
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDQAPER: QUERY ATTENTION POOLING FOR DI-
MENSION ALIGNMENT IN FEDERATED NON-IID TIME-
SERIES FORECASTING WITH PERSONALIZED HEADS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) has shown great promise for time-series forecasting, yet
a key challenge in real-world applications is feature heterogeneity. Unlike prior
work that assumes uniform feature spaces, we construct a more realistic feature-
level non-independent and identically distributed (non-IID) scenario by allocating
subsets of features to each client. The number of features varies from 1 up to
a defined maximum. We introduce FedQAPer, a novel FL framework that com-
bines Query Attention Pooling (QAP) with FedPer algorithm that uses personal-
ized heads for each client to capture local patterns. QAP projects heterogeneous
client feature dimensions into a unified representational space, enabling collabo-
rative backbone training across diverse feature configurations. FedPer transforms
these aligned representations back to each client’s original feature dimension
through personalized heads, achieving both global knowledge integration and lo-
cal specialization. FedQAPer works for various backbone architectures, including
both artificial neural network (ANN) models and spiking neural network (SNN)
models. Experiments on multivariate time-series benchmarks demonstrate that
FedQAPer effectively handles feature heterogeneity and consistently improves
forecasting performance across different backbone models.

1 INTRODUCTION

Time-series forecasting is fundamental to modern data-driven systems, enabling proactive decision-
making in diverse fields such as renewable energy management (Gaboitaolelwe et al. (2023)) and
smart grid (Aslam et al. (2021)). For these tasks, deep learning models have demonstrated strong
performance. Artificial Neural Networks (ANNs), particularly recurrent and attention-based archi-
tectures, have emerged as a dominant paradigm due to their unparalleled ability to capture intri-
cate temporal dependencies and long-range patterns within data (Zhou et al. (2022);Wang et al.
(2024c)Nie et al. (2023)). Meanwhile, Spiking Neural Networks (SNNs) offer a distinct, com-
pelling advantage in energy efficiency and suitability for resource-constrained edge devices(Feng
et al. (2025);Hu et al. (2025)). By encoding temporal patterns through discrete spike events, SNNs
can dramatically reduce energy consumption and computational overhead compared to conventional
ANNs(Yu et al. (2024a);Skatchkovsky et al. (2019);Wen et al. (2023)). Recent advances in neuro-
morphic computing further demonstrate that SNN-based federated learning can maintain competi-
tive forecasting accuracy while achieving significant improvements in energy and communication
efficiency(Li et al. (2025);Venkatesha et al. (2021)). Given the complementary strengths of both
ANNs and SNNs, both are excellent candidates for various time-series forecasting tasks.

Traditional time series forecasting relies on centralized training paradigms that aggregate all data
onto a single server (Xu et al. (2024);donghao & wang xue (2024)). However, this approach raises
significant privacy concerns and creates substantial communication overhead, particularly problem-
atic in distributed environments (Abdel-Sater & Hamza (2024)). To address these limitations, fed-
erated learning (FL) such as FedAvg (McMahan et al. (2023)) has emerged as a promising solution
that enables collaborative model training across decentralized edge devices without sharing raw data,
thus preserving privacy and reducing communication costs(Zhao et al. (2018)). Yet, they largely ig-
nore a critical challenge in real-world applications: feature-level non-independent and identically
distributed (non-IID), where clients possess different sets of input features. Existing FL frame-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

works typically require a uniform feature space, making them ill-suited for such scenarios(Li et al.
(2020);Ghosh et al. (2021);Karimireddy et al. (2021)) . This limitation is particularly pronounced in
real-world deployments such as heterogeneous IoT devices in smart grids or transportation systems,
where devices may have different sensor configurations and data collection capabilities.

To overcome this critical limitation, we introduce FedQAPer, a novel FL framework specifically
designed to handle feature-level non-IID data in time-series forecasting. Our method enables clients
with diverse feature configurations to collaboratively train a global model while maintaining both
privacy and efficiency. Our key contributions are as follows:

• Realistic feature-level non-IID formulation: Unlike prior work that assumes identical
feature spaces, we explicitly construct a more realistic FL setting where each client has a
different number and type of features. This better reflects real-world deployments, such as
heterogeneous IoT devices in smart grids or transportation systems.

• Query Attention Pooling (QAP): We propose QAP to align heterogeneous client features
into a unified latent space. This alignment enables consistent backbone training across
clients despite their varying feature dimensions.

• Personalized Federated Learning via FedPer: We incorporate the FedPer algo-
rithm(Arivazhagan et al. (2020)), equipping each client with lightweight personalized
heads. These heads map the QAP-aligned representations back to the client’s original fea-
ture space, achieving both global knowledge sharing and local specialization.

• Backbone-Agnostic Design: FedQAPer is compatible with a wide range of backbone
architectures, including both ANN and SNN models, ensuring flexibility and broad appli-
cability.

2 RELATED WORKS

2.1 FEATURE DISTRIBUTION IN FEDERATED TIME-SERIES FORECASTING

FL has recently been explored in time-series forecasting, where distributed clients such as sensors,
base stations, or smart meters collaboratively learn forecasting models without centralizing raw
data (Fekri et al. (2022)). A key challenge in this domain is the inherent non-IID nature of local
data. Prior studies typically assume that clients share identical feature spaces, while heterogeneity
primarily arises from different in data distribution, sample sizes, or temporal dynamics.

