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ABSTRACT

Trust-region methods are widely used in single-agent reinforcement learning. One
advantage is that they guarantee a lower bound of monotonic payoff improvement
for policy optimization at each iteration. Nonetheless, when applied in multi-agent
settings, such guarantee is lost because an agent’s payoff is also determined by
other agents’ adaptive behaviors. In fact, measuring agents’ payoff improvements
in multi-agent reinforcement learning (MARL) scenarios is still challenging. Al-
though game-theoretical solution concepts such as Nash equilibrium can be applied,
the algorithm (e.g., Nash-Q learning) suffers from poor scalability beyond two-
player discrete games. To mitigate the above measurability and tractability issues,
in this paper, we propose Multi-Agent Trust Region Learning (MATRL) method.
MATRL augments the single-agent trust-region optimization process with the multi-
agent solution concept of stable fixed point that is computed at the policy-space
meta-game level. When multiple agents learn simultaneously, stable fixed points at
the meta-game level can effectively measure agents’ payoff improvements, and,
importantly, a meta-game representation enjoys better scalability for multi-player
games. We derive the lower bound of agents’ payoff improvements for MATRL
methods, and also prove the convergence of our method on the meta-game fixed
points. We evaluate the MATRL method on both discrete and continuous multi-
player general-sum games; results suggest that MATRL significantly outperforms
strong MARL baselines on grid worlds, multi-agent MuJoCo, and Atari games.

1 INTRODUCTION

Multi-agent systems (MAS) (Shoham & Leyton-Brown, 2008) have received much attention from
the reinforcement learning community. In real-world, automated driving (Cao et al., 2012), StarCraft
II (Vinyals et al., 2019) and Dota 2 (Berner et al., 2019) are a few examples of the myriad of appli-
cations that can be modeled by MAS. Due to the complexity of multi-agent problems (Chatterjee
et al., 2004), investigating if agents can learn to behave effectively during interactions with environ-
ments and other agents is essential (Fudenberg et al., 1998). This can be achieved naively through
the independent learner (IL) (Tan, 1993), which ignores the other agents and optimizes the policy
assuming a stable environment (Buşoniu et al., 2010; Hernandez-Leal et al., 2017). Due to their
theoretical guarantee and good empirical performance in real-world applications, trust region methods
(e.g., PPO (Schulman et al., 2015; 2017)) based ILs are popular (Vinyals et al., 2019; Berner et al.,
2019). In single-agent learning, trust region methods can produce a monotonic payoff improvement
guarantee (Kakade & Langford, 2002) via line search (Schulman et al., 2015).

In multi-agent scenarios, however, an agent’s improvement is affected by other agent’s adaptive
behaviors (i.e., the multi-agent environment is non-stationary (Hernandez-Leal et al., 2017)). As
a result, trust region learners can measure the policy improvements of the agents’ current policies,
but the improvements of the updated opponents’ policies are unknown (shown in Fig. 1). Therefore,
trust region based ILs act less well in MAS as in single-agent tasks. Moreover, the convergence to a
fixed point, such as a Nash equilibrium (Nash et al., 1950; Bowling & Veloso, 2004; Mazumdar et al.,
2020), is a common and widely accepted solution concept for multi-agent learning. Thus, although
independent learners can best respond to other agents’ current policies, they lose their convergence
guarantee (Laurent et al., 2011).

One solution to address the convergence problem for independent learners is Empirical Game-
Theoretic Analysis (EGTA) (Wellman, 2006), which approximates the best response to the policies
generated by the independent learners (Lanctot et al., 2017; Muller et al., 2019). Although EGTA
based methods (Lanctot et al., 2017; Omidshafiei et al., 2019; Balduzzi et al., 2019) establish
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Figure 1: The relationship of discounted returns ηi for an agent i given the different joint policy pairs,
where πi is the current policy, π′i is the simultaneously updated policy. Given πi, the monotonic im-
provement against fixed opponent can be easily measured: ηi(π′i, π−i) ≥ ηi(πi, π−i). However, due
to the simultaneous learning, the improvement of ηi(π′i, π

′
−i) is unknown compared to ηi(πi, π−i).

convergence guarantees in several games classes, the computational cost is also large when empirically
approximating and solving the increasing meta-game (Yang et al., 2019). Other multi-agent learning
approaches collect or approximate additional information such as communication (Foerster et al.,
2016) and centralized joint critics (Lowe et al., 2017; Foerster et al., 2017; Sunehag et al., 2018;
Rashid et al., 2018). Nevertheless, these methods usually require centralized parameters or centralized
communication assumptions. Thus, there is considerable interest in multi-agent learning to find an
algorithm that, while having minimal requirements and computational cost as independent learners,
also improves convergence performance at the same time.

This paper presents the Multi-Agent Trust Region Learning (MATRL) algorithm that augments the
trust-region ILs with a meta-game analysis to improve the stability and efficiency of learning. In
MATRL, a trust region trial step for an agents’ payoff improvement is implemented by independent
learners, which gives a predicted policy based on the current policy. Then, an empirical policy-space
meta-game is constructed to compare the expected advantage of predicted policies with the current
policies. By solving the meta-game, MATRL finds a restricted step by aggregating the current and
predicted policies using meta-game Nash Equilibrium. Finally, MATRL takes the best responses
based on the aggregated policies from last step for each agent to explore because the found TSR is
not always strict stable. MATRL is, therefore, able to provide a weak stable solution compared with
the naive independent learners. Based on trust region independent learners, MATRL does not need
extra parameters, simulations, or modifications to the independent learner itself. We provide insights
into the empirical meta-game in Section 3.2, showing that an approximated Nash equilibrium of the
meta-game is a weak stable fixed point of the underlying game. Our experiments demonstrate that
MATRL significantly outperforms deep independent learners (Schulman et al., 2017) with the same
hyper-parameters, centralized VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018) methods
in discrete action grid-worlds, centralized MADDPG (Lowe et al., 2017) in a continuous action
multi-agent MuJoCo task (de Witt et al., 2020) and zero-sum multi-agent Atari (Terry & Black, 2020).

2 PRELIMINARY
A Stochastic Game (Shapley, 1953; Littman, 1994) can be defined as: G =
〈N ,S, {Ai}, {Ri},P, p0, γ〉, where N is a set of agents, n = |N | is the number of agents
and S denotes the state space. Ai is the action space for agent i. A = A1 × · · · × An = Ai ×A−i
is the joint action space, and for the simplicity we use −i denotes the other agents except agent i.
Ri = Ri(s, ai, a−i) is the reward function for agent i ∈ N . P : S ×A×S → [0, 1] is the transition
function. p0 is the initial state distribution, γ ∈ [0, 1] is a discount factor. Each agent i ∈ N has a
stochastic policy πi(ai|s) : S ×Ai → [0, 1], and aims to maximize its long term discounted return:

ηi(πi, π−i) = Es0,a0i ,a0−i···

[ ∞∑
t=0

γtRi(s
t, ati, a

t
−i)

]
, (1)

where s0 ∼ p0, st+1 ∼ P(st+1|st, ati, at−i), ati ∼ πi(a
t
i|τ ti ). We then can have

the standard definitions of the state-action value function Q
πi,π−i
i (st, ati, a

t
−i) =

Est+1,at+1
i ,at+1

−i ···[
∑∞
l=0 γ

lRi(s
t+l, at+li , at+l−i )], the value function V

πi,π−i
i (st) =

Eati,at−i,st+1···[
∑∞
l=0 γ

lRi(s
t+l, at+li , at+l−i )], and the advantage function A

πi,π−i
i (st, ati, a

t
−i) =

Q
πi,π−i
i (st, ati, a

t
−i)− V

πi,π−i
i (st) given the state and joint action.

3 MULTI-AGENT TRUST REGION POLICY OPTIMIZATION
A trust region algorithm aims to answer two questions: how to compute a trust region trial step and
whether a trial step should be accepted. In multi-agent learning, a trust region trial step towards
agents’ payoff improvement can be easily implemented with independent learners, and we call
the independent payoff improvement area as Trust Payoff Region(TPR). The remaining issue is
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(b) Multi-agent trust region learning.

