
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Retrieval with Learned Similarities
Anonymous Author(s)

∗

Abstract
Retrieval plays a fundamental role in recommendation systems,

search, and natural language processing (NLP) by efficiently find-

ing relevant items from a large corpus given a query. Dot products

have been widely used as the similarity function in such retrieval

tasks, thanks toMaximum Inner Product Search (MIPS) that enabled

efficient retrieval based on dot products. However, state-of-the-art

retrieval algorithms have migrated to learned similarities. Such al-

gorithms vary in form; the queries can be represented with multiple

embeddings, complex neural networks can be deployed, the item ids

can be decoded directly from queries using beam search, and multi-

ple approaches can be combined in hybrid solutions. Unfortunately,

we lack efficient solutions for retrieval in these state-of-the-art se-

tups. Our work investigates techniques for efficient retrieval with

expressive learned similarity functions. We first prove that Mixture-

of-Logits (MoL) is a universal approximator, and can express all

learned similarity functions. We then demonstrate how to apply

MoL to common retrieval tasks in recommendation systems and

NLP. We next propose techniques to retrieve the approximate top

𝐾 results using MoL with a tight bound. We finally compare our

techniques with existing approaches, showing that MoL, with a

new mutual information-based load balancing loss we propose,

sets new state-of-the-art results across heterogeneous scenarios,

including sequential retrieval models in recommendation systems

and finetuning language models for question answering; and our

approximate top-k retrieval with learned similarities outperforms

baselines by up to 105× in latency, while achieving > .99 recall rate

of exact algorithms.

CCS Concepts
• Information systems→ Similaritymeasures;Top-k retrieval
in databases; Learning to rank; Probabilistic retrieval mod-
els; Question answering; Recommender systems; Personalization; •
Computing methodologies→ Natural language processing.

Keywords
Nearest Neighbor Search, Learned Similarities, Top-K Retrieval,

Vector Databases, Recommendation Systems, Question Answering

ACM Reference Format:
Anonymous Author(s). 2018. Retrieval with Learned Similarities. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,

12 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Retrieval requires efficient storing, indexing, and querying relevant

candidate items represented by high-dimensional vectors. Retrieval

is widely used as the initial preprocessing stage for internet appli-

cations such as recommendations, search, question answering, and

natural language processing that operate over corpus with up to

billions of items [5, 10, 16, 28, 33, 35]. In many concrete use cases,

such as vector databases [26], the query- and the item- embeddings

are learned with deep neural networks in a dual-encoder setup,

and dot products are applied on top of such embeddings as the

similarity function for measuring relevance.

Despite the popularity of dot products and numerous work done

to improve their efficiency [9, 25, 37, 51], state-of-the-art retrieval

algorithms have long moved to various learned similarity func-

tions. Their most basic versions preserve some dot product-related

structures, but turn either the query or the item into multiple em-

beddings, and rely on a max operator to combine those similar-

ity values [29, 35]. As another example, Probabilistic Label Trees

(PLTs) [23] and Tree-based Deep Models (TDMs) [62, 64] map

items to leaf nodes in a tree, and reduce retrieval to beam search

by making decisions sequentially using learned classifiers while

traversing trees from root to leaf. More recent work on generative

retrieval directly map the query to the item ids in sequence-to-

sequence or decoder-only setups [4, 11, 53, 55, 57]. Combinations

of these approaches have also been studied, with some performing

coarse-grained retrieval with generative approaches, followed by

re-ranking using dot products [15]. Finally, the similarity function

can be directly parameterized by carefully designed deep neural

networks that take various forms [21, 48, 58, 59].

Supporting efficient retrieval with these diverse learned simi-

larities is challenging. Learned similarity functions are generally

expensive to compute; with learned index structures, traversing a

binary tree with 4 million items requires running beam search for

20 non-parallelizable steps [62], while recommendation and NLP

deployments commonly need to handle billions of items [6, 13, 35]

with a latency budget of tens of milliseconds. When an arbitrary

deep neural network is employed, it’s no longer clear how to per-

form top-𝐾 retrieval other than through brute-force [21] or heuris-

tics [59]. While graph-based methods can be used to prune the

search space [24, 37, 43, 56], such methods tend to be much slower

compared with MIPS algorithms leveraging quantization at high

recall rates [1, 19], and their performance can degrade when the

similarity function is not a distance metric [39]. What is worse,

these algorithms vary significantly in terms of their exact formu-

lations, and the lack of a universal interface makes it even more

difficult to design a general solution for efficient retrieval.

Taking a step back, our key insight is that learned similarity

approaches are but different ways to increase the expressiveness of

the retrieval stage. Formally, for a query 𝑞 and an item 𝑥 , the expres-

siveness of the similarity function boils down to deriving alternative

parameterizations of 𝑝 (𝑥 |𝑞) matrices, with full rank matrices being

the most expressive among them. Dot products, on the other hand,

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

induces a low-rank bottleneck due to the dimensionality of the em-

bedding, i.e., ln𝑝 (𝑥 |𝑞) ∝ ⟨𝑓 (𝑞), 𝑔(𝑥)⟩ (𝑓 (𝑞), 𝑔(𝑥) ∈ R𝑑). This can-
not be alleviated by simply increasing the embedding dimension 𝑑 ,

due to memory bandwidth being themain bottleneck inmodern dot-

product based retrieval systems, such as vector databases [9, 26, 59],

and overfitting issues that come with larger embedding dimensions

due to the common need to co-train or finetune query- and item-

encoders from data [10, 15, 28, 35, 40, 41, 60].

This insight enables us to support efficient retrieval with expres-

sive learned similarity functions by approximating them with MoL.

To the best of our knowledge, this is the first work that tackles the

problem of efficient retrieval with universal learned similarities,

while setting new state-of-the-art results across heterogeneous sce-
narios. We first show that Mixture-of-Logits (MoL) is a universal ap-

proximator as it can express 𝑝 (𝑥 |𝑞) matrices of arbitrary high rank,

and hence approximate all learned similarity functions (Section 2.1).

Our work lays theoretical foundations for MoL’s empirical impres-

sive performance gains of 20%-30% across Hit Rate@50-400 on web-

scale corpus with hundreds of millions to billions of items [6, 59],

and further enables MoL to be effectively applied across diverse

retrieval scenarios, from large-scale recommendation systems to

finetuning language models for question answering (Section 2.2).

We next propose techniques to retrieve the approximate top-𝐾

results using MoL with a tight bound (Section 3). Our solution

leverages existing widely used APIs of vector databases like top-K

queries, thus benefiting from prior work on efficient vector search

like MIPS [19, 25, 26, 51]. We empirically compare our techniques

with existing approaches, showing that MoL sets new state-of-the-

art results on recommendation retrieval and question answering

tasks, and our approximate top-k retrieval with learned similarities

outperforms baselines by up to 105× in latency, while achieving

> .99 recall rate of exact algorithms (Section 4). Importantly, our

approach with learned similarities efficiently utilizes modern accel-

erators due to MoL’s higher arithmetic intensity [59], which results

in MIPS-level inference latency and throughput. Overall, our work

provides strong theoretical and practical justifications to migrate

away from the broadly adopted MIPS solution in vector databases

to Retrieval with Learned Similarities (RAILS) on GPUs.

2 Mixture of Logits
In this section, we describe Mixture of Logits (MoL), propose a load

balancing loss to improve conditional computations in MoL, prove

that MoL is expressive enough to represent any learned similarity

function, and demonstrate how to apply MoL to retrieval tasks.

Table 1 summarizes the notations in this paper.

We first describe Mixture of Logits (MoL).

Mixture of Logits (MoL). MoL [59] assumes that the query 𝑞 and

the item 𝑥 are already mapped to 𝑃 groups of low-rank embed-

dings (“component-level embeddings”), 𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥) ∈ R𝑑𝑃 , where
𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥) are parameterized with some neural networks based

on query and item features, respectively, and 𝑑𝑃 is the dimensional-

ity of the low-rank embeddings. MoL then calculates the similarity

between the query 𝑞 and the item 𝑥 by applying adaptive gating

weights, 𝜋𝑝 (𝑞, 𝑥) ∈ [0, 1], to the inner products of these 𝑃 pairs

of low-rank embeddings, or ⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩s. Note that prior work
assumes that

∑︁
𝑝 𝜋𝑝 (𝑞, 𝑥) = 1 [6, 59], but this does not affect our

analyses in this paper. Following [59]:

𝜙 (𝑞, 𝑥) =
𝑃∑︂
𝑝=1

𝜋𝑝 (𝑞, 𝑥)⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩ (1)

To extend this to large-scale datasets and to enable hardware-

efficient implementations on accelerators like GPUs, Equation 1

was further modified by decomposing those 𝑃 dot products as

(batched) outer products of 𝑃𝑞 query-side and 𝑃𝑥 item-side em-

beddings, where 𝑃𝑞 × 𝑃𝑥 = 𝑃 , and applying l2-norm to 𝑓𝑝 (𝑞)s and
𝑔𝑝 (𝑥)s:

𝜙 (𝑞, 𝑥) =
𝑃𝑞∑︂
𝑝𝑞=1

𝑃𝑥∑︂
𝑝𝑥=1

𝜋𝑝𝑞 ,𝑝𝑥 (𝑞, 𝑥)
⟨︄

𝑓𝑝𝑞 (𝑞)
| |𝑓𝑝𝑞 (𝑞) | |2

,
𝑔𝑝𝑥 (𝑥)
| |𝑔𝑝𝑥 (𝑥) | |2

⟩︄
(2)

We use Equation 1 and 2 interchangeably as the MoL form to ana-

lyze throughout the rest of this paper, given that the embedding

normalization for 𝑓𝑝𝑞 (𝑞)s and 𝑔𝑝𝑥 (𝑥)s can be precomputed.