For instance, Fed-TREND (Yuan et al. (2024)) addresses data heterogeneity by treating each fea-
ture (or a subset of features) from a single dataset as a distinct client, which then collectively trains
various forecasting models. Some approaches may partition a single dataset to match the number
of clients, ensuring that each client holds the same set of features(Maher et al. (2025)). Other stud-
ies treat an entire dataset as a single client for cross-domain feature heterogeneity. For example,
TIME-FFM(Liu et al. (2024a)) uses general time-series datasets like ETT(Zhou et al. (2021) and
Electricity(Lai et al. (2018)) as individual clients, while HSTFL(Cai & Liu (2024)) holds a unique
type of time series data, with the data types varying among different clients. It is also possible to
configure clients with multiple datasets from the same domain, rather than from different domains.
FedWindT(Arooj (2024)) considers the dataset from each wind power plant, which contains data
on wind speed, temperature, and output, as a separate client to predict the power generation of that
plant.These methods implement non-IID conditions by creating differences in the feature charac-
teristics of clients. FedAtt (Thwal et al. (2023)) predicts the next day’s closing price returns for
each of the 45 publicly traded companies using their stock-related data. Non-IID data can also be
achieved by varying the time frequency of data across clients, as seen in works like MVFL(Yang
et al. (2025)) and FedForecast(Liu et al. (2023)). However, there is limited research on distributing
a different number of features from a single dataset to clients.

2.2 SPIKING NEURAL NETWORK IN FEDERATED LEARNING

The integration of SNNs with FL offers a promising direction for streamlined, privacy-preserving AI
on resource-constrained edge devices. SNNs’ event-driven, sparse communication inherently pro-
vides high computational performance and low power consumption. Capitalizing on these advan-
tages, FedLEC (Yu et al. (2025)) presented an effective FL algorithm that utilizes SNNs to mitigate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed FEDQAPER framework.

label skewness and improve convergence in non-IID settings. Xie et al. (2022) demonstrated SNNs’
effectiveness in FL for specific appli-cation, such as traffic sign recognition in resource-limited Inter-
net of Vehicles scenarios. Beyond homogeneous model architectures, heterogeneous FL combining
convolutional and SNNs has also been explored Yu et al. (2024b). These collective efforts highlight
SNNs’ significant potential for enabling robust and resource-friendly FL deployments, particularly
where computational and communication resources are limited. Despite these advancements, the
predominant focus of current SNN-FL research largely remains on classification tasks.

3 FEDQAPER

Figure 1 provides an overview of the proposed FedQAPer framework, illustrating the end-to-end
pipeline from heterogeneous client inputs through QAP alignment and backbone training to person-
alized heads for forecasting.

3.1 FEATURE ALLOCATION FOR HETEROGENEOUS CLIENT DATA

To simulate feature-level heterogeneity across clients, we construct each client by randomly assign-
ing it a subset of features from a universal dataset, where each feature corresponds to a variate in the
multivariate time series. Specifically, given the number of clients N and a maximum feature count
Fmax, each client is assigned a unique feature subset. The size of this subset is sampled uniformly,
ranging from a single feature up to Fmax features. This design ensures that the dimensionality of
the input space varies across clients. For example, some clients may observe only a single variable,
while others access a much richer set of features. Feature assignment is performed independently for
each client, without coordination or alignment. This random assignment reflects real-world deploy-
ments where local devices or sensors monitor distinct and potentially disjoint subsets of variables,
depending on hardware constraints or installation context. Once clients are constructed, each client
directly feeds its raw features into the federated model.

3.2 QUERY ATTENTION POOLING

In federated time-series forecasting, each client observes a distinct subset of features, leading to
heterogeneous input dimensionalities. Let x(i) ∈ RB×L×Fi denote the input of client i with batch
size B, sequence length L, and feature count Fi. Since Fi varies across clients, directly sharing a
backbone is infeasible without reconciling dimensional mismatch. We introduce Query Attention
Pooling (QAP), a lightweight module that maps arbitrary client features into a unified representa-
tional space of dimension dqap. The QAP procedure consists of five steps:

(1) Value projection with slot embedding. Each raw feature value at each time step is projected
from scalar to dqap dimensions through a linear transformation, Linear(1, dqap). Each feature chan-
nel is then augmented with a learnable client-specific slot embedding s

(i)
j ∈ Rdqap for client i and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

feature j:
vt,j = Linear(x

(i)
t,j) + s

(i)
j ,

where x
(i)
t,j is the raw value of feature j at time t for client i.

(2) Cross-attention with shared queries. For each time step independently, the projected feature
representations serve as keys and values, while a small set of learnable query vectors Q ∈ RQ×dqap

(typically Q = 1) attend to them through multi-head cross-attention with h heads:

zt = MultiHeadAttention(Q, {vt,j}Fi
j=1, {vt,j}Fi

j=1).

(3) Statistical side-channel fusion. To ensure robustness when feature counts vary drastically or
when attention becomes unstable, QAP incorporates statistical summaries across the feature dimen-
sion at each time step:

meant =
1
Fi

Fi∑
j=1

vt,j , maxt = max
j=1,...,Fi

vt,j .

These are concatenated with the attention output and fused through a two-layer feedforward net-
work:

z′t = FFN([zt;meant;maxt]),

where [·; ·; ·] denotes concatenation.

(4) Query dimension removal. When using a single query (Q = 1), the query dimension is re-
moved, yielding the aligned representation

z
(i)
t = z′t ∈ Rdqap .

The complete sequence representation becomes Z(i) ∈ RB×L×dqap .

(5) Time feature integration. To incorporate temporal context while maintaining dimensional con-
sistency, time features t(i) ∈ RB×L×tdim are linearly projected into the same latent space:

t
(i)
emb = Linear(t(i)) ∈ RB×L×dqap .

The QAP-processed features Z(i) and time embeddings t(i)emb are then concatenated and projected to
maintain the target dimensionality:

Z
(i)
final = Linear

(
[Z(i); t

(i)
emb]

)
∈ RB×L×dqap .

