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Abstract001

A limitation of modern document retrieval em-002
bedding methods is that they typically encode003
passages (chunks) from the same documents004
independently, often overlooking crucial con-005
textual information from the rest of the doc-006
ument that could greatly improve individual007
chunk representations.008

In this work, we introduce ConTEB (Context-009
aware Text Embedding Benchmark), a bench-010
mark designed to evaluate retrieval models on011
their ability to leverage document-wide con-012
text. Our results show that state-of-the-art em-013
bedding models struggle in retrieval scenar-014
ios where context is required. To address this015
limitation, we propose InSeNT (In-sequence016
Negative Training), a novel contrastive post-017
training approach which combined with late018
chunking pooling enhances contextual represen-019
tation learning while preserving computational020
efficiency. Our method significantly improves021
retrieval quality on ConTEB without sacrific-022
ing base model performance. We further find023
chunks embedded with our method are more024
robust to suboptimal chunking strategies and025
larger retrieval corpus sizes. We open-source026
all artifacts at http://hf.co/<anonymous>.027

1 Introduction028

The ability to rapidly process and query large-scale029

textual corpora is a cornerstone of many industrial030

applications, ranging from the analysis of medical031

records and legal briefs to large-scale administra-032

tive archives. As these collections grow in size and033

complexity, advanced approaches to information034

retrieval (IR) —particularly Retrieval-Augmented035

Generation (RAG) (Lewis et al., 2020)— have at-036

tracted widespread interest, yet, dealing with long037

documents remains an open challenge.038

While long context encoders have been recently039

developed (Zhang et al., 2024; Warner et al.,040

2024a), along with long context embedding mod-041

els (Zhu et al., 2024), modern document retrieval042
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Figure 1: Importance of Contextual Information:
Starting from a set of queries and mostly self-contained
document paragraphs from the Football, we progres-
sively reformulate paragraphs to remove information
redundant with the rest of the document. This leads
to sharp performance declines in standard retrieval ap-
proaches, but not in contextual retrieval approaches.

pipelines typically segment lengthy documents into 043

smaller chunks to optimize the granularity for effi- 044

cient retrieval and readability of the retrieved con- 045

tent (Liu, 2022; Xu et al., 2024; Jiang et al., 2024). 046

Traditionally, these chunks are then independently 047

fed to an embedding model, and stored in a vector 048

database for efficient future query matching. By 049

doing so, these systems remove strong semantic 050

and conceptual links between the split passages, 051

directly affecting the resulting representations. An 052

example is illustrated in Figure 2: embedding the 053

sentence "He became emperor in 1804." without 054

leveraging information about the person at hand 055

(Napoléon) given in previous paragraphs will make 056

matching queries related to Napoléon difficult. 057

Recognizing the significant business value of 058

incorporating broader contextual information into 059

retrieval, major companies have explored leverag- 060

ing large generative language models (LLMs) to 061

mitigate this limitation. Some approaches attempt 062

to circumvent retrieval altogether by feeding mil- 063

lions of tokens into the model’s context window at 064

runtime (Gemini Team et al., 2024), while others 065

reformulate individual passages by concatenating 066

them with document-level summaries and context 067

(Anthropic, 2024). However, these methods are 068
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Figure 2: Training (Left). With respect to a single query, each chunk inside a batch plays a different role, depending
on its original document, and the positive chunk. Inference (Right). Traditional embedding methods (top) produce
embeddings that do not include potentially essential contextual information. Contextualized embeddings (bottom)
can integrate document-wide information in individual chunk representations, augmenting embedding relevance
and improving downstream retrieval performance.

