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ABSTRACT

A real-world object is expressed by composing distinctive characteristics that
distinguish it from others and some common properties shared with different
objects. Recent advances in generative modeling focus on identifying the shared
concepts within images of individual identities. However, it remains unclear
how to identify shared concepts beyond multiple identities while preserving the
unique concepts inherent to each. In this work, we address this new problem of
simultaneously discovering similarities and differences between two sets of images
and propose a two-stage framework coined DISCOD (DIstinct and Shared COncept
Discovery). In the first stage of DISCOD, we introduce information-regularized
textual inversion, focusing on separating representative concepts distinctive from
others while capturing the shared concepts among different objects. In the next
stage, we further optimize them to align composited concepts of those with the
corresponding objects, respectively. We demonstrate the effectiveness of DISCOD
by showing that DISCOD discovers the concepts better than baselines, as measured
by CLIPScore and success rate. The human study also validates the reasonable
discovery capability of DISCOD. Furthermore, we show the practical applicability
of our approach by applying to various applications: image editing, few-shot
personalization of diffusion models, and group bias mitigation in recognition.

1 INTRODUCTION

Concepts (Smith & Medin, 1981) are essential notions that define and describe an object and range
from concrete notions of attributes like color and shape to abstract ones like functionality. Given a set
of visual objects, the objects are represented by a combination of common concepts shared across
them and distinct concepts for each individual object or each subset of the objects. Recognizing these
shared and distinct visual concepts across objects is beneficial in various fields, including taxonomy
definition, which improves our understanding of categories (Zhao et al., 2024), the creation of novel
objects,1 and the efficient learning of new concepts (Lake et al., 2015).

Despite the fundamental benefits of recognizing concepts, discovering visual concepts from images
remains challenging due to factors such as complex object composition in real-world scenes and
entanglement with various other concepts (Huang et al., 2023a). Recent works (Gal et al., 2023;
Vinker et al., 2023; Chefer et al., 2024; Avrahami et al., 2023) have proposed concept discovery
methods from the set of input images, where the images contain object instances sharing at least
one concept. These methods optimize a textual concept embedding that encodes a common concept
or multiple embeddings by decomposing shared sub-concepts recognizable by Vision Language
Models (VLMs),2 such as CLIP (Radford et al., 2021) or Diffusion models (Rombach et al., 2022).
Although these approaches have proven useful for many applications of image synthesis (Gal et al.,
2023; Safaee et al., 2024; Ruiz et al., 2023; Sohn et al., 2023; Avrahami et al., 2023; Huang et al.,
2023b; Kumari et al., 2023; Liu et al., 2023a), such as personalization, editing, and compositing, and
understanding sub-concepts of a given object in a human interpretable form (Gal et al., 2023; Chefer
et al., 2024), these approaches primarily focus on extracting commonalities and are not capable of
identifying differences.

1https://clios.com/awards
2We will refer to text-to-image diffusion with CLIP as VLMs.
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First Stage : Discover concept with information bottleneck Second Stage : Fine-tuning from the discovered images
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Figure 1: DISCOD, the two-stage framework to discover distinct and shared concepts. In the first
stage, we discover the textual tokens of shared and distinct concepts with information-regularized
textual inversion: pre-trained discrete token embedding and KL regularization. In the second stage,
we generate the images using the discovered concepts from the first stage, then further optimize the
textual token to align the given two objects.

In this work, we focus on a new discovery problem identifying both shared and distinct concepts
within and between two groups of objects. To recognize the commonalities and differences, we
need to analyze objects into disentangled concepts and then compare these objects comprehensively
according to the concepts. We formulate such a comparative procedure into a novel information-
regularized textual inversion. We observe that, due to the ambiguity of the comparative formulation,
optimizing a continuous concept vector does not converge to desirable solutions. To find a human
interpretable and meaningful concept, we parameterize the concept by discrete embeddings with
existing language tokens as prior. This reduces the risk of discovered concepts being optimized to
adversarial concepts 3 and makes them reside in a meaningful embedding space. Additionally, since
the discrete parameterization restricts the expressivity, we propose the second refinement stage, where
we learn the residual continuous concept vectors to better fit the discovered concepts by leveraging
the discovered ones. To better shape the residual concept, we generate the synthetic images from
each concept and optimize the residual concepts in the continuous embedding space. It helps the
discovered concepts further align with given objects. This DISCOD (DIstinct and Shared COncept
Discovery) procedure is illustrated in Fig. 1.

We validate our method of discovering commonalities and differences given respective image sets of
two objects and three tasks. In our systematic experiment, we demonstrate that DISCOD effectively
discovers the shared and distinct concepts. We show that DISCOD outperforms baselines in discovering
these concepts with respect to CLIPScore and discovery success rate. We also compute the alignment
and agreement scores by human study, where the subjects agree that the discovered concepts represent
the percieved concepts well. Additionally, we demonstrate the applicability of DISCOD in three
applications: image editing, fine-tuning for personalization, and group bias mitigation. Our method
can be integrated with the existing text-conditioned image editing. During fine-tuning diffusion
models given a few images, DISCOD reduces the undesirable entanglement. In a recognition scenario,
where the classes are correlated to their attributes, inducing short-cut learning, our method can find
the group bias and enables us to mitigate bias. The effectiveness of our bias mitigation is validated on
Waterbirds (Sagawa et al., 2020) and CelebA (Liu et al., 2015).

2 METHOD

In this section, we first provide a background of the prior methods that discover concepts representing
a single object. Then, we introduce our goal to simultaneously discover shared and distinct concepts
given two objects and propose our method, DISCOD, to discover these concepts effectively.

Background: Inversion-based concept discovery. Prior concept discovery methods with vision
language models (VLMs) (Rombach et al., 2022; Radford et al., 2021) aim to identify or optimize
a concept given a few images containing a single object by applying model inversion techniques
to discover its textual concept embedding; we call it as inversion-based concept discovery. Textual
inversion (TI) (Gal et al., 2023) is a seminal work in this context; they optimize a few newly initialized

3The concepts are over-fitted in arbitrary ways, rather than containing appropriate concepts.
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tokens that correspond to the new concept while the original pre-trained tokens remain the same.
Once a concept representing the object is discovered, its textual token can be used for image synthesis
and style transfer. Some works (Safaee et al., 2024; Ruiz et al., 2023; Sohn et al., 2023; Avrahami
et al., 2023; Huang et al., 2023b; Kumari et al., 2023) have further developed techniques for image
synthesis, including personalization and text-guided synthesis. Another important research direction
is to decompose a given object into sub-concepts (Vinker et al., 2023; Chefer et al., 2024). It is useful
to understand how VLMs recognize the object and can improve our lack of understanding of VLMs.
This direction provides a way to gain insights into VLMs’ representation mechanisms.