To summarize, we apply Layer Normalization to vt,j (the value projection with slot embedding)
before attention, and dropout to the attention output. Multi-head attention uses h heads with dot-
product scaling. The side-channel feed-forward network (FFN) maps the concatenation

[zt;meant;maxt] ∈ R3dqap

back to Rdqap . After concatenating time embeddings, a linear layer maps from R2dqap back to Rdqap ,
ensuring that the backbone always receives inputs in

RB×L×dqap .

This design ensures that both raw feature information and temporal context are jointly encoded in
the unified dqap-dimensional space, enabling seamless integration with any backbone architecture.
The complete QAP procedure is also summarized in Algorithm 1.

3.3 PERSONALIZED FEDERATED LEARNING WITH FEDPER

To integrate the aligned latent representations produced by QAP into federated learning, we adopt
FedPer (Arivazhagan et al., 2020), a widely used personalization strategy. FedPer separates the
model parameters into two groups:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Query Attention Pooling (QAP) for Feature-Dimension Alignment

Input: Client data x(i) ∈ RB×L×Fi , target dimension dqap
Output: Aligned representation z(i) ∈ RB×L×dqap

1. Value projection + slot embedding:
V = LayerNorm

(
Wv(x

(i)) + Ei

)
2. Flatten for attention:
xflat = reshape(V, [B ·L, Fi, dqap])

3. Cross-attention pooling:
z = Attention(Q, xflat, xflat)

4. Statistical fusion:
µ = mean(xflat), m = max(xflat)
z = MLP

(
[z; µ; m]

)
5. Restore temporal structure:
z(i) = reshape

(
z, [B, L, dqap]

)
return z(i)

Notation: B = batch size, L = sequence length, Fi = number of features for client i, dqap = latent dimension
after QAP alignment, Wv = value projection, Ei = slot embeddings, Q = shared query vector.

(1) Shared backbone—trained collaboratively across all clients through federated aggregation.

(2) Personalized heads—remain local to each client and are never transmitted to the server.

In our setting, once QAP maps a client’s raw input with feature dimension Fi into a unified latent
space of size dqap, the shared backbone processes this aligned representation. Importantly, because
QAP already ensures consistent dimensionality across clients, the output can be directly fed into a
wide range of backbone architectures (e.g., transformers, mixers, spiking networks) without requir-
ing any additional preprocessing layers. Each client then applies its own lightweight prediction head
to transform the backbone output back to its original feature dimension Fi.

During training, backbone parameters and shared QAP components (queries, value projection, at-
tention layers, fusion networks, normalization, time feature projection, and concatenation fusion)
are uploaded to the server and aggregated. Client-specific components—including slot embeddings
and prediction heads—remain local, ensuring personalized adaptation to each client’s unique fea-
ture space and output requirements. The federated training procedure with QAP-aligned inputs and
FedPer is detailed in Algorithm ??.

4 EXPERIMENTS

We evaluate FedQAPer on two widely used multivariate time-series benchmarks: Electricity (321
features) and Traffic (862 features). Both datasets are publicly available through the extensive
repository of Wang et al. (2024b). Importantly, their high-dimensional feature spaces provide a suf-
ficiently large number of variables to construct diverse clients, making them particularly suitable
for our feature-level non-IID experimental design. For our experiments, we set the input sequence
length (look-back window) to 96 time steps, and evaluate forecasting performance under three hori-
zons: 48, 96, and 192 steps. The federated learning setup involves 20 clients, and each client receives
up to 20 features from the total feature space. All clients participate in every global communication
round, ensuring full federation. To ensure reproducibility, we fix the random seed to 42. Each dataset
is split into 80% training, 10% validation, and 10% testing. For feature alignment, we apply QAP
with query count=1 and latent dimension dqap=128. As backbones, we evaluate both ANN-based
models: iTransformer(Liu et al. (2024b)), TimeMixer(Wang et al. (2024a)), DLinear(Zeng et al.
(2022)) and SNN-based models: Spikeformer, SpikeRNN (Lv et al. (2024)) . For SNN models, we
apply SNN time step=4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Federated Training with FedPer using QAP
Input: Global epochs G, local epochs E, learning rate η, clients C
Output: Shared parameters θs, personalized parameters {θpi }i∈C

Initialization:
θs = {θback, θqap-shared, θtime} ▷ Shared parameters
θpi = {θslot

i , θhead
i } ▷ Personalized parameters per client

for round t = 1 to G do
Sample subset St ⊆ C
Server broadcasts θs to clients i ∈ St
for all client i ∈ St do in parallel

θi ← θs ∪ θpi ▷ Combine shared and personalized params
for epoch e = 1 to E do

for batch (xi, ti, yi) ∈ Di do
1. Forward pass with QAP:
zi = QAP(xi; θ

qap-shared, θslot
i)

zfus
i = zi + Linear(ti; θtime)
ŷi = Head(Backbone(zfus

i ; θback); θhead
i)

2. Update parameters:
θi ← θi − η∇L(ŷi, yi) ▷ Update all params locally

end for
end for
Send updated θsi (subset of θi) to server ▷ Keep θpi local

end for
Server Aggregation:
θs ←

∑
i∈St

wi · θsi ▷ FedAvg on shared parameters only
end for

Notation: St = sampled clients, Di = client i’s data, wi = |Di|/
∑

|Dj |.
Shared parameters: Backbone, Time proj, QAP modules (value proj, queries, attn, fuse, norm).
Personalized parameters: Client-specific Slot Embeddings, Prediction Head.

4.1 MAIN RESULTS

As shown in Table 1, FedQAPer consistently outperforms baseline approaches across all backbones
and datasets. In particular, the method achieves the best or second-best results in almost every
setting, showing both strong accuracy and robustness to different horizons and model architectures.