Mixture of Logits (MoL) with load balancing regularization loss.
We further observe 𝜋𝑝 (𝑞, 𝑥) defines conditional computation to be

performed over the 𝑝 low-rank embedding pairs, or (𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥))s.
𝜋𝑝 (𝑞, 𝑥) should hence satisfy two conditions:

• Globally, the𝑝 low-rank embedding pairs, or (𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥))s,
should receive a similar number of training examples even

when 𝑝 is large and 𝜋𝑝 (𝑞, 𝑥) is sparse, with load distributed

evenly across the 𝑝 pairs. One way to do this is to maximize

the entropy 𝐻 (𝑝) over these embedding pairs.

• The low-rank embedding pairs used to compute each𝜙 (𝑞, 𝑥)
should be non-uniform and ideally sparse; e.g., it’s desir-

able to avoid the degenerate solution where 𝜋𝑝 (𝑞, 𝑥) = 1

𝑝 .

Notation Description
𝑞 (𝑄 , |𝑄 |) query (set of queries, number of queries)

𝑥 (𝑋 , |𝑋 |) item (set of items, number of items)

𝜙 (𝑞, 𝑥) the learned similarity function, i.e., Mixture-of-Logits (MoL).

𝑃 (𝑃𝑞 , 𝑃𝑥)
MoL uses 𝑃 low-rank embeddings ("component-level embeddings") to represent 𝑞 and 𝑥 . With the (batched)

outer product form of MoL, 𝑃𝑞 and 𝑃𝑥 are the numbers of embeddings for 𝑞 and 𝑥 , respectively; 𝑃 = 𝑃𝑞 × 𝑃𝑥 .
𝜋𝑝 (𝑞, 𝑥) (𝜋𝑝𝑞 ,𝑝𝑥 (𝑞, 𝑥)) weight for the 𝑝-th (or 𝑝𝑞-th by 𝑝𝑥 -th with outer product) embedding set for (𝑞, 𝑥) .

𝑓 (𝑞) (𝑓𝑝 (𝑞)) learned embedding for the query (𝑝-th component-level query embedding)

𝑔 (𝑥) (𝑔𝑝 (𝑥)) learned embedding for the item (𝑝-th component-level item embedding)

𝑑𝑃 dimensionality of low-rank (component-level) embeddings. 𝑓𝑝 (𝑞), 𝑔𝑝 (𝑞) ∈ R𝑑𝑃 .

⟨𝑓 (𝑞), 𝑔 (𝑥) ⟩ the dot product similarity function; ⟨𝑓 (𝑞), 𝑔 (𝑥) ⟩ = 𝑔 (𝑥)𝑇 𝑓 (𝑞) .

Table 1: Table of Notations.
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Retrieval with Learned Similarities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

...

...

Embedding fpq(q)

Embedding f1(q)

Pq × Px logits
(outer products)

πpq,px(q, x)
(query- & item-

dependent weights)
·

φ(q, x) ("Mixture-of-Logits")

Embedding gpx(x)

Embedding g1(x)

Query
encoder

Item
encoder

Query
features (q)

Item
features (x)

Figure 1: Mixture-of-logits (MoL) learned similarity.

One way to do this is to minimize the conditional entropy

𝐻 (𝑝 | (𝑞, 𝑥)) of 𝑝 given (query, item) pairs.

Given these two desired conditions, we propose amutual information-

based regularization loss for load balancing, defined as

L𝑀𝐼 = −𝐻 (𝑝) + 𝐻 (𝑝 | (𝑞, 𝑥)) (3)

with the overall training loss as

− log exp(𝜙 (𝑞, 𝑥))
exp(𝜙 (𝑞, 𝑥)) +∑︁𝑥 ′∈X exp(𝜙 (𝑞, 𝑥 ′)) + 𝛼L𝑀𝐼 (4)

where the first part of Equation 4 is the sampled softmax loss used

in [59], and the second part adjusts the weight for the mutual

information-based load balancing loss with a hyperparameter 𝛼 .

2.1 Expressiveness of Mixture of Logits
Now we show that any high-rank matrix can be decomposed into a

mixture of logits based on low-rank matrices, i.e., MoL is a universal

approximator. Without loss of generality, we prove the following:

Theorem 1. MoL decomposition: Let 𝐴 be a matrix of 𝑛 ×𝑚,
where 𝑛 ≤ 𝑚. There exists 𝜋1, 𝐵1, 𝜋2, 𝐵2, · · · , 𝜋𝑝 , 𝐵𝑝 such that |𝐴 −∑︁𝑃
𝑝=1 𝜋𝑝 ◦ 𝐵𝑖 | < 𝜖 , where 𝜖 is a small positive number. Here 𝐵𝑖 is a

matrix of 𝑛 ×𝑚 with rank equal to or less than 𝑑 , and 𝜋1, 𝜋2, · · · , 𝜋𝑃
are 𝑛 ×𝑚 matrices that together define a probability distribution over
each (𝑖, 𝑗) tuple, such that

∑︁𝑃
𝑝=1 𝜋𝑝 (𝑖, 𝑗) = 1, 0 ≤ 𝜋𝑝 (𝑖, 𝑗) ≤ 1 for

any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑝 ≤ 𝑃 .

We can think about 𝑛 as the number of queries and𝑚 the number

of items (or vice versa). First, the theorem trivially holds if the rank

of 𝐴 is less than or equal to 𝑑 (𝑑 ≤ 𝑛):

Lemma 1. MoL decomposition when 𝑅𝑎𝑛𝑘 (𝐴) ≤ 𝑑 : Let 𝐴 be
a matrix as defined in Theorem 1. If the rank of 𝐴 is less than or
equal to 𝑑 , then we have 𝐴 = 𝜋 ◦ 𝐴, where 𝜋 (𝑖, 𝑗) = 1 for any
1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚.

Then we prove for the case where the rank of 𝐴 is greater than

𝑑 . Without loss of generality, we prove the case where the matrix

has full rank, i.e., 𝑅𝑎𝑛𝑘 (𝐴) = 𝑛:

Lemma 2. MoL decomposition when 𝑅𝑎𝑛𝑘 (𝐴) = 𝑛: Let 𝐴 be a
matrix as defined in Theorem 1. Then there exists 𝜋, 𝐵1, 𝐵2 such that
|𝐴−(𝜋 ◦𝐵1+ (1−𝜋) ◦𝐵2) | < 𝜖 , where 𝑅𝑎𝑛𝑘 (𝐵1) ≤ 𝑑 , 𝑅𝑎𝑛𝑘 (𝐵2) ≤ 𝑑 ,
and 0 ≤ 𝜋 (𝑖, 𝑗) ≤ 1 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚.

Proof. Because 𝐴 is a matrix of rank 𝑛, it can be rewritten

as 𝐴 = 𝑈 𝐼𝑛𝑉 , where 𝐼𝑛 is an identity matrix with rank 𝑛. Thus,

𝐴𝑖 𝑗 =
∑︁𝑛
𝑘=1

𝑈𝑖𝑘𝑉𝑘 𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. Let 𝐴′ be a matrix of

𝑛 ×𝑚, where 𝐴′
𝑖 𝑗

= 𝜆𝑖 𝑗 ·
∑︁𝑑
𝑘=1

𝑈𝑖𝑘𝑉𝑘 𝑗 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚.

Here, 𝜆𝑖 𝑗 = 1 +
∑︁𝑛

𝑘=𝑑+1𝑈𝑖𝑘𝑉𝑘 𝑗∑︁𝑑
𝑘=1

𝑈𝑖𝑘𝑉𝑘 𝑗

if

∑︁𝑑
𝑘=1

𝑈𝑖𝑘𝑉𝑘 𝑗 ≠ 0, otherwise 𝜆𝑖 𝑗 =

1 +
∑︁𝑛

𝑘=𝑑+1𝑈𝑖𝑘𝑉𝑘 𝑗

𝜖 . Thus, we have |𝐴 −𝐴′ | ≤ 𝜖 .
Let 𝜆𝑚𝑖𝑛 = min 𝜆𝑖 𝑗 , and 𝜆𝑚𝑎𝑥 = max 𝜆𝑖 𝑗 . Let 𝐵1 = 𝜆𝑚𝑖𝑛𝑈𝐷𝑛,𝑑𝑉 ,

𝐵2 = 𝜆𝑚𝑎𝑥𝑈𝐷𝑛,𝑑𝑉 , where 𝐷𝑛,𝑑 denotes an 𝑛-by-𝑛 diagonal matrix

with the first 𝑑 elements of the diagonal being 1s and the rest being

0s. We have𝐴′
𝑖 𝑗

= 𝜆𝑖 𝑗
∑︁𝑑
𝑘=1

𝑈𝑖𝑘𝑉𝑘 𝑗 = 𝜋 (𝑖, 𝑗) ·𝐵1𝑖 𝑗 +(1−𝜋 (𝑖, 𝑗)) ·𝐵2𝑖 𝑗 ,

where 𝜋 (𝑖, 𝑗) = 𝜆𝑚𝑎𝑥−𝜆𝑖 𝑗
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

. Because 𝜆𝑚𝑖𝑛 ≤ 𝜆𝑖 𝑗 ≤ 𝜆𝑚𝑎𝑥 , we have
0 ≤ 𝜋 (𝑖, 𝑗) ≤ 1.

Thus, we have constructed 𝐵1, 𝐵2, 𝜋 such that |𝐴− (𝜋 ◦𝐵1 + (1−
𝜋) ◦ 𝐵2) | = |𝐴 −𝐴′ | ≤ 𝜖 . □

Remark Here, we have shown that any high-rank matrix can be

expressed as a mixture of logits of two low-rank matrices. Note

that our decomposition is not intended to be used as a distillation

of the original high-rank matrix. It is likely prohibitively expensive

to populate the full matrix with a learned similarity function. In

addition, our proof also does not indicate that having two mixture

components is sufficient to train the embeddings and the learned

similarity function. It is well-known that overparameterization is

often necessary to enable efficient and performant training.

2.2 Applying MoL to Heterogeneous Use Cases
We now discuss how to apply MoL to retrieval tasks in different

domains. Parameterization of the low-rank, component-level em-

beddings, or 𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥) ∈ R𝑑𝑃 , plays an important role in realiz-

ing MoL’s theoretical expressiveness in practice, as suggested by

prior work [6]. We discuss two scenarios on the opposite end of the

spectrum, one with a large number of heterogeneous features – re-

trieval in large-scale recommendation systems, followed by another

with a single homogeneous feature – finetuning language models for

question answering and related NLP use cases, shown in Figure 2.