prohibitively expensive at scale when dealing with069

corpora comprising thousands of documents.070

Despite the critical importance of contextual-071

ized retrieval, standard benchmarks fail to cap-072

ture this challenge. Evaluations traditionally fo-073

cus on assessing the effectiveness of embedding074

models (Thakur et al., 2021; Muennighoff et al.,075

2022; Saad-Falcon et al., 2024), but they rely on076

datasets where document chunks are by design077

self-contained answer to the queries, which is a078

largely idealized scenario in practice (Thakur et al.,079

2025). Consequently, benchmarks fail to highlight080

the limitations of current retrieval strategies in han-081

dling context-dependent passages. Worse, recent082

findings by Zhou et al. (2025) indicate that some083

widely-used benchmarks exhibit biases that favor084

standard context-agnostic retrieval methods. Com-085

panies such as Anthropic have acknowledged these086

issues and maintain proprietary contextual retrieval087

benchmarks that remain unavailable to the public1,088

underscoring the gap between academic evalua-089

tions and real-world industrial needs.090

Contribution 1: ConTEB. We introduce the091

Context-aware Text Embedding Benchmark, de-092

signed to assess the ability of retrieval systems093

to leverage information from the entire document094

when indexing and retrieving document chunks.095

ConTEB comprises both custom-designed tasks for096

fine-grained analysis, and practical retrieval eval-097

uation settings spanning multiple document types,098

domains, and situations in which leveraging con-099

text is helpful to produce more meaningful chunk100

1https://www.anthropic.com/news/
contextual-retrieval

representations. We evaluate standard embedding 101

methods on the benchmark and find they struggle 102

when contextual awareness is required. 103

Contribution 2: Efficient Contextual Training. 104

Improving upon the Late Chunking method (Gün- 105

ther et al., 2024), we propose a novel embedding 106

post-training method that optimizes information 107

propagation between same-document chunks at in- 108

dexing time to ensure embeddings are better contex- 109

tualized. Our method largely boosts performance 110

on ConTEB, with minimal computational overhead. 111

Through extensive ablations, we detail critical de- 112

sign choices and show our method improves dis- 113

plays increased robustness to sub-optimal chunking 114

strategies and produces representations that scale 115

better with corpus size. 116

We open-source all project artifacts, including 117

the benchmark, models and training data2. 118

2 Problem Formulation & Related Work 119

2.1 Retrieval Frameworks 120

In this paper, we consider the traditional retrieval 121

framework where a retrieval system given a query q, 122

searches a corpus D for relevant documents. Each 123

document d ∈ D is scored based on its content by 124

first embedding the text into a vector space, and 125

then computing a similarity measure. The similar- 126

ity between a query q and a document d is defined 127

as 128

sim(q, d) = f
(
ϕ(q), ϕ(d)

)
129

where ϕ maps text into an n-dimensional vector 130

space and f : Rn×Rn → R is a similarity function, 131

2http://hf.co/<anonymous_for_peer_review>.
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such as cosine similarity or dot product.132

In applied settings, individual documents are133

often too long to be practical for retrieval purposes134

(Liu, 2022; Zhong et al., 2025a). Each document135

d is thus divided into segments called chunks by a136

partitioning function P defined as137

P(d) = {c1, c2, . . . , cNd
}138

In the standard retrieval setting, the score is139

computed solely based on chunk content:140

sim(q, c) = f
(
ϕ(q), ϕ(c)

)
141

Additional information (priors) is however of-142

ten available to the document embedding system.143

Typically, knowledge of the entire corpus D, or of144

structural metadata Mc such as neighboring docu-145

ment chunks obtained through P , can be leveraged146

by a modified embedding function ϕ2, yielding the147

following similarity score:148

sim(q, c) = f
(
ϕ(q), ϕ2

(
c,Mc,D

))
149

This work is centered on efficiently integrating pri-150

ors about the entire document when embedding a151

sub-document chunk.152

2.2 Integrating Contextual Information153

Neural embedding models for passage-level text154

representation, popularized by SentenceBERT155

(Reimers and Gurevych, 2019), have enabled re-156

trieval systems to move beyond lexical matching157

(Robertson et al., 1994). To include contextual158

information in these retrievers, previous works pro-159

posed methods that either operate offline during160

indexing, or online during querying when faced161

with a user request.162

Indexing. The chunking strategy is a crucial de-163

sign choice and often aims to optimize chunk self-164

containment. Fixed-size approaches with overlaps165

preserve continuity, while structure-aware chunk-166

ing respects natural text boundaries, such as para-167

graphs or sentences. Semantic chunking, by con-168

trast, splits text into topic-aligned segments. These169

methods appear in frameworks such as LlamaIn-170

dex (Liu, 2022) and LangChain (Chase, 2022),171

but different queries may need different chunk172

sizes. Thus, dynamic chunking techniques have173

emerged to adapt segmentation on the fly (Zhong174

et al., 2025b; Qian et al., 2024). Beyond optimiz-175

ing chunking, some indexing approaches enrich176

chunks with broader context by preprending LLM- 177

generated document summaries, contextual infor- 178

mation or metadata Anthropic (2024); Poliakov and 179

Shvai (2024). Similarly, Morris and Rush (2024) 180

demonstrate that appending learned "corpus" em- 181

beddings to queries and documents can further im- 182

prove retrieval. Other indexing-time techniques 183

involve organizing chunks into higher-level data 184

structures. For example, Edge et al. (2024) and 185

Sarthi et al. (2024) cluster related chunks into se- 186

mantic graphs or tree hierarchies. 187

Querying. In contrast, query-time solutions rely on 188

iterative or agentic loops to refine retrieval dynami- 189

cally. LLMs can be used to iteratively update the 190

query or request additional chunks based on partial 191

results (Xiong et al., 2021; Trivedi et al., 2023), or 192

even to run “self-checks” and seek extra context 193

when needed (Asai et al., 2023). While these adap- 194

tive techniques can better address complex, multi- 195

hop queries, they typically require much more com- 196

putational resources during inference. 197

3 ConTEB: Context-aware Text 198

Embedding Benchmark 199

3.1 Benchmark Design 200

Existing benchmarks often rely on (or assume) self- 201

contained document chunks. This creates a mis- 202

leading perception that contextualization offers lit- 203

tle to no benefit, which in practice is rarely the 204

case. To address this gap, the ConTEB benchmark 205

philosophy is to explicitly be composed of tasks in 206

which leveraging document-wide context should 207

lead to performance improvements. Our bench- 208

mark originates from two sources: new datasets 209

specifically created for ConTEB, and repurposed 210

academic datasets. We take special care in select- 211

ing data sources spanning from multiple domains, 212

including realistic industrial scenarios. 213

Why Context? Context can help resolve ambiguity, 214

such as distinguishing between multiple meanings 215

of a word or resolving pronouns and entity refer- 216

ences (co-reference resolution). It is also crucial 217

when documents have a structured format, like le- 218

gal or scientific texts, where understanding table of 219

content hierarchy is key. 220

Concept. To isolate the importance of contextual 221

cues and diminish other confounding factors, we 222

construct three benchmark tasks to study contextu- 223

alization in controlled experimental settings (Allen- 224

Zhu, 2024). We also evaluate more practical re- 225

trieval settings at larger scale where we suspect 226
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Dataset Queries Docs
Tokens per