Metrics. Since clients possess heterogeneous output feature dimensions, direct aggregation of raw
prediction tensors is structurally infeasible. We therefore compute global metrics using dataset-size
weighted averaging of locally computed scalar metrics. Specifically, each client i first computes its
local MAE averaged over all dimensions, and the server aggregates these as:

MAEglobal =

N∑
i=1

MAEi ×
|Di|∑N
j=1 |Dj |

where |Di| denotes the size of client i’s local dataset. All metrics are computed on a normalized
scale using a StandardScaler fitted on each training split.

On the Traffic dataset, FedQAPer combined with iTransformer delivers the lowest error rates,
achieving a top performance with an average MSE of 0.378. For the Electricity dataset, the frame-
work paired with DLinear achieves an impressive result with an average MSE of 0.182. This demon-
strates FedQAPer’s ability to find the most effective model backbone for diverse datasets and max-
imize its performance. Notably, our framework is proven to be applicable to both ANN and SNN
backbones. While ANN models generally exhibit lower error rates and superior performance, the
SNN models, although showing slightly higher errors, demonstrate very competitive performance
when considering their potential for optimization on neuromorphic hardware.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Overall, FedQAPer consistently improves prediction accuracy compared to baselines, demonstrating
that feature-level alignment through QAP combined with personalized heads provides an effective
and versatile solution for federated time-series forecasting.

Table 1: Main results on Electricity and Traffic. Values are global test metrics (MSE, MAE). Lower
is better.

Model SNN ANN

iSpikeformer SpikeRNN Spikeformer iTransformer TimeMixer DLinear

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

48 0.371 0.350 0.380 0.340 0.384 0.356 0.358 0.332 0.356 0.333 0.372 0.348
96 0.401 0.359 0.401 0.354 0.406 0.358 0.387 0.343 0.390 0.348 0.340 0.359
192 0.416 0.370 0.398 0.352 0.428 0.376 0.392 0.340 0.391 0.338 0.398 0.350
Avg 0.396 0.360 0.392 0.349 0.409 0.365 0.378 0.337 0.380 0.341 0.391 0.352

Electricity

48 0.229 0.337 0.219 0.331 0.232 0.339 0.216 0.323 0.220 0.325 0.169 0.281
96 0.244 0.347 0.221 0.331 0.247 0.353 0.215 0.323 0.216 0.322 0.180 0.292
192 0.231 0.340 0.241 0.341 0.251 0.359 0.229 0.333 0.219 0.327 0.198 0.309
Avg 0.235 0.342 0.227 0.334 0.244 0.350 0.220 0.326 0.219 0.325 0.182 0.294

4.2 INFERENCE ENERGY ANALYSIS

To validate the energy efficiency of SNN models, we compare the inference energy consumption be-
tween the proposed iSpikeformer and the ANN-based iTransformer model. Inference energy is cal-
culated based on operation energy units at the 45nm technology node. MAC (Multiply-Accumulate)
operations consume 4.6 pJ, while AC (Accumulate) operations consume 0.9 pJ.

The inference pipeline of iSpikeformer consists of three stages. In the pre-backbone stage, QAP,
Slot Embedding, and Time Projection are performed with float operations, consuming MAC energy.
In the backbone stage, spike generation by LIF neurons, sparse matmul operations in SSA (Spiking
Self-Attention), and MLP blocks are executed with AC operations proportional to the firing rate. In
the final head stage, MAC operations are performed again for mean pooling and final prediction.
The key energy savings of SNNs stem from the firing rate. While ANNs perform MAC operations
for all computations, SNNs perform AC operations only when spikes are fired, achieving energy
efficiency through sparsity.

For a fair apple-to-apple comparison, we exclude the pre-backbone and head portions as they are
identical for both models, and compare only the backbone energy.

Figure 2: Inference energy comparison between iTransformer and iSpikeformer

The experimental results show that the backbone of iSpikeformer consumes 8.51 × 108 pJ, which
is approximately 113× lower than iTransformer’s 9.64 × 1010 pJ. This empirically demonstrates
that the spike-based sparse computation of SNNs is advantageous for energy-efficient deployment
on edge devices.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF FEDERATED LEARNING

To isolate the effect of FedPer, we compare federated training, against a local-only setting, where
each client trains its own model independently for 100 epoch with an early-stopping patience of 20.
For local-only results, we report the average test performance across all clients’ best models. All
results are obtained under a look-back window of 96 and a prediction horizon of 48 time steps.

As shown in Table 2, FedPer consistently outperforms local-only training across both datasets. On
the Traffic dataset, the largest gain is observed with TimeMixer, where FedPer reduces errors by
approximately 11% in MSE and 17% in MAE.On the Electricity dataset, iTransformer under FedPer
reduces MSE by about 33% and MAE by nearly 20% compared to local-only training. For SNN
backbones, FedPer also delivers consistent improvements, with error reductions in the range of
2–10% compared to local-only training. Overall, these results demonstrate that FedPer not only
preserves the strengths of each backbone but also provides clear advantages over isolated local
training in feature-level non-IID federated scenarios.

Table 2: Ablation study: federated vs local-only performance (mean ± std). Lower is better; best of
each pair is highlighted in red bold.

Model Traffic Electricity

MSE MAE MSE MAE

Fed Local Fed Local Fed Local Fed Local

SNN
iSpikeformer 0.379 0.414 0.350 0.396 0.229 0.224 0.337 0.341
SpikeRNN 0.379 0.443 0.339 0.391 0.221 0.229 0.331 0.337
Spikeformer 0.384 0.479 0.356 0.414 0.232 0.228 0.339 0.336

ANN
iTransformer 0.358 0.692 0.332 0.603 0.216 0.230 0.323 0.334
TimeMixer 0.356 0.476 0.333 0.433 0.220 0.218 0.325 0.330
DLinear 0.372 0.612 0.348 0.542 0.169 0.212 0.281 0.320

4.3.2 COMMUNICATION EFFICIENCY ANALYSIS

We analyze the communication efficiency of FedPer compared to conventional federated learning
approaches such as FedAvg. Table 3 presents the parameter distribution of our framework.