Retrieval in Large-scale Recommendation Systems. Recommen-

dation systems are characterized by the large number of heteroge-

neous features they use [10, 52, 60]. This naturally enables some of

those features to be utilized on the query- (user-) or on the item-side.

For instance, embeddings can be constructed based on cluster ids on

both the query-side and the item-side [6]. For common benchmark

datasets, User ID-based one-hot embeddings [30] represent another

possible 𝑔𝑝 (𝑞) to use, which we evaluate in Section 4.

Finetuning Language Models for Question Answering. In contrast,

language models are characterized by their use of homogeneous

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

X1 X2 ... XPX SP1 SP2 SP3 ... SPN

Item Encoder: Finetuned Language Model (e.g., T5)

Parameterized Pooling: (D,) -> (max_seq_len, PX)

f1(x) f2(x) ... fPX(x)

Sequential Encoder
(RNNs/Transformers)

Φ1 Φ2 Φ3 ... ΦN

g1(q) g2(q) ... gPQ(q)

Query MLPSide information, e.g.,
user embeddings

Rich, heterogeneous features (Recommendations)Single, homogeneous feature (Language Models)

Figure 2: Illustration of how to apply Mixture-of-logits (MoL) learned similarity to various retrieval scenarios, with a language
model finetuning use case (characterized by a single homogeneous feature) shown on the left, and a recommendation use case
(characterized by a large number of heterogeneous features) shown on the right. More details can be found in Appendix A.2.

semantic features, such as wordpieces and sentencepieces [31]. We

observe that MoL can be similarly adopted for those use cases. To

obtain the 𝑃𝑋 item embeddings for MoL, we expand tokenizer’s

vocabulary with 𝑃𝑋 special aggregation tokens 𝑋1, . . . , 𝑋𝑃𝑋 , and
append those 𝑃𝑋 tokens at the beginning of every tokenized se-

quence, 𝑆𝑃1, . . . , 𝑆𝑃𝑁 , as illustrated in Figure 2
1
. These 𝑃𝑋 special

tokens play similar roles as the CLS token in BERT [12], and dur-

ing finetuning of the language model, are co-trained to aggregate

different aspects of information as inputs for MoL. Additionally, we

can design a learned pooling function to adapt pooling policy at an

example-level (“Parameterized Pooling”) to improve model quality,

which we discuss further in Appendix A.2.

3 Retrieval Algorithms
In this section, we describe the problem of retrieving the top𝐾 items

with MoL as well as exact and approximate retrieval algorithms.

Formally, we define the top 𝐾 retrieval problem as the following:

Definition 1. Top 𝐾 with MoL: Let 𝑞 be a query and 𝑋 be a
set of items, where both the query 𝑞 and each item 𝑥 ∈ 𝑋 are asso-
ciated with 𝑃 embeddings. Together we have 𝑃 pairs of embeddings,
(𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)), 1 ≤ 𝑝 ≤ 𝑃 . Let𝜙 (𝑞, 𝑥) =

∑︁𝑃
𝑝=1 𝜋𝑝 (𝑞, 𝑥)⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩

be the similarity score of 𝑞, 𝑥 , where 𝑥 ∈ 𝑋 . The top 𝐾 query with
MoL returns the 𝐾 items from 𝑋 with the highest 𝜙 (𝑞, 𝑥)s.

For approximate top 𝐾 retrieval with MoL, we define the gap of

the approximate and exact top 𝐾 results as follows:

Definition 2. Gap of approximate top 𝐾 : Let 𝑞 be a query
and 𝑋𝐾 be the set of exact top 𝐾 items for the query 𝑞 from a set of
items 𝑋 . Let 𝑋 ∗ be the approximate top 𝐾 results, where 𝑋 ∗ ⊆ 𝑋 . Let
𝑆 = min{𝜙 (𝑞, 𝑥), 𝑥 ∈ 𝑋 ∗} and 𝑆 ′ = max{𝜙 (𝑞, 𝑥), 𝑥 ∈ 𝑋𝐾 \ 𝑋 ∗}. We
call 𝑆Δ = 𝑆 ′ − 𝑆 the gap of the top 𝐾 with 𝑋 ∗.

3.1 Exact algorithm
The brute-force algorithm to retrieve the exact top 𝐾 withMoL is to
evaluate 𝜙 (𝑞, 𝑥) for each query 𝑞 and item 𝑥 . This algorithm can be

prohibitively expensive if the number of items is large. Instead, we

describe a more efficient two-pass algorithm to retrieve the exact

top 𝐾 items as shown in Algorithm 1.

1
Note that many question answering scenarios [11, 28, 41, 53, 57] utilize bidirectional

language models for retrieval, like BERT [12] or T5 [44]; for recent unidirectional

language models, we can add 𝑋1, . . . , 𝑋𝑃𝑋
to the end of the input sequence instead.

Algorithm 1 Exact top 𝐾 algorithm.

Input: query 𝑞, a set of items 𝑋 , 𝑓𝑝 (·) , 𝑔𝑝 (·) for constructing the

component-level embeddings 𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)
Output: exact top 𝐾 items

1: 𝐺 ← ∅
2: for 𝑝 ∈ 𝑃 do
3: 𝑋𝑝 ← {𝑔𝑝 (𝑥), 𝑥 ∈ 𝑋 } ⊲ Can be preprocessed.

4: 𝐺 ← 𝐺 ∪𝑇𝑜𝑝𝐾𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝑓𝑝 (𝑞), 𝑋𝑝) ⊲ Retrieve top 𝐾 items

for each pair of embeddings

5: 𝑆𝑚𝑖𝑛 ←∞
6: for 𝑥 ∈ 𝐺 do
7: 𝑠 ← 𝑀𝑜𝐿 (𝑞, 𝑥)
8: if 𝑠 < 𝑆𝑚𝑖𝑛 then 𝑆𝑚𝑖𝑛 ← 𝑠

9: 𝐺 ′ ← ∅
10: for 𝑝 ∈ 𝑃 do
11: 𝐺 ′ ← 𝐺 ′ ∪ 𝑅𝑎𝑛𝑔𝑒𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝑓𝑝 (𝑞), 𝑆𝑚𝑖𝑛, 𝑋𝑝) ⊲ Retrieve all

items 𝑥 ∈ 𝑋𝑃 with ⟨𝑓𝑝 (𝑞), 𝑥 ⟩ ≥ 𝑆𝑚𝑖𝑛 .

12: return 𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒𝑇𝑜𝑝𝐾𝑀𝑜𝐿 (𝑞,𝐺 ′)⊲ Retrieve the top 𝐾 items from

𝐺 ′ with MoL

We start by retrieving the top 𝐾 items with the highest dot

product scores for each group of embeddings as the initial candidate

set 𝐺 (line 1-4). Then we evaluate the MoL scores of the items in 𝐺

and find the minimal learned similarity score 𝑆𝑚𝑖𝑛 (line 5-8). Next

we retrieve all items within a distance of 𝑆𝑚𝑖𝑛 with the query 𝑞 as

the candidate set𝐺 ′ (line 9-11). Finally, we evaluate the MoL scores

of the items in 𝐺 ′, and return the top 𝐾 items with the highest

scores (line 12).

We argue that Algorithm 1 retrieves the exact top 𝐾 items with

MoL. Let 𝑋𝐾 be the set of the exact top 𝐾 items and 𝑋 ′ be the result
of Algorithm 1. Let 𝑥 ∈ 𝑋𝐾 and 𝜙 (𝑞, 𝑥) be the MoL score of 𝑥 and

𝑞. Since 𝑥 has the highest top 𝐾 score with MoL, 𝜙 (𝑞, 𝑥) ≥ 𝑆𝑚𝑖𝑛 .
Since theMoL score is a weighted score over the dot product scores,
we have max{⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩, 1 ≤ 𝑝 ≤ 𝑃} ≥ 𝜙 (𝑞, 𝑥) ≥ 𝑆𝑚𝑖𝑛 . Since
Algorithm 1 retrieves all the items with a dot product higher than

or equal to 𝑆𝑚𝑖𝑛 of 𝑞 for each embedding 𝑞𝑝 (line 9-11), we have

𝑥 ∈ 𝐺 ′. Thus, 𝑥 ∈ 𝑋 ′. So we have shown that 𝑋𝐾 = 𝑋 ′.

3.2 Approximate algorithms
In the exact algorithm shown in Algorithm 1, we need to retrieve

all the items with a dot product higher than or equal to a threshold.

When the threshold is a loose filter of the item set, which may

happen when the dot product scores are skewed, 𝐺 ′ can be large,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Retrieval with Learned Similarities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

and the evaluation of MoL over a large number of candidate items

can still be expensive. Here, we describe two heuristics to approxi-

mately retrieve the top 𝐾 items and analyze their gap against the

exact top 𝐾 algorithm.

In both heuristics, we perform a two-stage retrieval as shown

in Algorithm 2. In the first stage, we retrieve a set of 𝐾 ′ candidate
items that are potentially high in MoL score by using dot products

(line 2). Note that 𝐾 ′ can be larger than 𝐾 , e.g., due to oversampling.

In the second stage, we evaluate the MoL scores of the candidate

items and return the top 𝐾 items (line 3).

Algorithm 2 Approximate top 𝐾 algorithms.

Input: a query 𝑞, a set of items 𝑋

Output: approximate top 𝐾 items

1: function ApproxTopK(𝑞,𝑋,𝐾,𝐾 ′)
2: 𝐺 ← 𝑇𝑜𝑝𝐾𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑞,𝑋,𝐾 ′) ⊲ Retrieve the top 𝐾 ′ candidates
3: return 𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒𝑇𝑜𝑝𝐾𝑀𝑜𝐿 (𝑞,𝐺,𝐾) ⊲ Retrieve the top 𝐾

items with MoL
Input: a query 𝑞, a set of items 𝑋 , 𝑓𝑝 (·) , 𝑔𝑝 (·) for constructing the

component-level embeddings 𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)
Output: union of top 𝐾 items over 𝑃 component-level embeddings by dot

product

4: function TopKPerEmbedding(𝑞,𝑋,𝐾)

5: 𝐺 ← ∅
6: for 𝑝 ∈ 𝑃 do
7: 𝑋𝑝 ← {𝑔𝑝 (𝑥), 𝑥 ∈ 𝑋 } ⊲ Can be preprocessed.