Chunk
Chunks per
Document Context Utilization

In
D

om
ai

n MLDR 100 100 170.5 15.4 Document-level reasoning
NarrativeQA 8575 355 154.5 4.9 Document-level reasoning
SQuAD 2067 2067 19.1 8.5 Chunk not self-contained

O
ut

of
D

om
ai

n

Football 1767 224 86.1 3.6 Co-reference resolution
Geography 5283 530 113.6 4.3 Co-reference resolution
Insurance 120 1 80.7 60.0 Structure understanding
Covid-QA 1111 115 153.9 29.1 Chunk not self-contained
ESG Reports 36 30 205.5 123.4 Context disambiguation
NanoBEIR∗ 650 56 723 199.4 1 No context is needed

Table 1: Merged ConTEB dataset details. Controlled datasets are highlighted in bold blue. NanoBEIR values are
summed over the 13 datasets that compose it.

contextualization to help, and in which we rely on227

organic, pre-existing query-document pairs.228

3.2 Benchmark Construction229

Our generic benchmark curation pipeline is com-230

posed of three stages. We provide additional cura-231

tion details in Appendix A.232

1: Chunking. We select long documents spanning233

a variety of domains and chunk them through a234

structure-aware method3 (Rajpurkar et al., 2016;235

Möller et al., 2020; Kočiský et al., 2017; Chen et al.,236

2024; Faysse et al., 2025).237

2: Pairing. We use manual answer span annota-238

tions (SQuAD, ESG) or synthetically label them239

with a LLM (CovidQA, MLDR, NarrativeQA), to240

match queries with chunks obtained in Stage 1.241

This ensures queries are not solvable by design242

(Thakur et al., 2025). Alternatively, in our con-243

trolled experiment tasks, we generate queries per-244

taining to the chunks manually (Insurance) or syn-245

thetically using LLMs (Football, Geography).246

3: Sabotage. The manually created questions in247

Insurance are designed to be ambiguous without248

prior knowledge of the document structure. This249

is manually verified in this phase. Going a step250

further, in Football and Geography, we reformulate251

chunks with the help of a LLM to remove explicit252

mentions of the original document’s theme which253

all queries mention. We do so in all but the first254

chunks of each document, explicitly enforcing the255

need for context.256

In addition to our contextual scenarios, we use257

NanoBEIR (Thakur et al., 2021) to evaluate non-258

regression on standard non-contextualized embed-259

ding tasks.260

3RecursiveCharacterSplitter with a threshold of 1000 char-
acters (Chase, 2022)

By combining hard tasks in controlled environ- 261

ments, repurposed academic benchmarks, and real- 262

world industrial queries, our benchmark provides 263

a comprehensive assessment of retrieval models 264

in both standard and context-dependent retrieval 265

scenarios. 266

3.3 Training Dataset 267

Open training data is a key factor to ensure fair 268

comparison across methods and robust conclusion. 269

In addition to our benchmark, we construct and re- 270

lease a training dataset composed of query and doc- 271

ument chunk pairs. It includes the training splits 272

of MLDR and NarrativeQA, repurposed with our 273

previously detailed pipeline. To increase the num- 274

ber of queries, we further use GPT-4o to gener- 275

ate relevant supplementary synthetic queries. We 276

also concatenate SQuAD chunks from the same 277

Wikipedia article, keeping track of the original 278

question-passage associations. The full dataset con- 279

tains 9881 unique long documents (3698 tokens 280

on average), corresponding to a total of 232’587 281

chunks and 307’241 queries (see subsection A.6). 282

Scaling the dataset to more sources, through diverse 283

synthetic augmentations and refinement–based aug- 284

mentation methods (Lee et al., 2024; Wang et al., 285

2024) is left for future work. 286

3.4 Baselines 287

Training-Free. We evaluate a selection of 288

off-the-shelf methods that are strong in their 289

size categories such as a standard single- 290

vector embedding model based on ModernBERT 291

(modernbert-embed-large (Warner et al., 2024b; 292

Chaffin, 2025b)), its multi-vector ColBERT equiv- 293

alent (Khattab and Zaharia, 2020; Chaffin, 2025a) 294

and Okapi BM25 (Robertson et al., 1994), a strong 295
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lexical matching method. Additionally, we com-296

