
Self-Tuning Stochastic Optimization with
Curvature-Aware Gradient Filtering

Ricky T. Q. Chen∗ † Dami Choi∗ † Lukas Balles∗ ‡ David Duvenaud† Philipp Hennig‡

Abstract

Standard first-order stochastic optimization algorithms base their updates solely on
the average mini-batch gradient, and it has been shown that tracking additional quan-
tities such as the curvature can help de-sensitize common hyperparameters. Based
on this intuition, we explore the use of exact per-sample Hessian-vector products
and gradients to construct optimizers that are self-tuning and hyperparameter-free.
Based on a dynamics model of the gradient, we derive a process which leads to a
curvature-corrected, noise-adaptive online gradient estimate. The smoothness of
our updates makes it more amenable to simple step size selection schemes, which
we also base off of our estimates quantities. We prove that our model-based proce-
dure converges in the noisy quadratic setting. Though we do not see similar gains
in deep learning tasks, we can match the performance of well-tuned optimizers and
ultimately, this is an interesting step for constructing self-tuning optimizers.

1 Introduction

Stochastic gradient-based optimization is plagued by the presence of numerous hyperparameters.
While these can often be set to rule-of-thumb constants or manually-designed schedules, it is also
common belief that a more information regarding the optimization landscape can help present
alternative strategies such that manual tuning has less of an impact on the end result. For instance,
the use of curvature information in the form of Hessian matrices or Fisher information can be used to
de-sensitize or completely remove step size parameter (Ypma, 1995; Amari, 1998; Martens, 2014),
and the momentum coefficient can be set to reduce the local gradient variance (Arnold et al., 2019b).

SGD fixed step
SGD w/ momentum
Meka fixed step
Meka adaptive step

Figure 1: Stochastic gradient eventually goes
into diffusion and does not converge. Our
filtered gradients offer smooth convergence
and complements adaptive step sizes.

Based on these intuitions, we investigate the use of ef-
ficient curvature and variance estimates during train-
ing to construct a self-tuning optimization framework.
Under a Bayesian paradigm, we treat the true gra-
dient as the unobserved state of a dynamical sys-
tem and seek to automatically infer the true gradient
conditioned on the history of parameter updates and
stochastic gradient observations.

Our method is enabled by evaluations of exact per-
sample gradients and Hessian-vector products. With
recent improvements in automatic differentiation
tooling (e.g., Bradbury et al., 2018; Agarwal and
Ganichev, 2019; Dangel et al., 2020), this matches
the asymptotic time cost of minibatch gradient and
Hessian-vector product evaluations.
∗Equal contribution.
†University of Toronto. Vector Institute. {rtqichen, choidami, duvenaud}@cs.toronto.edu
‡Max Planck Institute for Intelligent Systems, Tübingen, Germany. {lballes, ph}@tue.mpg.de

1st I Can’t Believe It’s Not Better Workshop (ICBINB@NeurIPS 2020), Vancouver, Canada.

∇ft−1 ∇ft ∇ft+1

gt−1 gt gt+1

Σt−1 Σt Σt+1

Bt Bt+1

Qt Qt+1

Figure 2: Graphical model of the hidden Markov dynamics model. The main idea of our algorithm
is that the dynamics parameters can be cheaply estimated on each minibatch, and smoothed across
time using exact Kalman filter inference. These dynamics parameters are the gradient variance Σ,
the directional curvature Bδ and its variance Q. We stabilize Σ with an exponential moving average,
which is effectively another, more elementary form of Kalman filtering.

While our framework contains the good properties of both curvature-based updates and variance
reduction—which are attested in toy and synthetic scenarios—we do not observe significant improve-
ments empirically in optimizing deep neural networks. Notably, our approach can be viewed as an
explicit form of the implicit gradient transport of Arnold et al. (2019b), yet it does not achieve the
same acceleration empirically observed in practice. While we do not fully understand this behavior,
we analyze the estimated quantites along the training trajectory and hypothesize that our method has
a higher tendency of going down high-variance high-curvature regions whereas standard stochastic
gradient descent is repelled from such regions due to gradient variance. This potentially serves as
a downside of our method in the deep learning setting. Regardless, the use of efficient variance
estimation and the interpretation of gradient estimation within a Bayesian filtering framework are
useful constructs in the development of self-tuning stochastic optimization.

2 Bayesian Filtering for Stochastic Gradients

We consider stochastic optimization problems of the general form

arg min
θ∈Rd

f(θ), f(θ) = Eξ
[
f̃(θ, ξ)

]
(1)

where we only have access to samples ξ. Stochastic gradient descent—the prototypical algorithm for
this setting—iteratively updates θt+1 = θt − αtgt, where

gt =
1

n

n∑
i=1

∇θf̃(θt, ξ
(i)
t), ξ

(1)
t , . . . , ξ

(n)
t

iid∼ p(ξ), (2)

and αt is a scalar step size. We may use notational shorthands like ft = f(θt),∇ft = ∇f(θt).

SGD is hampered by the effects of gradient noise. It famously needs a decreasing step size schedule
to converge; used with a constant step size, it goes into diffusion in a region around the optimum (see,
e.g., Bottou et al., 2018). Gradient noise also makes stochastic optimization algorithms difficult to
tune. In particular, unreliable directions are not amenable to step size adaptation.

To stabilize update directions, we build a framework for estimating the true gradient ∇f based on
Kalman filtering. This can also be viewed as a variance reduction method, but does not require the
typical finite-sum structure assumption of e.g. Schmidt et al. (2017); Johnson and Zhang (2013).

2.1 Dynamical System Model

We treat the true gradient ∇ft as the latent state of a dynamical system. This dynamical system is
comprised of an observation model p(gt | ft) and a dynamics model p(∇ft | ∇ft−1, δt−1) where
δt−1 = θt−θt−1 is the update direction. We will later choose δt to be depend on our variance-reduced
gradient estimates, but the gradient inference framework itself is agnostic to the choice of δt.

2

The observation model p(gt | ∇ft) describes how the gradient observations relate to the state of
the dynamical system. In our case, it is relatively straight-forward, since gt is simply an unbiased
stochastic estimate of∇ft, but the exact distribution remains to be specified. We make the assumption
that gt follows a Gaussian distribution,

gt | ∇ft ∼ N (∇ft,Σt), (3)

with covariance Σt. Since gt is the mean of iid terms (Eq. 2), this assumption is supported by the
central limit theorem when sufficiently large batch sizes are used.