Figure 2: Comparisons between independent trust region learner and multi-agent trust region learner.
πi, π−i are the current policies for two agents. π̂i, π̂−i predicted policies within TPR, (π∗i , π

∗
−i)

forms Nash equilibrium, π′i and π′−i are the best responses to the weak stable fixed point (π̄i, π̄−i).
(a): independent trust region learning, an agent i only considers itself’s policy improvement against
the fixed opponent policy π−i. (b): multi-agent trust region learning, agents’ policy improvement
should be explored in the joint policy space (πi, π−i) toward a stable region.

revolved by finding a restricted step leading to a stable point in the joint policy space, denoted as
Trust Stable Region(TSR). In other words, multi-agent trust region learning (MATRL) decomposes
the trust region learning into two parts: firstly, find a trust payoff region between current policy
πi and predicted policy π̂i; then, with the help of the predicted policy, a precise method can, to
some extent, approximate a weak stable fixed point. Instead of line searching in a single-agent
payoff improvement, MATRL searches for the joint policy space to achieve a weak stable fixed point
(see Fig. 2). Essentially, MATRL is a simple extension of the single-agent TRPO to MAS where
independent learners learn to find a stable point between current policy and predicted policy. To solve
the TSR, we assume the knowledge about other agents’ policies during the training to find weak
stable points via empirical meta-game analysis, while the execution can still be fully decentralized.
We explain every step of MATRL in detail in the following sections.

3.1 INDEPENDENT TRUST PAYOFF IMPROVEMENT

Single-agent reinforcement learning algorithms can be straightforwardly applied to multi-agent
learning, where we assume that all agents behave independently (Tan, 1993). In this section, we
have chosen the policy-based reinforcement learning method as independent learners. In multi-agent
games, the environment becomes a Markov decision process for agent i when each of the other agents
plays according to a fixed policy. We set agent i’s to make a monotonic improvement against the fixed
opponent policies. Thus, at each iteration, the policy is updated by maximizing the utility function
ηi over a local neighborhood of the current joint policy πi, π−i: π̂i = arg maxπi∈Πi ηi(πi, π−i)
based on the trajectories sampled by πi, π−i. We can adopt trust region policy optimization (e.g.,
PPO (Schulman et al., 2017)), which constrains step size in the policy update:

π̂i = arg max
πi∈Πθi

ηi(πi, π−i) s.t. D (πi, π̂i) ≤ δi, (2)

where D is a distance measurement and δi is a constraint. Independent trust region learners produce
the monotonically improved policy π̂i which guarantees ηi (π̂i, π−i) ≥ ηi (πi, π−i) and give a trust
payoff bound by π̂i. Due to the simultaneous policy improvement without awareness of other agents ,
however, the lower bound of payoff improvement from single-agent Schulman et al. (2015) no longer
holds for multi-agent payoff improvement. Following the similar proof procedures, we can obtain a
precise lower bound for a multi-agent simultaneous trust payoff region in Theorem 1:
Theorem 1 (Independent Trust Payoff Region). Denote the expected advantage gain when πi, π−i →
π̂i, π̂−i as:

g
πi,π−i
i (π̂i, π̂−i) :=

∑
s

pπi,π−i(s)
∑
ai

π̂i(ai|s)
∑
a−i

π̂−i(a−i|s)Aπi,π−ii (s, ai, a−i). (3)

Let αi = Dmax
TV (πi, π̂i) = maxsDTV(πi(·|s)‖π̂i(·|s)) for agent i, where DTV is total variation

divergence (Schulman et al., 2015). Then, the following lower bound can be derived for multi-agent
independent trust region optimization:

ηi(π̂i, π̂−i)− ηi(πi, π−i) ≥ gπi,π−ii (π̂i, π̂−i)−
4γεi

(1− γ)2
(αi + α−i − αiα−i)2, (4)

where εi = maxs,a−i,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣.
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Proof. See Appendix B.

Based on the independent trust payoff improvement, although the predicted policy π̂i will guide
us in determining the step size of the TPR, but the stability of (π̂i, π̂−i) is still unknown. As
shown in Theorem 1, an agent’s lower bound is roughly O(4α2), which is four times larger than
the single-agent lower bound trust region of O(α2) (Kakade & Langford, 2002). Furthermore,
εi = maxs,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣ depends on the other agents’s action a−i that would be

very large when agents have conflicting interests. Therefore, the most critical issue underlying the
multi-agent trust region learning is to find a TSR after the TPR. In next section, we will illustrate how
to search for a weak stable fixed point within the TPR, based on the policy-space meta-game analysis.

3.2 APPROXIMATING WEAK STABLE FIXED POINT

In multi-agent trust region learning, TSR is one of the essential parts. Since each iteration of MATRL
requires solving the TPR and TSR sub-problems, finding the efficient solver for stable trust region
sub-problems is very important. Instead of using the stable fixed points (Balduzzi et al., 2018) as TSR,
we choose weak stable fixed point in Definition 1 which is much easier to be found. To maximize the
objective defined in Eq. 1 we could ask that reasonable algorithms avoid all strict minimums (a.k.a
unstable fixed points), which imposes only that agents are well-behaved regarding strict minimum
even if their individual behaviors is not self-interested (Letcher, 2020), and we say a point is in TSR
if it is weak stable fixed point.

Definition 1 (Weak Stable Fixed Point in Restricted Underlaying Game). Consider a restricted
underlying game, where each agent’s policy space is restricted to open sets Π̄i = [πi, π̂i] ⊆ Πi.
Denote the simultaneous gradient of the restricted underlying game as ξ = (∇πigi,∇π−ig−i) and
Hessian H = ∇ξ. We call (π̄i, π̄−i) a fixed point if ξ(π̄i, π̄−i) = 0. We then say (π̄i, π̄−i) is a weak
stable fixed point if H(π̄i, π̄−i) � 01, which avoids unstable fixed points (strict minimum). A trust
stable region within weak stable fixed points is reasonable if it converges only to fixed points and
avoids unstable fixed points almost surely.

Given that we already have the TPR, which produces a predicted policy, with the knowledge about all
the agents policies, it is natural to conduct an empirical game-theoretic analysis (Tuyls et al., 2018) to
search for a weak stable fixed point in the area bounded by current policy pair predicted policy pair.
We then define a meta-game that each agent i has only two strategies πi, π̂i for each agent i:

M(πi, π̂i, π−i, π̂−i) =

(
gi,−ii , gi,−i−i gi,−îi , gi,−î−i
gî,−ii , gî,−i−i gî,−îi , gî,−î−i

)
, (5)

where gî,−îi = g
πi,π−i
i (π̂i, π̂−i) (as defined in Eq. 3) is an empirical payoff entry of the meta-

game, and note gi,−ii = 0 as it has an expected advantage over itself. Compared with using the

ηi(π̂i, π̂−i) = ηi(πi, π−i) + gî,−îi as the meta-game payoff, gî,−îi has lower variance and is easier
to approximate because ηi(πi, π−i) is a constant baseline. However, the most of entries inM are
unknown, it often requires lots of extra simulations to estimate the payoff entries (e.g., gî,−îi ) in

EGTA. Instead, we reuse the trajectories in the TPR step to approximate the gî,−îi by ignoring small
changes in state visitation density caused by the πi → π̂i (Schulman et al., 2015).

Take two-agent case as an example, as we can see in Eq. 5, the meta-gameM becomes a 2 × 2
matrix-form game, which is much smaller in size than the whole underlaying game. To this end, we
can use the existing Nash solvers (e.g. CMA-ES (Hansen et al., 2003)) for matrix-form games to
compute a mixed Nash equilibrium ρi, ρ−i = NashSolver(M) for the meta-gameM, where ρi and
ρ−i ∈ [0, 1], and the mixed Nash equilibrium of the meta-game is also an approximated equilibrium
of the restricted underlying game (Tuyls et al., 2020). Then, the trust stable region policies π̄i, π̄−i
can be aggregated based on current policy πi and predicted policy π̂i in TPR for each agent i. In the
TPR step, we require ILs enjoy the monotonic improvement against the fixed opponent policies, in
which the change from πi to π̂i is usually constrained by a small step size. Therefore, it is reasonable
to assume there is a continuous and monotonic change in the restricted policy space between πi and
π̂i. In this case, with ρi being agent i’s Nash Equilibrium policy in the meta-game, π̄i can be derived
via the linear mixture: π̄i = ρiπi + (1− ρi)π̂i, which delimit agent i’s trust stable region. Now we
can prove that (π̄i, π̄−i) is a weak stable fixed point for the underlying game in Theorem 2.

