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Abstract

Conceptualization, a fundamental element of001
human cognition, plays a pivotal role in human002
generalizable reasoning. Generally speaking,003
it refers to the process of sequentially abstract-004
ing specific instances into higher-level concepts005
and then forming abstract knowledge that can006
be applied in unfamiliar or novel situations.007
This enhances models’ inferential capabilities008
and supports the effective transfer of knowl-009
edge across various domains. Despite its sig-010
nificance, the broad nature of this term has led011
to inconsistencies in understanding conceptual-012
ization across various works, as there exists dif-013
ferent types of instances that can be abstracted014
in a wide variety of ways. There is also a lack015
of a systematic overview that comprehensively016
examines existing works on the definition, ex-017
ecution, and application of conceptualization018
to enhance reasoning tasks. In this paper, we019
address these gaps by first proposing a catego-020
rization of different types of conceptualizations021
into four levels based on the types of instances022
being conceptualized, in order to clarify the023
term and define the scope of our work. Then,024
we present the first comprehensive survey of025
over 150 papers, surveying various definitions,026
resources, methods, and downstream applica-027
tions related to conceptualization into a unified028
taxonomy, with a focus on the entity and event029
levels. Furthermore, we shed light on potential030
future directions in this field and hope to garner031
more attention from the community.032

1 Introduction033

Conceptualization has been widely recognized as034

a fundamental component of human intelligence,035

spanning fields from psychology (Kahneman, 2011;036

Evans, 2003; Bransford and Franks, 1971) to com-037

putational linguistics (Bengio et al., 2021; Tenen-038

baum et al., 2011; Lachmy et al., 2022). In039

the era of deep learning, numerous studies have040

emerged focusing on conceptualization as a means041

to achieve generalizable reasoning with (Large)042
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Figure 1: Examples of performing conceptualization at
different semantic levels.

Language Models (LLMs; OpenAI, 2022, 2023; 043

Touvron et al., 2023a,b; Mesnard et al., 2024; Reid 044

et al., 2024) in areas such as commonsense reason- 045

ing (Wang et al., 2023b,a, 2024a), causal reason- 046

ing (Feder et al., 2021; Kunda et al., 1990), physical 047

reasoning (Bisk et al., 2020; Wang et al., 2023c; 048

Hong et al., 2021), and more. 049

In general terms, conceptualization refers to the 050

process of consolidating specific instances with 051

shared properties or characteristics into a cohe- 052

sive concept that represents a vast collection of in- 053

stances. It is a sub-type of abstraction (Giunchiglia 054

and Walsh, 1992), but specifically requires the pres- 055

ence of a concept as the base for such abstraction. 056

With proper conceptualization, abstract knowledge 057

can be subsequently derived by associating original 058

knowledge at the instance level with that concept. 059
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When encountering unfamiliar or novel scenarios,060