The dynamics model p(∇ft | ∇ft−1) describes how the gradient evolves between iterations. We
base our dynamics model on a first order Taylor expansion of the gradient function centered at
θt, ∇f(θt−1) ≈ ∇f(θt) − ∇2f(θt)δt−1. We propose to approximate the gradient dynamics by
computing a stochastic estimate of the Hessian-vector product, Btδt−1, where E[Bt] = ∇2f(θt).
Again, we make a Gaussian noise assumption. This implies the dynamics model

∇ft | ∇ft−1 ∼ N (∇ft−1 +Btδt−1, Qt). (4)

where Qt is the covariance of Btδt−1, taking into account the stochasticity in Bt.

A key insight is that the parameters Btδt−1, Qt,Σt of the model can all be “observed” directly using
automatic differentiation of the loss on each minibatch of samples. We use the Hessian at θt so that the
Hessian-vector product can be simultaneously computed with gt with just one extra call to automatic
differentiation (or “backward pass”) in each iteration (note this does not require constructing the full
matrix Bt). The variances Qt and Σt can also be empirically estimated with some memory overhead
by using auto-vectorized automatic differentiation routines. We discuss implementation details later
in Section 4.

2.2 Filtering Framework for Gradient Inference

As Equations (3) and (4) define a linear-Gaussian dynamical system, exact inference on the true
gradient conditioned on the history of gradient observations p(∇ft|g1:t, δ1:t−1) takes the form of
the well-known Kalman filtering equations (Kalman, 1960) (review in Särkkä, 2013): We define
parameters m−t , mt, P−t and Pt such that

∇ft | g1:t−1, δ1:t−1 ∼ N (m−t , P
−
t)

∇ft | g1:t, δ1:t−1 ∼ N (mt, Pt).
(5)

Starting from a prior belief∇f0 ∼ N (m0, P0), these parameters are updated iteratively:

m−t = mt−1 +Btδt−1, P−t = Pt−1 +Qt−1 (6)

Kt = P−t (P−t + Σt)
−1 (7)

mt = (I −Kt)m
−
t +Ktgt, Pt = (I −Kt)P

−
t (I −Kt)

T +KtΣtK
T
t (8)

Equation (6) is referred to as the prediction step as it computes mean and covariance of the predictive
distribution p(∇ft|g1:t−1). In our setting, it predicts the gradient∇ft based on our estimate of the
previous gradient (mt−1) and the Hessian-vector product approximating the change in gradient from
the step θt = θt−1 + δt−1. Equation (8) is the correction step. Here, the local stochastic gradient
evaluation gt is used to correct the prediction. Importantly, the Kalman gain (7) determines the blend
between the prediction and the observations according to the uncertainty in each.

The resulting algorithm gives an online estimation of the true gradients as the parameters θt are
updated. We refer to this framework as MEKA, loosely based on model-based Kalman-adjusted
gradient estimation. During optimization, we may use the posterior mean mt as a variance-reduced
gradient estimator and take steps in the direction of δt = −αtmt.

We note two key insights enabling MEKA: First, all parameters of the filter are not set ad hoc, but
are directly evaluated or estimated using automatic differentiation. Secondly, the dynamics model
makes explicit use of the Hessian to predict gradients. This is a first-order update. In contrast to
second-order methods, like quasi-Newton methods, MEKA does not try to estimate the Hessian from
gradients, but instead leverages a (noisy) projection with the actual Hessian to improve gradient
estimates. This is both cheaper and more robust than second-order methods, because it does not
involve solving a linear system.

3

2.3 ADAM-style Update Directions

While MEKA produces variance-reduced gradient estimates, it does not help with ill-conditioned
optimization problems, a case where full batch gradient descent can perform poorly. To alleviate
this, we may instead take update directions motivated by the ADAGRAD (Duchi et al., 2011) line of
optimizers. We follow ADAM (Kingma and Ba, 2014) which proposes dividing the first moment of
the gradient element-wise by the square root of the second moment, to arrive at

δt = −αt
mt√

mt + diag(Pt) + ε
. (9)

where ε is taken for numerical stability and simply set to 10−8. Whereas ADAM makes use of two
exponential moving averages to estimate the first and second moments of gt, we have estimates
automatically inferred through the filtering framework. We refer to this variant as ADAMEKA.

3 Uncertainty-informed Step Size Selection

We can adopt a similar Bayesian filtering framework for probabilistic step size adaptation. Our
step size adaptation will be a simple enhancement to the quadratic rule, but takes into account
uncertainty in the stochastic regime and is much more robust to stochastic observations. The standard
quadratic rule if the objective f can be computed exactly is αquadratic :=

−δTt ∇ft
δTt ∇2ft−1δt

, which is based

on minimizing a local quadratic approximation f(θt + αtδt)− ft ≈ αδTt ∇ft + α2

2 δ
T
t ∇2ft−1δt.

However, since we only have access to stochastic estimates of∇f and∇2f , naïvely taking this step
size with high variance samples results in unpredictable behavior and can cause divergence during
optimization. To compensate for the stochasticity and inaccuracy of a quadratic approximation,
adaptive step size approaches often include a “damping” term (e.g. Martens (2010))—where a
constant is added to the denominator—and an additional scaling factor on αt, both of which aim to
avoid large steps but introduces more hyperparameters.

As an alternative, we propose a scheme that uses the variance of the estimates to adapt the step size,
only taking steps into regions where we are confident about minimizing the objective function. Once
again leveraging the availability of Qt and Σt, our approach allows automatic trade-off between
minimizing a local quadratic approximation and the uncertainty over large step sizes, foregoing
manual tuning methods such as damping.

We adopt a similar linear-Gaussian dynamics model for tracking the true objective ft, with the same
assumptions as in Section 2. Due to its similarity with Section 2, we delegate the derivations to
Appendix B. We again define the posterior distribution,

ft | y1:t, δ1:t−1 ∼ N (ut, st). (10)

where ut and st are inferred using the Kalman update equations. Finally, setting ft+1 = f(θt +αtδt)
for some direction δt, we have a predictive model of the change in function value as

ft+1 − ft | y1:t, g1:t, δ1:t ∼ N
(
αtδ

T
t mt +

α2
t

2
δTt Btδt, 2st + α2

t δ
T
t Ptδt +

α4
t

4
δTt Qtδt

)
(11)

Contrasting this with the simple quadratic approximation, the main difference is now we take into
account the uncertainty in ft,∇ft, and∇2ft. Each term makes different contributions to the variance
as αt increases, corresponding to different trade-offs between staying near where we are more certain
about the function value and exploring regions we believe have a lower function value. Explicitly
specifying this trade-off gives an acquisition function. These decision rules are typically used in
the context of Bayesian optimization (Shahriari et al., 2016), but we adopt their use for step size
selection.