pare against various contextualization approaches.297

Specifically, we include Anthropic’s contextual re-298

trieval approach (Anthropic, 2024)4, and evaluate299

Late Chunking (Günther et al., 2024) without spe-300

cific fine-tuning using modernbert-embed-large.301

These methods cover standard practices with vary-302

ing level of complexities and indexing budgets.5303

Training-Based. For fair evaluation, we304

also fine-tune the sentence embedding method305

modernbert-embed-large on the training dataset306

with the same batch construction strategy as when307

training our main method, ensuring performance308

differences only stem from methodological design.309

4 Training Contextual Embedders310

In this work, we leverage recent advances in long-311

context embedding models (Zhang et al., 2024;312

Warner et al., 2024a) to improve upon existing ap-313

proaches through novel training strategies.314

4.1 Architecture315

Late Chunking. Late Chunking (Günther et al.,316

2024) (LC) is a training-free token pooling tech-317

nique designed to enable information propagation318

across same-document chunks. Formally, given a319

document d split into chunks {c1, . . . , cNd
}, dense320

retrievers compute independent representations:321

ϕ(d) = [ϕ(c1), ϕ(c2), . . . , ϕ(cNd
)]322

In Late Chunking, chunks are concatenated and323

the whole sequence representation is computed in324

a single-forward pass:325

H = ϕ(c1 ⊕ c2 ⊕ · · · ⊕ cNd
)326

where H = [h1, h2, . . . , hT ] consists of token-327

level representations. We then apply average pool-328

ing within each original chunk to obtain chunk-329

wise representations:330

ϕLC(ci) =
1

|ci|
∑
t∈ci

ht, ∀i ∈ {1, . . . , Nd}331

This allows each chunk representation to bene-332

fit from contextualization over the full document333

before aggregation.334

4We use Qwen-2.5-7B-Instruct as the generative model
which we serve on a 80GB A100 GPU with vLLM and
modernbert-embed-large as the embedding model

5We also evaluate RAPTOR (Sarthi et al., 2024) with
Qwen-2.5-7B-Instruct and cde-small-v2 (Morris and
Rush, 2024) but find them to be poorly adapted to our problem
settings.

Late Interaction. Late Interaction (LI) models 335

(Khattab and Zaharia, 2020; Chen et al., 2024) are 336

retrieval methods that do not pool token represen- 337

tations and instead store all token embeddings of 338

each document. This approach boosts performance, 339

especially on long-context retrieval tasks (Warner 340

et al., 2024a; Zhu et al., 2024), at the expense of 341

storage cost. In this work, we propose extending 342

Late Chunking approaches to LI models by ap- 343

plying standard LC but simply forgoing the final 344

pooling and storing token embeddings depending 345

on their original chunk memberships. 346

ϕLI(ci) = {ht : t ∈ ci}, ∀ i ∈ {1, . . . , Nd} 347

Setup. As the base single-vector embed- 348

ding model for our experiments, we use 349

modernbert-embed-large (Chaffin, 2025b) 350

(396M parameters), which is fine-tuned for 351

retrieval tasks using the method from Nuss- 352

baum et al. (2024). Respectively, we leverage 353

GTE-ModernColBERT (Chaffin, 2025a) (149M 354

parameters) for our late interaction experiments. 355

Both models are based on ModernBERT (Warner 356

et al., 2024a) which supports a context length 357

of up to 8,192 tokens, significantly surpassing 358

the 512-token limit of traditional BERT models, 359

and thereby enabling the processing of longer 360

documents in a memory efficient manner, which is 361

critical to our method. 362

4.2 Learning Objective 363

Late Chunking enables information "leakage" be- 364

tween chunks of the same document. While this 365

training-free method showed promises, we con- 366

struct a learning objective to explicitly optimize 367

contextual embedding models for this setting. Our 368

aim is twofold: optimizing chunk representations 369

to integrate relevant document-level information, 370

all while ensuring they retain their specificity with 371

respect to other same-document chunks, in order 372

to prevent embedding collapse. 373

Previous works (Karpukhin et al., 2020; Ni et al., 374

2021; Izacard et al., 2021; Li et al., 2023; Wang 375

et al., 2022; Nussbaum et al., 2025) have relied 376

on various learning objectives inspired by the con- 377

trastive learning literature (Schroff et al., 2015). A 378

natural choice is the InfoNCE objective (Oord et al., 379

2018), which samples "negative" embeddings from 380

other documents of the same batch. 381

In our approach, we combine it with an auxiliary 382

in-sequence contrastive loss, where chunks orig- 383

inating from the same document as the positive 384
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serve as hard negatives during training. Intuitively,385

training Late Chunking models contrastively with386

chunks from different documents encourages in-387

formation propagation within each document and388

improves document identification. On the other389

hand, the contrastive term between same-document390

chunks ensures each chunk retains its specificity,391

and remains identifiable w.r.t. to its neighbors. This392

aspect is further motivated by the fact that in prac-393

tice, queried corpora often contain negative docu-394

ments stemming from the same source. Figure 2395

illustrates chunk roles across a training batch.396

Training Loss. To balance the contribution of397

in-sequence and in-batch negatives, we define the398

weighted InfoNCE loss as:399

L = λseqLseq + (1− λseq)Lbatch (1)400

where λseq ∈ [0, 1]. Loss terms are defined as:401

Lseq = −E

[
log

exp (q · k+/τ)∑
ki∈Nseq

exp (q · ki/τ)

]
402

Lbatch = −E

[
log

exp (q · k+/τ)∑
kj∈Nbatch∪{k+} exp (q · kj/τ)