8: 𝐺 ← 𝐺 ∪𝑇𝑜𝑝𝐾𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝑓𝑝 (𝑞), 𝑋𝑝 , 𝐾)⊲ Retrieve the top
𝐾 items by dot product

9: return𝐺
Input: a query 𝑞, a set of items 𝑋 , 𝑓𝑝 (·) , 𝑔𝑝 (·) for constructing the

component-level embedding 𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)
Output: top 𝐾 items based on the averaged dot product,∑︁

𝑝 ⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥) ⟩/𝑃 .
10: function TopKAvg(𝑞,𝑋,𝐾)

11: 𝑞′ ← ∑︁𝑃
𝑝=1 𝑓𝑝 (𝑞)

12: 𝑋 ′ ← {∑︁𝑃
𝑝=1 𝑔𝑝 (𝑥)/𝑃, 𝑥 ∈ 𝑋 } ⊲ Can be preprocessed.

13: return𝑇𝑜𝑝𝐾𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝑞′, 𝑋 ′, 𝐾)

Here, we describe two heuristics to retrieve the candidate items:

Top 𝐾 per embedding. Given a query 𝑞 and a set of items 𝑋 ,

for each embedding set 𝑝 , retrieve top 𝐾 items 𝑋𝐾,𝑝 based on dot

product (⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩). Return the union across 𝑃 queries.

The top 𝐾 per embedding heuristic returns the union of the top

𝐾 items for each embedding by dot product. We analyze the gap of

this heuristic as follows:

Theorem 2. Upper bound of the gap of top 𝐾 per embed-
ding: Let 𝑋𝐾,𝑝 be the top 𝐾 items of the embedding set 𝑝 and 𝑆 =

max{𝜙 (𝑞, 𝑥), 𝑥 ∈ 𝑋𝐾+1,𝑝 }. Let 𝑆𝑚𝑖𝑛 be the 𝐾𝑡ℎ largest MoL score of
the items in ∪𝑝𝑋𝐾,𝑝 , then the gap of 𝑆Δ ≤ 𝑆 ′ − 𝑆𝑚𝑖𝑛 .

Remark Note that there exists an MoL such that 𝑆Δ = 𝑆 − 𝑆𝑚𝑖𝑛 ,
i.e., when 𝜋𝑝 (𝑞, 𝑥) = 1 for 𝑥𝑝 = argmax𝑥,𝑝 {⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩, 𝑥 ∈
𝑋𝐾+1,𝑝 \ 𝑋𝐾,𝑝 }. Thus, the upper bound of 𝑆Δ is tight.

Top 𝐾 average. Given a query 𝑞 and a set of items 𝑋 , return the

top𝐾 itemswith the highest average dot product

∑︁
𝑝 ⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩/𝑃 .

Note that the top 𝐾 average heuristic returns the exact top 𝐾

items when the gating weight distribution in MoL, 𝜋 , is uniform.

This heuristic is interesting for two reasons. First, the items re-

trieved by this heuristic are likely to be the top 𝐾 items of MoL
when the weight distribution is more balanced. This complements

the heuristic that retrieves top 𝐾 per embedding. Second, in the

setup where the set of embedding pairs is constructed as the outer

product of the embeddings of a query and those of an item (Equa-

tion 2), the average dot product can be efficiently preprocessed and

materialized for the items, and the computation of the top𝐾 average

is then agnostic to the number of embedding pairs, 𝑃 = 𝑃𝑞 × 𝑃𝑥 .
Formally, let 𝑃 = 𝑃𝑞 · 𝑃𝑥 be the number of embedding pairs,

where 𝑃𝑞 is the number of embeddings of a query 𝑞 and 𝑃𝑥 is that

of an item 𝑥 . The average dot product can be computed as

1

𝑃
·
𝑃∑︂
𝑝=1

⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩ =
1

𝑃
·
𝑃𝑞∑︂
𝑝𝑞=1

𝑃𝑥∑︂
𝑝𝑥=1

⟨𝑓𝑝𝑞 (𝑞), 𝑔𝑝𝑥 (𝑥)⟩ (5)

=
1

𝑃
·
⟨︄ 𝑃𝑞∑︂
𝑝𝑞=1

𝑓𝑝𝑞 (𝑞),
𝑃𝑥∑︂
𝑝𝑥=1

𝑔𝑝𝑥 (𝑥)
⟩︄

(6)

Thus, we can preprocess the embeddings of the items and the

query, so the number of embeddings accessed is 1 per item for a

given query, regardless of the overall number of component-level

embeddings used by MoL, i.e., 𝑃 .
Finally, we can combine the candidates retrieved from top 𝐾 per

embedding group and the top 𝐾 average as the following:

Combined top 𝐾 . Given a query 𝑞, a set of items 𝑋 , and 𝐾 , return

the union of the items from the top 𝐾 per embedding group across

the 𝑃 groups and the top 𝐾 items from the top 𝐾 average.

Theorem 3. Upper bound of the gap of combined top 𝐾 . Let
𝑋𝐾,𝑝 be the top 𝐾 items of the embedding set 𝑝 and 𝑆𝑚𝑖𝑛 as defined
in Theorem 2. Let 𝑋 ′

𝐾
be the top 𝐾 items from top 𝐾 average. Let

𝑆 ′ = max{𝜙 (𝑞, 𝑥), 𝑥 ∈ 𝑋 \ (∪𝑝𝑋𝐾,𝑝 ∪ 𝑋 ′𝐾)}. Then the gap of 𝑆Δ ≤
𝑆 ′ − 𝑆𝑚𝑖𝑛 .

Remark Similar to Theorem 2, the upper bound of the gap is

tight. In practice, we can configure the 𝐾 to be different for the two

heuristics, i.e., 𝐾1 and 𝐾2. For example, when the weight distribu-

tion 𝜋 is more balanced, 𝐾2 can be configured to be larger as the

top 𝐾 average approach approximates MoL well while being more

computationally efficient.

4 Evaluation
In this section, we evaluate the performance of the MoL based

learned similarity with the proposed load balancing loss, and the ef-

ficiency of our retrieval algorithms discussed in Section 3. Our code

and model checkpoints are available at the following anonymized

GitHub repository: https://anonymous.4open.science/r/rails-4E62.

4.1 Workloads
We benchmark MoL with the proposed load balancing loss L𝑀𝐼 , on
top of state-of-the-art baselines in recommendation systems and

question answering. We describe workloads used below.

Recommendation Systems. We consider threewidely used datasets,

the 1M and 20M subsets of MovieLens [20], and the largest Books

subset of Amazon Reviews [38]. Sequential retrieval models have

been shown to achieve state-of-the-art results on these datasets [22,

5

https://anonymous.4open.science/r/rails-4E62

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

27, 60]. In these settings, sequential encoders, like RNNs or Trans-

formers, are used to map user representations at time 𝑡 – e.g., in a

commonly used setting shown in Figure 2, the list of items in user

history up until time 𝑡 , Φ0, . . . ,Φ𝑡 – to R𝑑 , and the model is trained

to autoregressively predict the next item 𝑥𝑡+1. We hence compare

MoL with the proposed regularization loss on top of two popu-

lar backbones used for sequential retrieval models, SASRec [27]

and HSTU [60], against cosine similarity baselines. We utilize user

id-based embeddings discussed in Section 2.2 and MLPs to parame-

terize the 𝑃𝑄 query-side and the 𝑃𝑋 item-side features.

Question Answering (QA). Natural Questions (NQ) [32] is com-

monly used to evaluate state-of-the-art neural retrieval models,

including dense retrieval [28, 41] and generative retrieval [11, 53,

55, 57] approaches in recent years. The most commonly used ver-

sion [53, 55, 57], which we reuse in our work, is often referred to

as NQ320k. NQ320k consists of 320k query-items pairs, where the

items are from Wikipedia pages and the queries are natural lan-

guage questions. We utilize special aggregation tokens discussed in

Section 2.2 to parameterize embeddings in MoL, and compare MoL

with popular sparse retrieval methods [42, 47], dense retrieval meth-

ods [28, 40, 41], and generative retrieval methods [4, 11, 53, 55, 57].

Consistent with recent work [53, 57, 63], we use the pre-trained

query generation model from DocT5Query [42] to generate syn-

thetic (query, item) pairs for data augmentation.

Table 2 summarizes the statistics of these four workloads.

4.2 Quality of MoL-based Learned Similarity
Metrics. We use Recall (Hit Rate) as the main metric. We report

Hit Rate@{1, 10, 100} and Mean Reciprocal Rank (MRR) on NQ320K,

following [53, 57], and Hit Rate@{1, 10, 50, 200} onML-1M ,ML-20M ,

and Books, following [59, 60].

Hyperparameter Settings. We set the weight 𝛼 for the proposed

load balancing loss L𝑀𝐼 to 0.001 for all experiments. We reuse base-

line settings for most other hyperparameters, including learning

rate, number of examples used for in-batch negative sampling, etc.,

with detailed discussions in Appendix A. For the NQ320K dataset,

we reuse SEAL [4] and NCI [57] results reported by [57], and re-

sults for other models as reported by [53]. The Sentence-T5 [40],

GENRE [11], DSI [55], SEAL [4], DSI+QG [63], NCI [57], and Gen-

Ret [53] rows are all finetuned from T5-base, consistent with MoL,

to ensure a fair comparison. All other results are reimplemented

ourselves in PyTorch, and are trained with 1x/2x 48GB GPUs for the

recommendation datasets and 4x 80GB GPUs for the QA datasets.