While it is useful to extract the shared concept given an object, it is even more crucial to discover both
the shared and distinct concepts; this discovery can further provide a richer understanding of how
VLMs recognize concepts between objects. Since the previous methods optimize for a single object,
their methods cannot be directly applied or extended to discover the shared and distinct concepts.
Their discovered textual token can be adversarial; certain textual tokens can encode a large coverage
of information, making other textual token concepts meaningless. In this work, we tackle this problem
by introducing information-regularized textual inversion.

2.1 DISCOD: DISTINCT AND SHARED CONCEPT DISCOVERY

We focus on discovering the shared and distinct concepts given two objects. We first introduce some
notations. Let A and B be two image sets, where each set contains distinct concepts, yA\B and
yB\A, compared to another set and also shares a common concept, yA∩B , between sets. Our goal is
to discover yA\B ,yB\A, and yA∩B such that they sufficiently represent the given objects as follows:

min
yA\B ,yB\A,

yA∩B

Ls, where Ls = −
[
I
(
A | yA\B ,yA∩B

)
+ I

(
B | yB\A,yA∩B

)]
, (1)

where I (·) is mutual information. However, we find that the above objective is insufficient to
separate yA\B and yB\A from yA∩B since a concept often leaks to another concept (i.e., failure to
optimize yA\B or yB\A), or yA∩B can easily be optimized to representative non-relative concepts
(i.e., failure to separate yA∩B; trivial solutions exists). For example, let A be yellow chair
and B be yellow table. Then, we desire yA\B = chair, yB\A = table, and yA∩B =
yellow. However, there is still a potential solution that yA\B = yellow chair, yB\A =
yellow table, and yA∩B = photo. To prevent this suboptimal solution, we introduce the
information bottleneck (Tishby & Zaslavsky, 2015; Gilad-Bachrach et al., 2003) that restricts the
representation space of each concept as follows:

min
yA\B ,yB\A,

yA∩B

Ls + λmLm, where Lm =
[
I(A | yA\B) + I(B | yB\A) + I(A,B | yA∩B)

]
. (2)

The second term, Lm, reduces the representation complexity and prevents concepts from containing
unnecessary information. This reduces the overlapping semantics between them; thereby, the shared
concept between them could be maximized. However, this objective function is difficult to directly
optimize; thus, we relax the problem. In the following section, we introduce the two-stage framework:
(1) we propose relaxed information regularization methods in the first stage, and (2) we refine the
concepts to represent two image sets in the second stage.

2.2 FIRST STAGE: INFORMATION-REGULARIZED TEXTUAL INVERSION

In the first stage, we aim to discover the distinct concepts of yA\B and yB\A while maximizing the
separation of shared concepts between them to be incorporated into yA∩B by Eq. (2). Due to the
difficulty of directly solving Eq. (2), we propose the following relaxation techniques.

Textual token embedding. We parameterize yA\B ,yB\A,yA∩B in the discrete embedding space
E , which is the pre-trained text token embedding, rather than in the continuous space. This parameter-
ization provides an upper bound of Eq. (1), because we have infy −I (x | y) ≤ infy∈E −I (x | y),4
where x and y be images and texts. This optimization is akin to an upper bound minimization (Hunter
& Lange, 2004) simplifying the optimization as long as the upper bound is easier to optimize in
practice. Also, since the pre-trained text tokens embed vast prior knowledge of human interpretable
language, this implicitly acts as a prior.

4Derived from supy∈E I (x | y) ≤ supy I (x | y)
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Relaxed objective function. The maximization of the mutual information can be expressed by the
conditional entropy, leading us to maximize the conditional probability. Simply, our approximation
results in the cosine similarity between the image sets and the text embedding (refer to the derivation
in the appendix). In the first stage, we relax Ls with the negative cosine similarity, denoted as L̂s. To
compute the cosine similarity, we use CLIP (Radford et al., 2021) for representing image and text
embeddings. For mapping the concept vectors to text embeddings, with the discrete parameterization,
we concatenate yA\B ,yB\A with yA∩B as

[
yA∩B ;yA\B

]
and

[
yA∩B ;yB\A

]
. Then, we extract

these respective text embeddings using the CLIP text encoder. The relaxation L̂s is as follows:

L̂s(A,B,yA\B ,yB\A,yA∩B) =
(
1− CosSim

(
CLIPI (A) , CLIPT

([
yA∩B ;yA\B

])))
+(

1− CosSim
(
CLIPI (B) , CLIPT

([
yA∩B ;yB\A

])))
, (3)

where CosSim(·) denotes the cosine similarity, and CLIP{I,T} denotes CLIP image/text encoders.

The information regularization applied to the distinct concepts is also approximated by the cosine
similarity. This time, we compute the cosine similarity between the discrete embedding space E and
{yA\B ,yB\A} (refer to the derivation in the appendix), i.e., CosSim

(
E ,yA\B or yB\A

)
. We apply

the softmax operation to get the probabilistic distribution over the cosine values. We can compute the
KL divergence between this distribution and the uniform distribution U by the cross-entropy. Our
regularization is as follows:

L̂m(E ,yA\B ,yB\A) = CE
(
p
(
CosSim

(
E ,yA\B

))
, U

)
+ CE

(
p
(
CosSim

(
E ,yB\A

))
, U

)
, (4)

where P (·) denotes the softmax function, and U the uniform distribution. We adopt PEZ (Wen et al.,
2024) to optimize L̂s + λmL̂m on the discrete embedding.