concepts in abstract knowledge can be instantiated061

to new instances to support downstream reason-062

ing (Tenenbaum et al., 2011). This process can063

occur at various levels, including entity (Wu et al.,064

2012; Liang et al., 2017; Alukaev et al., 2023;065

Liu et al., 2023c), event (He et al., 2024; Wang066

et al., 2024a,c), paragraph/document (Falke and067

Gurevych, 2019; Falke et al., 2017), and system068

levels (Subramonian et al., 2023; Kadioglu and069

Kleynhans, 2024), ultimately forming a hierarchy070

that contribute to a comprehensive understanding071

and representation of knowledge.072

Despite its significance, the field lacks a com-073

prehensive and unified taxonomy to categorize ex-074

isting research on conceptualization. On the one075

hand, the term “conceptualization” is inherently076

broad, encompassing various types of conceptual-077

izations across different instances and performed078

in various ways, all included under a single term.079

As illustrated in Figure 1, the conceptualization080

of entities and documents requires two distinct081

paradigms; however, the current terminology fails082

to adequately address these differences. This has083

led to confusion and miscommunication among084

works that apply conceptualization in their method-085

ologies. On the other hand, the methods for concep-086

tualizing different types of instances in a scalable087

and accurate manner remain unclear. Finally, it is088

essential to summarize the benefits that conceptu-089

alization can bring to downstream tasks to gather090

insights for future applications and new research091

directions.092

To address these issues, we present the first-ever093

survey that systematically taxonomizes conceptu-094

alization. First, in Section 2, we define four types095

of conceptualization based on different semantic096

levels of the instances being conceptualized: en-097

tity, event, document, and system. In later sections,098

we focus on two main types of conceptualization099

based on the entity and event levels, as they are100

largely uncharted in existing literature and play a101

key role in human reasoning. We then propose a102

set of objectives to select and survey papers that103

feature conceptualization as their core idea, review104

more than 150 papers, and organize them into three105

main categories, as shown in Figure 2. We sum-106

marize the main representative tasks and datasets107

available for these types of conceptualization in108

Section 3. Subsequently, in Section 4, we cate-109

gorize conceptualization acquisition methods into110

extraction, retrieval, and generative-based methods.111

The downstream benefits of conceptualization are 112

discussed in Section 5, with a specific focus on 113

several reasoning tasks. Finally, in Section 6, we 114

propose two future directions that can benefit from 115

conceptualization. We hope our work can serve 116

as a practical handbook for researchers and pave 117

the way for further advancements in the field of 118

conceptualization. 119

2 Four Levels of Conceptualization 120

We first define four levels of conceptualization ac- 121

cording to the type of instances being conceptual- 122

ized. They are categorized into four levels: entity 123

level, event level, document level, and system level. 124

Running examples are shown in Figure 1. 125

Entity Level: Entity-level conceptualization in- 126

volves grouping multiple entities under a shared 127

concept (Yang et al., 2021; Peng et al., 2022). It is 128

the most common form of conceptualization in hu- 129

man cognition and is frequently applied for knowl- 130

edge acquisition (Carey, 1991; Murphy, 2004). For 131

instance, entities like “apple,” “pear,” and “grape,” 132

can be categorized together under the broader con- 133

cept of “fruit.” By doing so, abstract knowledge 134

can be derived by reintegrating the concept into the 135

context of specific instances, such as the assertion 136

“fruit is delicious,” with “apple is delicious” serving 137

as the specific source. When someone encounters 138

an unknown fruit, they can quickly understand its 139

properties by associating it with the abstract knowl- 140

edge of fruit, such as its possible taste or nutrition. 141

Event Level: While a concept can capture the 142

semantic meaning of a group of entities, it can 143

also represent events at a higher level of concep- 144

tualization. Event-level conceptualization aims to 145

broaden the scope from entities to include events 146

as well (He et al., 2024; Wang et al., 2024c). It 147

seeks to associate different events under a shared 148

concept that preserves the original semantic mean- 149

ing to the maximum extent possible. For instance, 150

activities like “Sam playing with his dog,” “Alex 151

dancing in the club,” and “Bob doing yoga” can all 152

be conceptualized as “relaxing events.” Abstract 153

knowledge can then follow, stating that “If some- 154

one engages in relaxing events, they feel happy and 155

relaxed.” When someone encounters an unknown 156

or unfamiliar event, such as “Charlie likes painting 157

the sunset,” they can infer that painting the sunset 158

is a relaxing event and that Charlie feels happy and 159

relaxed when doing so. 160

Document Level: Document-level conceptualiza- 161
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Tasks and
Datasets (§3)

Entity-level
Conceptualization (§3.2)

Miller (1995); Wu et al. (2012); Liang et al. (2017); Peng et al. (2022); Suchanek et al. (2007); Auer et al. (2007)
Speer et al. (2017); Speer and Havasi (2013, 2012b,a)

Event-level
Conceptualization (§3.3)

Wang et al. (2024c); He et al. (2024); Wang et al. (2024a); He et al. (2020)

Methods (§4)

Extraction-based
Methods (§4.1)

Wang et al. (2016); Rajagopal et al. (2013); Hovy et al. (2009); Krishnan et al. (2017); Pasca (2009)
Parameswaran et al. (2010); Miller (1995); Wu et al. (2012); Montgomery (1982); Gelfand et al. (1998)

Retrieval-based
Methods (§4.2)

Semantic Retrieval (§4.2.1)
Liu et al. (2004); Natsev et al. (2007); Koopman et al. (2012); Song et al. (2011)
Song et al. (2015); Zheng and Yu (2015); Chen et al. (2018); Hua et al. (2015)

Neural Retrieval (§4.2.2)
Huang et al. (2019); He et al. (2024); Zhang et al. (2020, 2022)
Wang et al. (2024c); Lu et al. (2023); Wang et al. (2023b); Gao et al. (2022)
Peng et al. (2022); Becker et al. (2021)

Generative-based
Methods (§4.3)

Fine-Tuning-Based
Generative Methods (§4.3.1)

Peng et al. (2022); Wang et al. (2023b); He et al. (2024)
Wang et al. (2024b); Yuan et al. (2023); Wang et al. (2024a)

Zero-shot Generative
Methods (§4.3.2)

Wang et al. (2024a,c); Zheng et al. (2023); Zhao et al. (2024)

Downstream
Applications
(§5)

Commonsense Reasoning
(§5.1)

He et al. (2024); Wang et al. (2023b,a, 2024a); Liu et al. (2023a); Yu et al. (2023); Bhagavatula et al. (2020)
Yu et al. (2024); He et al. (2020); Zhang et al. (2020, 2022)

Complex and Factual
Reasoning (§5.2)

Fang et al. (2024); Zheng et al. (2023); Cui et al. (2017); Ou et al. (2008)

Others (§5.3)
Choi et al. (2018); Li et al. (2022); Dai and Zeng (2023); Jiang et al. (2023); Li et al. (2023); Feng et al. (2023a)
Dai et al. (2021); Liu et al. (2021); Onoe et al. (2021); Zhou et al. (2023); Pepe et al. (2022); Chen et al. (2020)

Figure 2: Taxonomy of representative works in entity and event level conceptualization categorized by tasks and
datasets (§3), methods in performing conceptualization (§4), and downstream applications (§5).

tion further extends the scope of the instance from162

entities and events to paragraphs or even entire163

documents. It aims to generate a summary that164

captures the main ideas and essential information165

while maintaining the overall semantic and context166

of the original text. Previous works on abstractive167

summarization (Ladhak et al., 2022; Wang et al.,168

2019) have identical objectives, and earlier surveys169

by Rennard et al. (2023); Lin and Ng (2019); Liu170

et al. (2024) have effectively summarized these171

studies. Therefore, we only mention it here to clar-172

ify document-level conceptualization for readers173

and will not go into further detail in later sections174

to avoid overlap.175

System Level: Finally, system-level conceptualiza-176

tion aims to simplify the understanding of a com-177

plex system by abstracting its behavior and func-178

tionality into a higher-level representation. It is de-179

rived from the design of operating systems (Doane180

et al., 1990) and is under-studied in the domain of181

NLP. The only representative example is a recent182

work by Subramonian et al. (2023), where the au-183

thors provide a systematic categorization of NLP184

tasks based on their objectives and characteristics185

while neglecting the detailed format of input/output186

and the datasets on which the tasks are evaluated.187

Due to the limited number of works available, we188

will not survey this type of conceptualization.189

In later sections, we focus specifically on entity190

and event-level conceptualizations and propose a191

taxonomy to categorize works into three categories.192

To ensure that our search for papers is comprehen-193

sive and objective in relation to our target scope,194

we propose the following three objectives for se-195

lecting the most relevant papers. First, we aim196

for papers that adhere to the paradigm of linking 197

different instances together and use concepts as rep- 198

resentations of the formed clusters. We also seek 199

papers that aim to establish hierarchies between 200

different entities and events. Finally, we look for 201

papers that directly seek abstractions of entities or 202

events via concepts. Our proposed taxonomy is 203

primarily categorized into resources, methods, and 204

downstream applications of conceptualization, as 205

this is the most straightforward structure for readers 206

to grasp the topic. 207

3 Tasks and Datasets 208

We first survey available datasets and benchmarks, 209

as well as their associated tasks, for these two types 210

of conceptualizations. Statistical comparisons be- 211

tween different resources are shown in Table 1. For 212

datasets that also serve as evaluation benchmarks, 213

we mark their associated tasks with classification 214

task (CLS) and generation task (GEN). 215

3.1 Concept Linking Task 216

Most conceptualizations can be formulated as a 217

concept linking task, where the goal is to link an 218

instance i to a concept c such that i can be semanti- 219

cally represented by c. It is challenging due to the 220

infinite number of possible instance-concept pairs. 221

Previous approaches, such as those by Brauer et al. 222

(2010); Yates et al. (2015), have attempted to fur- 223

ther restrict the task to linking instances to a limited 224

set of strict ontologies using heuristic or statistical 225

methods. The task can also be formulated with 226

a generative objective, which requires a model to 227

generate c directly given i as input. 228
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Type Dataset #Instance #Concept. Tasks