]
403

Here, q denotes the query representation, and k+404

is the gold chunk representation, which belongs to405

Nseq, the set of chunks from the same sequence as406

k+. Temperature τ > 0, and Nbatch is the set of all407

in-batch samples that do not belong to Nseq. This408

extends to late interaction models by replacing the409

dot product between query and chunk embeddings410

by ColBERT’s MaxSim between the multiple query411

and document token embeddings.412

By tuning λseq, we can adjust the relative im-413

portance of in-sequence versus in-batch contrastive414

learning (Figure 3) resulting in our InSeNT method.415

4.3 Model training416

Our training strategy (InSeNT) is designed to be417

lightweight and to occur on top of capable pre-418

trained embedding models without degrading their419

capabilities. We use AdamW, a cosine decay learn-420

ing rate scheduler with a 5% warm-up phase and421

a learning rate of 5e− 5 and train for 2 epochs on422

our training dataset. Batches are constructed by423

sampling 4 long documents per device, retrieving424

all corresponding chunks and concatenating them425

with a separator token in between. As documents426

in our training set contain more than 20 chunks on427

average, which are themselves often linked to one 428

or multiple queries, a batch contains more than 100 429

query, positive, negatives triplets to learn on.6 A 430

single epoch takes less than 1 H100 GPU hour. 431

5 Results 432

Document-wide context is essential. As seen in 433

Table 2, methods leveraging contextual information 434

widely outperform non-contextual methods across 435

ConTEB tasks. These results highlight the criti- 436

cal role of context-aware embeddings in improv- 437

ing retrieval performance in such settings, whether 438

through untrained late chunking approaches or ex- 439

pensive context-aware reformulation approaches. 440

As expected, the gap is even more notable in Con- 441

TEB’s controlled setting experiments. 442

Improving contextual information propagation. 443

Our results clearly show that InSeNT variants 444

outperform their untrained counterpart (+14.6 445

nDCG@10 for ModernBERT, +11.5 for Modern- 446

ColBERT). Importantly, this is not due to the nature 447

of the training data itself; the non-contextual Mod- 448

ernBERT model trained on the same data (Mod- 449

ernBERT + Training) does not improve upon the 450

untrained baseline. Furthermore, the tasks that dis- 451

play the biggest improvements are the controlled 452

setting tasks Insurance, Football, that are explic- 453

itly designed to elicit information given in previous 454

paragraphs, and that are out-of-domain w.r.t. our 455

training set. 456

Late Interaction. Interestingly, while LI mod- 457

els are good at long-context retrieving, they are 458

poorly suited to out-of-the-box late chunking (-0.3 459

nDCG@10 w.r.t. ModernColBERT without LI). 460

We posit that since token embeddings are never 461

pooled, these models learn very local features and 462

cannot leverage information from neighboring to- 463

kens. Once trained with our method, ModernCol- 464

BERT+InSeNT displays large performance gains 465

across the board (+11.5 nDCG@10 w.r.t. Mod- 466

ernColBERT + Late Chunking), showcasing an 467

increased ability to leverage external context. 468

Context can add noise. The CovidQA task sticks 469

out from the rest as untrained late chunking ap- 470

proaches severely degrade performance. Qualita- 471

tive analysis, as well as the strong performance of 472

the non-contextualized ModernColBERT method, 473

indicate that the query-chunk pairing are often very 474

extractive and match on technical medical terms, 475

6In MB+Training, data is sampled the same way for fair
evaluation but flattened in batch, corresponding to per-device
batch sizes of more than 100.
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Non-Contextual Models
BM25 69.4 56.2 74.7 53.7 19.9 12.2 45.6 0.0 41.5 4.29 43.4
ModernBERT Large 78.4 73.4 77.9 61.7 36.8 19.1 56.2 12.4 52.0 17.83 63.2
ModernColBERT 83.5 74.2 80.4 78.2 44.2 30.2 68.5 16.1 59.4 14.99 67.7
ModernBERT Large + Training 78.7 74.0 77.3 55.2 20.0 22.9 58.7 13.9 50.1 16.44 54.5

Untrained Contextual Models
Anthropic Contextual 85.4 77.1 77.7 60.7 34.8 53.9 89.4 100.0 72.4 1890.94 63.2
ModernBERT Large + Late Chunking 78.5 77.1 75.8 40.0 31.7 54.6 89.6 41.0 61.0 15.81 63.2
ModernColBERT + Late Chunking 84.1 75.7 80.7 75.5 44.4 31.3 67.9 13.2 59.1 7.41 68.2

Trained Contextual Models
ModernBERT Large + InSeNT 88.7 80.9 81.3 56.0 43.1 63.9 90.7 100.0 75.6 15.26 63.2
ModernColBERT + InSeNT 90.1 75.1 83.5 67.7 48.3 64.6 89.8 45.9 70.6 7.57 59.2

Table 2: Evaluation (nDCG@10) of baseline models and our proposed method on ConTEB. Runtime is per-document
indexing time in milliseconds; smaller is better, so the fastest model is bolded.
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Figure 3: Importance of λseq: Results for
ModernBERT-Large trained with varying λseq. Op-
timal values depend on the task, but integrating both
in-sequence and in-batch negatives is crucial to perfor-
mance.