Results. Across the six recommendation scenarios utilizing dif-

ferent sequential encoder backbones, Mixture-of-Logits (MoL rows)

consistently outperform dot products by an average of 18.5% in

MRR, 22.0% in HR@1, and 18.5% in HR@10 (Table 3). On the widely

Workload |𝑄 | |𝑋 | |𝑃𝑞 | |𝑃𝑥 | 𝑑𝑃

ML-1M 6,040 3,649 8 4 64

ML-20M 138,493 24,186 8 4 128

Books 694,897 674,044 8 8 32

NQ320K 307,373 109,739 4 4 768

Table 2: Workload statistics.

Method HR@K MRR
K=1 K=10 K=50 K=200

ML-1M dataset

SASRec [27] .0610 .2818 .5470 .7540 .1352

SASRec + MoL .0697 .3036 .5617 .7667 .1441

HSTU [60] .0750 .3332 .5956 .7824 .1579

HSTU + MoL .0884 .3465 .6022 .7935 .1712
HSTU + MoL abl. L𝑀𝐼 .0847 .3417 .6011 .7942 .1662

ML-20M dataset

SASRec [27] .0653 .2883 .5484 .7658 .1375

SASRec +MoL .0778 .3102 .5682 .7779 .1535

HSTU [60] .0962 .3557 .6146 .8080 .1800

HSTU + MoL .1010 .3698 .6260 .8132 .1881
HSTU + MoL abl. L𝑀𝐼 .0994 .3670 .6241 .8128 .1866

Books dataset
SASRec [27] .0058 .0306 .0754 .1431 .0153

SASRec + MoL .0095 .0429 .0915 .1635 .0212

HSTU [60] .0101 .0469 .1066 .1876 .0233

HSTU + MoL .0156 .0693 .1362 .2144 .0329
HSTU + MoL abl. L𝑀𝐼 .0139 .0661 .1315 .2153 .0323

Table 3: Evaluation of performance for sequential retrieval
models on MovieLens and Amazon Reviews.

Method HR@K MRR
K=1 K=10 K=100

Sparse retrieval
BM25 [47] .297 .603 .821 .402

DocT5Query [42] .380 .693 .861 .489

Dense retrieval
DPR [28] .502 .777 .909 .599

Sentence-T5 [40] .536 .830 .938 .641

GTR-Base [41] .560 .844 .937 .662

Generative retrieval
GENRE [11] .552 .673 .754 .599

DSI [55] .552 .674 .780 .596

SEAL [4] .570 .800 .914 .655

DSI+QG [63] .631 .807 .880 .695

NCI [57] .659 .852 .924 .731

GenRet [53] .681 .888 .952 .759

Learned similarities
MoL .685 .919 .970 .773
MoL abl. L𝑀𝐼 .673 .919 .968 .767

Table 4: Evaluation of performance for QA retrieval models
finetuned from language models on Natural Questions.

used Natural Questions QA dataset, MoL outperforms all recent

generative retrieval approaches as well as strong dot product (dense

retrieval) baselines (Table 4). These results validate that learned

similarities, in particular MoL, are not only theoretically expressive

but also practically learnable, improving retrieval quality across

heterogeneous scenarios, including sequential retrieval models for

Recommendations and finetuning LMs for Question Answering.

Ablation Studies. We conduct ablation studies for the proposed

mutual information-based load balancing loss relative to the best

performing method for each dataset (“abl. L𝑀𝐼 ” rows). Results
show that our proposed L𝑀𝐼 loss improves HR@1 by 4.6%, HR@10

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Retrieval with Learned Similarities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Method HR@1 HR@5 HR@10 HR@50 HR@100 Latency/𝑚𝑠

ML-20M

BruteForce 1.00 1.00 1.00 1.00 1.00 3.17±.03
TopKPerEmbd5 .762 .707 .647 .468 .402 1.28±.04
TopKPerEmbd10 .956 .881 .820 .646 .564 1.31±.04
TopKPerEmbd50 1.00 .992 .982 .933 .900 1.63±.02
TopKPerEmbd100 1.00 1.00 .999 .981 .966 2.41±.04
TopKAvg200 1.00 .998 .997 .982 .959 .86±.04
TopKAvg500 1.00 1.00 1.00 1.00 .998 .88±.03
CombTopK5_200 1.00 1.00 1.00 1.00 .998 1.46±.04

Books

BruteForce 1.00 1.00 1.00 1.00 1.00 181.34±9.09
TopKPerEmbd5 .907 .915 .809 .509 .396 26.40±.63
TopKPerEmbd50 .993 .992 .994 .956 .902 27.59±.68
TopKPerEmbd100 1.00 .995 .996 .985 .959 29.64±.65
TopKAvg200 1.00 .978 .948 .845 .767 0.81±.11
TopKAvg500 1.00 .992 .996 .919 .875 0.80±.09
TopKAvg1000 1.00 1.00 .996 .963 .939 0.87±.04
TopKAvg2000 1.00 1.00 1.00 .980 .968 1.11±.04
TopKAvg4000 1.00 1.00 1.00 .996 .987 1.72±.04
CombTopK5_200 .979 .984 .981 .892 .818 25.73±.76
CombTopK50_500 .993 .989 .994 .975 .961 27.99±.65
CombTopK100_1000 1.00 .997 .996 .993 .992 30.40±.67

NQ320K

BruteForce 1.00 1.00 1.00 1.00 1.00 37.74±.47
TopKPerEmbd5 1.00 1.00 .995 .961 1.00 4.71±.08
TopKPerEmbd10 1.00 1.00 1.00 .981 1.00 4.83±.08
TopKPerEmbd50 1.00 1.00 1.00 1.00 1.00 6.31±.09
TopKAvg100 .999 .999 .999 .998 .995 .57±.05
TopKAvg200 1.00 1.00 1.00 .999 .999 .66±.01
CombTopK5_100 1.00 1.00 1.00 .999 .999 5.28±.08

Table 5: Evaluation of top 𝐾 retrieval performance, with hit rate (HR) normalized by the brute-force top 𝐾 method and latency
with standard deviation (i.e., ±) measured over a batch of queries (where the batch size is 32). (Relative) hit rate higher than .99
is marked in bold.

by 1.7% and MRR by 1.6% across the four datasets. In particular, our

proposed L𝑀𝐼 loss enables MoL to outperform the best generative

retrieval approach on NQ320K, GenRet [53], across all metrics.

4.3 Top 𝐾 retrieval performance
We evaluate the following methods for top 𝐾 retrieval performance:

• Brute-force top 𝐾 (BruteForce): Evaluate the MoL scores for all

items and return the top 𝐾 items. This is the ground truth in our

top 𝐾 evaluation
2
.

• Per embedding top 𝐾 (TopKPerEmbd(𝑁)): This algorithm is de-

scribed in Section 3.2. 𝑁 is the number of candidate items re-

trieved from each embedding set, where 𝑁 × 𝑃 ≥ 𝐾 .
• Average top 𝐾 (TopKAvg(𝑁)): This algorithm is described in

Section 3.2. 𝑁 is the number of the candidate items retrieved by

average dot products, where 𝑁 ≥ 𝐾 .
• Combined top 𝐾 from per embedding top 𝐾 and average top 𝐾

(CombTopK𝑁1_𝑁2): This is described in Section 3.2. 𝑁1 is the

number of candidate items retrieved from per embedding top 𝐾

and 𝑁2 is the number of candidate items retrieved from average

top 𝐾 , where 𝑁1 × 𝑃 + 𝑁2 ≥ 𝐾 .

2
We omit the baseline with the two-pass exact algorithm (Section 3.1) because the

range-based item retrieval can still be expensive when the range threshold is loose.

Empirically, the brute-force top 𝐾 is more efficient on our datasets. We leave the

efficient implementation of the two-pass exact algorithm as future work.

For each dataset, we evaluate top 𝐾 retrieval methods based

on the best performing model configurations reported in Table 3

and Table 4. Table 5 shows the hit rate (HR) and latency of all

the methods. The hit rate is normalized by the ground truth, i.e.,

the hit rate achieved with brute-force top 𝐾 . We measure latency

by evaluating a batch of 32 retrieval queries, in order to achieve

high accelerator utilization; this is consistent with prior work on

GPU/TPU-based retrieval algorithms [9, 26, 59]. We omit ML-1M
as its size is small (Table 2). We perform evaluation on a single RTX

6000 Ada GPU. We report latency averaged over 20 warm runs.

We observe that our approximate heuristics achieve high HR

with oversampling. For example, TopKAvg500 is > .99 in relative

HR across the board for ML-20M , and TopKAvg100 is > .99 in

relative HR across the board for NQ320K . In addition, the combined

top 𝐾 algorithm can outperform both TopKPerEmbd and TopKAvg
of the corresponding configurations, sometimes significantly, e.g.,

CombTopK5_200 vs. TopKPerEmbd5 and TopKAvg200 on Books. This
indicates that the set of candidate items retrieved by each individual

approximate algorithm indeed complements each other when the

weight distributions, 𝜋𝑝 (𝑞, 𝑥)s, vary in MoL.
In terms of efficiency, we observe that our approximate heuristics

are significantly lower in latency than the exact baseline, especially

as the number of items in the dataset becomes large. For example,

compared to BruteForce, TopKAvg achieves > .99 relative HR@100

with a speedup of 105× and 66× in latency for Books and NQ320K ,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

respectively. While the algorithm latency grows with the size of the

dataset in the brute-force baseline, it grows much slower with the

approximate methods. For example, the algorithm latency increases

by 57× from ML-20M to Books in BruteForce, while the growth rate

is 12× and 1.0× for TopKPerEmbd100 and TopKAvg500, respectively.
Thus, we expect that the speedup of the approximate methods to

become even more prominent with larger datasets.

We also notice that TopKAvg tends to be more efficient than

TopKPerEmbd with comparable HR, e.g., TopKAvg2000 vs. Top-
KPerEmbd100 on Bookswith 27× speedup in latency.We believe that

this is mainly due to two reasons. First, when the HR is comparable,

the maximal number of candidate items from TopKPerEmbd is larger
than that of TopKAvg. Second, compared to TopKPerEmbd, the com-

putation of TopKAvg is agnostic to the number of component-level

low-rank embeddings, 𝑃 , because of the materialization optimiza-

tion described in Section 3.2. Interestingly, we also see that the

combined top 𝐾 is more efficient than the summation of the latency

of its individual components, e.g., CombTopK5_200 is 1.5× faster

than the sum of the latency from TopKPerEmbd5 and TopKAvg200
on ML-20M . This is because our implementation reduces the over-

head of the combined method by consolidating processing shared

by the two components.