In FedPer, shared parameters (QAP and backbone) account for 578,836 (48.4%), while local param-
eters (forecast head) account for 616,160 (51.6%). Notably, the forecast head constitutes over half
of the total model parameters.

In time series forecasting, the forecast head maps from the hidden dimension to the output predic-
tions, and its parameter count scales withO(C2), where C denotes the number of features per client.
This is because the head must handle client-specific feature dimensions for prediction.

In contrast, FedPer only communicates the shared backbone and QAP, whose parameter counts re-
main constant regardless of client feature counts, resulting inO(1) communication cost with respect
to C.

This architectural choice provides substantial advantages:

• Reduced communication overhead: Only 48.4% of parameters are transmitted during
federation, while the largest component (forecast head) remains local.

• Scalability: As feature heterogeneity increases across clients, the communication cost gap
between FedAvg and FedPer widens significantly.

• Edge device suitability: The reduced bandwidth requirement enables FedPer to operate
effectively on resource-constrained edge devices with limited connectivity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Parameter distribution across components in our framework.

Component Parameters Proportion

QAP 167,296 14.0%
iSpikeformer Backbone 412,820 34.5%
Forecast Head 614,880 51.5%

Total 1,194,996 100%

These characteristics make FedPer particularly well-suited for federated time series forecasting sce-
narios with heterogeneous feature counts, limited bandwidth, and predictable communication bud-
gets.

4.3.3 EFFECTIVENESS OF QUERY-ATTENTION POOLING

Also, to evaluate the effectiveness of QAP, we compare it against a simple linear projection that
only aligns different feature dimensions to a same size. Experiments are conducted on the Traffic
dataset. As shown in Table 4, QAP significantly outperforms the linear projection baseline. This
demonstrates that QAP not only aligns heterogeneous feature dimensions across clients but also
effectively captures important temporal patterns through attention mechanisms. Furthermore, the
side channel fusion enables QAP to learn peak and average patterns, leading to improved time series
representation learning.

Table 4: Projection vs QAP comparison across different horizons (mean metrics).

Horizon MSE MAE

Projection QAP Projection QAP

48 1.0053 0.4832 0.7045 0.4172
96 0.9216 0.5663 0.6704 0.4574

192 1.1403 0.7109 0.7604 0.5433

4.4 CLIENT FEATURE DISTRIBUTION

To better understand the experimental environment, we visualize the client feature allocation under
seed=42. Figure 3 and Figure 4 present two perspectives: the number of features assigned to each
client (left) and the pairwise overlap of features across clients (right), for the Electricity and Traffic
datasets, respectively. The distributions confirm that our construction enforces completely random
feature allocation without any coordination. In both datasets, clients are heterogeneous, each receiv-
ing different feature subsets with limited overlap. The Traffic dataset exhibits an extreme case of
heterogeneity: several clients are assigned nearly the maximum of 20 features, while others have
fewer than five. This stark imbalance occurs because the Traffic dataset has a much larger pool of
features (862 total), making it more likely for random sampling to create wide disparities across
clients. In contrast, the Electricity dataset, which contains fewer total features (321), produces a
comparatively milder but still heterogeneous distribution, with most clients falling between 4 and
12 features and only partial overlap. These observations show that the proposed setup consistently
produces heterogeneous clients across datasets, with Traffic serving as a particularly challenging
benchmark due to its higher intrinsic feature dimensionality. This confirms that our experimen-
tal environment accurately simulates the realistic and difficult non-IID conditions encountered in
federated learning.

5 CONCLUSION

In this work, we presented FedQAPer, a novel federated learning framework that addresses the
critical challenge of feature-level heterogeneity in time-series forecasting. Unlike existing FL meth-
ods that assume uniform feature spaces across clients, our approach enables effective collabora-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 3: Electricity (seed=42). Left: features per client. Right: pairwise feature overlap. Random
allocation yields heterogeneous client feature spaces.

Figure 4: Traffic (seed=42). Left: features per client. Right: pairwise feature overlap. Random
allocation yields heterogeneous client feature spaces.

tion among clients with diverse feature configurations through the combination of Query Attention
Pooling (QAP) and personalized federated learning via FedPer. Our key contributions demonstrate
that feature heterogeneity, a common but underexplored challenge in real-world federated deploy-
ments, can be effectively managed through dimensional alignment and personalization. The QAP
mechanism successfully projects heterogeneous client features into a unified latent space, enabling
collaborative training of a shared backbone despite varying input dimensions. Meanwhile, the Fed-
Per strategy with personalized heads preserves each client’s ability to capture local patterns specific
to their unique feature configurations. Experimental results on the Electricity and Traffic datasets
confirm that FedQAPer consistently outperforms both baseline federated approaches and local-only
training across multiple backbone architectures, achieving improvements of up to 33% in MSE and
MAE. The framework’s compatibility with both ANN and SNN models demonstrates its generality
and practical applicability. Overall, FedQAPer represents a significant step toward practical feder-
ated learning for time-series forecasting in heterogeneous environments, bridging the gap between
theoretical FL frameworks and real-world deployments where feature diversity is the norm rather
than the exception. For future work, we aim to further enhance FedQAPer’s robustness and flexibil-
ity, exploring improved attention variants and more adaptable backbone-head designs to extend its
applicability across even more heterogeneous federated scenarios.

REFERENCES

Raed Abdel-Sater and A. Ben Hamza. A federated large language model for long-term time series
forecasting, 2024. URL https://arxiv.org/abs/2407.20503.