2.3 SECOND STAGE: FINE-TUNING WITH SYNTHETIC CONCEPTS

Although we find meaningful concepts from the first stage, it is not sufficient to align the concepts
with the given two objects, A and B, due to the limited expressivity of the discrete representation. To
refine, we learn their continuous residual concepts in this stage. We generate synthetic images with
the learned discrete tokens in the first stage using text-to-image (T2I) diffusion models. We denote
the synthetic images as A \B,B \A, and B ∩A, respectively. We use these synthetic images to
optimize yA\B ,yB\A, and yA∩B in the continuous embedding. Synthetic images are helpful for
preventing converging non-meaningful concepts during fine-tuning. We also use the discovered
concepts from the first stage as initialization for the second stage. To optimize further, we use the T2I
diffusion models; p(x|y) ∼ N (αtx,σ

2
t ) where coefficient αt and σt satisfy p(x|y) ∼ N (0,1) at

t = 0. Thus, in the second stage, we relax the maximization of I (x | y) with the minimization of the
diffusion loss as Ld(A,y) = ||ϵ− ϵθ(x, t,y)||22, where x ∈ A. The final optimization is as follows:

min
yA\B ,yB\A,

yA∩B

L̂s, where L̂s =Ld(A, [yA∩B ;yA\B ]) + Ld(B, [yA∩B ;yB\A])

+ Ld(A \B,yA\B) + Ld(B \A,yB\A) + Ld(B ∩A,yA∩B). (5)
By fine-tuning, we discover the concepts aligned with the given two image sets. We discard the regu-
larization term L̂m, and instead we use synthetic images, which provide implicit regularization. The
derivation of the objective can be found in the appendix. Figure 1 shows our two-stage framework.

3 EXPERIMENTS

In this section, we conduct experiments on various tasks: discovering both commonalities and
differences through textual inversion (Sec. 3.1), applying DISCOD for editing task (Sec. 3.2), fine-
tuning Text-to-Image (T2I) Diffusion models for personalization (Sec. 3.3), and mitigating group
bias in the Waterbirds and CelebA datasets (Sec. 3.4).

3.1 COMMONALITY & DIFFERENCE TEXTUAL INVERSION

Qualitative results. We curate the real image pairs from Unsplash 5. Additionally, we utilize the
DreamBooth dataset (Ruiz et al., 2023). We use Stable Diffusion 2.1-base for experiments to discover
both commonalities and differences by textual inversion given the two image sets.

5https://unsplash.com/

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Set A Set B 𝒚!\# (Clock) 𝒚!∩% (Yellow) 𝒚%\& (Duck) 𝒚!∩% + Cat 𝒚!∩% + Dog 𝒚!∩% + Table

(a) Clock and rubber duck
Set A Set B 𝒚!\# (Paris) 𝒚!∩% (Tall) 𝒚%\& (Acient) 𝒚!\# +	Person 𝒚!∩% + Animal 𝒚%\& + City

(b) Eiffel Tower and Pyramid
Set A Set B 𝒚!\# (Running) 𝒚!∩% (Dog) 𝒚%\& (Resting) 𝒚!\# + Cat 𝒚!\# + Track 𝒚%\& +Place

(c) Running and resting dog
Set A Set B 𝒚!\# (Sad) 𝒚!∩% (Dog) 𝒚%\& (Happy) 𝒚!\# + Person 𝒚%\& + Cat 𝒚%\& +Buddha

(d) Sad and happy dog

Figure 2: Qualitative on real pairs. We apply DISCOD to the real pairs from Set 1 and Set 2. We
generate images from the discovered concepts denoted as yA\B ,yB\A,yA∩B and the discovered
concepts with additional text tokens, e.g., yA∩B + Cat where + is the concatenation operation. We
show the corresponding words next to the discovered concepts for convenience of referencing.

Figure 2 shows the qualitative results. We apply DISCOD to real pairs to validate that DISCOD
discovers meaningful commonalities and differences. Specifically, after optimizing the common and
distinct concepts between two objects, we generate images from the T2I diffusion model with the
prompts, “the photo of yA\B , yA∩B or yB\A”, and with the additional text tokens, e.g., “a photo of
a yA∩B cat.” It helps us determine whether the discovered concepts are valid.

As shown in Fig. 2a, we give the clock and rubber duck, both of which share a yellow color. We can
interpret yA∩B as yellow, and yA\B and yB\A represent clock and duck, respectively. Our method
successfully discovers yA∩B as yellow because yA∩B generates the shared color as shown in 2a.
The discovered yA\B and yB\A align with their respective categories, as expected. In the case of
the Eiffel Tower and the Pyramid (See Fig. 2b), the discovered yA\B ,yA∩B ,yB\A represents Paris,
tall, and ancient, respectively. Since both the Eiffel Tower and the Pyramid are tall structures, the
discovered concept yA∩B is reasonable.

Se
t 𝐴

Se
t 𝐵

Common Difference

Figure 3: Attention map visualization.
We visualize the cross-attention map be-
tween the discovered concepts and the
training images.

We also provide examples involving two different dogs
in distinct poses (See Fig. 2c). The commonality yA∩B

is identified as dog. yA\B is related to running as the
individual and composite images depict a running person
and a running track. yB\A represents resting, as indicated
by the resting pose and the resting place in the images.
Finally, we apply DISCOD to a pair describing different
emotional states: one negative and the other positive. The
discovered yA\B and yB\A capture these emotional states.
yA\B , when combined with a person, shows a negative sit-
uation, while yB\A, when combined with Buddha, shows
a smiling Buddha.

Attention Map. We visualize the cross-attention map
between the discovered concepts and images by running
DDIM inversion and computing the cross-attention scores.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Discovery

(a) CLIPScore

Set 1

Set 2

TI
D

IS
C

O
D

U
C

D

Green Cap Yellow

(b) Comparison with baselines

Figure 4: CLIPScore and qualitative result on the synthetic data. (a) We measure the CLIPScore
between the known concepts used in synthetic data generation and the images generated from the
discovered concepts. (b) We generate images based on the concepts discovered through our method.
The arrow above the images indicates the desired concept. The middle of the two concepts represents
the compositional concept of two concepts.

The salient regions of the attention map are highlighted with red boxes as shown in Fig. 3. The
common concept “Tall” focuses on the upper portions of the provided images, indicating that the
discovered concepts capture meaningful factors. The result shows that the discovered concepts
correspond to relevant areas within the images.