1In this paper, we want to maximize the return, not minimizing the loss, so we need to avoid strict minimum.

4



Under review as a conference paper at ICLR 2021

1. Independent Policy ImprovementCurrent
Policies

3. Best Response to Weak Stable Fixed Point

Next Iteration 

2. Solve the Nash Equilibrium of Meta Game
Policy Aggregation

Construct the Meta Game

(
<latexit sha1_base64="eTq1/s9f4/oEOSlTeQSU6pI7d14=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR2UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5bs1rXlXqt3kcRTiDc6iCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AbPmMrA==</latexit><latexit sha1_base64="eTq1/s9f4/oEOSlTeQSU6pI7d14=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR2UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5bs1rXlXqt3kcRTiDc6iCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AbPmMrA==</latexit><latexit sha1_base64="eTq1/s9f4/oEOSlTeQSU6pI7d14=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR2UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5bs1rXlXqt3kcRTiDc6iCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AbPmMrA==</latexit><latexit sha1_base64="eTq1/s9f4/oEOSlTeQSU6pI7d14=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR2UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx5bs1rXlXqt3kcRTiDc6iCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AbPmMrA==</latexit>

)
<latexit sha1_base64="Vc/F7wCLwhVrbNGal5W4fQhkQ2w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBLyURQY9FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46JfrrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LquVWvcVWp3eZxFOEETuEcPLiGGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHbn2MrQ==</latexit><latexit sha1_base64="Vc/F7wCLwhVrbNGal5W4fQhkQ2w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBLyURQY9FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46JfrrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LquVWvcVWp3eZxFOEETuEcPLiGGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHbn2MrQ==</latexit><latexit sha1_base64="Vc/F7wCLwhVrbNGal5W4fQhkQ2w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBLyURQY9FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46JfrrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LquVWvcVWp3eZxFOEETuEcPLiGGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHbn2MrQ==</latexit><latexit sha1_base64="Vc/F7wCLwhVrbNGal5W4fQhkQ2w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBLyURQY9FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwfzCRBP6JDyUPOqLFS46JfrrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LquVWvcVWp3eZxFOEETuEcPLiGGtxDHZrAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHbn2MrQ==</latexit>

⇡i

<latexit sha1_base64="JTwaVRPOBRz6uvQKqWETkzQvZ74=">AAACFHicdVDLSgMxFL1TX7W+qi7dBIvgqsyUQnVXcOOygn1AO5RMmmlDk8yQZIQy9CPcuNBfcSdu3fsnLs20s7AtHggczrk3OTlBzJk2rvvtFLa2d3b3ivulg8Oj45Py6VlHR4kitE0iHqlegDXlTNK2YYbTXqwoFgGn3WB6l/ndJ6o0i+SjmcXUF3gsWcgINlbqDmI2TNl8WK64VXcBtEm8nFQgR2tY/hmMIpIIKg3hWOu+58bGT7EyjHA6Lw0STWNMpnhM+5ZKLKj200XcObqyygiFkbJHGrRQ/26kWGg9E4GdFNhM9LqXif952Y165f00EGt5THjjp0zGiaGSLOOECUcmQllDaMQUJYbPLMFEMfsjRCZYYWJsjyVblbdezCbp1KpevXr7UK80a3lpRbiAS7gGDxrQhHtoQRsITOEZXuHNeXHenQ/nczlacPKdc1iB8/ULdo+fvQ==</latexit>

⇡i

<latexit sha1_base64="2oAtTy/Ncb1ME0cbS1OEdDjtsJk=">AAACFHicdVDLSgMxFL1TX7W+qi7dBIvgqsxIoQouCm5cVrAPaIeSSTNtaJIZkoxQhn6EGxf6K+7ErXv/xKWZdha2xQOBwzn3JicniDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7jK/80SVZpF8NNOY+gKPJAsZwcZKnX7MBimbDcoVt+rOgdaJl5MK5GgOyj/9YUQSQaUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SiQXVfjqPO0MXVhmiMFL2SIPm6t+NFAutpyKwkwKbsV71MvE/L7tRL72fBmIljwmv/ZTJODFUkkWcMOHIRChrCA2ZosTwqSWYKGZ/hMgYK0yM7bFkq/JWi1kn7auqV6vePNQqjdu8tCKcwTlcggd1aMA9NKEFBCbwDK/w5rw4786H87kYLTj5zikswfn6BXmRn8c=</latexit>

⇡�i

<latexit sha1_base64="Klbc1KwZmtVbQeokYl+k7FxbmTM=">AAACFXicdVDLSgMxFL1TX7W+qi7dBIvgxjIjBRVcFNy4rGAf0A4lk2ba0CQzJBmhDP0JNy70V9yJW9f+iUsz7SxsiwcCh3PuTU5OEHOmjet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY32V++4kqzSL5aCYx9QUeShYygo2VOr2Y9dMLNu2XK27VnQGtEi8nFcjR6Jd/eoOIJIJKQzjWuuu5sfFTrAwjnE5LvUTTGJMxHtKupRILqv10lneKzqwyQGGk7JEGzdS/GykWWk9EYCcFNiO97GXif152o154Pw3EUh4TXvspk3FiqCTzOGHCkYlQVhEaMEWJ4RNLMFHM/giREVaYGFtkyVblLRezSlqXVa9WvXmoVeq3eWlFOIFTOAcPrqAO99CAJhDg8Ayv8Oa8OO/Oh/M5Hy04+c4xLMD5+gXr8p/+</latexit>

⇡�i

<latexit sha1_base64="oWJphugGwXmCCKLYMNvie5TQmLg=">AAACFXicdVDLSgMxFL1TX7W+qi7dBIvgxjJTCuqu4MZlBfuAdiiZNNOGJpkhyQhl6E+4caG/4k7cuvZPXJppZ2FbPBA4nHNvcnKCmDNtXPfbKWxsbm3vFHdLe/sHh0fl45O2jhJFaItEPFLdAGvKmaQtwwyn3VhRLAJOO8HkLvM7T1RpFslHM42pL/BIspARbKzU7cdskF6x2aBccavuHGideDmpQI7moPzTH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzvDN0YZUhCiNljzRorv7dSLHQeioCOymwGetVLxP/87Ib9dL7aSBW8pjwxk+ZjBNDJVnECROOTISyitCQKUoMn1qCiWL2R4iMscLE2CJLtipvtZh10q5VvXr19qFeadTy0opwBudwCR5cQwPuoQktIMDhGV7hzXlx3p0P53MxWnDynVNYgvP1C+jwn/Q=</latexit>

⇢i, ⇢�i = NASH

<latexit sha1_base64="7hWffr0w1h5HfU1UFRO49K6irPw=">AAACL3icdVBNS8MwGE79nPOr6tFLcAgedLRjoB6EiZedZKL7gHWMNEu3sKQtSSqM0qu/xosH/SviRbz6Dzyadj24DV8IeXie902e93FDRqWyrA9jaXlldW29sFHc3Nre2TX39lsyiAQmTRywQHRcJAmjPmkqqhjphIIg7jLSdsc3qd5+JELSwH9Qk5D0OBr61KMYKU31TeiIUdCnp9kVn9EEXkGHIzUSPL69vq8nfbNkla2s4CKwc1ACeTX65o8zCHDEia8wQ1J2bStUvRgJRTEjSdGJJAkRHqMh6WroI05kL842SeCxZgbQC4Q+voIZ+3ciRlzKCXd1Z2pSzmsp+Z+Wvihn/o9dPudHeRe9mPphpIiPp3a8iEEVwDQ8OKCCYMUmGiAsqN4I4hESCCsdcVFHZc8HswhalbJdLV/eVUu1Sh5aARyCI3ACbHAOaqAOGqAJMHgCz+AVvBkvxrvxaXxNW5eMfOYAzJTx/QvLU6mi</latexit>