10

https://arxiv.org/abs/2407.20503

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Manoj Ghuhan Arivazhagan, Vinayakumar Aggarwal, Aaditya Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. In Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

Qumrish Arooj. Fedwindt: Federated learning assisted transformer architecture for collabora-
tive and secure wind power forecasting in diverse conditions. Energy, 309:133072, 2024.
ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2024.133072. URL https://www.
sciencedirect.com/science/article/pii/S0360544224028470.

Sheraz Aslam, Herodotos Herodotou, Syed Muhammad Mohsin, Nadeem Javaid, Nouman Ashraf,
and Shahzad Aslam. A survey on deep learning methods for power load and renewable en-
ergy forecasting in smart microgrids. Renewable and Sustainable Energy Reviews, 144:110992,
2021. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.2021.110992. URL https://www.
sciencedirect.com/science/article/pii/S1364032121002847.

Shuowei Cai and Hao Liu. Hstfl: A heterogeneous federated learning framework for misaligned
spatiotemporal forecasting, 2024. URL https://arxiv.org/abs/2409.18482.

Luo donghao and wang xue. ModernTCN: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vpJMJerXHU.

Mohammad Navid Fekri, Katarina Grolinger, and Syed Mir. Distributed load forecasting using smart
meter data: Federated learning with recurrent neural networks. International Journal of Electrical
Power & Energy Systems, 137:107669, 2022. ISSN 0142-0615. doi: https://doi.org/10.1016/j.
ijepes.2021.107669. URL https://www.sciencedirect.com/science/article/
pii/S0142061521008991.

Shibo Feng, Wanjin Feng, Xingyu Gao, Peilin Zhao, and Zhiqi Shen. Ts-lif: A temporal segment
spiking neuron network for time series forecasting, 2025. URL https://arxiv.org/abs/
2503.05108.

Jwaone Gaboitaolelwe, Adamu Murtala Zungeru, Abid Yahya, Caspar K. Lebekwe, Dasari Naga
Vinod, and Ayodeji Olalekan Salau. Machine learning based solar photovoltaic power forecasting:
A review and comparison. IEEE Access, 11:40820–40845, 2023. doi: 10.1109/ACCESS.2023.
3270041.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning, 2021. URL https://arxiv.org/abs/2006.04088.

Bang Hu, Changze Lv, Mingjie Li, Yunpeng Liu, Xiaoqing Zheng, Fengzhe Zhang, Wei cao, and Fan
Zhang. Spikestag: Spatial-temporal forecasting via gnn-snn collaboration, 2025. URL https:
//arxiv.org/abs/2508.02069.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning, 2021.
URL https://arxiv.org/abs/1910.06378.

G. Lai, W. C. Chang, Y. Yang, W. Liu, and S. Chien. Electricity consumption
dataset, 2018. URL https://archive.ics.uci.edu/ml/datasets/individual+
household+electric+power+consumption. Accessed: 2025-09-25.

Sai Li, Linliang Chen, Yihao Zhang, Zhongkui Zhang, Ao Du, Biao Pan, Zhaohao Wang, Lianggong
Wen, and Weisheng Zhao. Quest: A quantized energy-aware snn training framework for multi-
state neuromorphic devices, 2025. URL https://arxiv.org/abs/2504.00679.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks, 2020. URL https://arxiv.org/abs/
1812.06127.

Qingxiang Liu, Xu Liu, Chenghao Liu, Qingsong Wen, and Yuxuan Liang. Time-ffm: Towards
lm-empowered federated foundation model for time series forecasting, 2024a. URL https:
//arxiv.org/abs/2405.14252.

11

https://www.sciencedirect.com/science/article/pii/S0360544224028470
https://www.sciencedirect.com/science/article/pii/S0360544224028470
https://www.sciencedirect.com/science/article/pii/S1364032121002847
https://www.sciencedirect.com/science/article/pii/S1364032121002847
https://arxiv.org/abs/2409.18482
https://openreview.net/forum?id=vpJMJerXHU
https://www.sciencedirect.com/science/article/pii/S0142061521008991
https://www.sciencedirect.com/science/article/pii/S0142061521008991
https://arxiv.org/abs/2503.05108
https://arxiv.org/abs/2503.05108
https://arxiv.org/abs/2006.04088
https://arxiv.org/abs/2508.02069
https://arxiv.org/abs/2508.02069
https://arxiv.org/abs/1910.06378
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://arxiv.org/abs/2504.00679
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/2405.14252
https://arxiv.org/abs/2405.14252

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yixing Liu, Zhen Dong, Bo Liu, Yiqiao Xu, and Zhengtao Ding. Fedforecast: A federated learn-
ing framework for short-term probabilistic individual load forecasting in smart grid. Interna-
tional Journal of Electrical Power & Energy Systems, 152:109172, 2023. ISSN 0142-0615. doi:
https://doi.org/10.1016/j.ijepes.2023.109172. URL https://www.sciencedirect.com/
science/article/pii/S0142061523002296.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting, 2024b. URL https:
//arxiv.org/abs/2310.06625.

Changze Lv, Yansen Wang, Dongqi Han, Xiaoqing Zheng, Xuanjing Huang, and Dongsheng Li.
Efficient and effective time-series forecasting with spiking neural networks, 2024. URL https:
//arxiv.org/abs/2402.01533.

Mohamed Maher, Osama Fayez Oun, Mahmoud Saeed Mesmeh, and Radwa Elshawi. Fedforecaster:
An automated federated learning approach for time-series forecasting. In Proceedings of the 28th
International Conference on Extending Database Technology (EDBT), EDBT ’25, pp. 867–873,
Barcelona, Spain, March 25-28 2025. OpenProceedings.org. ISBN 978-3-89318-099-8. doi:
10.48786/edbt.2025.70.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2023. URL https:
//arxiv.org/abs/1602.05629.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

Nicolas Skatchkovsky, Hyeryung Jang, and Osvaldo Simeone. Federated neuromorphic learning of
spiking neural networks for low-power edge intelligence, 2019. URL https://arxiv.org/
abs/1910.09594.