Quantitative result - CLIPScore. To enable quantitative comparisons, we generate synthetic data
in a controlled environment by using T2I diffusion models. We generate image pairs with the prompts
“the photo of yA∩B {yA\B or yB\A},” where a pair contains only one shared concept. We choose
Textual Inversion (TI) (Gal et al., 2023; Vinker et al., 2023) and Unsupervised Concept Discovery
(UCD) (Liu et al., 2023a) as baselines and modify these methods to discover commonalities and
differences between two objects. Vinker et al. (2023) have introduced a method for decomposing an
individual instance into sub-concepts using a binary tree structure of text tokens. Liu et al. (2023a)
have proposed an unsupervised approach for discovering concepts from image collections. To ensure
that commonalities are captured across each image set, we set the weight combination coefficient to
0.5 for each concept token.6

Given the controlled nature of the synthetic pairs, we know the commonalities and differences
between them. We compute the CLIPScore (Hessel et al., 2021) between the known concept (text)
and the images generated from the discovered concepts. Following the approach of Hessel et al.
(2021), we scale the scores by a factor of 2.5. If a discovered concept effectively represents its
respective concept, the CLIPScore is high. Figure 4a shows the CLIPScore of each discovered
concept and compositional concept. Although TI exhibits a high similarity in [yA∩B ;yA\B ] and
[yA∩B ;yB\A], our method (DISCOD) achieves a higher score than the baselines for yA\B , yB\A,
and yA∩B . Figure 4b have a similar tendency with the CLIPScore results. Thus, DISCOD shows more
fine-grained concept discovery capabilities than baselines.

Table 1: Success rate on synthetic data.
Discovery means yA\B ,yB\A,yA∩B ,
and Comp. means yA,yB .

Model Success rate
Discovery Comp. Mean

TI 0.42 0.72 0.58
UCD 0.36 0.60 0.48

DISCOD 0.77 0.60 0.69

Quantitative result - Success rate. We also directly mea-
sure the success rate of discovery. We conduct a human
study where each participant answers 60 questions. Af-
ter observing a high Pearson correlation of 0.87 between
participants and experts, we assess the success and failure
rates based on expert evaluations. As shown in Table 1,
DISCOD surpasses other baselines in terms of the success
rate for decomposition. Since TI shows high composi-
tional performance, the limitations in discovery are not
due to fitting issues. This validates the effectiveness of our
approach in uncovering concepts within images.

Ablation Study - KL divergence. We perform an ablation study on our proposed regularization,
which is an information bottleneck in the first stage. Figure 5a show the CLIPScore and the

6Further implementation details are provided in the appendix.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) CLIPScore

Set 1

Set 2

TI
U

C
D

Truck Green Car

KL Loss

(b) The effect of regularization

Figure 5: CLIPScore and qualitative result with and without regularization. We measure the
CLIPScore and generate the images in the first stage, both with and without regularization. Our
observations indicate that regularization enhances discovery performance and makes discovered
concepts optimized toward meaningfulness.

Set A Set B 𝒚!\# 𝒚!∩% 𝒚%\&

Figure 7: Example used for alignment and aggre-
ment. We apply DISCOD to the pair of fennec and arctic
fox. DISCOD discover resting pose, fox, and arctic for
yA\B ,yA∩B , and yB\A.

Table 2: Alignment and agreement
of fennec and arctic fox. Alignment
of yA\B is low because participants
thought it as the desert. However, partic-
ipants agree the pose is yA\B .

Concept Alignment Aggrement

yA\B 0.28 0.75
yA∩B 0.95 0.95
yB\A 0.86 0.97

generated images of DISCOD with and without regularization. It shows that regularization improves
the CLIPScore, indicating the regularization’s necessity for making the concepts more meaningful.
Figure 5b shows the regularization effect. In this example, the common concept is green, while
the distinct concepts are truck and car. Without the KL divergence loss, the shared concept, yA∩B ,
generates a green car (See the above row in Fig. 5b). Since “green car + truck” could potentially
describe green Truck, it is understandable but is not desirable. Furthermore, the distinct concept
of yB\A lacks meaningfulness. After applying our regularization, the discovered concepts become
noticeably more meaningful (See the bottom row of Fig. 5b). Thus, regularization is effective.

Target First Second

Figure 6: Ablation study of the second
stage. The second stage optimizes the
discovered concept further to represent
the given object.

Ablation study - Second stage. The second stage is
designed to better align the representation with the given
objects. Figure 6 shows the first stage generates a structure
resembling a pyramid; however, it also encompasses var-
ious other concepts due to the restriction to discrete token
embeddings. In the second stage, the concepts align more
accurately with the pyramid than that of the first stage,
validating the effectiveness of the second stage.

Human study - Alignment and agreement. The discov-
ered concepts can be different from what we perceptually
expect. We apply DISCOD to the pair of fennec (desert)
and arctic fox. We expect the shared concept is a fox,
and the distinct concepts are desert and arctic, reflecting
their differing habitats. However, yA\B of fennec fox is
more related to pose rather than the desert, specifically
characterized by the crouching posture. This is primarily
because the majority of fennec foxes are observed in a
crouching position.

We conduct a human study to explore alignment and agreement. Participants are asked to write
short answers describing the commonalities and differences between a pair of images. Afterward,
we show them the predicted concepts from DISCOD, and they compare their written short answers
with the predicted concepts from DISCOD. For alignment, we quantify the response by assigning a
score of 1 if the participant answer that the predicted concept aligned with their own. The generated

7
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Clock and rubber duck

𝒚!∩#
(yellow)

Eiffel Tower and Pyramid

𝒚#\!
(ancient)

Running and resting dog

𝒚!∩#
(dog)

Running and resting dog

𝒚!\#
(running)

Sad and happy dog

𝒚!\#
(sad)

Sad and happy dog

𝒚#\!
(happy)

Figure 8: Editing results with the discovered concepts We apply the editing method, Prompt-to-
Prompt (Hertz et al., 2022), to the given image. It validates the meaning of the discovered concepts
in Fig. 2. It also provide the possible application of ours.

depressed sleeping sad resting

+ 
O

ur
s

Two images joy walking field beach

+ 
O

ur
s

Two images

Figure 9: Bias mitigation in DreamBooth. We apply our method to DreamBooth (Ruiz et al., 2023).
Given two images, we discover the concepts between them. The top row shows DreamBooth without
DISCOD, while the bottom row show DreamBooth with DISCOD. From the left example, we discover
a common concept of emotion, and from the right samples, we discover the common concept of
location. Ours improves the result of DreamBooth.

image may still represent concepts that they initially overlooked, although participants’ answers differ.
Participants are also asked whether the generated image from the discovered concepts represents the
commonalities or differences. Their responses are rated on a scale from 1 to 5, with higher scores
indicating that the discovered concept accurately represents the relevant concept. We normalize
the agreement value. The key difference from alignment is that agreement evaluates whether the
discovered concepts from DISCOD are understandable.