Entity

WordNet 82,115 84,428 N/A
Probase 10,378,743 16,285,393 N/A
Probase+ 10,378,743 21,332,357 N/A
YAGO 143,210 352,297 N/A
DBPedia 1,000,000 1,000,000 N/A
ConceptNet 21,000,000 8,000,000 N/A
COPEN 24,000 393 CLS

Event
Abs.ATM. 21,493 503,588 CLS,GEN
Abs.Pyr. 17,000 220,797 CLS,GEN
CANDLE 21,442 6,181,391 N/A

Table 1: Statistical comparisons between different
datasets with entity and event level conceptualizations.

3.2 Entity-level Conceptualization Datasets229

To conceptualize different entities into concepts,230

multiple large-scale concept taxnomies have been231

constructed as resources for this type of concep-232

tualization. WordNet (Miller, 1995) is the first233

and most well-known concept taxonomy, which234

is a large lexical database of English. It is a net-235

work of concepts, where each concept is a set of236

synonyms. Probase (Wu et al., 2012; Liang et al.,237

2017) is a later built concept taxonomy, which is238

a large-scale probabilistic taxonomy of concepts.239

It is constructed by analyzing a large amount of240

web pages and search logs. YAGO (Suchanek241

et al., 2007) is a semantic knowledge base, which242

is a large-scale concept taxonomy of entities and243

events. It is constructed by extracting information244

from Wikipedia (Merity et al., 2017) and Word-245

Net. DBPedia (Auer et al., 2007) is a large-scale246

knowledge base which is built by extracting struc-247

tured information from Wikipedia. It also contains248

structured conceptual knowledge about entities and249

events. ConceptNet (Speer et al., 2017) is the most250

recent concept taxonomy, featuring a large-scale251

semantic network of concepts. It is constructed252

by extracting structured information from various253

sources, including Wikipedia, WordNet, and Open254

Mind Common Sense (Singh et al., 2002). Re-255

cently, Peng et al. (2022) introduced COPEN, a256

entity level conceptualization benchmark that is257

constructed by probing language models to retrieve258

concepts of an entity from a pre-defined set of con-259

cepts. All of them are important knowledge bases260

that are rich in entity conceptualizations.261

3.3 Event-level Conceptualization Datasets262

Compared to abstracting entities, there are fewer263

resources available for event-level conceptualiza-264

tions. The most notable is the AbstractATOMIC265

dataset (He et al., 2024), which was constructed266

by filtering head events from the ATOMIC dataset 267

and identifying instance candidates within each 268

event using syntactic parsing and human-defined 269

rules. These instances are matched against Probase 270

and WordNet to acquire candidate concepts using 271

GlossBERT (Huang et al., 2019), which are then 272

verified by a supervised model and human anno- 273

tations. AbsPyramid (Wang et al., 2024c) extends 274

the AbstractATOMIC pipeline to ASER (Zhang 275

et al., 2020, 2022), a large-scale eventuality knowl- 276

edge graph, by incorporating candidate concepts 277

generated by ChatGPT to complement Probase and 278

WordNet. It also extends coverage to verbs in ad- 279

dition to nouns and events, and broadens the do- 280

main of events from social aspects to all aspects. 281

Both datasets provide rich event conceptualizations 282

sourced from diverse origins. 283

4 Conceptualization Acquisition Methods 284

Next, we survey methods for performing or collect- 285

ing entity and event-level conceptualizations. We 286

categorize them into three paradigms: extraction, 287

retrieval, and generative-based methods, which are 288

briefly demonstrated in Figure 3. We provide more 289

discussions in Appendix A. 290

4.1 Extraction-Based Methods 291

Extracting concepts from text is the earliest 292

paradigm for systematically collecting conceptual- 293

izations (Montgomery, 1982; Gelfand et al., 1998). 294

It typically involves first extracting all possible con- 295

cepts from the text, followed with identifying the 296

relationships between these concepts. In this pro- 297

cess, concepts are recognized either by looking for 298

the most frequent words or by matching against a 299

predefined list of patterns, such as “is a,”, “is a type 300

of”, etc. Instances are then matched by looking for 301

the subject of these patterns in the text, which forms 302

instance-conceptualization pairs. The main advan- 303

tages of extraction-based methods (Wang et al., 304

2016; Parameswaran et al., 2010; Rajagopal et al., 305

2013; Hovy et al., 2009; Krishnan et al., 2017; 306

Pasca, 2009) are easy implementation, high pro- 307

cessing speed, and free of training data. This has 308

facilitated the development of many large-scale 309

concept taxonomies and knowledge bases, such 310

as WordNet (Miller, 1995), ConceptNet (Speer 311

et al., 2017; Speer and Havasi, 2013, 2012b,a), 312

Probase (Wu et al., 2012; Liang et al., 2017), and 313

DBpedia (Auer et al., 2007; Bizer et al., 2009). 314

However, these methods, while successful in ex- 315
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Extraction-based Methods Generation-based MethodsRetrieval-based Methods

A cat is a common pet, and a 
Siamese is a type of cat.

Pattern Matching
(is a; is a type of)

(cat, common pet) (Siamese, cat) 

Siamese is a beautiful breed.