3.1 Acquisition Functions for Step Size Selection

Computing the optimal step size in the context of a long but finite sequence of optimization steps is
intractable in general, but many reasonable heuristics have been developed. These heuristics usually
balance immediate progress against information gathering likely to be useful for later steps.

4

0
α

E
st

im
at

ed
f

(θ
+
α
δ) Quadratic Mean/Std

Expected Improvement
Prob. of Improvement

(a) Positive curvature

0
α

E
st

im
at

ed
f

(θ
+
α
δ) Quadratic Mean/Std

Expected Improvement
Prob. of Improvement

(b) Negative curvature

Figure 3: Illustration of different acquisition functions for selecting a step size α, based on the mean
and variance of our local quadratic estimate of the loss surface.

One natural and hyperparameter-free heuristic is maximizing the probability of improvement
(PI) (Kushner, 1964),

αPI := arg max
α

P (ft+1 − ft ≤ 0 | y1:t, g1:t) (12)

which is simply the cumulative distribution function of (11) evaluated at zero.

Figure 3 visualizes the different step sizes chosen by maximizing different acquisition functions. The
heuristic of choosing the minimum of the quadratic approximation can be a poor decision when the
uncertainty rises quickly. The optimum for PI interpolates between zero and the quadratic minimum
in such a way that avoids regions of high uncertainty. Expected improvement (Jones et al., 1998) is
another popular acquisition function; however, in tests we found it to not be as robust as PI and often
results in step sizes that require additional scaling.

Maximizing probability of improvement is equivalent to the following optimization problem

αPI = arg min
α

−αδTt mt + α2

2 δ
T
t Btδt√

2st + α2δTt Ptδt + α4

4 δ
T
t Qtδt

. (13)

We numerically solve for αPI using Newton’s method, which itself is a very small overhead since
we only optimize in one variable with fixed constants: no further evaluations of f are required. For
optimization problems where negative curvature is a significant concern, we include a third-order
correction term that ensures finite and positive step sizes (details in Appendix B.2).

4 A Practical Implementation

While the above derivations have principled motivations and are free of hyperparameters, a practical
implementation of MEKA is not entirely straightforward. Below we discuss some technical aspects,
simplifications and design choices that increase stability in practice, as well as recent software
advances that simplify the computation of quantities of interest.

Computing Per-Example Quantities for Estimating Variance Recent extensions for automatic
differentiation in the machine learning software stack (Bradbury et al., 2018; Agarwal and Ganichev,
2019; Dangel et al., 2020) implement an automatic vectorization map function. Vectorizing over
minibatch elements allows efficient computation of gradients and Hessian-vector products of neural
network parameters with respect to each data sample independently. These advances allow efficient
computation of the empirical variances of gradients and Hessian-vector products, and enable our
filtering-based approach to gradient estimation.

Stabilizing Filter Estimates Instead of working with the full covariance matrices Σt and Qt, we
approximate them as scalar objects σtI and qtI , with σt, qt ∈ R+ by averaging over all dimensions.
We have experimented with diagonal matrices, but found that the scalar form increases stability,
generally performing better on our benchmarks. Furthermore, we use an exponential moving
average for smoothing the estimated gradient variance σt as well as the adaptive step sizes αt. The
coefficients of these exponential moving average are kept at 0.999 in our experiments and seem to be
quite insensitive, with values in {0.9, 0.99, 0.999} all performing near identically (see Appendix F).

5

5 Related Work

Designing algorithms that can self-tune its own parameters is a central theme in optimization (Eiben
and Smit, 2011; Yang et al., 2013); we focus on the stochastic setting, building on and merging
ideas from several research directions. The Bayesian filtering framework itself has previously been
applied to stochastic optimization. To the best of our knowledge, the idea goes back to Bittner and
Pronzato (2004) who used a filtering approach to devise an automatic stopping criterion for stochastic
gradient methods. Patel (2016) proposed filtering-based optimization methods for large-scale linear
regression problems. Vuckovic (2018) and Mahsereci (2018) used Kalman filters on general stochastic
optimization problems with the goal of reducing the variance of gradient estimates. In contrast to
our work, none of these existing approaches leverage evaluations of Hessian-vector products to give
curvature-informed dynamics for the gradient.

In terms of online variance reduction, Gower et al. (2017) have discussed the use of Hessian-vector
products to correct the gradient estimate; however, they propose methods that approximate the
Hessian whereas we compute exact Hessian-vector products by automatic differentiation. Arnold
et al. (2019a) recently proposed an implicit gradient transport formula analogous to our dynamics
model, but they require a rather strong assumption that the Hessian is the same for all samples and
parameter values. In contrast, we focus on explicitly transporting via the full Hessian. This allows us
to stay within the filtering framework and automatically infer the gain parameter, whereas the implicit
formulation of Arnold et al. (2019a) requires the use of a manually-tuned averaging schedule.

Step size selection under noisy observations is a difficult problem and has been tackled from multiple
viewpoints. Methods include meta-learning approaches (Almeida et al., 1999; Schraudolph, 1999;
Plagianakos et al., 2001; Yu et al., 2006; Baydin et al., 2017) or by assuming the interpolation
regime (Vaswani et al., 2019; Berrada et al., 2019). Rolinek and Martius (2018) proposed extending a
linear approximation to adapt step sizes but introduces multiple hyperparameters to adjust for the
presence of noise, whereas we extend a quadratic approximation and automatically infer parameters
based on noise estimates. Taking into account observation noise, Mahsereci and Hennig (2017)
proposed a probabilistic line search that is done by fitting a Gaussian process to the optimization
landscape. However, inference in Gaussian processes is more costly than our filtering approach.