The alignment score for the fennec fox’s attributes is low, as participants predominantly mention
“desert”, as expected. Some responses, however, relate to the fox’s pose and resting behavior.
Consequently, the concepts associated with pose are easily recognizable, resulting in a high agreement
score. Other human studies can be found in the appendix.

3.2 IMAGE EDITING

Image editing based on text conditions offers high user control without requiring specific image
editing skills. Users simply provide an image and a descriptive text condition. In this section, we
combine Prompt-to-Prompt (Hertz et al., 2022) with DISCOD. Using the concepts discovered in
Fig. 2, we apply them to the Prompt-to-Prompt framework, allowing us to evaluate the validity and
effectiveness of the discovered concepts.

As shown in Fig. 8, we observe that the concept yA∩B of a clock and a rubber duck transforms
a rabbit into a yellow rabbit. The concept yB\A, which merges the Eiffel Tower and a pyramid,
transforms the painting to an aged appearance. Additionally, yA\B of the running concept gives a
blur effect to the car, conveying the idea of motion. Other examples involving objects and emotions
also align well with the identified concepts. These results validate the effectiveness of our method
and its potential application in image editing.

3.3 DISENTANGLEMENT IN TEXT-TO-IMAGE PERSONALIZATION

Text-to-Image (T2I) personalization aims to generate personalized images, given a few images of
the target instance. Ruiz et al. (2023) proposed DreamBooth, a method that fine-tunes T2I diffusion

8
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Table 3: Prompt performance on Waterbirds and CelebA. We report worst-group and average
accuracy with their gap. Zero-shot Prompt only uses class labels, Group Prompt exploits the
knowledge of biased information, and B2T uses the discovered keyword. DISCOD uses the discovered
distinct concepts. Bold and Underline are the best and the second best, respectively.

Dataset Method RN50 ViT-B-32 ViT-H-14

Worst Avg Gap Worst Avg Gap Worst Avg Gap

Waterbirds

Zero-shot Prompt 44.2 70.2 26.0 47.3 71.5 24.2 37.2 84.0 46.8
Group Prompt 52.6 79.3 26.7 60.1 79.4 19.3 34.6 84.8 50.2
B2T 57.2 75.0 17.8 57.8 75.9 18.1 35.5 84.7 49.2

DISCOD (ours) 59.3 77.5 18.2 58.3 76.2 17.9 39.9 85.3 45.4

CelebA

Zero-shot Prompt 74.0 83.7 9.7 78.9 90.4 11.5 45.2 88.3 43.1
Group Prompt 78.3 87.8 9.5 82.8 90.4 7.6 46.0 88.9 42.9
B2T 79.0 86.3 7.3 85.0 89.2 4.2 48.8 89.0 40.2

DISCOD (ours) 78.1 85.5 7.4 86.7 88.6 1.9 60.2 89.4 29.2

Set 1

Set 2

Waterbirds CelebA

Figure 10: Visualization of discovered bias. We
visualize the discovered biases, yA\B and yB\A,
from Waterbirds and CelebA. The discovered bi-
ases represent their known biases well.

Table 4: Ablation study of CelebA. Male
is a well-known bias in CelebA, thus more
effective in Group Prompt than others. Our
discovered concept corresponding to male im-
ages is also effective, which is the same for
Group Prompt. Bold is the best.

Method Worst Avg Gap

Group Prompt (Male) 78.3 87.7 9.5
Group Prompt (Female) 76.7 88.4 11.7
Group Prompt (Both) 76.9 89.6 12.2

DISCOD (Male) 82.2 86.4 4.5
DISCOD (Female) 70.2 82.6 12.4
DISCOD (Both) 78.1 85.5 7.3

models using a few images for personalization. However, this approach is vulnerable to entanglement
if given images are biased to some attributes, such as facial expression or location. For example, if
most reference images have a smiling face, the generated images may consistently show a smiling
expression, even when the prompt implies a negative emotion. To address this issue, we propose to
combine DISCOD with DreamBooth.

We first discover the shared and distinctive concepts by applying DISCOD in the first stage. We
fine-tune the diffusion model by providing the specific prompt, e.g., “the photo of yA∩B yA\B
object”, rather than “the photo of object”. This detailed description helps disentangle the undesirable
concepts as shown in SDI (Kim et al., 2024a). For this experiment, we use Stable Diffusion XL and
LoRA (Hu et al., 2022).

Figure 9 shows the results of applying DreamBooth with and without our method. In the left example
of Fig. 9, the model exhibits a bias toward emotions such as happiness or joy, which leads to the
personalized model generating the dog instances with its tongue out. See the bias result of DremBooth
given depressed, sleeping, sad, and resting prompts. In contrast, our method enables the model to
generate diverse emotional states, so that the dog instances are generated without its tongue out. The
right example in Fig. 9 has the location bias. While the naive DreamBooth generates images with
limited backgrounds, our approach generates images with varied backgrounds. Thus, our discovery
methodology is effective in tackling the entanglement during fine-tuning.

3.4 MITIGATING GROUP BIAS

Does recognizing the commonality and differences between sets help VLMs recognize objects in
reverse? The neural network is vulnerable to bias. For example, the waterbird class in the Waterbirds
dataset is often in the water. The waterbird with the land background shows lower accuracy compared

9
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to the average accuracy. We apply DISCOD to discover the concepts between the mispredicted
set of two classes like B2T (Kim et al., 2024b). We denote “the photo of {class}” as a
Zero-shot Prompt (Radford et al., 2021) and “the photo of {class} in the {group}”
as Group Prompt (Zhang & Re, 2022). B2T uses the group labels as their discovered keywords from
midpredicted images. We use the pre-trained ResNet50 of CLIP for DISCOD and use the discovered
distinct concepts in the first stage as group labels.

We evaluate the methods on Waterbirds and CelebA datasets. We report the worst-group and average
accuracy with their gap (See Table 3). Compared to Zero-shot Prompt, DISCOD improves the worst-
group accuracy. In addition, our discovered concepts are effective compared to Group Prompt and
B2T. Especially in ViT-H-14, ours achieves the highest score in worst-group, average, and their gap.

The bias of Waterbirds and CelebA are the background and gender, respectively. We visualize the
discovered concepts (See Fig. 10). Our discovered distinct concepts are related to water and forest in
the Waterbirds dataset; the ones are male and female in CelebA. The visualization shows that DISCOD
discovers the meaningful bias. We experiment with the ablation to incorporate one or both of our
discovered concepts into the prompting. We use male bias for Group Prompt because the known
group is effective bias (See the performance of Group Prompt in Table 4). Among the discovered
concepts, the one generating the male image is more effective rather than the female and both, which
is the same tendency to Group Prompt.

