the average test performance across all clients’ best models. All
results are obtained under a look-back window of 96 and a prediction horizon of 48 time steps.

As shown in Table 2, FedPer consistently outperforms local-only training across both datasets. On
the Traffic dataset, the largest gain is observed with TimeMixer, where FedPer reduces errors by
approximately 11% in MSE and 17% in MAE.On the Electricity dataset, iTransformer under FedPer
reduces MSE by about 33% and MAE by nearly 20% compared to local-only training. For SNN
backbones, FedPer also delivers consistent improvements, with error reductions in the range of
2–10% compared to local-only training. Overall, these results demonstrate that FedPer not only
preserves the strengths of each backbone but also provides clear advantages over isolated local
training in feature-level non-IID federated scenarios.

Table 2: Ablation study: federated vs local-only performance (mean ± std). Lower is better; best of
each pair is highlighted in red bold.

Model Traffic Electricity

MSE MAE MSE MAE

Fed Local Fed Local Fed Local Fed Local

SNN
iSpikeformer 0.379 0.414 0.350 0.396 0.229 0.224 0.337 0.341
SpikeRNN 0.379 0.443 0.339 0.391 0.221 0.229 0.331 0.337
Spikeformer 0.384 0.479 0.356 0.414 0.232 0.228 0.339 0.336

ANN
iTransformer 0.358 0.692 0.332 0.603 0.216 0.230 0.323 0.334
TimeMixer 0.356 0.476 0.333 0.433 0.220 0.218 0.325 0.330
DLinear 0.372 0.612 0.348 0.542 0.169 0.212 0.281 0.320

4.3.2 COMMUNICATION EFFICIENCY ANALYSIS

We analyze the communication efficiency of FedPer compared to conventional federated learning
approaches such as FedAvg. Table 3 presents the parameter distribution of our framework.

In FedPer, shared parameters (QAP and backbone) account for 578,836 (48.4%), while local param-
eters (forecast head) account for 616,160 (51.6%). Notably, the forecast head constitutes over half
of the total model parameters.

In time series forecasting, the forecast head maps from the hidden dimension to the output predic-
tions, and its parameter count scales withO(C2), where C denotes the number of features per client.
This is because the head must handle client-specific feature dimensions for prediction.

In contrast, FedPer only communicates the shared backbone and QAP, whose parameter counts re-
main constant regardless of client feature counts, resulting inO(1) communication cost with respect
to C.

This architectural choice provides substantial advantages:

• Reduced communication overhead: Only 48.4% of parameters are transmitted during
federation, while the largest component (forecast head) remains local.

• Scalability: As feature heterogeneity increases across clients, the communication cost gap
between FedAvg and FedPer widens significantly.

• Edge device suitability: The reduced bandwidth requirement enables FedPer to operate
effectively on resource-constrained edge devices with limited connectivity.
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Table 3: Parameter distribution across components in our framework.

Component Parameters Proportion

QAP 167,296 14.0%
iSpikeformer Backbone 412,820 34.5%
Forecast Head 614,880 51.5%

Total 1,194,996 100%

These characteristics make FedPer particularly well-suited for federated time series forecasting sce-
narios with heterogeneous feature counts, limited bandwidth, and predictable communication bud-
gets.

4.3.3 EFFECTIVENESS OF QUERY-ATTENTION POOLING

Also, to evaluate the effectiveness of QAP, we compare it against a simple linear projection that
only aligns different feature dimensions to a same size. Experiments are conducted on the Traffic
dataset. As shown in Table 4, QAP significantly outperforms the linear projection baseline. This
demonstrates that QAP not only aligns heterogeneous feature dimensions across clients but also
effectively captures important temporal patterns through attention mechanisms. Furthermore, the
side channel fusion enables QAP to learn peak and average patterns, leading to improved time series
representation learning.

Table 4: Projection vs QAP comparison across different horizons (mean metrics).