6 Convergence in the Noisy Quadratic Setting

0 200 400 600 800 1000
Num steps

10 2

10 1

100

101

102

Fu
nc

tio
n

Va
lu

e

SGD (lr=0.01)
SGD (lr=0.001)
SGD (adaptive)
GD (lr=0.01)
GD (adaptive)
Meka (lr=0.01)
Meka (adaptive)

Figure 4: Filtered gradients converge
with a fixed step size in the noisy
quadratic regime, whereas SGD results
in diffusion for the same step size.

As a motivating example, consider a simple toy problem,
where

f(θ, ξ) =
1

2
(θ − ξ)TH(θ − ξ), (14)

i.e., a mixture of quadratic functions with identical Hes-
sian but varying location determined by the “data” ξ.
The full gradient is ∇f(θ) = H(θ − E[ξ]) and per-
example gradients evaluate to ∇f(θ, ξ) = H(θ − ξ) =
∇f(θ)−H(ξ − E[ξ]). Hence, we have additive gradient
noise with covariance Σ = HCov[ξ]HT independent of
θ. Moreover, since the Hessian ∇2f(θ, ξ) = H is inde-
pendent of ξ, we have that Btδt−1 ≡ ∇ft −∇ft−1. The
covariance Qt is zero and the filter equations simplify to

Kt = Pt−1(Pt−1 + Σ)−1,

mt = (I −Kt)(mt−1 +Btδt−1) +Ktgt,

Pt = (I −Kt)Pt−1,

(15)

initialized with m0 = g0, P0 = Σ. The filter covariance Pt contracts in every step and in fact, shrinks
at a rate of O(1/t), meaning that the filter will narrow in on the exact gradient. We show that this
enables O(1/t) convergence with a constant step size.
Proposition 1. Assume a problem of the form (14) with µI � H � LI . If we update θt+1 = θt−αmt

with α ≤ 1/L and mt obtained via Eq. (15), then E[f(θt)− f∗] ∈ O (1/t).

Figure 4 shows experimental results for such a noisy quadratic problem of dimension d = 20 with a
randomly-generated Hessian (with condition number > 1000) and ξ ∼ N (0, I). Using SGD with

6

0 1 2 3 4 5 6
Training iterations ×104

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

MNIST

0 1 2 3 4 5 6
Training iterations ×104

10 1

100

CIFAR-10

QuadraticMin c = 0.1
QuadraticMin c = 0.01

PI c = 2.0
PI c = 1.0

PI c = 0.5
PI c = 0.1

Figure 6: Adaptive step sizes based on probability of improvement work best without any additional
scaling factor c for modifying the update rule: θt+1 = θt + cαtδt.

a high learning rate simply results in diffusion, and setting the learning rate smaller results in slow
convergence. Gradient descent (GD) converges nicely with the high learning rate, and using adaptive
steps sizes leads to a better convergence rate. The filtered gradients from MEKA converge almost as
well as gradient descent, and adaptive step sizes provide an improvement. On the other hand, SGD
produces unreliable gradient directions and does not work well with adaptive step sizes. We note that
the stochastic gradient has a full covariance matrix and does not match our modeling assumptions, as
our model uses a diagonal covariance for efficiency. Even so, the training loss of MEKA follows that
of gradient descent very closely after just a few iterations.

7 Classification Experiments

Next we test and diagnose our approach on classification benchmarks, MNIST and CIFAR-10. We
use JAX’s (Bradbury et al., 2018) vectorized map functionality for efficient per-example gradients and
Hessian-vector products. For MNIST, we test using a multi-layer perceptron (MLP); for CIFAR-10, a
convolutional neural network (CNN) and a residual network (ResNet-32) (He et al., 2016a,b). One
key distinction is we replace the batch normalization layers with group normalization (Wu and He,
2018) as batch-dependent transformations conflict with our assumption that the gradient samples are
independent. We note that the empirical per-iteration cost of MEKA is 1.0–1.6× that of SGD due to
the computation of Hessian-vector products. Full experiment details are provided in Appendix E. A
detailed comparison to tuned baseline optimizers is presented in Appendix D.1.

0.0 0.5 1.0 1.5 2.0 2.5
Training Iteration ×104

10 1

100

101

L 2
 N

or
m

|| ft gt||
|| ft mt||

Figure 5: MEKA’s estimated gradients
are closer to the true full-batch gradient
in L2 norm than stochastically observed
gradients by a factor of around 5.

Online Variance Reduction We test whether the filter-
ing procedure is correctly aligning the gradient estimate
with the true gradient. For this, we use CIFAR-10 with a
CNN and no data augmentation, so that the true full-batch
gradient over the entire dataset can be computed. Figure 5
shows the L2 norm difference between the gradient estima-
tors and the full-batch gradient ∇ft. MEKA’s estimated
gradients are closer to the true around by around a factor
of 5 compared to the minibatch gradient sample.

Adaptive Step Sizes are Appropriately Scaled With-
out uncertainty quantification, the quadratic minimum step
size scheme tends to result in step sizes too large. As such,
one may include a scaling factor such that the update is
modified as θt+1 = θt − cαtδt. In contrast, we find that
the adaptive step sizes based on probability of improve-
ment (PI) are already correctly scaled in the sense that a c different from 1.0 will generally result
in worse performance. Figure 6 shows a comparison of different values for c for the quadratic and
PI (12) adaptive schemes. We plot expected improvement in Appendix D, which performs poorly
and requires non-unit scaling factors.

7

100

101

102

Cu
rv

at
ur

e
(δT B

δ

δ
T
δ

)
10-4

10-3

10-2

Gr
ad

ie
nt

 V
ar

ia
nc

e

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Num steps ×105

10-2

10-1

St
ep

 si
ze

 (α
t)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Num steps ×105

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

Adaptive after 0
Adaptive after 104

Adaptive after 2 × 104

Adaptive after 3 × 104

Adaptive after 4 × 104

Adaptive after 5 × 104

Adaptive after 6 × 104

Adaptive after 105

Figure 7: The performance of MEKA with adaptive step sizes on ResNet-32 can be explained by
quantities captured during optimization. MEKA reaches high-curvature high-variance local minima,
as soon as adaptive step sizes are used.

7.1 Adaptive Step Sizes Dives into High-curvature, High-variance Regions

A core aspect of our filtering approach is the ability to estimate quantities of interest during optimiza-
tion. We now use these to help understand the loss landscape and training dynamics of ResNet-32 on
CIFAR-10. We find that a cause for slow convergence of MEKA with adaptive step sizes is due to an
abundance of minima that are usually too high variance for standard SGD.