thus rendering context less useful. Our results show476

that naively applying late chunking in this setting477

adds noise and leads to notable performance drops478

(-21 nDCG@10), which are in large part recovered479

through our training method (+16 nDCG@10).480

λseq matters. The training objectives are to induce481

chunk representations to integrate document-level482

information (role of in-batch negatives) while main-483

taining their specificity with respect to other same484

document chunks (role of in-sequence negatives).485

By varying λseq from Equation 1, we weight the486

importance of both objectives.487

After training a series of models with varying λseq,488

we see on Figure 3 that training with only in-489

sequence or in-batch negatives yields the worse re-490

sults, and the optimal λseq varies depending on the491

task. When documents need to be disambiguated 492

between one another (NanoBEIR, Geography), up- 493

weighting in-batch negatives seems optimal. On 494

tasks where the challenge lies in locating informa- 495

tion within a given document (NarrativeQA, Covid- 496

QA), in-sequence negatives play a large role, but 497

still need to be combined to in-batch negatives. 498

Striking the optimal trade-off is thus very use-case 499

dependent, and we opt for λseq = 0.1 after tuning 500

on the validation split of our training dataset. 501

Efficiency-Performance. As shown in the Run- 502

time column of Table 2, our approach is very ca- 503

pable on contextual tasks, yet does not add much 504

computational overhead. In fact, we find slight 505

indexing speed improvements, attributed to our 506

approach’s reduced need for padding in-batch se- 507

quences of different lengths. While Anthropic Con- 508

textual achieves sensibly similar performances on 509

ConTEB, it relies on costly LLM-based summa- 510

rization and chunk reformulation, that are hardly 511

scalable to huge corpora (120x slower). 512

Short-Context Performance. Careful hyperpa- 513

rameter tuning enables our best model to main- 514

tain strong performance on standard non-contextual 515

benchmarks (NanoBEIR), demonstrating that long- 516

context optimization does not compromise short- 517

context retrieval. Interestingly, LI models suffer 518

from more degradation, which we posit is due to 519

the original reliance on very local features modi- 520

fied through our training. Mixing in non-contextual 521

"replay" data during training or merging models 522

7
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Figure 4: Contextualized models trained with InSeNT are more robust to aggressive chunking strategies that remove
essential information from chunks (left), and scale better with corpus size and ambiguity (right).

(Wang et al., 2025) should further enable preserv-523

ing the original embedding model’s performances.524

6 Ablations525

Robustness to chunking. We assess our method’s526

robustness to poor chunking strategies using527

SQuAD annotations. Each originally self-contained528

chunk is split in multiple progressively smaller sub-529

chunks to while we keep track of the annotated530

answer span to identify the gold chunk. Even-531

tually, these sub-chunks become too small to be532

self-contained and end up lacking sufficient infor-533

mation to be relevantly embedded on their own.534

Figure 4 (left) demonstrates that contextual embed-535

dings greatly improves robustness w.r.t. suboptimal536

chunking. The model is able to elicit information537

from neighboring chunks to integrate contextual538

information within smaller sub-chunks, leading to539

a much more uniform retrieval performance across540

a wide range of chunk sizes.541

Robustness to corpus size. Common in the indus-542

try are templated documents that differ mostly by a543

key aspect (year, company name) but contain other-544

wise very similar information. We study the dynam-545

ics of retrieval performance w.r.t. to the amount of546

similar documents in the corpus by computing scal-547

ing laws in which we iteratively vary the number of548

unique documents (composed of multiple chunks)549

in the corpus. We observe in Figure 4 (right) that550

contextual embeddings scale vastly differently than551

their independently embedded counterpart. Intu-552

itively, the greater the amount of similar documents553

and chunks in the corpus, the harder it is for a re-554

trieval system to match the correct ones, but when555

embedding models are able to leverage external556

context, this effect is attenuated.557

Information Propagation. We experiment with558

concatenating semantically similar yet indepen- 559

dent short chunks as "artificial" long documents. 560

The resulting model is contextual as it uses late 561

chunking, but exhibits performances in-line with 562

non-contextual baselines (ModernBERT Large + 563

Training). We posit training on arbitrarily concate- 564

nated chunks, which by design are not contextually 565

linked, teaches the model not to use information 566

from neighboring chunks. This highlight the neces- 567

sity of sourcing organic long-context data during 568

training to induce correct training dynamics. De- 569

tails in Table 5 in Appendix C. 570

7 Conclusions 571

In this work, we introduced ConTEB, a bench- 572

mark designed to assess the effectiveness of re- 573

trieval models in leveraging document-wide con- 574

textual information. Our evaluation demonstrates 575

that standard retrieval models struggle in context- 576

dependent settings, while our proposed approach 577

InSeNT, which combines late chunking and a novel 578

training methodology performs strongly on Con- 579

TEB without additional compute costs. 580

Future Work. Scaling our approach with recent 581

decoder models with extended context lengths (e.g., 582

1M+ tokens (Yang et al., 2025)) would enable em- 583

bedding entire books or lengthy documents in a sin- 584

gle forward pass, potentially unlocking new capa- 585

bilities for large-scale document retrieval. Second, 586

adapting our method to multi-modal embedding 587

pipelines that have less control over the chunking 588

strategy (page level visual document embeddings 589

for instance) could further enhance retrieval sys- 590

tems in industrial applications with visually rich 591

contextual documents (Faysse et al., 2025; Ma 592

et al., 2024). 593
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Limitations594