Chu Myaet Thwal, Ye Lin Tun, Kitae Kim, Seong-Bae Park, and Choong Seon Hong. Transform-
ers with attentive federated aggregation for time series stock forecasting. In 2023 International
Conference on Information Networking (ICOIN), pp. 499–504. IEEE, January 2023. doi: 10.
1109/icoin56518.2023.10048928. URL http://dx.doi.org/10.1109/ICOIN56518.
2023.10048928.

Yeshwanth Venkatesha, Youngeun Kim, Leandros Tassiulas, and Priyadarshini Panda. Federated
learning with spiking neural networks. IEEE Transactions on Signal Processing, 69:6183–6194,
2021. ISSN 1941-0476. doi: 10.1109/tsp.2021.3121632. URL http://dx.doi.org/10.
1109/TSP.2021.3121632.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. arXiv preprint arXiv:2410.16032, 2024a.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark, 2024b. URL https://arxiv.
org/abs/2407.13278.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
with exogenous variables, 2024c. URL https://arxiv.org/abs/2402.19072.

Wujie Wen, Xudong Ma, Jinjun Xiong, Wen-mei Hwu, and Yihang Tang. Differentiable spike: A
backpropagation-friendly spiking neural network. In Advances in Neural Information Processing
Systems, volume 36, 2023.

Kan Xie, Zhe Zhang, Bo Li, Jiawen Kang, Dusit Niyato, Shengli Xie, and Yi Wu. Efficient federated
learning with spike neural networks for traffic sign recognition. IEEE Transactions on Vehicular
Technology, 71(9):9980–9992, 2022. doi: 10.1109/TVT.2022.3178808.

12

https://www.sciencedirect.com/science/article/pii/S0142061523002296
https://www.sciencedirect.com/science/article/pii/S0142061523002296
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2310.06625
https://arxiv.org/abs/2402.01533
https://arxiv.org/abs/2402.01533
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/1910.09594
https://arxiv.org/abs/1910.09594
http://dx.doi.org/10.1109/ICOIN56518.2023.10048928
http://dx.doi.org/10.1109/ICOIN56518.2023.10048928
http://dx.doi.org/10.1109/TSP.2021.3121632
http://dx.doi.org/10.1109/TSP.2021.3121632
https://arxiv.org/abs/2407.13278
https://arxiv.org/abs/2407.13278
https://arxiv.org/abs/2402.19072

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with $10k$ parameters.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=bWcnvZ3qMb.

Xicun Yang, JunePyo Jung, Jialiang LU, Keun-Woo Lim, and Leonardo Linguaglossa. MVFL:
Multivariate vertical federated learning for time-series forecasting, 2025. URL https://
openreview.net/forum?id=eP5ICc0584.

Di Yu, Xin Du, Linshan Jiang, Wentao Tong, and Shuiguang Deng. Ec-snn: Splitting deep spiking
neural networks for edge devices. In Kate Larson (ed.), Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence, IJCAI-24, pp. 5389–5397. International Joint
Conferences on Artificial Intelligence Organization, 8 2024a. doi: 10.24963/ijcai.2024/596. URL
https://doi.org/10.24963/ijcai.2024/596. Main Track.

Di Yu, Xin Du, Linshan Jiang, Huijing Zhang, and Shuiguang Deng. Exploiting label skewness
for spiking neural networks in federated learning, 2025. URL https://arxiv.org/abs/
2412.17305.

Yingchao Yu, Yuping Yan, Jisong Cai, and Yaochu Jin. Heterogeneous federated learning with
convolutional and spiking neural networks, 2024b. URL https://arxiv.org/abs/2406.
09680.

Wei Yuan, Guanhua Ye, Xiangyu Zhao, Quoc Viet Hung Nguyen, Yang Cao, and Hongzhi Yin.
Tackling data heterogeneity in federated time series forecasting, 2024. URL https://arxiv.
org/abs/2411.15716.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting?, 2022. URL https://arxiv.org/abs/2205.13504.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. CoRR, abs/1806.00582, 2018. URL http://arxiv.org/abs/
1806.00582.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106–11115. AAAI Press, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Fre-
quency enhanced decomposed transformer for long-term series forecasting, 2022. URL https:
//arxiv.org/abs/2201.12740.

A APPENDIX

A.1 DATASET AND METRIC DETAILS

Datasets details The details of the datasets used in the main experiment are shown in Table 5. The
dataset size in table is organized in (Train, Validation, Test).

Table 5: Dataset detailed descriptions

Dataset Dimension Frequency Window length Horizon length Dataset size
Traffic 862 Hourly 96 {48, 96, 192} (14035, 1754, 1754)
Electricity 321 Hourly 96 {48, 96, 192} (21043, 2630, 2631)

Metric details We utilize the mean square error (MSE) as loss function and mean absolute error
(MAE) for evaluation. The calculations of these metrics are :

MSE =
1

N

N∑
i=1

(
Xi − X̂i

)2
(1)

13

https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=eP5ICc0584
https://openreview.net/forum?id=eP5ICc0584
https://doi.org/10.24963/ijcai.2024/596
https://arxiv.org/abs/2412.17305
https://arxiv.org/abs/2412.17305
https://arxiv.org/abs/2406.09680
https://arxiv.org/abs/2406.09680
https://arxiv.org/abs/2411.15716
https://arxiv.org/abs/2411.15716
https://arxiv.org/abs/2205.13504
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MAE =
1

N

N∑
i=1

∣∣Xi − X̂i

∣∣ (2)

where X, X̂ ∈ RH×F denote the ground truth and prediction tensors over horizon H time steps
with F features. The metrics are calculated over all N = H × F prediction elements.