⇡̂i

<latexit sha1_base64="AI25SQjkSZdEb90uW+vNEgRkl0g=">AAACGHicdVDLSsNAFL3xWeur6tJNsAiuSlIK6q7gxmUF+4AmlMl00g6dR5iZCCX0M9y40F9xJ27d+ScunbRZ2BYPDBzOuXfmzIkSRrXxvG9nY3Nre2e3tFfePzg8Oq6cnHa0TBUmbSyZVL0IacKoIG1DDSO9RBHEI0a60eQu97tPRGkqxaOZJiTkaCRoTDEyVuoHY2SyIKGzAR1Uql7Nm8NdJ35BqlCgNaj8BEOJU06EwQxp3fe9xIQZUoZiRmblINUkQXiCRqRvqUCc6DCbR565l1YZurFU9gjjztW/GxniWk95ZCc5MmO96uXif15+o156P4v4Sh4T34QZFUlqiMCLOHHKXCPdvCV3SBXBhk0tQVhR+yMXj5FC2Nguy7Yqf7WYddKp1/xG7fahUW3Wi9JKcA4XcAU+XEMT7qEFbcAg4Rle4c15cd6dD+dzMbrhFDtnsATn6xfBuKF+</latexit>

⇡̂�i

<latexit sha1_base64="14FWVV+c0vmlbBut4VMcU61X8Fw=">AAACG3icdVDLSgMxFL1TX7W+qi7dBIvgxjJTCuqu4MZlBdsK7VgyaaYNTTJDkhHK0P9w40J/xZ24deGfuDTTzsK2eCDhcM69NzcniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCP1EGBNOZO0ZZjh9CFWFIuA004wvsn8zhNVmkXy3kxi6gs8lCxkBBsrPfZG2KS9mE376YW9yhW36s6AVomXkwrkaPbLP71BRBJBpSEca9313Nj4KVaGEU6npV6iaYzJGA9p11KJBdV+Ott6is6sMkBhpOyRBs3Uvx0pFlpPRGArBTYjvexl4n9eNlEvvJ8GYmkfE175KZNxYqgk83XChCMToSwoNGCKEsMnlmCimP0RIiOsMDE2zpKNylsOZpW0a1WvXr2+q1catTy0IpzAKZyDB5fQgFtoQgsIKHiGV3hzXpx358P5nJcWnLznGBbgfP0CJ3qiwQ==</latexit>

gi,�i
i , gi,�i

�i

<latexit sha1_base64="IjUiooJmwIdWtqMXG/+LJLO/1Hw=">AAACKXicdVDLSsNAFJ3UV62vqDvdBIvgoi2JFNRdwY3LCvYBbQyT6aQdOjMJMxOhhIBf48aF/oo7detPuHTSBrEtHhg499zH3Hv8iBKpbPvDKKysrq1vFDdLW9s7u3vm/kFbhrFAuIVCGoquDyWmhOOWIoribiQwZD7FHX98neU7D1hIEvI7NYmwy+CQk4AgqLTkmUdDLyHpfUIqVZJWdFD9jTyzbNfsKaxl4uSkDHI0PfO7PwhRzDBXiEIpe44dKTeBQhFEcVrqxxJHEI3hEPc05ZBh6SbTG1LrVCsDKwiFflxZU/VvRwKZlBPm60oG1Ugu5jLxv1w2Uc79n/hsYR8VXLoJ4VGsMEezdYKYWiq0MtusAREYKTrRBCJB9EUWGkEBkdLmlrRVzqIxy6R9XnPqtavberlh56YVwTE4AWfAARegAW5AE7QAAo/gCbyAV+PZeDPejc9ZacHIew7BHIyvH1Eip14=</latexit>

gi,�î
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Figure 3: Overview of the multi-agent trust region learning phases in two-agent games. It can be
easily extended to the n-agent case by solving the n-agent two-action matrix form meta-game.

Algorithm 1 Multi-Agent Trust Region Learning
Input: Initializing policies πi for each i.

1: for k ∈ {0, 1, 2, · · · } do
2: Using current policies πi, π−i to collect trajectories.
3: For each i: compute a trust payoff region policy π̂i using Eq. 2. � Trust Payoff Region.
4: Solve meta-gameM(πi, π̂i, π−i, π̂−i) and obtain a meta-game Nash ρi, ρ−i.
5: Compute weak stable fixed point π̄i, π̄−i. � Trust Stable Region.
6: For each i: compute best response π′i using Eq. 6. � Best Response to Fixed Point.
7: πi ← π′i, π−i ← π′−i.
8: end for

Theorem 2 (Existence of Weak Stable Fixed Point). Consider the restricted underlying game where
policy space is bounded in a linear continuous policy-space [πi, π̂i], where π̂i is monotonically
improved based on πi within TPR. If (ρi, ρ−i) is a Nash equilibrium of the meta-gameM, then, the
linear mixture joint policy (π̄i, π̄−i) is a weak stable fixed point for the restricted underlying game.

Proof. see Appendix C.

According to Theorem 2, (π̄i, π̄−i) is a weak stable fixed point of the restricted underlying game.
Although the weak stable fixed point is relatively weak compared to the stable fixed points (Balduzzi
et al., 2018), as we have stated, a weak stable fixed point is a reasonable (not strong as rational)
requirement for an algorithm to avoid the minimum. Furthermore, the weak stable fixed points can
suit for general game settings. As shown in Appendix C, in cooperative, competitive, and general-
sum games, the fixed-point found by the meta-game analysis can be either stable or saddle points.
Similarly, a local Nash equilibrium can be a stable or saddle in different differential games (Mazumdar
et al., 2020). Therefore, the goodness of stable concepts would depend on specific settings. If we
make some additional game class assumptions, we can easily obtain a stronger fixed-point types.
Nevertheless, it comes with a cost, requiring additional computation or assumptions which may break
the most general settings. Besides, when the meta-game has multiple Nash equilibria, an equilibrium
is randomly selected in our work. Some equilibria can produce a more stable fixed point, however,
we leave the equilibrium selection problem for future work.

Extra Cost for Approximating and Solving meta-game. There are two major-cost sources in
common meta-game analysis: approximating and solving the meta-game (Muller et al., 2019). In
our case, the meta-game is restricted to a local two-action game, where two actions πi and π̂i are
close to each other. This proximity property reduces the meta-game approximation cost (without
extra sampling) by reusing the collected trajectories in the TPR step (Tuyls et al., 2020). The next
crucial problem is how to solve the n-agent two-action meta-game, which consists of the 2n entries
of each of the n payoff matrices. This is much simpler than solving the whole underlying game,
which increases exponentially with state size, action size, agent number, and time horizons. As the
general-sum matrix-form game has no fully polynomial-time approximation for computing Nash
equilibria (Chen et al., 2006), it usually costs a lot to solve the game (Daskalakis et al., 2009). If
we only require an approximated Nash equilibrium, when n is small, for example, n ≤ 10, it is
affordable to find a meta-game Nash equilibrium in a sub-exponential complexity (Lipton et al.,
2003). However, this problem still exists when n is large. In this case, we could try mean-field
approximation (Yang et al., 2018) or utilizing special payoff structure assumptions (e.g., graphical
game (Littman et al., 2002; Daskalakis et al., 2009), which is polynomial-time computable.) in the
meta-game to reduce the computation complexity.
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3.3 IMPROVEMENT AGAINST WEAK STABLE FIXED POINT

Although the weak stable fixed point, (π̄i, π̄−i), binds the policy update to another fixed point, there
are still undesired saddle points according to Theorem 1. It is difficult to generalize for the other
parts of the policy-space not reached by these saddle points, especially in the anti-coordination
games (Lanctot et al., 2017). Similar to the extra-gradient method (Mertikopoulos et al., 2018), to
escape the saddle points we apply the best response against the weak stable fixed point:

π′i = arg max
πi

ηi (πi, π̄−i) . (6)

To perform the best response, we need another round to collect the experiences and do a gradient
step in Eq. 6. However, in practice, since we already have the trajectories in the TPR step and so the
best response to the weak stable fixed point can be easily estimated through importance sampling.
Alternatively, through defining ci

def
= min

(
1 + c̄,max(1 − c̄, πi(ai|s)π̄i(ai|s) )

)
as truncated importance

sampling weights, we can re-write the best response update to Eq. 6 into an equivalent form to the
following one in terms of expectations: π′i = arg maxπi Ea−i∼π̄−i [c−iηi (πi, π−i)].