4 RELATED WORK

Inversion-based concept discovery. With VLMs (Radford et al., 2021; Desai et al., 2023; Girdhar
et al., 2023; Jia et al., 2021; Li et al., 2022; Rombach et al., 2022; Ramesh et al., 2021; Kang et al.,
2023; Chen et al., 2024a), the concept discovery aims to identify the concept corresponding with a
few images containing a single object. Textual inversion (TI) (Gal et al., 2023) optimizes the textual
embedding to the given object using T2I diffusion models. Subsequently, recent works (Vinker et al.,
2023; Chefer et al., 2024) have proposed methods for decomposing a single object into sub-concepts.
Vinker et al. (2023) have introduced the tree-structure construction of token embedding, uncovering
the hidden sub-concepts of the single object. Chefer et al. (2024) also have decomposed a single
concept into sub-concepts to understand the internal representation of VLMs. In this work, we focus
on discovering both the commonalities and differences between two image sets, in contrast to prior
research, which focuses on discovering commonalities in an image set. We develop information-
regularized methods tailored to our objective.

Explainable machine learning. Explainable machine learning aims to provide terms understandable
to humans about machine decision (Doshi-Velez & Kim, 2017). Prior works have proposed algorithms
to measure the score that affects the decision of models and provide saliency map (Kim et al., 2021;
Choe et al., 2022; Lee et al., 2022; Selvaraju et al., 2017; Li et al., 2016; Arras et al., 2017).
Additionally, neural networks accumulate their knowledge into neurons referred to as knowledge
neuron (Dai et al., 2022). Some works (Liu et al., 2023b; Dai et al., 2022; Chen et al., 2024b)
have explored which neurons influence model decisions. Concept-based models (Koh et al., 2020;
Yuksekgonul et al., 2023; Zhou et al., 2018) are composed of the concept bottleneck layer, where each
layer represents human interpretable concepts. In this work, DISCOD identifies the shared and distinct
concepts recognized by VLMs and visualizes the concepts in the human interpretable medium.

5 CONCLUSION

We take a closer look at how VLMs recognize the commonalities and differences between two objects.
Unlike the previous works that focus on single objects, DISCOD discovers shared and distinct concepts
simultaneously. We formulate the task to maximize the information of sub-concepts for the given
objects and propose a two-stage framework. We validate DISCOD on pairs of real and synthetic
settings, observing that DISCOD identifies various concepts like color, category, and abstract concepts.
Both CLIPScore evaluations and human studies demonstrate the effectiveness of DISCOD. In addition,
we also validate the effectiveness of DISCOD on three tasks: image editing, fine-tuning diffusion
models on the DreamBooth dataset, and group-bias mitigation on WaterBirds and CelebA. We believe
that understanding how machines distinguish between objects will lead to a better understanding of
machines, which in turn leads to better performance.
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ETHICS STATEMENT

DISCOD discovers the shared and distinct concepts between two sets of images and provides them
with a form that humans can understand. Thus, we can use it to investigate the two objects to help our
understanding of these objects. However, if we rely heavily on the discovered ones, it leads humans
to misunderstand these objects because the discovered ones are related to how VLMs perceive them;
it can have a negative societal impact. Thus, we should use it as a tool to help us. In terms of the
positive societal impact, we apply DISCOD to reduce the bias; bias mitigation is a crucial problem in
deploying AI, preventing social issues, and improving fairness.

REPRODUCIBILITY STATEMENT

In the appendix, we provide the implementation details, such as the model used and the hyperparame-
ters; we provide the additional mathematical formulation. We curate the real pairs from Unsplash
and will release the dataset as a list of URLs. In addition, we give an explanation of how to curate
a synthetic dataset in the appendix. We use the DreamBooth dataset, Waterbirds, and CelebA for
experiments.
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A DISCOD: DISTINCT AND SHARED CONCEPT DISCOVERY

A.1 FIRST STAGE

The mutual information satisfies the following equation, I (x | y) = H (x) − H (x | y) where
H is the entropy. Since we optimize y, H (x | y) is related to the optimization goal. Thus, we
can maximize the mutual information by minimizing the conditional entropy, H (x | y). The
minimum of entropy is 0, and we can achieve it by making the probability 1. We maximize
the conditional probability. The probability is proportional to the cosine similarity, p (x | y) ∼
CosSim (CLIPI (x) , CLIPT (y)) = CLIPI(x)·CLIPT (y)

|CLIPI(x)||CLIPT (y)| in CLIP models where CLIPI , CLIPT are

image and text encoders. The one of objective term L̂s, the approximation of Ls, is the following:

L̂s(A,B,yA\B ,yB\A,yA∩B) = −
[
I
(
A | yA\B ,yA∩B

)
+ I

(
B | yB\A,yA∩B

)]
(6)

≈
(
1− CosSim

(
CLIPI (A) , CLIPT

([
yA∩B ;yA\B

])))
+(

1− CosSim
(
CLIPI (B) , CLIPT

([
yA∩B ;yB\A

])))
. (7)

Further, we can express the mutual information with Kullback-Leibler divergence:
I (x | y) = E [DKL (p (y|x) || p (y))] , (8)

where DKL is Kullback-Leibler divergence. We do not know p(y), but we want to infuse the
information bottleneck into p (y|x) not to contain unnecessary information; we set p(y) as uniform
distribution. As mentioned in the main paper, we compute p (y|x) by computing cosine similarity
between the pre-trained embedding of tokens and applying the softmax operation. The another term
L̂m is the following:

L̂m(E ,yA\B ,yB\A) = E
[
DKL

(
p
(
yA\B |A

)
|| U

)]
+ E

[
DKL

(
p
(
yB\A|B

)
|| U

)]
(9)

= CE
(
P
(
CosSim

(
E ,yA\B

))
, U

)
+ CE

(
P
(
CosSim

(
E ,yB\A

))
, U

)
,
(10)

where P (·) denotes the softmax function, U is the uniform distribution, and E is the pre-trained token
embeddings. The final objective contains the projection on discrete embedding. Since the pre-trained
text tokens embed vast prior knowledge of human interpretable language, this implicitly acts as a
prior. Our objective is as follows:

min
yA\B ,yB\A,yA∩B∈E

L̂s(A,B,yA\B ,yB\A,yA∩B) + λmL̂m(E ,yA\B ,yB\A) (11)

Since we optimize the above objective on discrete embedding, we adopt PEZ method (Wen et al.,
2024).