Concept
Taxonomy

Embedding
Similarity

Shortest 
Path

d(Siamese, cat)=1

(Siamese, cat) 

sim(Siamese, cat)
=0.89

(Siamese, pet) 

Siamese is a beautiful 
breed. What are 

conceptualizations of 
Siamese?

Here are possible 
conceptualizations for Siamese:

Pet, Animal, Cat, 
Companion, Feline, Breed

Figure 3: Conceptual demonstration of different types of methods in performing or collecting entity and event level
conceptualizations. Instance and conceptualization pairs can be obtained at the end of each type of method.
tracting conceptual relationships from text, are lim-316

ited by text quality, reliance on predefined concepts,317

lack of semantic understanding, difficulty handling318

ambiguous words, and poor generalization to new319

domains or unseen concepts.320

4.2 Retrieval-Based Methods321

4.2.1 Semantic-Based Retrieval322

Semantic-based retrieval methods aim to obtain323

conceptualizations by looking at the semantic simi-324

larity between the input instance and the concepts325

in a pre-defined concept taxonomy. It typically in-326

volves representing both the instance and a set of327

concepts into a shared semantic space and calcu-328

lating the similarity between them. One represen-329

tative approach is to use WordNet (Miller, 1995),330

a large lexical database of English words, to cal-331

culate semantic similarity between two words as332

their shortest path in the WordNet hierarchy (Liu333

et al., 2004). Other methods (Natsev et al., 2007;334

Song et al., 2011, 2015; Koopman et al., 2012;335

Zheng and Yu, 2015; Chen et al., 2018; Hua et al.,336

2015) also share similar aspirations and define their337

own way of calculating such similarities. However,338

these methods are usually limited by the need for339

comprehensive and accurate knowledge bases, high340

computational costs, the inability to handle unseen341

concepts, and the loss of important semantic con-342

text, prompting the development of neural-based343

retrieval methods.344

4.2.2 Neural-Based Retrieval345

Neural-based retrieval methods overcome previ-346

ous limitations by leveraging neural networks (or347

language models) to learn the semantic represen-348

tations of the input instance and the concepts in349

the knowledge base or concept taxonomy. Then,350

the similarity between the input instance and the351

concepts can be calculated based on the learned rep-352

resentation embeddings. This approach can be ben-353

efitted by the advancement in language modeling,354

such as BERT (Devlin et al., 2019), RoBERTa (Liu355

et al., 2019), and DeBERTa (He et al., 2021, 2023).356

The most representative work in neural-based con-357

cept retrieval is AbstractATOMIC (He et al., 2024). 358

It uses GlossBERT (Huang et al., 2019) to en- 359

code concepts (from WordNet and Probase) and 360

instances (extracted from events in ATOMIC (Sap 361

et al., 2019)) into embeddings and leverage co- 362

sine similarity and human annotations to collect 363

conceptualizations in a large scale manner. Other 364

methods (Wang et al., 2024c; Zhang et al., 2020, 365

2022; Lu et al., 2023; Wang et al., 2023b; Gao 366

et al., 2022; Becker et al., 2021) similarly adopt 367

different strategies in leveraging LMs as encoders, 368

expanding the coverage of instances,training re- 369

trieval models. Despite their promising results, 370

these methods are limited by their need for exten- 371

sive labeled data, reliance on the completeness and 372

accuracy of the knowledge base, and inability to 373

retrieve new concepts that are out of training data. 374

4.3 Generative-Based Methods 375

4.3.1 Fine-Tuning-Based Generative Methods 376

Fine-tuning-based generative methods aim to take 377

an entity or event as input and generate the con- 378

cept directly via a fine-tuned generative language 379

model. This approach allows the model to gener- 380

ate conceptualizations for new instances and offers 381

maximum flexibility of the input. Several meth- 382

ods (Peng et al., 2022; Yuan et al., 2023; He et al., 383

2024; Wang et al., 2024c,b, 2023b) have adopted 384

this paradigm in training generative conceptualiz- 385

ers, based on models such as GPT2 (Radford et al., 386

2019), BART (Lewis et al., 2020), and T5 (Raffel 387

et al., 2020), for automated conceptualization ac- 388

quisition. These methods typically train LMs on 389

human-annotated or pre-existing conceptualization 390

resources and yield outstanding results. However, 391

fine-tuning-based generative methods are limited 392

by their high computational cost, time-consuming 393

and resource-intensive data collection, uncertain 394

performance across diverse domains, and relatively 395

low quality of novel concepts compared to human 396

annotations. While these are common limitations 397

associated with fine-tuned generative models, zero- 398

shot generative methods using powerful LLMs and 399
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advanced prompting techniques potentially address400