Horizon MSE MAE

Projection QAP Projection QAP

48 1.0053 0.4832 0.7045 0.4172
96 0.9216 0.5663 0.6704 0.4574

192 1.1403 0.7109 0.7604 0.5433

4.4 CLIENT FEATURE DISTRIBUTION

To better understand the experimental environment, we visualize the client feature allocation under
seed=42. Figure 3 and Figure 4 present two perspectives: the number of features assigned to each
client (left) and the pairwise overlap of features across clients (right), for the Electricity and Traffic
datasets, respectively. The distributions confirm that our construction enforces completely random
feature allocation without any coordination. In both datasets, clients are heterogeneous, each receiv-
ing different feature subsets with limited overlap. The Traffic dataset exhibits an extreme case of
heterogeneity: several clients are assigned nearly the maximum of 20 features, while others have
fewer than five. This stark imbalance occurs because the Traffic dataset has a much larger pool of
features (862 total), making it more likely for random sampling to create wide disparities across
clients. In contrast, the Electricity dataset, which contains fewer total features (321), produces a
comparatively milder but still heterogeneous distribution, with most clients falling between 4 and
12 features and only partial overlap. These observations show that the proposed setup consistently
produces heterogeneous clients across datasets, with Traffic serving as a particularly challenging
benchmark due to its higher intrinsic feature dimensionality. This confirms that our experimen-
tal environment accurately simulates the realistic and difficult non-IID conditions encountered in
federated learning.

5 CONCLUSION

In this work, we presented FedQAPer, a novel federated learning framework that addresses the
critical challenge of feature-level heterogeneity in time-series forecasting. Unlike existing FL meth-
ods that assume uniform feature spaces across clients, our approach enables effective collabora-
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Figure 3: Electricity (seed=42). Left: features per client. Right: pairwise feature overlap. Random
allocation yields heterogeneous client feature spaces.

Figure 4: Traffic (seed=42). Left: features per client. Right: pairwise feature overlap. Random
allocation yields heterogeneous client feature spaces.

tion among clients with diverse feature configurations through the combination of Query Attention
Pooling (QAP) and personalized federated learning via FedPer. Our key contributions demonstrate
that feature heterogeneity, a common but underexplored challenge in real-world federated deploy-
ments, can be effectively managed through dimensional alignment and personalization. The QAP
mechanism successfully projects heterogeneous client features into a unified latent space, enabling
collaborative training of a shared backbone despite varying input dimensions. Meanwhile, the Fed-
Per strategy with personalized heads preserves each client’s ability to capture local patterns specific
to their unique feature configurations. Experimental results on the Electricity and Traffic datasets
confirm that FedQAPer consistently outperforms both baseline federated approaches and local-only
training across multiple backbone architectures, achieving improvements of up to 33% in MSE and
MAE. The framework’s compatibility with both ANN and SNN models demonstrates its generality
and practical applicability. Overall, FedQAPer represents a significant step toward practical feder-
ated learning for time-series forecasting in heterogeneous environments, bridging the gap between
theoretical FL frameworks and real-world deployments where feature diversity is the norm rather
than the exception. For future work, we aim to further enhance FedQAPer’s robustness and flexibil-
ity, exploring improved attention variants and more adaptable backbone-head designs to extend its
applicability across even more heterogeneous federated scenarios.
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A APPENDIX

A.1 DATASET AND METRIC DETAILS

Datasets details The details of the datasets used in the main experiment are shown in Table 5. The
dataset size in table is organized in (Train, Validation, Test).

Table 5: Dataset detailed descriptions

Dataset Dimension Frequency Window length Horizon length Dataset size
Traffic 862 Hourly 96 {48, 96, 192} (14035, 1754, 1754)
Electricity 321 Hourly 96 {48, 96, 192} (21043, 2630, 2631)

Metric details We utilize the mean square error (MSE) as loss function and mean absolute error
(MAE) for evaluation. The calculations of these metrics are :

MSE =
1

N

N∑
i=1

(
Xi − X̂i

)2
(1)
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MAE =
1

N

N∑
i=1

∣∣Xi − X̂i

∣∣ (2)

where X, X̂ ∈ RH×F denote the ground truth and prediction tensors over horizon H time steps
with F features. The metrics are calculated over all N = H × F prediction elements.

A.2 HYPERPARAMETER SETTING

Backbone Hyperparameter

Table 6 summarizes the backbone architectures and training-related hyperparameters used in our
experiments, including a batch size of 128, a learning rate of 1× 10−3, and the Adam optimizer.

Table 6: Model architecture hyperparameters. Model-specific parameters are listed in the rightmost
column.