While our approach enhances retrieval performance595

in context-dependent settings, limitations persist.596

Context Length. Our method is applied to long-597

context encoders that currently support sequences598

of up to 8k tokens. Scaling this approach to han-599

dle 1M+ token contexts with decoder-based mod-600

els presents significant compute and memory chal-601

lenges. Additionally, it requires rethinking data602

construction processes to ensure longer documents603

are effectively leveraged.604

Data Generation. The creation of training and605

evaluation data relies on existing datasets and semi-606

synthetic generation pipelines. However, a fully607

automated and scalable method for generating high-608

quality queries that effectively induce non-trivial609

context utilization remains an open challenge.610

Evaluation. While our model demonstrates strong611

cross-domain performance, further validation in612

real-world applications, various use cases, and mul-613

tiple languages is necessary to assess its robustness614

and generalizability.615

Ethical Considerations616

Bias. As our method introduces a novel way of617

leveraging document-wide context, the nature of618

information propagation between chunks remains619

uncertain. This may introduce biases that tradi-620

tional embedding models do not encounter, neces-621

sitating further analysis.622

Ecological Impact. Our post-training approach is623

computationally efficient, with total training and624

evaluation runs requiring fewer than 100 GPU625

hours on H100 hardware. By providing a cost-626

effective alternative to LLM-dependent contextual-627

ization techniques, we aim to reduce the environ-628

mental footprint of large-scale retrieval systems.629

Social Impact. Improved retrieval capabilities can630

drive significant business benefits, particularly in631

industries that rely on processing extensive and632

structured documents, such as legal, medical, and633

financial sectors.634
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A ConTEB Details 870

This appendix describes the data generation process 871

employed in this project. The methodology varies 872

based on the dataset source, but generally, long 873

documents are segmented into smaller chunks. If 874

preexisting queries are available, they are mapped 875

to relevant chunks using either provided answer 876

spans (e.g., SQuAD) or tagged using GPT-4o. In 877

cases where queries are unavailable, a large lan- 878

guage model (LLM) generates them before asso- 879

ciating them with the relevant text segments. This 880

approach, illustrated in 5, is systematically applied 881

across multiple datasets. 882

A.1 Wiki-based Datasets 883

Football and Geography are our two wiki-based 884

datasets, focusing on the Sports and Geography 885

domains. 886

Wikipedia Data Extraction The pipeline first re- 887

trieves Wikipedia summaries for a given person 888

using the wikipediaapi library. The extracted 889

summary is then split into paragraphs. 890

Text Rephrasing Each paragraph from the 891

Wikipedia summary undergoes a rephrasing pro- 892

cess to remove direct mentions of the person’s 893

name while maintaining the original context. The 894

rephrased text replaces names with pronouns such 895

as ‘he’ or ‘she’. This transformation is performed 896

using the GPT-4o model via the following prompt: 897

Here is a Wikipedia article: [Full 898

Wikipedia Summary] Can you rephrase 899

the following paragraph to remove all 900

mention of the name of the person the 901

article is about? You can leave other 902

names as is and can replace the name 903

with words such as ’he/she’ or other 904

generic paraphrases. [Paragraph to 905

be rephrased] 906

Question Generation For each paragraph in the 907

summary, the model generates three questions re- 908
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Figure 5: Benchmark creation process.

# Queries # Docs Tokens/Chunk Chunks/Doc Query generation Chunk Annotation

In Domain
Chunked MLDR 100 100 170.5 15.4 Synthetic Synthetic
NarrativeQA 8575 355 154.5 4.9 Human Synthetic
SQuAD Chunked 2067 2067 19.1 8.5 Human Manual

Out-Of-Domain
Football 1767 224 86.1 3.6 Synthetic Human in the loop
Geography 5283 530 113.6 4.3 Synthetic Human in the loop
Insurance 120 1 80.7 60 Human Manual
Covid-QA 1111 115 153.9 29.1 Human Synthetic
ESG Reports 36 30 205.5 123.4 Human Manual
NanoBEIR* 650 4363.3 199.4 1 Human Manual

Table 3: Merged ConTEB dataset details and statistics. Controlled datasets are highlighted in bold blue. Values
marked – indicate missing statistics in the source tables. [MF: update this and add ESG stats] [MC: add context
type?]

lated to the person. The questions explicitly men-909

tion the person’s name but do not include other910

named entities such as dates or proper nouns. The911

generation follows this structured prompt:912

Here is a Wikipedia article:913

[Full Wikipedia Summary]914

Using specifically the following para-915

graph, can you ask 3 questions related916

to the person the article is about? Each917

question must mention the name of the918

person, but the question should not con-919

tain other named entities (dates, other920

proper nouns). Format the response as a921

Python list of strings and do not output922

anything else.923

[Paragraph to be used for924

question generation]925

A.2 NarrativeQA, COVID-QA, MLDR926

NarrativeQA (literature), MLDR (encyclopedic)927

and Covid-QA (medical) consist of long documents,928

associated to existing sets of question-answer pairs.929

We chunk these documents, and use GPT-4o to 930

annotate which chunk, among the gold document, 931

best contains information needed to answer the 932

query. Since chunking is done a posteriori without 933

considering the questions, chunks are not always 934

self-contained and eliciting document-wide context 935

can help build meaningful representations. 936

Synthetic Query Generation: To extend 937

MLDR for our training dataset, OpenAI’s GPT- 938

4o model is prompted to generate 20-50 realistic 939

queries per document, ensuring that each query 940

aligns with the content of at least one chunk. This 941

is on top of the queries that are already incuded in 942

the dataset. Synthetic queries are included only in 943

our training dataset. 944

A.3 Insurance 945

Insurance is composed of a long document with 946

insurance-related statistics for each country of the 947

European Union. Countries are often not referred 948

to in-text, but only once in the section title. There- 949

fore, certain chunks require knowledge of their 950

position within the document to be properly dis- 951

ambiguated from others. Questions are manually 952
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crafted to require structural understanding for ac-953