these issues.401

4.3.2 Zero-Shot Generative Methods402

Finally, zero-shot generative-based methods lever-403

age powerful LLMs (Brown et al., 2020; Ope-404

nAI, 2022, 2023; Reid et al., 2024; Touvron et al.,405

2023a,b) to generate the concept directly from an406

input instance. They rely on the vast amount of407

internal knowledge within the model and human-408

crafted prompts to efficiently distill conceptualiza-409

tions and abstract knowledge from the models. This410

is particularly useful when training data is scarce or411

when the domain is new and there are no existing412

training data available. Existing methods (Wang413

et al., 2024a,c; Zheng et al., 2023; Zhao et al., 2024)414

all share similar aspirations in collecting concep-415

tualizations. The benefits are significant, as these416

methods can collect conceptualizations efficiently417

and at low cost without specific fine-tuning. The re-418

sulting conceptualization knowledge base are thus419

scalable and downstream models trained on them420

typically have improved generalization ability to421

new instances and domains. However, to ensure422

high-quality generated conceptualizations, it is rec-423

ommended to implement quality control mecha-424

nisms such as human evaluation or discriminators425

as post-filters. Recent studies (Wang et al., 2024a;426

Fang et al., 2024) have shown that commonsense427

plausibility estimators (Liu et al., 2023b) are effec-428

tive for such quality control.429

5 Downstream Applications430

We then survey downstream tasks that can benefit431

from applying conceptualizations to provide read-432

ers with a general picture of what can be achieved433

and how to benefit from integrating conceptualiza-434

tions. An overview of performances by different435

methods that leverage conceptualization, evaluated436

on various benchmarks, are shown in Figure 4.437

5.1 Commonsense Reasoning438

Commonsense reasoning is the ability to make in-439

ferences about the world based on common knowl-440

edge, which involves reasoning about everyday441

events and situations (Davis, 1990; Davis and Mar-442

cus, 2015). In this section, we discuss how concep-443

tualizations benefit models in performing common-444

sense reasoning tasks.445

Generative Commonsense Inference Modeling:446

The task of generative commonsense inference447

modeling (COMET; (Bosselut et al., 2019; Hwang 448

et al., 2021)) aims to complete an inferential com- 449

monsense knowledge given a head event and a 450

commonsense relation. State-of-the-art methods 451

for COMET mainly fine-tune language models on 452

large-scale commonsense knowledge bases, which 453

suffer from data sparsity and lack of diversity in 454

commonsense knowledge. Although transfer from 455

LLMs helps (West et al., 2022, 2023), distilled 456

knowledge tends to be too easy for models to 457

learn and converge to trivial inferences. To ad- 458

dress these issues, Wang et al. (2023b) proposed 459

to leverage conceptualization as knowledge aug- 460

mentation tools to improve COMET. Conceptual- 461

izations are first derived from head events to obtain 462

abstracted events. Then, the tail of the original 463

commonsense knowledge is placed back to the ab- 464

stracted event to form abstracted commonsense 465

knowledge. These derived abstract knowledge are 466

then integrated with the original knowledge in com- 467

monsense knowledge bases to enrich the diversity 468

of commonsense knowledge. Experiments show 469

consistent improvement in models’ performances. 470

Wang et al. (2024a) further show that, by instan- 471

tiating conceptualizations in abstract knowledge 472

back to other novel instances, models can be fur- 473

ther improved by training with newly instantiated 474

knowledge. Liu et al. (2023a) also proposed a task 475

that aims to generate diverse sentences describing 476

concept relationships in various everyday scenarios. 477

Conceptualizations and associated abstract knowl- 478

edge can further boost models’ performances on 479

this task. 480

Commonsense Question Answering: The task 481

of commonsense question answering aims to an- 482

swer questions that require commonsense knowl- 483

edge. Various benchmarks and datasets have 484

been proposed to evaluate LMs’ performances, 485

such as Abductive NLI (aNLI; (Bhagavatula et al., 486

2020)), CommonsenseQA (CSQA; (Talmor et al., 487

2019)), PhysicalIQA (PIQA; (Bisk et al., 2020)), 488

SocialIQA (SIQA; (Sap et al., 2019)), and Wino- 489

Grande (WG; (Sakaguchi et al., 2021)). To obtain 490

a generalizable model for commonsense question 491

answering, the most effective pipeline fine-tunes 492

language models on QA pairs synthesized from 493

knowledge in commonsense knowledge bases (Ma 494

et al., 2021; Shi et al., 2023; Wang et al., 2023a). 495

The head ho and relation r of a (ho, r, t) triple are 496

transformed into a question using natural language 497

prompts, with the tail t serving as the correct an- 498
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Figure 4: Empirical benefits of conceptualization in methods across various benchmarks compared to baselines.
swer option. Distractors or negative examples are499