A.2 SECOND STAGE

We use the diffusion model in the second stage. The diffusion model formulates the Gaussian
distribution with time schedule as p(x) ∼ N (αtx,σ

2
t ). Since the Kullback-Leibler divergence

between two Gaussian distributions has the closed form solution, the maximization of mutual
information is naturally described as the minimization of L2 loss, Ld(A,y) = ||ϵ − ϵθ(x, t,y)||22
where x ∈ A. Thus, the proposed objective is the following:

L̂s =Ld(A, [yA∩B ;yA\B ]) + Ld(B, [yA∩B ;yB\A])

+ Ld(A \B,yA\B) + Ld(B \A,yB\A) + Ld(B ∩A,yA∩B) (12)

where A and B are the given objects, and A \B,B \A, and B ∩A are the synthetic images from
the first stage. Unlike the first stage, we discard the information-regularized term because we use
synthetic images. Our first stage and second stage maximize the information of two objects.

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

Main experiments. We use the two types of vision language models. The first one is CLIP (Radford
et al., 2021). We use ViT-H-14 architecture; we adopt the ViT-bigG model for CLIPScore not to
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Figure 11: Sample pairs of Real data. Real pairs are curated from Unsplash and the DreamBooth
dataset.

overlap with the used model for discovery. The second type of vision language model is latent
stable diffusion (Rombach et al., 2022). We use Stable Diffusion 2.1 Base as the text-to-image (T2I)
diffusion model.

In TI baseline, Vinker et al. (2023) have introduced a method for decomposing an individual instance
into sub-concepts using a binary tree structure of text tokens. We adapt the method to our setting
by sharing one sub-concept between two image sets in a binary tree structure. In UCD, we set the
weight combination coefficient to 0.5 for each concept token.

We have hyperparameters of batch size, learning rate, and loss weight coefficient λm. We set the
batch size of each image set as 1. Thus, the total batch size is 2. The learning rate for the baselines is
based on the original, considering different batch sizes; we scale the learning rate if it improves the
quality. The learning rate for DISCOD is determined in {0.1, 0.01, 0.01} in the first stage; the learning
rate in the second stage is 5e-4. The coefficient of λm is set as 0.1. The number of iterations is 1,000
and 100 for the first and second stages, respectively. We use a single 80G A100 for all experiments,
but, the required memory consumption is much lower than 80G.

As shown in Fig. 11, We curate the real data from Unsplash to construct the real datasets; one pair is
taken from the DreamBooth dataset. For synthetic data, we generate the images from Stable Diffusion
2.1 Base by text. For our task, we need a pair of two objects. Thus, we overlap one concept between
pairs and provide distinct concepts for each object. We generate the pairs on the pre-defined text
template and concepts. We use the following concepts:

• Category: sedan, bus, motorcycle, ship, airplane, truck, train,
shirt, pants, shoes, dress, cap, chair, table, bench,

• Color: red, yellow, green, purple, blue

The category or color can be overlapped between two objects. The total number of pairs is 30, and
each pair has 10 images. Figure 12 shows the samples of pairs.

Disentanglement in Text-To-Image Personalization. We first discover the shared and distinctive
concepts by applying DISCOD in the first stage. We fine-tune the diffusion model by providing the
specific prompt, e.g., “the photo of yA∩B yA\B object”, rather than “the photo of object”. In other
words, we replace the textual inversion in the second stage with the fine-tuning of T2I diffusion
models. For this experiment, we use Stable Diffusion XL and LoRA. The batch size is 1, the learning
rate is 1e-4, and the number of iterations is 500 for fine-tuning. The rank of LoRA is 4.
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Figure 12: Sample pairs of Synthetic data. Synthetic pairs are generated from Stable Diffusion 2.1
Base with the pre-defined category and color. In the pair, one concept is overlapped, and the other
concepts are not overlapped; both category and color can be a commonality.
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Set A Set B 𝒚!\# (Clock) 𝒚!∩% (Yellow) 𝒚%\& (Duck) 𝒚! (Set A) 𝒚% (Set B)

(a) Clock and rubber duck
Set A Set B 𝒚!\# (Paris) 𝒚!∩% (Tall) 𝒚%\& (Ancient) 𝒚! (Set A) 𝒚% (Set B)

(b) Eiffel Tower and Pyramid
Set A Set B 𝒚!\# (Running) 𝒚!∩% (Dog) 𝒚%\& (Resting) 𝒚! (Set A) 𝒚% (Set B)

(c) Running and resting dog
Set A Set B 𝒚!\# (Sad) 𝒚!∩% (Dog) 𝒚%\& (Happy) 𝒚! (Set A) 𝒚% (Set B)

(d) Sad and happy dog
Set A Set B 𝒚!\# (Resting) 𝒚!∩% (Fox) 𝒚%\& (Arctic) 𝒚! (Set A) 𝒚% (Set B)

(e) Fennec and Arctic fox

Figure 13: Qualitative and composite results on real pairs. We apply DISCOD to the real pairs
from Set 1 and Set 2. The discovered concepts denoted as yA\B ,yB\A,yA∩B are generated and
visualized with the concepts indicated above. We also present the composite results, yA\B + yA∩B

and yB\A + yA∩B , where + is the concatenation operation. We simply denote it as yA,yB .
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Set A Set B 𝒚!∩# + Cat 𝒚!∩# + Dog 𝒚!∩# + Pots 𝒚!∩# + Table 𝒚!∩# + Umbrella 

(a) Clock and rubber duck

Set A Set B 𝒚!\# + Person 𝒚!∩# + Animal 𝒚!∩# + Bird 𝒚!∩# + Tree 𝒚#\% + City 

(b) Eiffel Tower and Pyramid
Set A Set B 𝒚!\# + Cat 𝒚!\# + Shoes 𝒚!\# + Track 𝒚#\$ + Person 𝒚#\$ + Place 

(c) Running and resting dog
Set A Set B 𝒚!\#+ Person 𝒚!\# + Place 𝒚#\$ + Pots 𝒚#\$ + Table 𝒚#\$ + Umbrella 

(d) Sad and happy dog

Figure 14: Discovered concept with additional text token. We generate the discovered concepts
with arbitrary text tokens. It help us understand the meaning of discovered concepts.