Figure 7 shows estimates of the normalized curvature along the descent direction δTBtδ
δT δ

as well as the
per-sample gradient variance, averaged over parameters. To understand the loss landscape along the
trajectory of optimization, we use multiple runs of MEKA with the same initialization. Each run takes
a different fixed number of constant-size steps before switching to the adaptive step size scheme.

It is clear that immediately after switching to adaptive step sizes, MEKA falls into an increasingly high
curvature region and remains there. The gradient variance also remains high. As our optimization
procedure can handle relatively high variance and curvature, it proceeds to optimize within this sharp
but potentally non-local minimum. On the other hand, it may be an advantage of fixed-step-size SGD
that it skips over both high-variance and high-curvature minima.

This failing of adaptive step sizes during the initial phase of training may be related to the “short
horizon bias” (Wu et al., 2018) of our one-step-ahead acquisition function. If so, compute budget can
be used to approximate multi-step-ahead gains to help reduce this bias. Additionally, the ability to
optimize within high-curvature high-variance regions could potentially be an advantage on problems
with fewer local minima, yet this may not be the case for deep learning.

8 Conclusion

We introduced an online gradient estimation framework for stochastic gradient-based optimization,
which leverages Hessian-vector products and variance estimates to perform automatic online gradient
estimation and step size selection. The result is a stochastic optimization algorithm that can self-tune
many important parameters such as momentum and learning rate schedules, in an online fashion
without checkpointing or expensive outer-loop optimization.

While the required additional observables can be computed efficiently with recent advances in
automatic differentiation tooling, they are of course not free, increasing computational cost and
memory usage compared to SGD. What one gains in return is automation, so that it suffices to run
the algorithm just once, without tedious tuning. Given the amount of human effort and computational
resources currently invested into hyperparameter tuning, we believe our contributions are valuable
steps towards fully-automated gradient-based optimization.

References
Ashish Agarwal and Igor Ganichev. Auto-vectorizing TensorFlow graphs: Jacobians, auto-batching

and beyond. arXiv preprint arXiv:1903.04243, 2019.

Luís B Almeida, Thibault Langlois, José D Amaral, and Alexander Plakhov. Parameter adaptation in
stochastic optimization. In On-line learning in neural networks, pages 111–134. 1999.

8

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Sébastien Arnold, Pierre-Antoine Manzagol, Reza Babanezhad Harikandeh, Ioannis Mitliagkas, and
Nicolas Le Roux. Reducing the variance in online optimization by transporting past gradients. In
Advances in Neural Information Processing Systems 32. 2019a.

Sébastien Arnold, Pierre-Antoine Manzagol, Reza Babanezhad Harikandeh, Ioannis Mitliagkas, and
Nicolas Le Roux. Reducing the variance in online optimization by transporting past gradients. In
Advances in Neural Information Processing Systems, pages 5391–5402, 2019b.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. arXiv preprint arXiv:1906.05661, 2019.

Barbara Bittner and Luc Pronzato. Kalman filtering in stochastic gradient algorithms: construction
of a stopping rule. In 2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2004.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and George E
Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446,
2019.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop. In
International Conference on Learning Representations, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 2011.

Agoston E Eiben and Selmar K Smit. Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

Robert M Gower, Nicolas Le Roux, and Francis Bach. Tracking the gradients using the hessian: A
new look at variance reducing stochastic methods. arXiv preprint arXiv:1710.07462, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016b.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 1998.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. 1964.

Maren Mahsereci. Probabilistic Approaches to Stochastic Optimization. PhD thesis, Eberhard Karls
Universität Tübingen Tübingen, 2018.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic optimization. The
Journal of Machine Learning Research, 2017.

9

http://github.com/google/jax

James Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, 2010.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814,
2010.

Vivak Patel. Kalman-based stochastic gradient method with stop condition and insensitivity to
conditioning. SIAM Journal on Optimization, 2016.

VP Plagianakos, GD Magoulas, and MN Vrahatis. Learning rate adaptation in stochastic gradient
descent. In Advances in convex analysis and global optimization, pages 433–444. Springer, 2001.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 1964.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning. In
Advances in Neural Information Processing Systems, pages 6433–6443, 2018.

Simo Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge University Press, 2013.
Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic

average gradient. Mathematical Programming, 162(1-2):83–112, 2017.
Frank Schneider, Lukas Balles, and Philipp Hennig. Deepobs: A deep learning optimizer benchmark

suite. arXiv preprint arXiv:1903.05499, 2019.
Nicol N Schraudolph. Local gain adaptation in stochastic gradient descent. 1999.
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the

loop: A review of bayesian optimization. Proceedings of the IEEE, 2016.
Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-

Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. In Advances
in Neural Information Processing Systems 32. 2019.

James Vuckovic. Kalman gradient descent: Adaptive variance reduction in stochastic optimization,
2018.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

Xin-She Yang, Suash Deb, Martin Loomes, and Mehmet Karamanoglu. A framework for self-tuning
optimization algorithm. Neural Computing and Applications, 23(7-8):2051–2057, 2013.

Tjalling J Ypma. Historical development of the newton–raphson method. SIAM review, 37(4):
531–551, 1995.

Jin Yu, Douglas Aberdeen, and Nicol N Schraudolph. Fast online policy gradient learning with smd
gain vector adaptation. In Advances in neural information processing systems, pages 1185–1192,
2006.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

10

A The Full MEKA Algorithm with Adaptive Step Sizes

Algorithm 1 MEKA with adaptive step sizes based on maximizing the probability of improvement.