Connections to Existing Methods. MATRL generalizes many existing methods with the best
response. In extreme cases where the meta-game Nash is (ρi, ρ−i) = (1, 1), which means the Nash
aggregated policies always keep the current policies, MATRL degenerates to independent learners.
Here, we always best response to the other agents’ current policy πi and π′i = arg maxπi ηi(πi, π−i)
following the Eq. 6. The policy prediction (Zhang & Lesser, 2010; Foerster et al., 2018; Letcher et al.,
2018), extra-gradient (Antipin, 2003) and exploitability descent (Tang et al., 2018; Lockhart et al.,
2019) methods are also special instances of MATRL when meta-game Nash is (ρi, ρ−i) = (0, 0). This
means the best response to the most aggressive predicted policy π̂−i and π′i = arg maxπi ηi(πi, π̂−i).

Global Convergence. MATRL is a gradient-based algorithm with the best response to policies
within TSR, which is essentially a variant of LookAhead methods(e.g., LOLA (Foerster et al., 2018),
SOS (Letcher et al., 2018) and IGA-PP (Zhang & Lesser, 2010). More specifically, MATRL enhances
the classic LookAhead method with variable step size scaling (Bowling & Veloso, 2002) or two
time-scale update rule (Heusel et al., 2017) at each TSR step, which is controlled by the restricted
meta-game analysis. It has been proven that LookAhead method can locally converge and avoid
strict saddles in all differentiable games (Letcher et al., 2018), and enjoys the better convergence
with variable step size scaling (Song et al., 2019). The convergence analysis of gradient-based
algorithms is usually based on fixed-point iterations and dynamical systems. And please note, here,
to investigate the convergence, the fixed-point iterations are conducted on the whole learning process.
While the meta-game analysis step in MATRL borrows the concepts of different fixed-points to
show the meta-game analysis is reasonable to avoid unstable fixed-points. Unlike LOLA, which uses
first-order Taylor expansion to estimate the best response to a predicted policy, we elaborately design
the look-ahead step within the TSR and do the best response gradient steps to TSR. We also show
that MATRL empirically outperforms the typical LookAhead method independent learner the policy
prediction (IL-PP) in the experiments.

In summary, independent trust region learners’ learning in MTARL will be constrained by a weak
stable fixed point. By analyzing the relatively simpler meta-game, we can easily approximate this
weak stable fixed point without extra rollouts or simulation. Although MATRL’s training is centralized,
its execution is fully decentralized. It also does not require any extra centralized parameters or higher-
order gradient computation. Fig. 3 shows the overview of MATRL. We also give the pseudocode of
MATRL in Algo. 1, which is compatible with any policy-based independent learner.

4 RELATED WORK
The study of gradient-based methods in multi-agent learning is quite extensive (Mazumdar et al.,
2020; Buşoniu et al., 2010). Some works on learning in games have mostly focused on adjusting
the step size, which attempts to use a multiple-timescales learning scheme (Leslie & Collins, 2005;
Leslie et al., 2003; Bowling & Veloso, 2002) to achieve convergence. Balduzzi et al. (2018);
Mazumdar et al. (2019); Letcher et al. (2018) tried to utilize the second-order methods to shape
the step size. However, the computational cost for second-order methods is very limiting in many
cases. Alternatively, MATRL approximates the second-order fixed-point information via a small
meta-game with less cost comparing to real Hessian computation. An alternative augments the
gradient-based algorithms with the best response to predicted polices (Antipin, 2003; Zhang &
Lesser, 2010; Lin et al., 2020; Foerster et al., 2018; Tang et al., 2018; Lockhart et al., 2019),
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Matching Pennies

Figure 4: Learning dynamics of
MATRL in matching pennies game.
The blue arrow is gradient direction
and the pale blue area is TSR.

Table 1: Convergence rate and average convergence step in
1000 random 2 × 2 matrix games. MATRL shows slightly
better convergence rate and speed compared to IGA-PP.

CONVERGENCE RATE / AVERAGE CONVERGENCE STEP

ALGORITHM COORDINATION ANTI-COORD. CYCLIC

IGA 0.99 / 140.67 0.975 / 88.95 0.78 / 452.92
IGA-PP 0.99 / 138.56 0.975 / 83.11 0.809 / 432.98
MATRL 0.99 / 86.54 0.9825 / 75.52 0.846 / 369.40

which target the challenge of instability caused by agents’ change policies. Instead of taking the best
response to the approximated opponent’s policy, MATRL exploits the ideas from both streams and
and introduces the improvement over the weak stable fixed point.

The research also focuses on the EGTA (Tuyls et al., 2018; Jordan & Wellman, 2009; Tuyls et al.,
2020), which creates a policy-space meta-game for modeling the multi-agent interactions. Using
various evaluation metrics, it then updates and extends the policies based on the analysis of the meta
policies (Lanctot et al., 2017; Muller et al., 2019; Omidshafiei et al., 2019; Balduzzi et al., 2019;
Yang et al., 2019). Although these methods are broad with respect to multi-agent tasks, they require
extensive computing resources to estimate the empirical meta-game and solve it with its increasing
size (Omidshafiei et al., 2019; Yang et al., 2019). In our method, we adopt the idea of a policy-space
meta-game to approximate the fixed point. Unlike previous works, we only maintain the current
policies and predicted policies to construct the meta-game, which is computationally achievable
in most cases. The payoff entry in MATRL’s meta-game is the expected advantage, which has a
lower estimation variance compared to the commonly used empirically-estimated return in EGTAs.
Regardless, we can reuse the trajectories in the TPR step to estimate the payoffs without incurring
additional sampling costs.

Recently, due to the use of neural networks as a function approximation for policies and values, there
have emerged many works on deep reinforcement learning (DRL) (Mnih et al., 2013; Lillicrap et al.,
2015). Trust region policy optimization (Kakade & Langford, 2002; Schulman et al., 2015; 2017)
is one of the most successful DRL methods in the single-agent setting, which puts constraints on
the step size of policy updates, preserving any improvements monotonically. Based the monotonic
improvement in single-agent trust region policy optimization (TRPO) (Schulman et al., 2015),
MATRL extends the improvement guarantee to the multi-agent level, towards a weak stable fixed
point. Some works directly apply fully decentralized single-agent DRL methods (Tan, 1993), which
can be unstable during when learning due to the non-stationary issue. Whereas (Foerster et al.,
2016; Sukhbaatar et al., 2016; Peng et al., 2017) added an extra communication channel during
the training and execution in a centralized way to avoid this non-stationarity issue. Sunehag et al.
(2018); Rashid et al. (2018); Foerster et al. (2017); Lowe et al. (2017) further exploit the setting of
centralized learning decentralized execution (CTDE). These methods provide solutions for training
agents in complex multi-agent environments, and the experimental results show the effectiveness
compared with independent learners. Similar to the CTDE setting, the MATRL also enjoy fully
decentralized execution. Although MATRL still needs knowledge about the other agents’ policies
during the training, it only requires a centralized mechanism to adjust the step size rather than the
additional centralized critic or communication.

5 EXPERIMENTS

We design the experiments to answer the following questions: 1). Can the MATRL method empirically
contribute to the convergence in the general game settings, including cooperative/competitive and
continuous/discrete games? 2). How is the performance of MATRL compared to the ILs with the same
hyper-parameters and other strong MARL baselines in discrete and continuous games with various
agent number? 3). Do the meta-game and best response to the weak stable fixed point bring benefits?
We first evaluate the convergence performance of MATRL in matrix form games to answer the first
question and validate the effectiveness of convergence. For Question 2, we show that MATRL largely
outperforms ILs (PPO (Schulman et al., 2017)) and other centralized baselines (QMIX (Rashid et al.,
2018), QTRAN (Son et al., 2019) and VDN (Sunehag et al., 2018)) for discrete grid world games
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(a) Two-agent checker.
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(b) Four-agent switch.
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(c) Three-agent MuJoCo hopper.