B.2 QUALITATIVE RESULTS

Discovered concepts. In the main paper, we only show the discovered concepts of yA\B ,yB\A, and
yA∩B . We present the composite results of yA\B + yA∩B and yB\A + yB\A as shown in Fig. 13.
We observe that the composite results are reasonable to the given two set. For example, as shown in
Fig. 13b, yA\B + yA∩B and yB\A + yB\A represent the Eiffel Tower and Pyramid.

Discovered concepts with additional text. We visualize more examples of the discovered concepts
with the arbitrary text as shown in Fig. 14. It validates the meaning of the discovered concepts,
yA\B ,yB\A, and yA∩B . For example, in Fig. 14b, yA∩B with animal, bird, and tree generates the
corresponding objects with the tall notion.

Human study of alignment and aggrement. Alignment measures whether the written answer of
participants is the same as the concept of generated images, and agreement measures the amount that
the discovered concepts are reasonable. In other words, the alignment is judged without showing
the discovered concepts, and the agreement is computed after showing the discovered concepts. As
shown in Fig. 15, the agreement is improved. The alignment is high when the concepts are easily
identified like sad or happy as shown in Fig. 15a

The example shown in Fig. 15c seems difficult from the result in Fig. 15d. The scores of commonality
are lower than others. Figure 16 shows the short answer written by participants. Most of the written
answers from participants are about architecture or landmarks; thus, the alignment is low. However,
The fifth most common response is related to height. The agreement is better than alignment, although
the generated images are not straightforward.
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Set A Set B 𝒚!\# 𝒚!∩% 𝒚%\&

(a) Example 1 for agreement and alignment

Concept Alignment Aggrement

yA\B 0.86 0.94
yA∩B 1.0 1.0
yB\A 0.86 1.0

(b) Result of Example 1

Set A Set B 𝒚!\# 𝒚!∩% 𝒚%\&

(c) Example 2 for agreement and alignment

Concept Alignment Aggrement

yA\B 0.48 0.74
yA∩B 0.19 0.50
yB\A 0.86 0.94

(d) Result of Example 2

Figure 15: Human study of alignment and aggrement. We conduct a human study about alignment
and agreement. Alignment measures whether the short answer, written by participants, exactly
matches with the discovered concepts from DISCOD. Aggrement measures whether the discovered
concepts are reasonable and recognizable.

Figure 16: Participants’ short answer of commonality in Eiffel tower & pyramid. The architecture
and landmark show a high proportion. The high concept is also shown in the short answer. Thus, the
agreement is improved compared to the alignment.
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Set A Set B

𝒚!∩# 𝒚!∩# 𝒚!∩#

(a) Clock and rubber duck
Set A Set B

𝒚!\# 𝒚!∩# 𝒚#\%

(b) Eiffel Tower and Pyramid
Set A Set B

𝒚!∩# 𝒚!\# 𝒚!∩#

(c) Running and resting dog
Set A Set B

𝒚!\# 𝒚!∩# 𝒚#\%

(d) Sad and happy dog

Figure 17: Image editing with discovered concept. We combine Prompt-to-Prompt with the
discovered concepts by DISCOD. We can see that the discovered concepts can edit the given images
with their meaning.

B.3 IMAGE EDITING

We visualize more examples of the discovered concepts with the editing algorithm. Figure 17 shows
the several editing results. We can notice that the editing reflects the discovered concepts, respectively.

B.4 DISENTANGLEMENT IN TEXT-TO-IMAGE PERSONALIZATION

We present more examples with the same prompts to validate that DreamBooth with DISCOD mitigates
the bias problems with high chances. The randomly generated examples can validate that DISCOD
resolves the entanglement of the undesirable attributes with a high chance. As shown in Fig. 18,
DISCOD can mitigate the biases issues in personalization.

B.5 BIAS EXPERIMENTS

Mitigating biases in classification. The Waterbirds dataset (Sagawa et al., 2020) is composed of
the bird photographs from CUB dataset (birds) and Places dataset (background). The classes are
waterbird or landbird, and the places are water background and land background. To control bias,
they construct the dataset as 5% of waterbird on the land background and 5% of landbird on the water
background. The waterbirds on land are the smallest group. CelebA is the face dataset with the hair
color of blond or dark with gender bias of male and female. The blond-haired males are the smallest
group.

Zero-shot prompting. We use the 80-prompts of which an example is “the photo of a
{class}.” For {class}, we adopt {landbird, waterbird} for Waterbirds dataset and {blond, non-
blond} for CelebA. After extracting the text features of 80-prompts, we take an ensemble of these
features: (1) normalize the features, (2) average the features, and (3) normalize the feature again. It
does not require additional training.

Group zero-shot prompting. If we know the group information causing the bias or spurious
correlation, we can enhance the prompting template used in zero-shot prompting by infusing the
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Figure 18: Disentanglement in DreamBooth with and without DISCOD. We provide more generated
examples to validate the effectiveness of DISCOD. We observe that DISCOD can mitigate the bias
problems.
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biased information into the templates. In Waterbirds dataset, the example of the used template
is “the photo of a {class} on a {group}.” The group can be {water background,
land background}; In CelebA dataset, the example of the used template is “the photo of a
male of {class}.” Since the well-known gender bias in the dataset is male, we only use male
information. Note the performance of using only male information is better than the one of using
female or both information.

B2T. B2T discovers the bias from mispredicted images without the knowledge of the bias in-
formation. We use the prompt design reported in the original paper. For Waterbirds, the used
keywords are forest, woods, tree, branch, ocean, beach, lake, surfer,
water, boat, dock, rocks, sunset, kite, sky, flight, flies; for CelebA,
the used keywords are man, player, person, artist, comedy, film, actor,
face.

Ours. Like B2T, we apply DISCOD to the mispredicted classes; waterbirds and landbird classes
in Waterbirds dataset, and non-blond and blond classes in CelebA dataset. When we discover the
shared and distinct concepts, we use the templates like “a photo of {yA∩B} {with, in,
of} a {yA\B or yB\A} ”. After discovering these concepts, we infuse yA\B and yB\A into
the 80 prompts. Note that B2T and DISCOD do not use the bias information by humans.

As visualized in the main paper, the discovered concepts in Waterbird are the water and land
backgrounds, and the discovered concepts in CelebA are the male and female. Thus, the prompting
with biased information improves the worst-case accuracy. We can also observe that the improvement
is effective compared to other baselines. We hypothesize that our discovered biases are what VLMs
recognize between mispredicted sets. Thus, we help VLMs improve their recognition ability more.
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