curate chunk matching. This process, in addition954

to manual verification of the contextuality quality,955

makes Insurance a controlled dataset. Since ques-956

tions are crafted after the chunking process, the957

annotation results directly from the manual ques-958

tion generation process.959

A.4 SQuAD960

SQuAD is an extractive QA dataset with questions961

associated to passages and annotated answer spans,962

that allow us to chunk individual passages into963

shorter sequences while preserving the original an-964

notation.965

A.5 ESG Reports966

ESG Reports contains long documents from the967

fast-food industry, with manually annotated query-968

page pairs from the ViDoRe Benchmark 2, orig-969

inally thought for visual retrieving7. We convert970

all documents to text, chunk them, and re-annotate971

the resulting passages by hand, filtering out queries972

that relied solely on visual aspects (e.g., tables,973

graphs).974

A.6 Training Data Statistics975

Table 4 displays information about the training data.976

Our refined version of MLDR forms a large part of977

the training corpus. We can see that the majority of978

chunks are used as positives at least once, ensuring979

that the model is not biased towards the position of980

the chunk in the sequence.981

MLDR NarrativeQA SQuAD Total

Number of Docs 8467 972 442 9881
Number of Chunks 213001 5219 14367 232587
Number of Queries 211933 27953 67355 307241
Number of Chunks per Doc 25.2 5.4 32.5 23.5
% Chunks with associated Query 94.6% 81.9% 100.0% 94.61%
Number of Tokens per Doc 3962.6 819.1 4966.1 3698.2
Number of Tokens per Query 16.7 21.9 12.5 16.3

Table 4: Training Dataset Statistics

B Implementation Details982

B.1 Sequence prefixes983

ModernBERT-based models are trained with query984

and document prefixes. We apply the same ap-985

proach in our training and inference frameworks.986

After several tests, we opt for using a single doc-987

ument prefix for the Late Chunking sequence, in-988

stead of adding a document prefix at the beginning989

7https://huggingface.co/datasets/vidore/
restaurant_esg_reports_beir

of each chunk inside the same sequence. We sep- 990

arate chunks with [SEP] tokens to let the model 991

understand the concept of chunks during its token 992

embedding computation. 993

B.2 Late Interaction Models 994

We leverage the pylate8 library for the Late In- 995

teraction implementation. For training LI models 996

with InSeNT, we adapt the LI mechanisms to incor- 997

porate it with Late Chunking in our own codebase. 998

In particular, we do not use token skiplists at infer- 999

ence time, and use a single document prefix for the 1000

whole document sequence. 1001

C Additional Results 1002

C.1 Training with concatenated short 1003

documents 1004

Results of training an InSeNT model with con- 1005

catenated short document data (using the Nomic 1006

dataset) are available in Table 5. Short docs 1007

are clustered from the nomic-supervised dataset 1008

(Nussbaum et al., 2024) following Morris and Rush 1009

(2024). This approach did not yield promising re- 1010

sults, proving that natively long documents are nec- 1011

essary to induce relevant in-sequence signal. 1012

C.2 Full ablation results on λseq 1013

We show the results of the different values for λseq 1014

on all our evaluation sets. 1015

C.3 Extending context beyond 8192 tokens 1016

ModernBERT was trained on documents of up to 1017

8192 tokens (Warner et al., 2024a). Its Late In- 1018

teraction counterpart, GTE-ModernColBERT, was 1019

exclusively fine-tuned on documents of no more 1020

than 300 tokens. However, its generalization capa- 1021

bilities to longer documents have been shown by its 1022

developers (Chaffin, 2025a), hinting at the fact that 1023

further research along those lines could be tried for 1024

both the bi-encoder and the LI variants. 1025

Based on these results, we tried two approaches 1026

to handle documents longer than 8192 tokens 1027

with ModernBERT (necessary for the ESG reports 1028

dataset): computing Late Chunking with a context 1029

of max. 8192 tokens in an sliding window fashion 1030

(computing chunk embeddings in several forward 1031

passes of 8192 tokens, with 10 overlapping chunks 1032

between the various windows), and naively feeding 1033

the complete documents to the embedder. 1034

8https://github.com/lightonai/pylate
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MLDR SQuAD NarrativeQA Football Geography COVID-QA Insurance NanoBEIR Average Runtime (s)

MB 78.4 73.4 77.9 19.1 56.2 61.7 12.4 63.2 55.3 40.0

MB+InSeNT(Nomic) 77.8 76.0 76.2 26.2 62.7 38.8 63.7 59.9 60.2 36.3
MB+Late Chunking 78.5 77.1 75.8 54.6 89.6 40.0 41.0 63.2 65.0 36.3
Ours: MB+InSeNT 88.7 80.9 81.3 63.9 90.7 56.0 100.0 60.4 77.8 36.3

Table 5: Evaluation (nDCG@10) of baseline models and our proposed method on ConTEB. We show
MB+InSeNT(Nomic) behaves like a non-contextual model after training on independant documents concate-
nated in a single sequence.
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Figure 6: Evaluation results for varying λseq values. Left: ModernBERT-Large. Right: GTE-ModernColBERT.
Trends vary across the datasets depending on their nature.

To our surprise, the latter worked better by a1035

large margin (43.1 on ESG as reported in 2, vs 25.41036

for the sliding window approach), so we reported1037

the results of this approach. Further studies could1038

be led to better understand the dynamics underlying1039

this extension.1040
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