generated by randomly sampling tails from triples500

that do not share common keywords with the head.501

To leverage conceptualization into the QA synthe-502

sis process, Wang et al. (2023a); Fang et al. (2024)503

have proposed two strategies: On the one hand,504

they improve distractor sampling by incorporat-505

ing conceptualizations of head events into com-506

mon words of the question, thereby enabling selec-507

tion of more relevant distractors that improve the508

model’s ability to discern correct answers from dis-509

tractors. On the other hand, abstract knowledge de-510

rived from head events are integrated into original511

synthesized QA pairs, akin to COMET, to enrich512

the training data with diverse information, thereby513

enhancing the model’s generalization capability in514

commonsense question answering tasks. Experi-515

mental results show that the proposed strategies516

significantly improve the performance of common-517

sense question answering with conceptualization.518

5.2 Complex and Factual Reasoning519

Complex reasoning refers to the ability to solve520

intricate problems that necessitate multiple steps521

of reasoning, which involves reasoning upon intri-522

cate scenarios, which may encompass multiple en-523

tities, events, and relations. Fang et al. (2024) pro-524

posed to synthesize complex queries based on com-525

monsense knowledge triples from ATOMIC. Both526

human-defined rules and tails generated by large527

language models are utilized to generate these com-528

plex queries. The model is subsequently trained529

on these complex queries to enhance its capabil-530

ity to solve complex reasoning problems. In this531

context, conceptualizations of head events can be532

used as augmentations to generate more diverse533

and complex queries (Cui et al., 2017). This can534

assist the model in learning to solve more intricate535

problems. Simultaneously, conceptualizations of536

head events can also be used to generate more in-537

formative distractors. This can aid the model in538

learning to distinguish more effectively between 539

correct answers and distractors. 540

Zheng et al. (2023) also developed a prompting 541

method to improve the performance of LLMs on 542

general and factual QA tasks. It involves instruct- 543

ing the model with a simple zero-shot prompt to 544

consider each question abstractly by generating and 545

probing relevant concepts, then using this knowl- 546

edge in the prompt to generate the answer. This 547

simple prompting method has been shown to signif- 548

icantly improve the performance of large language 549

models on general QA tasks, including MMLU 550

(Physics and Chemistry) (Hendrycks et al., 2021), 551

TimeQA (Chen et al., 2021), StrategyQA (Geva 552

et al., 2021), and MuSiQue (Trivedi et al., 2022). 553

This work is interesting as it demonstrates that a 554

simple prompting method can significantly enhance 555

the performance of LLMs on general QA tasks. 556

5.3 Others 557

Aside from those two types of tasks, the line of 558

works focusing on ultra-fine entity (Choi et al., 559

2018; Li et al., 2022; Dai and Zeng, 2023; Jiang 560

et al., 2023; Li et al., 2023; Feng et al., 2023a; Dai 561

et al., 2021; Liu et al., 2021; Onoe et al., 2021) 562

and event typing (Zhou et al., 2023; Pepe et al., 563

2022; Chen et al., 2020) can also be benefited by 564

conceptualization. These tasks aim to type named 565

entities, nominal nouns, and pronouns into a set of 566

free-form phrases. Conceptualizations can serve as 567

a bridge between the surface form and the target 568

type, which is crucial for these tasks. 569

6 Future Directions and Conclusions 570

Finally, we conclude our work by discussing two 571

interesting future directions. 572

6.1 Controllable Generation 573

Firstly, we envision that conceptualization can as- 574

sist controllable text generation (Feng et al., 2023b; 575

Huang et al., 2023; Zhang et al., 2024). In some 576

7



formulations, the task requires the model to gen-577

erate a brief piece of text that remains consistent578

within a specific context or scope (Meng et al.,579

2022). Conceptualizations can be applied as addi-580

tional supervision signals or constraints that guide581

the model to generate text whose conceptualiza-582

tions align with those in the input theme, thereby583

enhancing the controllability of the generated text.584

This could be achieved by training a pair of con-585

ceptualization generator and discriminator, which586

could be used to generate the conceptualizations587

and evaluate their consistency between input and588

output text. Conceptualization can also serve as589

data augmentation tools to provide more training590

data, preferably guided with human annotation or591

large language models as loose teachers, for train-592

ing more robust text generators that better align593

with the controllable targeting data.594

Similarly, it may also benefit hallucination re-595

duction (Choubey et al., 2023; Dale et al., 2023; Ji596

et al., 2023b; Sun et al., 2023). Hallucination (Ji597

et al., 2023a) refers to generating text that is un-598

supported by the input context, such as introducing599

information that is not present in the context or600

even contradicts it. In many reasoning scenarios,601

hallucination can be detrimental to the model’s per-602

formance, and neutralizing it is crucial for ensuring603

the reliability of the generated text. Towards this604

objective, conceptualization can be similarly ap-605

plied as external signals to verify the generated text606

and ensure its accuracy. By measuring the semantic607

distance of conceptualizations between the given608

input and generated contents, hallucinations can609

possibly be detected by finding clearly unrelated610

concepts appearing at both ends. Empirical metrics611

to measure such distance can be the shortest path612

length of concepts in taxonomies such as Word-613

Net (Miller, 1995) and Probase (Wu et al., 2012),614

or even embedding similarity between different615

concepts. However, it’s important to build a com-616

prehensive set of conceptualizations of a given text617

to support such a verification process, as incom-618

plete conceptualizations may cause erroneously de-619

tected hallucinations due to human-caused errors.620

We leave detailed implementations to future work.621

6.2 Modeling Changes in Distribution622

Conceptualization also plays a pivotal role in build-623

ing reasoning systems that can capture situational624

changes in distribution to achieve System II rea-625

soning (Sloman, 1996; Kahneman, 2011). Among626

the several components that make up System II rea-627

soning, a key element is the ability to reason with 628

situational changes in distribution (Bengio et al., 629

2021, 2019). These changes are triggered by envi- 630

ronmental factors and actions by the agents them- 631

selves or others, especially when dealing with non- 632

stationarities (Bengio, 2017). This ability can be 633

achieved by dynamically recombining existing con- 634

cepts in the given environment or action and learn- 635

ing from the resultant situational changes (Lake and 636

Baroni, 2018; Bahdanau et al., 2019; de Vries et al., 637

2019). For instance, consider the event “PersonX 638

is driving a car on a sunny day.” A change in the 639

weather from sunny to rainy could cause a different 640

outcome, such as “PersonX becomes more cautious 641

and drives slower.” This illustrates that a change 642

in weather conditions can lead to a change in the 643

driver’s behavior, representing an environmental 644

change that triggers situational changes within the 645

distribution of different weather conditions. In this 646

process, the model is required to infer different 647

changes that can possibly occur within a single 648

event as the context, and reason about the potential 649

outcome of each change. To model the distribution 650

of different changes within an event, conceptualiza- 651

tion can be used to represent the different states of 652

the environment or action (Wang and Song, 2024). 653

The model can then reason about the changes in 654

distribution by manipulating the granularity of con- 655

ceptualized changes. This type of distributional 656

conceptualization not only provides an ontology 657

for modeling the distribution of different changes 658

within an event, but also assists the model in reason- 659

ing about the potential outcomes with appropriate 660

abstract knowledge. Future works can leverage 661

LLMs to curate benchmark datasets via sequential 662

conceptualization generation and develop advanced 663

systems for System II reasoning. 664

6.3 Conclusions 665

In conclusion, this work surveys conceptualizations 666

by proposing a four-level hierarchical definition 667

and reviewing representative works in acquiring, 668

leveraging, and applying entity and event-level con- 669

ceptualization to downstream reasoning tasks. We 670

also propose several intriguing ideas related to con- 671

ceptualizations that may inspire further research. 672

We hope our work paves the way for more research 673

works toward generalizable machine intelligence 674

through conceptualization and fosters the develop- 675

ment of more advanced systems that can capture, 676

organize, and learn world knowledge through con- 677

nection between concepts, much like humans do. 678
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Limitations679