Model Hidden Dim Layers Attention Heads dff Kernel Size Model-specific parameters

iTransformer 512 2 (Encoder) 8 2048 - Dropout: 0.1, Activation: gelu
TimeMixer 64 2 (PDM blocks) - 256 - Down-sampling: 2, Moving Avg: 25, Top-K: 5
DLinear - - - - - Moving Avg Kernel: 25, Individual: False
SpikeRNN 64 2 (RNN) - - 3 Steps: 4, Tau: 2.0, LIF Threshold: 1.0
Spikformer 64 2 (Transformer) 8 256 - Steps: 4, QK Scale: 0.125, LIF Threshold: 1.0
iSpikeformer 128 2 8 512 3 tau: 2.0, Surrogate: ATan, Step: multi-step

QAP Hyperparameter

For the query attention pooling (QAP) module, we set the number of queries to q = 1. This choice is
motivated by two considerations. First, the sequential nature of time-series data inherently contains
continuous temporal dependencies, which can be effectively captured with a single query. Increasing
the number of queries provides diminishing returns for modeling temporal continuity in forecasting
tasks. Second, reducing the number of queries significantly improves computational efficiency—a
critical factor in federated learning where both communication and computation costs scale with
the number of participating clients. Hence, q = 1 strikes an optimal balance between preserving
essential temporal information and minimizing resource overhead in federated settings.

To determine the latent dimension of QAP, we conducted a controlled experiment using the iTrans-
former backbone, which consistently outperformed other candidates under our baseline setting
(batch size = 128, lookback window = 96, horizon = 48, global epochs = 100, local epochs = 1,
number of clients = 20, and maximum feature count = 20). We varied dqap across 32, 64, 128, 256
and observed the validation loss. As shown in Figure 5, the loss remained stable for smaller dimen-
sions but increased significantly at 256. The best performance was achieved at dqap = 128, which
we therefore adopt as our default setting.

A.3 EFFECT OF MAXIMUM FEATURE SIZE

Traffic dataset results under different maximum feature sizes with input length 96, horizon 48, and
QAP hidden dimension dqap = 64 are shown in Table 7. Bold numbers indicate better performance
between Fmax = 20 and Fmax = 30. Increasing the number of features per client consistently
improves forecasting accuracy across both ANN and SNN backbones, highlighting the benefit of
leveraging richer feature contexts in federated learning.

A.4 VISUALIZATION OF QAP TRANSFORMATION

To visualize the effect of QAP, we present an example using the first client from the Electricity
dataset, which contains four features. As shown in Figure 6, the raw input time series with four fea-
tures is transformed by QAP into a 128-dimensional representation (dqap = 128). Since visualizing
all 128 dimensions is impractical, we show two representative dimensions to illustrate how QAP
captures and transforms the temporal patterns from the original features into a unified representation
space.
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Figure 5: Validation loss across QAP dimensions using the iTransformer backbone. the best result
is obtained at dqap = 128.

Table 7: Comparison of forecasting performance with Fmax = 20 vs Fmax = 30 on the Traffic
dataset.

Model Fmax = 20 Fmax = 30

MSE MAE MSE MAE

iTransformer 0.3581 0.3317 0.1502 0.2057
TimeMixer 0.3564 0.3328 0.1701 0.2208

DLinear 0.3719 0.3484 0.1999 0.2390
SpikeRNN 0.3794 0.3392 0.1847 0.2298
Spikformer 0.3845 0.3560 0.1790 0.2449

Figure 6: Visualization of QAP transformation on the first client from the Electricity dataset. (Top)
Raw input time series with 4 features. (Bottom) Two representative dimensions from the 128-
dimensional QAP output.
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A.5 LIMITATIONS AND FUTURE WORK

While FedQAPer demonstrates promising results under feature-level heterogeneity, several limita-
tions remain. First, in the extreme case where a client has only a single feature channel (Fi = 1), the
attention mechanism of QAP degenerates into a trivial self-attention mapping, reducing its benefit
to that of a linear projection. Second, due to the FedPer design that applies personalized heads at
the client side, backbone architectures must exclude intrinsic heads to avoid over-parameterization
and performance degradation, which restricts the direct use of certain state-of-the-art forecasting
backbones.

As future work, we plan to investigate enhanced QAP variants that can maintain expressiveness
even when Fi = 1, for instance by incorporating cross-client regularization or slot-level contrastive
objectives. In addition, we aim to develop a more flexible backbone–head decoupling mechanism
that enables the reuse of head-equipped architectures without redundancy, possibly through selective
head freezing or shared head distillation. These directions would further improve the robustness and
generality of FedQAPer in diverse practical federated scenarios.
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