Hyperparameters: decay rates βr=0.999, βΣ=0.999, βα=0.999
m0, P0 ← ~0, 104 . large variance initialization ensures first Kalman gain is one
u0, s0 ← 0, 104

δ0 = ~0
t← 0
repeat
t← t+ 1
f

(i)
t ,∇f (i)

t ,∇2f
(i)
t δt−1 ← VectorizedMap(f, {xi}Mi=1; θt−1) . compute per-example

quantities
yt, rt ← MeanVarEMA({f (i)

t };βr) . exponential moving average (EMA) on the variances
gt,Σt ← MeanVarEMA({∇f (i)

t };βΣ)

bt, Qt ← MeanVar({∇2f
(i)
t δt−1})

ut, st ← FilterUpdate(ut−1, st−1;mt−1, Pt−1, yt, rt, bt, Qt) . filter update equations
mt, Pt ← FilterUpdate(mt−1, Pt−1; gt,Σt, bt, Qt) . filter update equations
αt ← arg minα (13) . with an EMA (decay rate βα) on the coefficients
δt ← αtmt

θt ← θt−1 − δt
until convergence

B The Function Value Dynamics Model

We discuss inferring the function value ft, taking into account uncertainty due to changes in function
value and observation noise during optimization. The gradient dynamics (5) imply the following
dynamics model for the function value itself:

ft | ft−1 ∼ N (ft−1 +mT
t−1δt−1 +

1

2
δTt−1Btδt−1,

λt + δTt−1Pt−1δt−1 +
1

4
δTt−1Qtδt−1)

yt | ft ∼ N (ft, rt)

(16)

where we again use a quadratic approximation using Taylor expansion. Instead of the intractable
∇f and ∇2f , we use the estimates from Section 2. The observations yt and rt are the empirical
mean and variance of ft from a minibatch. The variance terms in the dynamics model are due to the
uncertainty associated with mt−1 and Btδt−1.

Here we have included a scalar term λt, which acts as a correction to the local quadratic model. This
acts similar to a damping component, except we can automatically infer an optimal λt by maximizing
the likelihood of p(yt | y1:t−1), with a closed form solution (see Appendix B.1). While damping
terms are usually difficult to set empirically (Choi et al., 2019), we note that including our λt term is
essentially free, and it automatically decays after optimization stabilizes.

B.1 Adaptively Correcting the Dynamics Model

We construct a dynamics model of the function value as follows (repeated for convenience):

ft | ft−1 ∼ N (ft−1 +mT
t−1δt−1 +

1

2
δTt−1Btδt−1, λt + δTt−1Pt−1δt−1 +

1

4
δTt−1Qtδt−1)

yt | ft ∼ N (ft, rt)
(17)

We include a scalar parameter λt in case the local quadratic approximation is inaccurate, ie. when
yt is significantly different from the predicted value. If this occurs, a high value of λt causes the
Kalman gain to become large, throwing away the stale estimate and putting more weight on the new
observed function value.

11

We pick a value for λt by maximizing the likelihood of p(yt|y1:t−1). Marginalizing over ft, we get

p(yt|y1:t−1) = N

ut−1 +mT
t−1δt−1 +

1

2
δTt−1Btδt−1︸ ︷︷ ︸

u−
t

, λt + st−1 + δTt−1Pt−1δt−1 +
1

4
δTt−1Qtδt−1 + rt︸ ︷︷ ︸

ct

(18)

Taking the log and writing it out, we get

log p(yt|y1:t−1) ∝ −1

2

[
(yt − u−t)2

λt + ct
+ log(λt + ct)

]
(19)

and its derivative is

−1

2

[
−(yt − u−t)2

(λt + ct)2
+

1

λt + ct

]
= −1

2

[
−(yt − u−t)2 + λt + ct

(λt + ct)2

]
(20)

Setting this to zero, we get
λt = (yt − u−t)2 − ct (21)

Since the role of λt is to ensure we are not overconfident in our predictions, and we don’t want to
deal with negative variance values, we set

λ∗t = max{(yt − u−t)2 − ct, 0} (22)

As can be seen from Figure 8, this λt term goes to zero when it is not needed, ie. when the dynamics
model is correct, which occurs on MNIST after convergence. It is also a quantity that shows us just
how incorrect our dynamics model is, and for the problems we tested, we find that it is significantly
smaller than the posterior variance st. This suggests that it has minimal impact if removed, but we
keep it in the algorithm for cases when a quadratic approximation is not sufficient.

0 1 2 3 4 5 6
Num steps ×104

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

MLP on MNIST
st

t

0 1 2 3 4 5 6
Num steps ×104

0.00

0.05

0.10

0.15

0.20

0.25

CNN on CIFAR-10

0 1 2 3 4 5 6
Num steps ×104

0.00

0.05

0.10

0.15

0.20

0.25

0.30
CNN on CIFAR-10

Figure 8: The quantity 2st + λt shows up as a constant variance term during step size adaptation. We
find that though λt has an effect only during a few iterations, it is usually small enough to be ignored.
This suggests that the quadratic approximation assumption is okay most of the time. Nevertheless, a
self-correcting term that is essentially compute-free is a desirable component.

B.2 Dealing with negative curvature in step size adaptation

When the gradient estimating is pointing in a direction of negative curvature, there is a chance that
the optimal step size is infinity (Figure 9a).

0
α

E
st

im
at

ed
f

(θ
+
α
δ) Quadratic Mean/Std

Expected Improvement
Prob. of Improvement

(a) Negative curvature.

0
α

E
st

im
at

ed
f

(θ
+
α
δ) Quadratic Mean/Std

Expected Improvement
Prob. of Improvement

(b) Negative curvature with λt||δ||6.

Figure 9: Negative curvature can result in infinite step sizes. An extra correction term to the variance
ensures the optimal step size is finite.

12

This occurs when the variance of ft+1− ft rises slower than the expectation. To handle this situation,
we can add a third order correction term, which appears in the variance as a term that scales with
||δ||6. Using the same procedure as inferring a constant λt, we can instead add the term λt||δ||6 to
the variance. We then choose λt as

λ∗t = max

{
1

||δ||6
(
(yt − u−t)2 − ct

)
, 0

}
(23)

This extra term (if λt > 0) in the variance ensures that variance increases faster than the expectation.
Adaptive step sizes based on the probability of improvement will then have an optimal step size that
is finite in value (Figure 9b). An additional damping effect may be added by lower bounding λt.
We did not fully test this approach as the exponential moving averaged curvature used in practice
was always positive for our test problems. Incidentally, Figures 9a and 9b show that the expected
improvement is not a good heuristic as it is extremely large even with this extra term. Moreover, the
quadratic approximation will result in negative step sizes.

C Using the Current Hessian vs the Previous Hessian

For the dynamics model, we make the choice to use the Hessian at the updated location Bt, which is
an unbiased estimate of ∇2f(θt), instead of Bt−1, the Hessian at θt−1. Firstly, we made this choice
for computational reasons: it is easier to compute the Hessian at θt since we are already computing
the gradient gt evaluated at θt. Secondly, we found that using the current Hessian results in better
performance and more stability. Figure 10 shows this on MNIST. For CIFAR-10, we found that using
the previous Hessian Bt−1 resulted in immediate divergence and NaNs, so we do not show those
plots.