Overall, empirically TopKAvg strikes a good balance between

high HR and low latency, and the combined top 𝐾 algorithm can

be used if the target HR is extremely stringent.

5 Related work
Similarity Functions in Retrieval. Most information retrieval mod-

els in recommendation systems and natural language processing

(e.g., question answering) follow a classical two-stage paradigm [10,

28], where up to billions of items [6, 13, 35, 59] are first filtered down

to hundreds in the retrieval stage, followed by another stage (e.g.,

ranking in recommendation systems or generation in RAG [33])

that produces the final results. Earlier work on large-scale neural

retrieval models primarily utilize dual-encoder (dense retrieval, etc.)

setups, with dot products as the similarity function [10, 28, 40, 41].

Researchers quickly realized that dot products limited retrieval

stage’s performance, and explored various learned similarity-based

approaches. Prominent variants include maximum similarity based

on multiple embeddings [29, 35, 48], specialized neural networks,

often leveraging Hadamard products [6, 21, 54, 56], and represent-

ing item ids as token sequences (“learned index structures”), either

implicitly defined during tree traversal [23, 62, 64] or explicitly in

the “generative retrieval” setups [4, 11, 53, 55, 57, 63]. It has been

shown, however, that learned neural distances often fail to out-

perform dot products, e.g., Hadamard MLPs in recommendation

systems [46] and DSI for QA scenarios in NLP [53]. Learned index

structures further introduce stability and latency challenges as both

NLP and recommendation systems need to support billion-scale

realtime updated set of items [6, 13, 59]. Despite these challenges,

significant gains (17% gains at Hit Rate@100 [59] to 24% gains at Hit

Rate@400 [6]) with learned similarities have been reported in re-

cent years; these can be attributed to careful construction of learned

similarity functions [48, 59], implicit diversification done as part

of beam search [15], explicit incorporation of side-information us-

ing special neural architectures [6], and hardware-aware similarity

function and inference algorithm design on GPUs [6, 9, 43, 59].

Load Balancing for Conditional Computations in Neural Networks.
Conditional computations have been widely utilized in deep learn-

ing models [2, 8, 49]. Regularization losses have been proposed

based on the observation that an ideal policy should evenly utilize

all compute units in aggregate while being sparse at an individual

example level [2]. Mixture-of-experts, a common way to imple-

ment conditional computations, has been widely used in language

and vision domains [8, 49] where mutual information-based reg-

ularization losses between experts and tasks [8] and experts and

tokens [50] have been shown to help with various architectures.

Efficient Nearest Neighbor Search (NNS). Nearest neighbor search
has been a popular topic of research due to their critical role in

large-scale retrieval and vector databases. Most studies focus on the

dot product case, also known as Maximum Inner Product Search

(MIPS). Various techniques were proposed and analyzed, including

tree structures [3, 45], locality sensitive hashing [17, 51], production

quantization [18, 25], data partitioning [34, 61], graph-based meth-

ods [24, 37], and so on. The general case for NNS utilizing learned

similarities remains less studied; for learned index structures, tech-

niques to construct trees have been proposed to ensure beam search

result in globally optimal top-𝐾 results [64]. Algorithms based on

implicit [24, 37, 43, 56] or explicit graphs [56] have been proposed

to obtain a tractable candidate set in multi-stage retrieval setups;

however, such approaches’ performance can degrade when the

similarity function is not a metric, and constructing appropriate

graph indices for non-metric similarity functions can remain chal-

lenging even for the inner product case [39]. Due to GPUs and

other accelerators having orders of magnitude higher arithmetic

intensity vs CPUs, traditional quantization techniques [18, 51] no

longer fully utilize GPUs; accelerator-specific nearest neighbor al-

gorithms that benefit from increased compute have been proposed

recently [6, 9, 43, 59].

6 Conclusion
We have analyzed techniques for efficient retrieval with expressive

learned similarities in this work. We begin by showing Mixture-of-

Logits (MoL) is a universal approximator of learned similarity func-

tions, and further empirically learnable – MoL with our proposed

load balancing loss consistently outperforms dot products (dense

retrieval), sparse retrieval, and generative retrieval approaches

across Recommendation Systems and Question Answering sce-

narios, setting new state-of-the-art across common, heterogeneous

benchmark datasets. We next propose both exact and approximate

algorithms to enable efficient retrieval using learned similarity func-

tions, and show their correctness and bounds. Across all datasets

evaluated, we demonstrate that our approximate top 𝐾 algorithms

can reach .99 of Hit Rate relative to exact algorithms, while achiev-

ing up to 105× reduction in end-to-end latency and with minimal

indexing overheads. We expect the speedups to be further am-

plified with larger-scale datasets and GPU kernel optimizations.

Given MoL’s empirical impressive performance gains of 20%-30%

across Hit Rate@50-400 over hundreds of millions to billions of

items [6, 59] and broad applicability across heterogeneous scenar-

ios, our work provides strong theoretical and practical justifications

for migrating web-scale vector databases away from dense retrieval

and MIPS to Retrieval with Learned Similarities (RAILS) on GPUs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Retrieval with Learned Similarities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] [n. d.]. ANN Benchmarks. https://ann-benchmarks.com/. Accessed: 2024-08-06.

[2] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup.

2016. Conditional Computation in Neural Networks for faster models.

arXiv:1511.06297 [cs.LG] https://arxiv.org/abs/1511.06297

[3] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative

searching. Commun. ACM 18, 9 (sep 1975), 509–517. https://doi.org/10.1145/

361002.361007

[4] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Scott Yih, Se-

bastian Riedel, and Fabio Petroni. 2022. Autoregressive Search En-

gines: Generating Substrings as Document Identifiers. In Advances in Neu-
ral Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,

D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,

31668–31683. https://proceedings.neurips.cc/paper_files/paper/2022/file/

cd88d62a2063fdaf7ce6f9068fb15dcd-Paper-Conference.pdf

[5] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-

ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan

Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman

Ring, TomHennigan, Saffron Huang, LorenMaggiore, Chris Jones, Albin Cassirer,

Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero,

Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. 2022. Improving

Language Models by Retrieving from Trillions of Tokens. In International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri,

Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (Eds.).

PMLR, 2206–2240. https://proceedings.mlr.press/v162/borgeaud22a.html

[6] Fedor Borisyuk, Qingquan Song, Mingzhou Zhou, Ganesh Parameswaran, Madhu

Arun, Siva Popuri, Tugrul Bingol, Zhuotao Pei, Kuang-Hsuan Lee, Lu Zheng,

Qizhan Shao, Ali Naqvi, Sen Zhou, and Aman Gupta. 2024. LiNR: Model Based

Neural Retrieval on GPUs at LinkedIn. In Proceedings of the 33rd ACM In-
ternational Conference on Information & Knowledge Management (CIKM ’24).
https://arxiv.org/abs/2407.13218

[7] Haw-Shiuan Chang, Ruei-Yao Sun, Kathryn Ricci, and Andrew McCallum. 2023.

Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki

(Eds.). Association for Computational Linguistics, Toronto, Canada, 821–854.

https://doi.org/10.18653/v1/2023.acl-long.48

[8] Zitian Chen, Yikang Shen, Mingyu Ding, Zhenfang Chen, Hengshuang Zhao,

Erik G. Learned-Miller, and Chuang Gan. 2023. Mod-Squad: Designing Mixtures

of Experts As Modular Multi-Task Learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 11828–11837.

[9] Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, and

Sanjiv Kumar. 2022. TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s. In

Advances in Neural Information Processing Systems.
[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys ’16). 191–198.

[11] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. 2021. Au-

toregressive Entity Retrieval. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=5k8F6UU39V

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-

tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[13] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,

Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A System for Rec-

ommending 3+ Billion Items to 200+ Million Users in Real-Time. In Proceedings
of the 2018 World Wide Web Conference (WWW ’18). 1775–1784.

[14] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2017. Sigmoid-Weighted Linear

Units for Neural Network Function Approximation in Reinforcement Learning.

CoRR abs/1702.03118 (2017). arXiv:1702.03118 http://arxiv.org/abs/1702.03118

[15] Weihao Gao, Xiangjun Fan, ChongWang, Jiankai Sun, Kai Jia,Wenzi Xiao, Ruofan

Ding, Xingyan Bin, Hui Yang, and Xiaobing Liu. 2021. Learning An End-to-End

Structure for Retrieval in Large-Scale Recommendations. In Proceedings of the
30th ACM International Conference on Information and Knowledge Management
(CIKM ’21). 524–533.

[16] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. 2018. End-to-End

Retrieval in Continuous Space. arXiv:1811.08008 [cs.IR]

[17] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In Proceedings of the 25th International Conference
on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 518–529.

[18] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-

tization based Fast Inner Product Search. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, AISTATS 2016, Vol. 51. 482–490.

[19] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and

Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector

quantization. In Proceedings of the 37th International Conference on Machine
Learning (ICML’20). JMLR.org, Article 364, 10 pages.

[20] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:

History and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (dec 2015),
19 pages. https://doi.org/10.1145/2827872

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (Perth, Australia) (WWW ’17). 173–182.