The main limitations of our survey are two-fold.680

First, due to the vast amount of literature on con-681

ceptualization and conceptual knowledge across682

various datasets, we only cover the most represen-683

tative works that stand out for their exceptional684

value and uniqueness in our taxonomy. Most of the685

papers are sourced from ACL Anthology1, ACM686

Digital Library2, and proceedings of leading artifi-687

cial intelligence and machine learning conferences.688

Consequently, it is possible that some other related689

works are not included, but we aim to cover them690

in future versions. Second, our survey specifically691

focuses on entity and event level conceptualiza-692

tion, leaving document/paragraph level and system693

level conceptualization unaddressed. However, it is694

impossible to survey everything within one single695

submission. Future research can expand the scope696

of our survey to include more types of conceptual-697

izations and modalities, such as categorization in698

the vision modality (Chen and Wang, 2004).699

Ethics Statement700

Our paper presents a comprehensive survey of con-701

ceptualization, with a specific focus on entity and702

event levels. All datasets and models reviewed in703

this survey are properly cited and are available un-704

der free-access licenses for research purposes. We705

did not conduct additional dataset curation or hu-706

man annotation work. Therefore, to the best of our707

knowledge, this paper does not yield any ethical708

concerns.709
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Appendices1803

A Conceptualization Acquisition Methods1804

In this appendix, we elaborate further on different1805

methods of acquiring conceptualization and pro-1806

vide detailed explanations of their weaknesses.1807

A.1 Extraction Based Methods1808

For methods that follow the concept extrac-1809

tion paradigm, Wang et al. (2016) proposed1810

a framework to optimize both tasks simultane-1811

ously, leading to stronger performances even com-1812

pared to supervised concept extraction methods.1813

Parameswaran et al. (2010) also proposed a market-1814

basket-based solution, which adapts statistical mea-1815

sures of support and confidence to design a concept1816

extraction algorithm that achieved high precision1817

in concept extraction. Rajagopal et al. (2013) pro-1818

posed a solution to extract concepts from common-1819

sense text, which uncovers many novel pieces of1820

knowledge that cannot be found in the original cor-1821

pora. Hovy et al. (2009); Krishnan et al. (2017);1822

Pasca (2009) similarly proposed their solutions for1823

large-scale concept extraction for more efficient1824

data mining.1825

While these methods have been successful in ex-1826

tracting concepts and relationships from text, they1827

have several limitations. First, they are heavily1828

dependent on the quality of the text and the prede-1829

fined list of concepts. If the text is noisy or contains1830

many irrelevant words, the performance of these1831

methods can degrade significantly, and the result-1832

ing extracted concepts may also tend to be noisy.1833

Second, it’s important to note that these methods1834

primarily rely on parsing or pattern matching tech-1835

niques on text and do not capture semantic informa-1836

tion from the text. This potentially makes extracted1837

concepts represented as isolated entities without1838

any context or relationships and could result in mis-1839

extraction of concepts or relationships, especially1840

when the text contains ambiguous or polysemous1841

words. For example, the word “bank” can refer to1842

a financial institution, a river bank, or a memory1843

bank, and without proper context, it’s difficult to1844

determine the correct meaning of it, thus leading to1845

incorrect concept extraction. A low-performance1846

parser, if wrongly parsing these words, may also1847

lead to noisy results. Lastly, these methods are1848

not able to generalize well to unseen concepts or1849

text patterns that are not present in the predefined1850

list of concepts. This limits their applicability to1851

new domains or tasks that require the extraction of 1852

novel concepts or relationships. For example, to 1853

extract concepts from medical or legal domain text, 1854

specific patterns or extraction rules need to be de- 1855

signed, which may not be present when extracting 1856

normal conversational text. 1857

A.2 Retrieval Based Methods 1858

A.2.1 Semantic-Based Retrieval 1859

To perform semantic-based retrieval, (Natsev et al., 1860

2007) proposed several approaches for semantic 1861

concept-based query expansion and re-ranking in 1862

multimedia retrieval, achieving consistent perfor- 1863

mance improvement compared to text retrieval and 1864

multimodal retrieval baseline. (Song et al., 2011, 1865

2015) improved text understanding by using a prob- 1866

abilistic knowledge base based on concepts and 1867

developed a Bayesian inference mechanism to con- 1868

ceptualize words and short text. Experimental re- 1869

sults show significant improvements on text clus- 1870

tering compared to purely statistical methods and 1871

methods that use existing knowledge bases. (Koop- 1872

man et al., 2012) proposed a corpus-driven ap- 1873

proach, adapted from LSA, to retrieve medical con- 1874

cepts with semantic similarity measures. (Zheng 1875

and Yu, 2015) similarly used topic modeling and 1876

key concept retrieval methods to construct queries 1877

from electronic health records, which significantly 1878

improves the retrieval of tailored online consumer- 1879

oriented health education materials. 1880

Although these methods have shown promising 1881

results in various domains, they have several limi- 1882

tations. First, the performance of semantic-based 1883

retrieval heavily relies on the quality of the knowl- 1884

edge base or concept taxonomy. In other words, 1885

it requires the knowledge base to be comprehen- 1886

sive, accurate, hierarchical, and up-to-date. There 1887

are very few knowledge bases that meet all these 1888

requirements, and constructing such a knowledge 1889

base is a non-trivial task. With incomplete knowl- 1890

edge bases, which are common in practice, the per- 1891

formance of semantic-based retrieval methods can 1892

be significantly degraded. Second, semantic-based 1893

retrieval methods are usually computationally ex- 1894

pensive, as they require calculating the similarity 1895

between the input instance and all concepts in the 1896

knowledge base. This can induce exponentially 1897

increasing computational cost as the size of the 1898

knowledge base grows. When dealing with large- 1899

scale applications, this even becomes infeasible. 1900

Though caching and indexing techniques can be 1901

19



used to speed up the retrieval process, they are1902

not always effective and cannot generalize well1903

when unseen concepts or instances are encountered.1904

Third, semantic-based retrieval methods still do not1905

consider the semantic context of the input instance.1906

A straightforward formulation is that the model1907

treats the input instance as a bag of words and ig-1908

nores the word order and syntactic structure. This1909

can lead to a loss of important semantic informa-1910

tion, especially when the input instance is long and1911

complex. In this case, the semantic similarity be-1912

tween the input instance and the concepts in the1913

knowledge base may not reflect the true semantic1914