0 1 2 3 4 5 6
Num steps ×104

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s Current Bt

Prev Bt 1

Figure 10: The choice of using current vs previous Hessian on MNIST.

D Comparison of Adaptive Step Size Schemes

0 1 2 3 4 5 6
Num steps ×104

10 4

10 3

10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

MLP on MNIST

0 1 2 3 4 5 6
Num steps ×104

10 1

100

CNN on CIFAR-10

QuadraticMin c = 0.1
QuadraticMin c = 0.01

EI c = 2.0
EI c = 1.0

EI c = 0.5
EI c = 0.1

PI c = 2.0
PI c = 1.0

PI c = 0.5
PI c = 0.1

Figure 11: Comparing step sizes with a scaling factor c such that the update is θt = θt−1 + cαtδt.
This comparison includes expected improvement (EI). We note that it performs poorly on MNIST
and requires a scaling of 2.0 to match PI on CIFAR-10. Using a smaller scaling factor results in
worse performance.

13

0 1 2 3 4 5 6
Training iteration ×104

0.96

0.97

0.98

0.99

Te
st

 A
cc

ur
ac

y

MLP on MNIST

0.0 0.5 1.0 1.5 2.0
Training iteration ×105

0.80
0.81
0.82
0.83
0.84
0.85
0.86

Te
st

 A
cc

ur
ac

y

CNN on CIFAR-10

0.0 0.5 1.0 1.5 2.0
Training iteration ×105

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

 A
cc

ur
ac

y

ResNet-32 on CIFAR-10

0 1 2 3 4 5 6
Training iteration ×104

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

0.0 0.5 1.0 1.5 2.0
Training iteration ×105

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

0.0 0.5 1.0 1.5 2.0
Training iteration ×105

10 2

10 1

100

Tr
ai

n
Lo

ss

Meka
Meka (AdaptiveLR)

AdaMeka
SVRG

SGD
Momentum

Adam
Adadelta

Figure 12: MEKA is competitive with optimizers that have additional tunable hyperparameters.
Results are averaged over 5 random seeds; shaded regions are 5th and 95th percentiles.

D.1 Comparison with Tuned Optimizers

We measure the performance of our method against a variety of other approaches. We compare with
fixed step size versions of SGD, SGD with momentum (Polyak, 1964), and ADAM (Kingma and Ba,
2014). For these, we tune the step size using grid search. We also compare against ADADELTA (Zeiler,
2012), which is a competing learning rate-free algorithm, and SVRG (Johnson and Zhang, 2013),
an optimization algorithm focused around estimating the full batch gradient, using the same step
size as the tuned SGD. For comparison, we implemented MEKA using the same constant learning
rate as the tuned SGD, and ADAMEKA with the same learning rate as the tuned ADAM. We applied
fully adaptive step sizes with MEKA update directions; on ResNet-32, we used ADAMEKA update
directions to mitigate poor conditioning.

Figure 12 shows the resulting loss and accuracy curves. As this includes optimizers across a wide
range of motivations, we highlight some specific comparisons. MEKA generally performs better
than SGD in terms of test accuracy, showing that too much stochasticity can hurt generalization.
Though both designed with gradient estimation in mind, MEKA seems to compare favorable against
SVRG in terms of performance. We note that the per-iteration costs of MEKA were also cheaper as
SVRG requires two gradient evaluations. With the default learning rate of 1.0, ADADELTA performs
decently on MNIST but ends up diverging on CIFAR-10. In comparison, our adaptive step sizes
converge well and generally outperform fixed step sized MEKA (or ADAMEKA) in both trainng loss
and test accuracy.

E Experiment Details

E.1 Dataset Description

We used the official train and test split for MNIST and CIFAR-10. We did not do any data augmenta-
tion for MNIST. For CIFAR-10, we normalized the images by subtracting every pixel with the global
mean and standard deviation across the training set. In addition to this, unless specified otherwise,
we pre-processed the images following He et al. (2016a) by padding the images by 4 pixels on each
side and applying random cropping and horizontal flips.

E.2 Architecture Description

All models use the the ReLU (Nair and Hinton, 2010) activation function.

MLP We used an MLP with 1 hidden layer of 100 hidden units.

CNN We used the same architecture as the “3c3d” architecture in Schneider et al. (2019), which
consists of 3 convolutional layers with max pooling, followed by 3 fully connected layers. The first

14

convolutional layer has a kernel size of 5 × 5 with stride 1, “valid” padding, and 64 filters. The
second convolutional layer has a kernel size of 3× 3 with stride 1, “valid” padding, and 96 filters.
The third convolutional layer has a kernel size of 3× 3 with stride 1, “same” padding, and 128 filters.
The max pooling layers have a window size of 3× 3 with stride 2. The 2 fully connected layers have
512 and 256 units respectively.

ResNet-32 Our ResNet-32 (He et al., 2016a) model uses residual blocks based on He et al. (2016b).
We replaced the batch normalization layers with group normalization (Wu and He, 2018) as batch-
dependent transformations conflict with our assumption that the gradient samples are independent,
and hinder our method to estimate gradient variance.

E.3 Optimizer Comparisons Description

We tuned the step size of SGD in a grid of {0.001, 0.01, 0.1, 1.0}. We tuned the step size of SGD
with momentum, and ADAM in a grid of {0.0001, 0.001, 0.01, 0.1}. We chose the best step size of
SGD for the variant of MEKA with a constant learning rate, and for SVRG.

The chosen step size for SGD was 0.1 for MNIST, and 0.1 for CIFAR-10. For SGD with momentum,
the chosen step size was 0.01 for MNIST, 0.1 for ResNet-32 on CIFAR-10, and 0.001 for CNN on
CIFAR-10. The best step size for ADAM was 0.001 for MNIST and ResNet-32 on CIFAR-10, and
0.0001 for CNN on CIFAR-10.

For SGD with momentum, the momentum coefficient γ was fixed to 0.9. For ADAM, β1, β2, ε were
fixed to 0.9, 0.999, and 10−8 respectively. For ADADELTA, ρ and ε were fixed to 0.95 and 10−6

respectively.