[22] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2016. Session-based Recommendations with Recurrent Neural Networks. In

4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1511.06939

[23] Kalina Jasinska, Krzysztof Dembczynski, Robert Busa-Fekete, Karlson

Pfannschmidt, Timo Klerx, and Eyke Hullermeier. 2016. Extreme F-measure Max-

imization using Sparse Probability Estimates. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR, New York,

New York, USA, 1435–1444. https://proceedings.mlr.press/v48/jasinska16.html

[24] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar

Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate Billion-point

Nearest Neighbor Search on a Single Node. InAdvances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.

cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf

[25] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (jan
2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57

[26] J. Johnson, M. Douze, and H. Jegou. 2021. Billion-Scale Similarity Search with

GPUs. IEEE Transactions on Big Data 7, 03 (Jul 2021), 535–547.
[27] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 International Conference on Data Mining (ICDM). 197–206.
[28] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-

Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Bonnie Webber, Trevor Cohn,

Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, Online,

6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550

[29] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Pas-

sage Search via Contextualized Late Interaction over BERT. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Virtual Event, China) (SIGIR ’20). Association for Computing

Machinery, New York, NY, USA, 39–48. https://doi.org/10.1145/3397271.3401075

[30] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37. https:

//doi.org/10.1109/MC.2009.263

[31] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language

independent subword tokenizer and detokenizer for Neural Text Processing. In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: SystemDemonstrations, Eduardo Blanco andWei Lu (Eds.). Association

for Computational Linguistics, Brussels, Belgium, 66–71. https://doi.org/10.

18653/v1/D18-2012

[32] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,

Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.

Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A

Benchmark for Question Answering Research. Transactions of the Association for
Computational Linguistics 7 (2019), 452–466. https://doi.org/10.1162/tacl_a_00276

[33] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim

Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented

generation for knowledge-intensive NLP tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems (, Vancouver, BC,
Canada,) (NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 793,

16 pages.

[34] Chen Li, E. Chang, H. Garcia-Molina, and G. Wiederhold. 2002. Clustering for

approximate similarity search in high-dimensional spaces. IEEE Transactions on
Knowledge and Data Engineering 14, 4 (2002), 792–808.

[35] Chao Li, Zhiyuan Liu, Mengmeng Wu, Yuchi Xu, Huan Zhao, Pipei Huang,

Guoliang Kang, Qiwei Chen, Wei Li, and Dik Lun Lee. 2019. Multi-Interest

Network with Dynamic Routing for Recommendation at Tmall. In Proceedings of
the 28th ACM International Conference on Information and KnowledgeManagement
(CIKM ’19). 2615–2623.

9

https://ann-benchmarks.com/
https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/1511.06297
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://proceedings.neurips.cc/paper_files/paper/2022/file/cd88d62a2063fdaf7ce6f9068fb15dcd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cd88d62a2063fdaf7ce6f9068fb15dcd-Paper-Conference.pdf
https://proceedings.mlr.press/v162/borgeaud22a.html
https://arxiv.org/abs/2407.13218
https://doi.org/10.18653/v1/2023.acl-long.48
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/n19-1423
https://arxiv.org/abs/1702.03118
http://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1811.08008
https://doi.org/10.1145/2827872
http://arxiv.org/abs/1511.06939
https://proceedings.mlr.press/v48/jasinska16.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1162/tacl_a_00276

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[36] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

In International Conference on Learning Representations. https://openreview.net/

forum?id=Bkg6RiCqY7

[37] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020), 824–836. https://doi.org/

10.1109/TPAMI.2018.2889473

[38] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.

2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing

Machinery, New York, NY, USA, 43–52. https://doi.org/10.1145/2766462.2767755

[39] Stanislav Morozov and Artem Babenko. 2018. Non-metric Similarity Graphs for

Maximum Inner Product Search. In Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.

cc/paper_files/paper/2018/file/229754d7799160502a143a72f6789927-Paper.pdf

[40] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel

Cer, and Yinfei Yang. 2022. Sentence-T5: Scalable Sentence Encoders from Pre-

trained Text-to-Text Models. In Findings of the Association for Computational
Linguistics: ACL 2022, Smaranda Muresan, Preslav Nakov, and Aline Villavicencio

(Eds.). Association for Computational Linguistics, Dublin, Ireland, 1864–1874.

https://doi.org/10.18653/v1/2022.findings-acl.146

[41] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma,

Vincent Zhao, Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022. Large

Dual Encoders Are Generalizable Retrievers. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics,

Abu Dhabi, United Arab Emirates, 9844–9855. https://doi.org/10.18653/v1/2022.

emnlp-main.669

[42] Rodrigo Nogueira1 and Jimmy Lin. 2019. From doc2query to docttttt-

query. https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_

docTTTTTquery-v2.pdf

[43] Hiroyuki Ootomo, Akira Naruse, Corey Nolet, Ray Wang, Tamas Feher, and Yong

Wang. 2024. CAGRA: Highly Parallel Graph Construction and Approximate

Nearest Neighbor Search for GPUs.

[44] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring

the Limits of Transfer Learning with a Unified Text-to-Text Transformer.

arXiv:1910.10683 [cs.LG] https://arxiv.org/abs/1910.10683

[45] Parikshit Ram and Alexander G. Gray. 2012. Maximum Inner-Product Search Us-

ing Cone Trees. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’12). 931–939.

[46] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural

Collaborative Filtering vs. Matrix Factorization Revisited. In Fourteenth ACM
Conference on Recommender Systems (RecSys’20). 240–248.

[47] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-

work: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389.

https://doi.org/10.1561/1500000019

[48] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, andMatei

Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late

Interaction. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz

(Eds.). Association for Computational Linguistics, Seattle, United States, 3715–

3734. https://doi.org/10.18653/v1/2022.naacl-main.272

[49] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le,

Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks:

The Sparsely-Gated Mixture-of-Experts Layer. In International Conference on
Learning Representations. https://openreview.net/forum?id=B1ckMDqlg

[50] Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and

ChuangGan. 2023. ModuleFormer:Modularity Emerges fromMixture-of-Experts.

arXiv:2306.04640 [cs.CL] https://arxiv.org/abs/2306.04640

[51] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear

Time Maximum Inner Product Search (MIPS). In Advances in Neural Information
Processing Systems, Vol. 27.

[52] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via

Self-Attentive Neural Networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 1161–1170.

https://doi.org/10.1145/3357384.3357925

[53] Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu,

Pengjie Ren, Zhumin Chen, Dawei Yin, Maarten Rijke, and Zhaochun

Ren. 2023. Learning to Tokenize for Generative Retrieval. In Advances
in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-

son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,

Inc., 46345–46361. https://proceedings.neurips.cc/paper_files/paper/2023/file/

91228b942a4528cdae031c1b68b127e8-Paper-Conference.pdf

[54] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2020. Fast Item Ranking

under Neural Network based Measures. In Proceedings of the 13th International
Conference on Web Search and Data Mining (Houston, TX, USA) (WSDM ’20).
Association for Computing Machinery, New York, NY, USA, 591–599. https:

//doi.org/10.1145/3336191.3371830

[55] Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta,

Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and

Donald Metzler. 2022. Transformer Memory as a Differentiable Search Index. In

Advances in Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal,

Danielle Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?

id=Vu-B0clPfq

[56] Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, and Neil Shah.

2022. Flashlight: Scalable Link PredictionWith Effective Decoders. In Proceedings
of the First Learning on Graphs Conference (Proceedings of Machine Learning
Research, Vol. 198), Bastian Rieck and Razvan Pascanu (Eds.). PMLR, 14:1–14:17.

https://proceedings.mlr.press/v198/wang22a.html

[57] Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen,

Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun,

Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A Neural Corpus Indexer for Doc-

ument Retrieval. In Advances in Neural Information Processing Systems, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran

Associates, Inc., 25600–25614. https://proceedings.neurips.cc/paper_files/paper/

2022/file/a46156bd3579c3b268108ea6aca71d13-Paper-Conference.pdf

[58] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. 2018.

Breaking the Softmax Bottleneck: A High-Rank RNN Language Model. In Inter-
national Conference on Learning Representations (ICLR’18).

[59] Jiaqi Zhai, Zhaojie Gong, Yueming Wang, Xiao Sun, Zheng Yan, Fu Li, and Xing

Liu. 2023. Revisiting Neural Retrieval on Accelerators. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Long Beach,

CA, USA) (KDD ’23). Association for Computing Machinery, New York, NY, USA,

5520–5531. https://doi.org/10.1145/3580305.3599897

[60] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao,

Zhaojie Gong, Fangda Gu, Jiayuan He, Yinghai Lu, and Yu Shi. 2024. Ac-

tions Speak Louder than Words: Trillion-Parameter Sequential Transducers

for Generative Recommendations. In Proceedings of the 41st International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research, Vol. 235),
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria

Oliver, Jonathan Scarlett, and Felix Berkenkamp (Eds.). PMLR, 58484–58509.

https://proceedings.mlr.press/v235/zhai24a.html

[61] Jiaqi Zhai, Yin Lou, and Johannes Gehrke. 2011. ATLAS: A Probabilistic Algorithm

for High Dimensional Similarity Search. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’11). 997–1008.

[62] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.

2018. Learning Tree-Based DeepModel for Recommender Systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (London, United Kingdom) (KDD ’18). 1079–1088.

[63] Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido

Zuccon, and Daxin Jiang. 2023. Bridging the Gap Between Indexing and Retrieval

for Differentiable Search Index with Query Generation. arXiv:2206.10128 [cs.IR]

https://arxiv.org/abs/2206.10128

[64] Jingwei Zhuo, Ziru Xu, Wei Dai, Han Zhu, Han Li, Jian Xu, and Kun Gai. 2020.

Learning optimal tree models under beam search. In Proceedings of the 37th
International Conference on Machine Learning (ICML’20). JMLR.org, Article 1080,

10 pages.

A Experiment Setups
A.1 Reproducibility
Our code will be made publicly available online. Detailed imple-

mentations and hyperparameter settings for reproducing our ex-

periment results can be found at the following anonymized GitHub

repository: https://anonymous.4open.science/r/rails-4E62, which

will be deanonymized after the review process. We discuss specific

details below.

A.2 Parameterization of low-rank
(“component-level”) embeddings

In this section, we elaborate on the embedding parameterization

methods for MoL that we discussed in Section 2.2.