Figure 5: Learning curves in discrete and continuous tasks. The solid lines are average episode
returns with 10 random seeds for each model, and the light color areas are the error bar.

that have coordination problems. It also outperforms MADDPG (Lowe et al., 2017) for continuous
multi-agent MuJoCo games. Besides, we test the algorithms with 2-agent pong Atari game to
investigate if MATRL can mitigate unstable cyclic behaviors (Balduzzi et al., 2019) in zero-sum
games. In these tasks, MATRL uses the same PPO configurations as ILs to examine the effectiveness
of the trust region gradient-update mechanism, and we use official implementations for the other
baselines. The step-by-step PPO based MATRL algorithm is given in Algo. 2. Finally, ablation
studies are conducted by: 1. removing the best response, called the MATRL w/o BR; 2. skipping the
trust-stable region estimation, named IL-PP, which has similar procedures as LOLA Foerster et al.
(2018); Zhang & Lesser (2010), which approximated the best response to the predicted policies via
Taylor expansion, but IL-PP takes the best response gradient steps to the predicted policies. These
configurations provide insights about how much does the trust stable region and the best response
contribute to the MATRL’s performance if any. We also provide more environment details and extra
experiment results, including 4-agent Ant (multi-agent MuJoCo), in the Appendix D and E with
detailed experiment settings and hyper-parameters used for the algorithms. The code and experiment
scripts are also anonymously available at https://github.com/matrl-project/matrl.

Matrix Game and Random 2× 2 Matrix Games. To illustrate the effectiveness of MATRL, we
conducted an experiment on well known zero-sum matching pennies (MP) (Bruns, 2015) game and
devise the 2×2 random matrix games. Using IGA (Singh et al., 2000) as ILs of MATRL, the learning
dynamics of MATRL on MP are shown in Fig. 4, where the blue arrow is trust payoff direction and
the pale blue area is TSR.. The MATRL reaches the Nash Equilibrium (central red star point) by
updating the policies with the constraints from the trust stable region (the pale blue area). It would
be trapped to a cyclic loop if following the original trust pay off direction (the dark blue arrow). To
adequately examine the MATRL on border matrix games, we randomly generate three thousand
2× 2 games for three types: coordination, anti-coordination, and cyclic (Pangallo et al., 2017). More
details about the game generation are provided in Section D. We choose the IGA and IGA-PP (Zhang
& Lesser, 2010) as baselines, and the results in Table 1 show that MATRL has a higher convergence
rate and needs fewer steps for convergence in all types of games.

Grid World Checker and Switch. We evaluated MATRL in two grid world games from MA-
Gym (Koul, 2019), two-agent checker, and four-agent switch, which are similar to games in Sunehag
et al. (2018), but with more agents to examine if the MATRL can handle the games that have more
than two agents. In the checker game, two agents cooperate in collecting fruits on the map; the
sensitive agent gets 5 for apple and −5 for lemon, while the other one gets 1 and −1 respectively. So
the optimal solution is to let the sensitive agent get the apple and the less sensitive one get the lemon.
In the four-agent switch game, two rooms are connected with a corridor, each room has two agents,
and the four agents try to go through one corridor to the target in the opposite room. Only one agent
can pass the corridor at one time, and agents get −0.1 for each step and 5 for reaching targets, so
they need to cooperate to get optimal scores. In both games, The agents can move in four directions
and only partially observe their position. Although our formulation uses a fully observable setting, in
this game, the methods adopt to the partially observable by pretending the observation is a state. We
compare the MATRL with the PPO based IL and two off-policy centralized training and decentralized
execution baselines: VDN (Sunehag et al., 2018), QTRAN (Son et al., 2019) and QMIX (Rashid et al.,
2018). Results are given in Fig. 5a and 5b, where MATRL has a stable improvement and outperforms
other baselines. In two-player checker, using the best response, our method can achieve a total reward
of 18, while the independent learners’ rewards stay at −2. Besides, although PPO-based MATRL
uses on-policy learning, it achieved better final results in fewer time steps compared to the off-policy
baselines. As for the four-player switch, as shown in Fig. 5b, MATRL can continuously improve
the total rewards to 6.5, which is the closest to the optimal score for this game when compared with
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(a) Two-agent checker. (b) Four-agent switch. (c) Three-agent MuJoCo hopper.

Figure 5: Learning curves in discrete and continuous tasks, each with 5 random seeds.

(a) (b) (c)

Figure 6: MATRL/IL versus Random/MATRL/IL in the 2-agent pong game.

lemon. In the four-agent switch game, each side of the corridor has a room, each room has two
agents, and the four agents try to go through one corridor to the target in the opposite room. Only
one agent can pass the corridor at one time, and agents get �0.1 for each step and 5 for reaching
targets, so they need to cooperate to get optimal scores. In both games, The agents can move in four
directions and only partially observe their position. We compare the MATRL with the PPO based
IL and two off-policy centralized training and decentralized execution baselines: VDN (Sunehag
et al., 2018) and QMIX (Rashid et al., 2018). Results are given in Fig. 5a and 5b, where MATRL
has a stable improvement and outperforms other baselines. In two-player checker, using the best
response, our method can achieve a total reward of 18, while the independent learners’ rewards stay
at �2. Besides, although PPO-based MATRL uses on-policy learning, it achieved better final results
in fewer time steps compared to the off-policy baselines. As for the four-player switch, as shown
in Fig. 5b, MATRL can continuously improve the total rewards to 6.5, which is the closest to the
optimal score for this game when compared with other baselines. The result in the four-agent switch
also demonstrates the effectiveness of MATRL in guaranteeing the stable policy improvement for the
games that have more than two agents.

Multi-Agent MuJoCo Hopper. We also examined MATRL in a multi-agent continuous control task
with a three-agent hopper from (de Witt et al., 2020). Here, three agents cooperatively control each
part of a hopper to move forward. The agents are rewarded with distance and the number of steps
they make before falling. Fig. 5c shows that MATRL significantly outperforms IL, MADDPG, and
also the benchmarks in de Witt et al. (2020) within the same amount of time.

Effect and Cost of Trust Stable Region and Best Response to Fixed Point. This section analyzes
the effect of the TSR from meta-game Nash and the best response against the weak stable fixed point.
The ablation settings are obtained by removing the trust stable region (IL-PP) and the best response
(MATRL w/o BR). In Fig. 5, we can observe that in all the tasks, without the best response to the
fixed point, the learning curves of MATRL o/w BR have higher variance and the lowest final scores.
This establishes the importance of the best response to stabilize and improve agents’ performance.
Also, without the TSR to select a fixed point, the MATRL recovers to independent learners with
the policy prediction (IL-PP) (Zhang & Lesser, 2010; Foerster et al., 2018). Similarly, the curves
of IL-PP have lower final scores, and the convergence speed is not as good as the MATRL, which
suggests that the TSR provides benefits. The MATRL w/o BR has lower variance compared to the
IL-PP, which reveals the trust stable region can stabilize the learning via weak stable fixed point
constraints. Finally, when comparing to IL and IL-PP, the time for each training step in MATRL is

8

Figure 6: MATRL/IL versus MATRL/IL in the two-agent pong game. For each setting, the grids are
pair-wise performance (average scores) by pitting their ten checkpoints against one another, yellow
means higher score.

other baselines. The result in the four-agent switch also demonstrates the effectiveness of MATRL in
guaranteeing the stable policy improvement for the games that have more than two agents.

Multi-Agent MuJoCo Hopper. We also examined MATRL in a multi-agent continuous control task
with a three-agent hopper from (de Witt et al., 2020). Here, three agents cooperatively control each
part of a hopper to move forward. The agents are rewarded with distance and the number of steps
they make before falling. Fig. 5c shows that MATRL significantly outperforms IL, MADDPG, and
also the benchmarks in de Witt et al. (2020) within the same amount of time.

Multi-Agent Pong Atari Game. In the 2-agent pong game experiments, we used raw pixel as
observation and train the MATRL and IL agents independently. Following training, we compare these
models’ pair-wise performance by pitting their ten checkpoints against one another and recording the
average scores. We report the results in Fig. 6, which shows MATRL outperforms IL in MATRL vs.
IL setting in most of the policy pairs. Besides, from the MATRL vs. MATRL and IL vs. IL settings’
results, we can see MATRL has a more transitive learning process than IL, which means MATRL can
mitigate the common cyclic behaviors in zero-sum games.
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Figure 7: Running time of 20,000 environ-
ment steps (including 50 gradient steps)
for the algorithms in 2-4 agents games.