F Sensitivity of MEKA’s Hyperparameters

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Num steps ×105

0.80

0.81

0.82

0.83

0.84

0.85

0.86

Te
st

 A
cc

ur
ac

y

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Num steps ×105

10 2

10 1

Tr
ai

n
Lo

ss

r = = 0.9
r = = 0.99
r = = 0.999

Figure 13: The performance of MEKA with constant learning rate for CNN on CIFAR-10 is not
sensitive to the choice of the exponential moving average decay rates βr and βΣ.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Num steps ×105

0.80

0.81

0.82

0.83

0.84

0.85

0.86

Te
st

 A
cc

ur
ac

y

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Num steps ×105

10 2

10 1

Tr
ai

n
Lo

ss

= 0.9
= 0.99
= 0.999

Figure 14: The performance of MEKA with the PI adaptive scheme for CNN on CIFAR-10 is not
sensitive to the choice of the exponential moving average decay rate βα.

15

G Additional Cost of MEKA

Table 1: The memory cost of using a vectorized map to obtain individual gradients is greater than
taking the gradient of a sum over the minibatch, whereas the asymptotic compute cost is the same. B
is the batch size, |θ| is the number of parameters, and D is the number of activations in the model.

∇
∑m
i=1 f

(i)
t VMap(∇, f (i)

t)

Memory O (|θ|+BD) O (B(|θ|+D))
Compute O (BD|θ|) O (BD|θ|)

Table 2: The ratio of the time it takes to complete one iteration for MEKA versus SGD. Note that in
addition to the vector mapped gradients, we also compute an additional Hessian-vector product. The
runtimes are after just-in-time compilation of JAX has settled. Runtimes are tested on the NVIDIA
TITAN Xp GPU.

Dataset Architecture SGD Meka (fixed lr) Meka (PI adaptive)

MNIST MLP 1.00 1.10 1.00
CIFAR-10 CNN 1.00 0.83 1.34
CIFAR-10 ResNet-32 1.00 1.68 2.97

H Proofs

Proof of Proposition 1. A standard Lipschitz bound yields

E[ft+1] ≤ E[ft]− αE[∇fTt mt] +
Lα2

2
E[‖mt‖2]

≤ E[ft]−
α

2

(
E[2∇fTt mt − ‖mt‖2]

)
= E[ft]−

α

2

(
E[‖∇ft‖2]− E[‖mt −∇ft‖2]

)
.

(24)

Using strong convexity (‖∇ft‖2 ≥ 2µ(ft − f∗)) and subtracting f∗ from both sides results in

E[ft+1 − f∗] ≤ (1− αµ)E[ft − f∗] +
α

2
E[‖mt −∇ft‖2] (25)

So in each step, we get a multiplicative decrease in the expected function value (left term) but we add
a term that depends on the variance of our filtered gradient estimate mt. So, in essence, to establish
convergence, we have to show that E[‖mt −∇ft‖2] decreases to zero sufficiently fast.

Since all assumptions of the Kalman filter are satisfied, we know that E[mt] = E[∇ft] and E[(mt −
∇ft)(mt − ∇ft)T] = Pt. Hence, E[‖mt − ∇ft‖2] = tr(Pt). We now show inductively that
Pt = 1

t+1Σ. This holds for t = 0 by construction. Assume it holds for arbitrary but fixed t− 1. Then

Kt = Pt−1(Pt−1 + Σ)−1 =
1

t
Σ

(
1

t
Σ + Σ

)−1

=
1

t
Σ

(
t+ 1

t
Σ

)−1

=
1

t+ 1
I (26)

and, thus,

Pt = (I −Kt)Pt−1 =

(
I − 1

t+ 1
I

)
1

t
Σ =

1

t+ 1
Σ (27)

Plugging E[‖mt −∇ft‖2] = tr(Pt) = 1
t+1 tr(Σ) back into Eq. (25) and introducing the shorthands

et = E[ft − f∗] and σ2 := tr(Σ) reads

et ≤ (1− αµ)et−1 +
ασ2

2

1

t
. (28)

16

Iterating backwards results in

et ≤ (1− αµ)te0 +
ασ2

2

t−1∑
s=0

(1− αµ)t−1−s

s+ 1
= (1− αµ)te0 +

ασ2

2

t∑
s=1

(1− αµ)t−s

s
. (29)

Lemma 1 shows that the sum term is O(1/t). The first (exponential) term is trivially O(1/t), which
concludes the proof.

Lemma 1. Let 0 < c < 1 and define the sequence (for t ≥ 1)

at =

t∑
s=1

ct−s

s
.

Then at ∈ O(1
t).

Proof. Let T be the smallest index such that cT+1
T < 1, i.e., T = dc/(1− c)e. Define

M = max

(
TaT ,

(
1− cT + 1

T

)−1
)

(30)

This ensures that aT ≤ M
T and

1

M
+ c

t+ 1

t
≤ 1 (31)

for all t ≥ T . We now show inductively that at ≤ M
t for all t ≥ T . It holds for t = T by construction

of M . Assume it holds for some t ≥ T . Then

at+1 =

t+1∑
s=1

ct+1−s

s
=

1

t+ 1
+ c

t∑
s=1

ct−s

s︸ ︷︷ ︸
=at≤M/t

≤ 1

t+ 1
+ c

M

t
=

M

t+ 1

(
1

M
+ c

t+ 1

t

)
︸ ︷︷ ︸
≤1 by Eq. (31)

≤ M

t+ 1
.

(32)

17

	Introduction
	Bayesian Filtering for Stochastic Gradients
	Dynamical System Model
	Filtering Framework for Gradient Inference
	Adam-style Update Directions

	Uncertainty-informed Step Size Selection
	Acquisition Functions for Step Size Selection

	A Practical Implementation
	Related Work
	Convergence in the Noisy Quadratic Setting
	Classification Experiments
	Adaptive Step Sizes Dives into High-curvature, High-variance Regions

	Conclusion
	The Full Meka Algorithm with Adaptive Step Sizes
	The Function Value Dynamics Model
	Adaptively Correcting the Dynamics Model
	Dealing with negative curvature in step size adaptation

	Using the Current Hessian vs the Previous Hessian
	Comparison of Adaptive Step Size Schemes
	Comparison with Tuned Optimizers

	Experiment Details
	Dataset Description
	Architecture Description
	Optimizer Comparisons Description

	Sensitivity of Meka's Hyperparameters
	Additional Cost of Meka
	Proofs