relevance.1915

A.2.2 Neural-Based Retrieval1916

For neural-based retrieval, aside from He et al.1917

(2024), (Lu et al., 2023) similarly proposes a novel1918

three-stage framework, which leverages the power1919

of pre-trained language models explicitly and im-1920

plicitly and employs discipline-embedding models1921

with a self-train strategy based on label generation1922

refinement across different domains.1923

To deal with the large amount of unlabeled data1924

after human annotation, (Wang et al., 2023b) fur-1925

ther proposed a semi-supervised method to unlabel1926

the data with a supervised trained conceptualiza-1927

tion discriminator. The discriminator is trained to1928

rate the plausibility of unlabeled conceptualization1929

and the model will be further refined by training on1930

a concatenation of labeled and unlabeled data. This1931

results in a significant improvement in the perfor-1932

mance of the conceptualization discriminator, thus1933

enhancing the quality of the retrieved concepts.1934

Despite these promising results in concept re-1935

trieval, neural-based retrieval methods have sev-1936

eral limitations. First, these methods are usually1937

data-hungry and require a large amount of labeled1938

data for training. This can be a bottleneck in1939

practice, as labeling data is often expensive and1940

time-consuming. Human annotations are usually1941

required to collect such data, and for models to1942

be generalizable across different domains, the la-1943

beled data should be diverse and representative.1944

This is even more costly and challenging to ob-1945

tain. Second, neural-based retrieval methods still1946

rely on the coverage and quality of the knowledge1947

base or concept taxonomy. If the knowledge base1948

is incomplete or inaccurate, the performance of1949

neural-based retrieval methods can be significantly1950

affected. Moreover, they cannot generate new con-1951

cepts or instances that are not in the knowledge1952

base, which limits their generalization ability. 1953

A.3 Generative-Based Methods 1954

A.3.1 Fine-Tuning-Based Generative Methods 1955

While most fine-tuning based methods are explic- 1956

itly discussed in the main body, we explain their 1957

limitations here. First, these methods are usually 1958

computationally expensive, as they require fine- 1959

tuning a large pre-trained language model on a spe- 1960

cific dataset. Both the fine-tuning and the training 1961

data collection process can be time-consuming and 1962

resource-intensive. Extensive crowd-sourcing or 1963

human annotations are usually required to collect 1964

high-quality training data, which can be costly and 1965

challenging to obtain when the domain coverage 1966

scales up. Second, the feasibility of fine-tuning- 1967

based generative methods on other domains, such 1968

as medical or legal text, is still an open question. 1969

The performance of these methods heavily relies on 1970

the quality and diversity of the training data, and it’s 1971

not clear how well they can generalize to new do- 1972

mains or tasks as text understanding abilities vary 1973

across different domains. For social commonsense, 1974

pre-trained language models have shown strong 1975

performance possibly due to a large overlap in the 1976

training data distribution, but for other domains, 1977

the performance is still unclear. Lastly, although 1978

existing studies have shown that fine-tuning based 1979

generators can deliver novel concepts that are not 1980

in the training data, such a ratio is relatively low 1981

and the quality of the generated concepts is still not 1982

as good as human annotated ones. This is expected 1983

as the models are fitted into the distribution of the 1984

training data, and it’s hard for them to generate 1985

concepts that are out of the distribution. 1986

A.3.2 Zero-Shot Generative Methods 1987

Zero-shot generative methods aim to generate the 1988

desired output for any task’s input without any task- 1989

specific fine-tuning. A very representative example 1990

of such generative models is the recently popular- 1991

ized LLMs (OpenAI, 2022, 2023; Touvron et al., 1992

2023a,b; Mesnard et al., 2024; Reid et al., 2024). 1993

These models have been pre-trained on very large 1994

corpora, including those from the web, Wikipedia, 1995

books, and more, and have shown strong perfor- 1996

mance in various natural language processing tasks, 1997

including text generation (Maynez et al., 2023; 1998

Chen et al., 2024), temporal reasoning (Tan et al., 1999

2023; Yuan et al., 2024), causal reasoning (Chan 2000

et al., 2024a; Dalal et al., 2023; Jin et al., 2023), 2001

commonsense reasoning (Jain et al., 2023; Bian 2002

20



et al., 2023; Fang et al., 2021b,a; Deng et al., 2023),2003

logical reasoning (Wang et al., 2023d,e, 2021; Bai2004

et al., 2023), and more (Qin et al., 2023; Cheng2005

et al., 2023; Chan et al., 2024b).2006

In the context of conceptualization acquisition,2007

zero-shot generative methods aim to generate con-2008

ceptualizations for instances without any instance-2009

conceptualization pairs in the training data. Wang2010

et al. (2024a) proposed a few-shot knowledge dis-2011

tillation method to distill conceptualizations and2012

associated abstract inferential knowledge from a2013

large language model to a large-scale knowledge2014

base. Wang et al. (2024c) also proposed acquiring2015

conceptualizations for entities and events in ASER2016

by instructing ChatGPT with a few-shot prompt.2017

They further designed an instruction-tuning based2018

method to evoke more conceptualizations from2019

large language models by fine-tuning them with2020

explanations on how the conceptualization is de-2021

rived from the instance and their plausible reason-2022

ing chains (Wang et al., 2024b). Zheng et al. (2023)2023

proposed a simple prompting technique, inspired2024

by chain-of-thought reasoning, that enables LLMs2025

to do conceptualizations to derive high-level con-2026

cepts and first principles from instances containing2027

specific details. Zhao et al. (2024) advanced this2028

idea by proposing to extract predictive high-level2029

features (concepts) from a large language model’s2030

hidden layer activations.2031

The benefits of these methods are twofold. First,2032

such generation can introduce conceptualizations2033

at a very low cost, as the models are pre-trained2034

and do not require any task-specific fine-tuning.2035

The only burden seems to be deployment and in-2036

ference cost, which require a large amount of com-2037

putational resources and time for large-scale gen-2038

eration. However, compared to all previous fine-2039

tuning-based methods, zero-shot generative meth-2040

ods are much more efficient and scalable, as they do2041

not require any training data or fine-tuning process.2042

Second, zero-shot generative methods have shown2043

strong generalization capabilities to new instances2044

and domains. They can generate conceptualiza-2045

tions for instances that are not in the training data2046

and have shown strong performance in various con-2047

ceptualization acquisition tasks. This is particularly2048

useful when the training data is scarce or when the2049

domain is new, and there are no existing training2050

data available. Since these large language models2051

are pre-injected with vast amounts of knowledge,2052

this makes generalization possible.2053
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