Effect and Cost of Trust Stable Region and Best Re-
sponse to Fixed Point. This section analyzes the effect
of the TSR from meta-game Nash and the best response
against the weak stable fixed point. The ablation set-
tings are obtained by removing the trust stable region
(IL-PP) and the best response (MATRL w/o BR). In
Fig. 5, we can observe that in all the tasks, without the
best response to the fixed point, the learning curves of
MATRL o/w BR have higher variance and the lowest
final scores. This establishes the importance of the best
response to stabilize and improve agents’ performance,
and empirically shows that the MATRL has better con-
vergence ability than other baselines. Also, without the
TSR to select a fixed point, the MATRL recovers to independent learners with the policy prediction
(IL-PP) (Zhang & Lesser, 2010; Foerster et al., 2018). Similarly, the curves of IL-PP have lower
final scores, and the convergence speed is not as good as the MATRL, which suggests that the TSR
provides benefits. The MATRL w/o BR has lower variance compared to the IL-PP, which reveals
the trust stable region can stabilize the learning via weak stable fixed point constraints. Finally,
when comparing to IL and IL-PP, as shown in Fig. 7, in 2-4 agents games with 20,000 environment
steps and 50 gradient steps, the training time of MATRL is empirically about 1.1-1.2 times slower.
We think this extra computational cost from the TSR and the best response is acceptable given the
performance improvement brought by these operations.

6 CONCLUSION

We proposed and analyzed the trust region method for multi-agent learning problems, which considers
the trust payoff region and the trust stable region to meet the multi-agent learning objectives. In
practice, based on independent trust payoff learners, we provide a convenient way to approximate
a further restricted step size within TSR via the meta-game. This ensures that the MATRL is
generalized, flexible, and easily implemented to deal with multi-agent learning problems in general.
Our experimental results justify the fact that MATRL method significantly outperforms independent
learners using the same configurations, and other strong MARL baselines on both continuous and
discrete games with various agent numbers.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Anatoly Antipin. Extragradient approach to the solution of two person non-zero sum games. In
Optimization and Optimal Control, pp. 1–28. World Scientific, 2003.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. arXiv preprint arXiv:1802.05642, 2018.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M Czarnecki, Julien Perolat, Max
Jaderberg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. arXiv preprint
arXiv:1901.08106, 2019.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate. Artificial
Intelligence, 136(2):215–250, 2002.

Michael Bowling and Manuela Veloso. Existence of multiagent equilibria with limited agents.
Journal of Artificial Intelligence Research, 22:353–384, 2004.

Bryan Randolph Bruns. Names for games: Locating 2× 2 games. Games, 6(4):495–520, 2015.
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A MATRL ALGORITHM BASED ON PPO

Algorithm 2 Multi-Agent Trust Region Learning Algorithm (PPO Based, Two-Agent Example).
Input: The initial policy parameters θ1, θ2, initial value function parameters φ1, φ2 and ε.

1: for k ∈ {0, 1, 2, · · · } do
2: Using π1(θ1), π2(θ2) to collect trajectories τ1, τ2.
3: Compute GAE reward R̂i for each i.
4: Compute estimated advantages Â1, Â2 based on the current value functions Vφ1 , Vφ2 .
5: for i ∈ {1, 2} do
6: Compute a trust payoff region policy π̂i using Eq. 2.
7: Update the policy by maximizing the PPO-Clip objective:

θ̂i = arg maxθi
1
|τi|T

∑
τ∈τi

∑T
t=0 min

(
πi(at|st;θ)
πi(a1,t|st;θi)A

π1,π2

i (st, a1,t, a2,t) , g (ε, Aπ1,π2

i (st, a1,t, a2,t))
)
,

where g is a clipping function.
8: Fit value function by regression on mean-squared error:

φ′i = arg min
φi

1

|τi|T
∑
τ∈τi

T∑
t=0

(
Vφ (st)− R̂i,t

)2

9: end for
10: Construct the meta-gameM(π1(θ1), π̂1(θ̂1), π2(θ2), π̂2(θ̂2)).
11: SolveM and obtain meta Nash ρ1, ρ2.
12: Compute aggregated weak stable fixed point (π̄1, π̄2).
13: for i ∈ {1, 2} do
14: Compute π(′)

i which best responses to π̄−i using Eq. 6.
15: Estimate the best response by importance sampling:

θ′i =
θ̂i
|τi|T

∑
τ∈τi

T∑
t=0

g (ε, πi/π̄−i)

16: end for
17: θ1 ← θ′1, θ2 ← θ′2 .
18: end for
Output: π1(θ1), π2(θ2).

B INDEPENDENT TRUST PAYOFF REGION

We use the total variation divergence, which is defined by DTV(p‖q) = 1
2

∑
j |pj − qj | for discrete

probability distributions p, q (Schulman et al., 2015). Dmax
TV (π, π̃) is defined as:

Dmax
TV (π, π̃) = max

s
DTV(π(·|s)‖π̃(·|s)). (7)

Based on this, we can define α-coupled policy as:

Definition 2 (α-Coupled Policy (Schulman et al., 2015)). (π, π′) is an α-coupled policy pair if it
defines a joint distribution (a, a′)|s, such that P (a 6= a′|s) ≤ α for all s. π and π′ will denote the
marginal distributions of a and a′, respectively.

When the joint policy pair πi, π−i changes to π′i, π
′
−i and coupled with αi and α−i correspondingly:

ηi(π
′
i, π
′
−i)− ηi(πi, π−i) ≥ Aπi,π−ii (π′i, π

′
−i)−

4γε

(1− γ)2
(αi + α−i − αiα−i)2, (8)

where
ε = max

s,ai,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣.

The proofs are as following:
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Lemma 1. Given that (πi, π
′
i) and (π−i, π′−i) are both α-coupled policies bounded by αi and α−i

respectively, for all s,∣∣Aπi,π−ii (s)
∣∣ ≤ 2(αi + α−i − αiα−i) max

s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣ (9)

Proof.
A
πi,π−i
i (s) = Ea′i,a′−i∼π′i,π′−i

[
A
πi,π−i
i (s, a′i, a

′
−i)
]

(10)

= E(ai,a′i)∼(πi,π′i),(a−i,a
′
−i)∼(π−i,π′−i)

[
A
πi,π−i
i (s, a′i, a

′
−i)−Aπi,π−ii (s, ai, a−i)

]
(11)

= P (ai 6= a′i ∨ a−i 6= a′−i|s)E(ai,a′i)∼(πi,π′i),(a−i,a
′
−i)∼(π−i,π′−i)

[A
πi,π−i
i (s, a′i, a

′
−i)
(12)

−Aπi,π−ii (s, ai, a−i)]
(13)

≤ (αi + α−i − αiα−i) · 2 max
s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣, (14)

where P (ai 6= a′i ∨ a−i 6= a′−i|s) = 1− (1− αi)(1− α−i) = αi + α−i − αiα−i.

Lemma 2. Let (πi, π
′
i) and (π−i, π′−i) are α-coupled policy pairs. Then,∣∣∣Est∼π′i,π′−i[Aπi,π−ii (s)

]
− Est∼πi,π−i

[
A
πi,π−i
i (s)

]∣∣∣
≤ 4(αi + α−i − αiα−i)(1− (1− αi)t(1− α−i)t) max

s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣ (15)

Proof. The preceding Lemma bounds the difference in expected advantage at each time step t. When
t′ = 0 indicates that πi, π−i and π′i, π

′
−i both agreed on all time steps less than t. By the definition

of αi, α−i, P (πi, π−i := π′i, π
′
−i|t = i) ≥ (1− αi)(1− α−i), so P (t′ = 0) ≥ (1− αi)t(1− α−i)t

and P (t′ > 0) ≤ 1 − (1 − αi)t(1 − α−i)t. We can sum over time to bind the difference between
ηi(π

′
i, π
′
−i) and ηi(πi, π−i).∣∣∣ηi(π′i, π′−i)− Lπi,π−ii (π′i, π

′
−i)
∣∣∣ =

∞∑
t=0

γt
∣∣∣Est∼π′i,π′−i[Aπi,π−ii (s)

]
− Est∼πi,π−i

[
A
πi,π−i
i (s)

]∣∣∣
(16)

≤
∞∑
t=0

γt · 4ε(αi + α−i − αiα−i)(1− (1− αi)t(1− α−i)t)

(17)

= 4ε(αi + α−i − αiα−i)
( 1

1− γ −
1

1− γ(1− αi)(1− α−i)
)

(18)

=
4ε(αi + α−i − αiα−i)2

(1− γ)(1− γ(1− αi)(1− α−i))
(19)

≤ 4ε(αi + α−i − αiα−i)2

(1− γ)2
, (20)

where ε = maxs,ai,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣.
Note that
L
πi,π−i
i (π′i, π

′
−i) = ηi(πi, π−i) +

∑
s

ρπi,π−i(s)
∑
ai

π′i(ai|s)
∑
a−i

π′−i(a−i|s)Aπi,π−ii (s, ai, a−i).