10

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/2766462.2767755
https://proceedings.neurips.cc/paper_files/paper/2018/file/229754d7799160502a143a72f6789927-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/229754d7799160502a143a72f6789927-Paper.pdf
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2022.naacl-main.272
https://openreview.net/forum?id=B1ckMDqlg
https://arxiv.org/abs/2306.04640
https://arxiv.org/abs/2306.04640
https://doi.org/10.1145/3357384.3357925
https://proceedings.neurips.cc/paper_files/paper/2023/file/91228b942a4528cdae031c1b68b127e8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91228b942a4528cdae031c1b68b127e8-Paper-Conference.pdf
https://doi.org/10.1145/3336191.3371830
https://doi.org/10.1145/3336191.3371830
https://openreview.net/forum?id=Vu-B0clPfq
https://openreview.net/forum?id=Vu-B0clPfq
https://proceedings.mlr.press/v198/wang22a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/a46156bd3579c3b268108ea6aca71d13-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a46156bd3579c3b268108ea6aca71d13-Paper-Conference.pdf
https://doi.org/10.1145/3580305.3599897
https://proceedings.mlr.press/v235/zhai24a.html
https://arxiv.org/abs/2206.10128
https://arxiv.org/abs/2206.10128
https://anonymous.4open.science/r/rails-4E62

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Retrieval with Learned Similarities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Q1 Q2 ... QPQ SP1 SP2 SP3 ... SPN

Query Encoder: Finetuned Language Model (e.g., T5)

Parameterized Pooling: (D,) -> (max_seq_len, PQ)

g1(q) g2(q) ... gPQ(q)

X1 X2 ... XPX SP1 SP2 SP3 ... SPN

Item Encoder: Finetuned Language Model (e.g., T5)

Parameterized Pooling: (D,) -> (max_seq_len, PX)

f1(x) f2(x) ... fPX(x)

Sequential Encoder
(RNNs/Transformers)

Φ1 Φ2 Φ3 ... ΦN

g1(q) g2(q) ... gPQ(q)

f1(x) f2(x) ... fPX(x)

Item embeddings

Item MLP

Query MLPSide information, e.g.,
user embeddings

Rich, heterogeneous features (Recommendations)Single, homogeneous feature (Language Models)

Figure 3: Illustration of how to parameterize the embeddings to adapt Mixture-of-logits (MoL) learned similarity to various re-
trieval scenarios, with a language model (LM) finetuning use case in question answering (characterized by a single homogeneous
feature) shown on the left, and a recommendation systems use case (characterized by a large number of heterogeneous features)
shown on the right. For the Question Answering example on the left, 𝑆𝑃1, . . . , 𝑆𝑃𝑁 represents the original SentencePiece [31]
tokens that are inputs to the pre-trained language model LM, e.g., T5 [44]. 𝑄1, 𝑄2, . . . , 𝑄𝑃𝑄 and 𝑋1, 𝑋2, . . . , 𝑋𝑃𝑋 represent the
special aggregation tokens we add to the LM tokenizer for pooling information across the sequence. The “Parameterized
Pooling” component uses a 𝐷-dimensional embedding as input to parameterize, at an example-level, how to weight each of the
(max_seq_len) encoder outputs for the 𝑃𝑄 /𝑃𝑋 MoL component-level embeddings.

A.2.1 Recommendation Systems. Prior work have shown that care-

ful parameterization of low-rank (“component-level”) embeddings,

or 𝑓𝑝 (𝑞) and 𝑔𝑝 (𝑥)s for 1 ≤ 𝑝 ≤ 𝑃 , can significantly improve MoL’s

performance [6]. In the context of large-scale recommendation sys-

tems, cluster information based on interests of cohorts of members

and topics of posts by themselves can lead to 10% recall gain at

𝐾 = 400 [6]. However, we cannot easily access similar information

in the publicly available MovieLens [20] and Amazon Reviews [38]

datasets. We therefore follow implementation provided by [59] and

additionally optionally utilizes a User ID keyed one-hot embedding

as one query-side low-rank (“component-level”) embeddings 𝑓𝑝 (𝑞),
which is a widely used technique in recommendation systems [30]

that we discussed in Section 2.2. All other component-level embed-

dings, 𝑓𝑝 (𝑞)s and 𝑔𝑝 (𝑥)s, are obtained by applying a multi-layer

perceptron (MLP) on top of query-side/item-side representations

in standard sequential recommendation setups [22, 27]. The overall

setup is illustrated on the right hand side of Figure 3.

A.2.2 Question Answering (QA). Unlike Recommendation Systems,

retrieval models used in question answering generally take the full

semantic representation(s) of the query and/or the document as

input, and are finetuned on top of pre-trained language models

with homogeneous inputs, or wordpiece / sentencepiece tokens.

Our MoL embedding construction consists of two components,

special aggregation tokens and parameterized pooling. We present

embedding construction on the query side first.

Special Aggregation Tokens. Given both queries and documents

are represented as token sequences (e.g., SentencePieces [31] in

T5 [44]), we propose to add special tokens that can be used to

aggregate different aspects of information as part of the overall

self-attention based language model. Specifically, on the query

side, let the tokenized sequence be 𝑆𝑃1, 𝑆𝑃2, . . . , 𝑆𝑃𝑁 . During fine-

tuning of the pretrained language model, we create 𝑃𝑄 special

tokens, 𝑄1, . . . , 𝑄𝑃𝑄 , and add them to the vocabulary of the query

tokenizer. We also append those exact same 𝑃𝑄 tokens before

𝑆𝑃1, 𝑆𝑃2, . . . , 𝑆𝑃𝑁
3
, so that the 𝑃𝑄 special tokens can be used to

aggregate information across the query input using early-fusion

mechanisms. Our construction can also be viewed as a way to ex-

tend the CLS token in BERT [7, 12] to cover multiple aspects of

3
Note that many question answering scenarios [11, 28, 41, 53, 57] utilize bidirec-

tional language models for retrieval, like BERT [12] or T5 [44]; for recent unidirec-

tional language models, we can add the special aggregation tokens 𝑋1, . . . , 𝑋𝑃𝑋
and

𝑄1, . . . ,𝑄𝑃𝑄
to the end of the input sequence instead.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

information, in a way that encourages diversity via the L𝑀𝐼 load
balancing loss discussed in Section 2.

Parameterized Pooling. We next add a pooling layer after the

language model to encourage learning of aggregation mechanisms

separate from language semantics. For each position 1 ≤ 𝑝 ≤ 𝑃𝑄 ,
this pooling layer defines a probability distribution over different

positions in language model’s outputs, or (0, . . . ,𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛 − 1).
We further parameterize the pooling layer, using the 𝐷-dimensional

embedding at the first position after encoders. This enables us to

define a pooling policy, at an example-level, how to weight each

of the𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛 LM encoder outputs to arrive at the 𝑃𝑄 MoL

embeddings.

The embedding construction on the item-side is identical. We

illustrate the overall finetuning setupwe use for question answering

on the left hand side of Figure 3.

A.3 Parameterization of 𝜋𝑝 (𝑞, 𝑥) matrices
We follow the implementation provided in the original MoL pa-

per [59], which parameterizes 𝜋𝑝 (𝑞, 𝑥) as a two-layer multi-layer

perceptron (MLP) with SiLU [14] non-linearity. For recommenda-

tion datasets (ML-1M , ML-20M , Books), the inputs to this MLP con-

sist of user-side features, item-side features, and the 𝑃 dot products

⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩s between the low-rank embeddings. For question

answering datasets (NQ320K), we only use the last part – the 𝑃 dot

products ⟨𝑓𝑝 (𝑞), 𝑔𝑝 (𝑥)⟩s between the low-rank embeddings – as

inputs to this MLP.

A.4 Hyperparameter settings
A.4.1 Recommendation Systems. We use an identical number of

sampled negatives for dot product baselines (cosine similarity, “SAS-

Rec”, “HSTU” rows in Table 3) and Mixture-of-Logits (“SASRec +

MoL”, “HSTU + MoL” rows in Table 3) to ensure a fair compari-

son, which is 128 for ML-1M and ML-20M and 512 for Amazon

Books following prior work. For “+ MoL” rows, we additionally

grid searched |𝑃𝑥 | in {2, 4, 8, 16}, 𝑑𝑃 in {32, 64, 128}, whether to
enable user-id based learned embeddings, and the dropout rate to

apply to user-id based embeddings in {0.2, 0.5, 0.8} for the smaller

MovieLens datasets. We followed initial hyperparameters provided

by the authors [59] for all other parameters. The models are trained

using PyTorch over 1 NVIDIA RTX 6000 Ada GPU for the smaller

ML-1M and ML-20M datasets and 2 NVIDIA RTX 6000 Ada GPUs

for the larger Books datasets.

A.4.2 Question Answering (QA). We train the model with AdamW

optimizer [36], and grid searched learning rate in {2e-4, 5e-4, 8e-4}

due to the introduction of the parameterized pooling component

(Appendix A.2). We apply linear scheduling with warm-up over a

fixed 10% of the training epochs. We train the model on 4 NVIDIA

H100 80GB GPUs with a local batch size of 512. Note that due

to the computational requirements of this dataset, prior work are

frequently trained on 8 GPUs [28, 57] or more, e.g., 32 GPUs in

GENRE [11] and 256 TPUs in DSI [55]. We perform in-batch nega-

tive sampling, consistent with baselines [28, 40]. For MoL hyperpa-

rameters, we grid searched 𝑃𝑄 and 𝑃𝑋 in {(2, 2), (4, 4), (8, 8), (16, 16)},

kept 𝑑𝑃 identical to the embedding dimension of the pretrained lan-

guage model (768), and selected the best hyperparameters utilizing

a validation set.

12

	Abstract
	1 Introduction
	2 Mixture of Logits
	2.1 Expressiveness of Mixture of Logits
	2.2 Applying MoL to Heterogeneous Use Cases

	3 Retrieval Algorithms
	3.1 Exact algorithm
	3.2 Approximate algorithms

	4 Evaluation
	4.1 Workloads
	4.2 Quality of MoL-based Learned Similarity
	4.3 Top K retrieval performance

	5 Related work
	6 Conclusion
	References
	A Experiment Setups
	A.1 Reproducibility
	A.2 Parameterization of low-rank (``component-level'') embeddings
	A.3 Parameterization of πp(q, x) matrices
	A.4 Hyperparameter settings