A.2 HYPERPARAMETER SETTING

Backbone Hyperparameter

Table 6 summarizes the backbone architectures and training-related hyperparameters used in our
experiments, including a batch size of 128, a learning rate of 1× 10−3, and the Adam optimizer.

Table 6: Model architecture hyperparameters. Model-specific parameters are listed in the rightmost
column.

Model Hidden Dim Layers Attention Heads dff Kernel Size Model-specific parameters

iTransformer 512 2 (Encoder) 8 2048 - Dropout: 0.1, Activation: gelu
TimeMixer 64 2 (PDM blocks) - 256 - Down-sampling: 2, Moving Avg: 25, Top-K: 5
DLinear - - - - - Moving Avg Kernel: 25, Individual: False
SpikeRNN 64 2 (RNN) - - 3 Steps: 4, Tau: 2.0, LIF Threshold: 1.0
Spikformer 64 2 (Transformer) 8 256 - Steps: 4, QK Scale: 0.125, LIF Threshold: 1.0
iSpikeformer 128 2 8 512 3 tau: 2.0, Surrogate: ATan, Step: multi-step

QAP Hyperparameter

For the query attention pooling (QAP) module, we set the number of queries to q = 1. This choice is
motivated by two considerations. First, the sequential nature of time-series data inherently contains
continuous temporal dependencies, which can be effectively captured with a single query. Increasing
the number of queries provides diminishing returns for modeling temporal continuity in forecasting
tasks. Second, reducing the number of queries significantly improves computational efficiency—a
critical factor in federated learning where both communication and computation costs scale with
the number of participating clients. Hence, q = 1 strikes an optimal balance between preserving
essential temporal information and minimizing resource overhead in federated settings.

To determine the latent dimension of QAP, we conducted a controlled experiment using the iTrans-
former backbone, which consistently outperformed other candidates under our baseline setting
(batch size = 128, lookback window = 96, horizon = 48, global epochs = 100, local epochs = 1,
number of clients = 20, and maximum feature count = 20). We varied dqap across 32, 64, 128, 256
and observed the validation loss. As shown in Figure 5, the loss remained stable for smaller dimen-
sions but increased significantly at 256. The best performance was achieved at dqap = 128, which
we therefore adopt as our default setting.

A.3 EFFECT OF MAXIMUM FEATURE SIZE

Traffic dataset results under different maximum feature sizes with input length 96, horizon 48, and
QAP hidden dimension dqap = 64 are shown in Table 7. Bold numbers indicate better performance
between Fmax = 20 and Fmax = 30. Increasing the number of features per client consistently
improves forecasting accuracy across both ANN and SNN backbones, highlighting the benefit of
leveraging richer feature contexts in federated learning.

A.4 VISUALIZATION OF QAP TRANSFORMATION

To visualize the effect of QAP, we present an example using the first client from the Electricity
dataset, which contains four features. As shown in Figure 6, the raw input time series with four fea-
tures is transformed by QAP into a 128-dimensional representation (dqap = 128). Since visualizing
all 128 dimensions is impractical, we show two representative dimensions to illustrate how QAP
captures and transforms the temporal patterns from the original features into a unified representation
space.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Validation loss across QAP dimensions using the iTransformer backbone. the best result
is obtained at dqap = 128.

Table 7: Comparison of forecasting performance with Fmax = 20 vs Fmax = 30 on the Traffic
dataset.

Model Fmax = 20 Fmax = 30

MSE MAE MSE MAE

iTransformer 0.3581 0.3317 0.1502 0.2057
TimeMixer 0.3564 0.3328 0.1701 0.2208

DLinear 0.3719 0.3484 0.1999 0.2390
SpikeRNN 0.3794 0.3392 0.1847 0.2298
Spikformer 0.3845 0.3560 0.1790 0.2449

Figure 6: Visualization of QAP transformation on the first client from the Electricity dataset. (Top)
Raw input time series with 4 features. (Bottom) Two representative dimensions from the 128-
dimensional QAP output.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 LIMITATIONS AND FUTURE WORK

While FedQAPer demonstrates promising results under feature-level heterogeneity, several limita-
tions remain. First, in the extreme case where a client has only a single feature channel (Fi = 1), the
attention mechanism of QAP degenerates into a trivial self-attention mapping, reducing its benefit
to that of a linear projection. Second, due to the FedPer design that applies personalized heads at
the client side, backbone architectures must exclude intrinsic heads to avoid over-parameterization
and performance degradation, which restricts the direct use of certain state-of-the-art forecasting
backbones.

As future work, we plan to investigate enhanced QAP variants that can maintain expressiveness
even when Fi = 1, for instance by incorporating cross-client regularization or slot-level contrastive
objectives. In addition, we aim to develop a more flexible backbone–head decoupling mechanism
that enables the reuse of head-equipped architectures without redundancy, possibly through selective
head freezing or shared head distillation. These directions would further improve the robustness and
generality of FedQAPer in diverse practical federated scenarios.

16

	Introduction
	Related works
	Feature Distribution in Federated Time-series Forecasting
	Spiking Neural Network in Federated Learning

	FedQAPer
	Feature Allocation for Heterogeneous Client Data
	Query Attention Pooling
	Personalized Federated Learning with FedPer

	Experiments
	Main Results
	Inference Energy Analysis
	Ablation Study
	Effectiveness of Federated Learning
	Communication Efficiency Analysis
	Effectiveness of Query-Attention Pooling

	Client Feature Distribution

	Conclusion
	Appendix
	Dataset and Metric Details
	Hyperparameter Setting
	Effect of Maximum Feature Size
	Visualization of QAP Transformation
	Limitations and Future Work