(21)
Then, we can have

ηi(π
′
i, π
′
−i)− ηi(πi, π−i) ≥ Aπi,π−ii (π′i, π

′
−i)−

4γε

(1− γ)2
(αi + α−i − αiα−i)2. (22)
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C PROOF OF THEOREM 2

At each iteration, denote ∇igi = ∇πig
πi,π−i
i and ∇i,−igi = ∇πi∇π−ig

πi,π−i
i for each i. Consider

the simultaneous gradient ξ of the expected advantage gains and the corresponding Hessian H:

ξ(πi, π−i) = (∇igi,∇−ig−i) , (23)

H = ∇ξ =

(
∇i,igi ∇i,−igi
∇−i,ig−i ∇−i,−ig−i

)
. (24)

For a restricted underlying game, where policy space is bounded: πi ∈ [πi, π̂i]. Assume πi is the
linear mixture of πi, π̂i, and π̄i = ρiπi + (1− ρi)π̂i, where ρi ∈ [0, 1]. Therefore, we can re-write
the gπi,π−ii (πi, π−i) in the form of:

g
πi,π−i
i (πi, π−i) = g

πi,π−i
i (ρi, ρ−i) = ρi(1−ρ−i)gi,−îi +(1−ρi)ρ−igî,−ii +(1−ρi)(1−ρ−i)gî,−îi .

(25)
Then we have:

∇igi(ρ−i) = (1− ρ−i)gi,−îi − ρ−igî,−ii − (1− ρ−i)gî,−̂ii , (26)

and ξ(πi, π−i) = ξ(ρi, ρ−i). Given a meta Nash policy pair (π̄i, π̄−i), where π̄i = ρ̄iπi+(1− ρ̄i)π̂i,
according to the Nash definition, we have:(

ρ̄i
1− ρ̄i

)T (
gi,−ii gi,−îi

gî,−ii gî,−îi

)(
ρ̄−i

1− ρ̄−i

)
≥
(

ρi
1− ρi

)T (
gi,−ii gi,−îi

gî,−ii gî,−îi

)(
ρ̄−i

1− ρ̄−i

)
, (27)

which implies:

(ρ̄i − ρi)∇igi(ρ̄−i) ≥ 0, ρ̄i,∀ρ−i ∈ [0, 1],

(ρ̄−i − ρ−i)∇−ig−i(ρ̄i) ≥ 0, ρ̄i,∀ρ−i ∈ [0, 1].
(28)

When ρ̄i, ρ̄−i ∈ (0, 1) in accordance with the Nash condition in Eq. 28,∇igi(ρ̄−i) = ∇−ig−i(ρ̄i) =
0. It shows that (π̄i, π̄−i) is a fixed point due to ξ(π̄i, π̄−i) = ξ(ρ̄i, ρ̄−i) = 0. For the boundary case,
where ρ̄i or ρ̄−i ∈ {0, 1}, because they are constrained to the unit square [0, 1]× [0, 1], the gradients
on the boundaries of the unit square are projected onto the unit square, which means additional points
of zero gradient exist. In other words,∇igi and∇−ig−i are still equal to zero in boundary case, and
the (π̄i, π̄−i) is a fixed point in both cases.

Next, we determine what types of the fixed point that (π̄i, π̄−i) belongs to. According to the Eq. 24,
we have the exact Hessian Matrix for the restricted game:

H = ∇ξ =

(
0 gî,−îi − gi,−îi − gî,−ii

gî,−î−i − gi,−î−i − gî,−i−i 0

)
(29)

The eigenvalue λ of H can be computed:

λ2 − Tr(H)λ+ det(H) = λ2 − (gî,−îi − gi,−îi − gî,−ii )(gî,−î−i − gi,−î−i − gî,−i−i ) = 0 (30)

Denotes ḡi := gî,−îi − gi,−îi − gî,−ii , we have λ = ±√ḡiḡ−i. Therefore, we can have following cases
for the fixed point (ρ̄i, ρ̄−i):

1. Fully cooperative games: ḡi ≤ 0, ḡ−i ≤ 0, then H(ρ̄i, ρ̄−i) � 0, which means (ρ̄i, ρ̄−i) is
a stable fixed point as we are maximizing the objective.

2. Fully competitive games: ḡi > 0, ḡ−i < 0 or ḡi < 0, ḡ−i > 0, all λ have two pure imaginary
eigenvalues with zero real part, where (ρ̄i, ρ̄−i) is a saddle point.

3. General sum games: they are in-between the cooperative and competitive games, which
means (ρ̄i, ρ̄−i) can be either stable fixed point or saddle point.

Because we assume π̂i monotonically improved compared to πi, then even in zero-sum case, there is
at least one negative value in ḡi and ḡ−i. Therefore, in all the situations, (ρ̄i, ρ̄−i) is not unstable,
and could be a stable point or saddle point. We define them as a weak stable fixed point. It also has a
tighter lower bound than the independent trust region improvement seen in Remark 1:
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(a) (b)

1

2

3

(c)

Figure 8: Multi-agent discrete and continuous action tasks: (a) 2-agent checker (discrete), (b) 4-agent
switch (discrete), (c) 3-agent MuJoCo hopper (continious).
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(a) Chicken.
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(b) Prisoners’ Dilemma.
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(c) 4-Agent Ant.

Figure 9: (a)-(b): Learning dynamics of two games using MATRL. c: Extra learning curves in
4-Agent Ant multi-agent MuJoCo task.

Remark 1. Let (ρi, ρ−i) be a Nash equilibrium of the policy-space meta-gameM(πi, π̂i, π−i, π̂−i),
which is used for computing the linear mixture policies π̄i, π̄−i. For simplicity, define ρ̄i = 1− ρi,
then we have the payoff improvement lower bound for π̄i, π̄−i:

ηi(π̄i, π̄−i)− ηi(πi, π−i) ≥ gπi,π−ii (π̄i, π̄−i)−
4γεi

(1− γ)2
(αiρ̄i + α−iρ̄−i − αiα−iρ̄iρ̄−i)2, (31)

that is a tighter lower bound compared with Theorem 1.
Finally, we obtain MATRL as follows: First, an agent i collects a set of trajectories using its current
policy πi by independent play with other agents. Then a predicted policy π̂i can be estimated
using the single-agent trust region methods, which has a trust payoff improvement against the other
agents’ current policy π−i. However, this trust payoff improvements would not benefit convergence
requirements for the multi-agent system due to other agents adaptive learning. To solve this problem,
we approximate a n-agent two-action meta-game in policy-space by reusing the trajectories from
the last TPR step. In this game, each agent i has two pure strategies: choosing the current policy
πi or predicted policy π̂i and the corresponding payoffs are the expected advantages (defined in
Eq. 3) of the joint policy pairs. By constructing such a meta-game, we transform a complex multi-
agent interactions problem into game-theoretic analysis concerning the underlying game restricted
in [πi, π̂i]. Then we can obtain a weak stable fixed point as TSR within the TPR by solving the
meta-game,. When the fixed point is a saddle point we then take the best response to the weak stable
fixed point to get the next iteration’s policies. This encourages exploration and avoid stagnation at an
unexpected saddle point.

D ENVIRONMENT DETAILS

Random 2× 2 Matrix Games. We created a generator of 2× 2 matrix games based on the category
provided by (Pangallo et al., 2017). Coordination games have characteristics enabling one agent to
improve the payoff without decreasing the payoff of the other agent. Anti-coordination games are
ones where one agent improves the payoff while the other agent’s payoff decreases. Both coordination
and anti-coordination games can have two pure NEs and one mixed strategy NE. In cyclic games, the
action selections of agents that is based on their actions will form a cycle, ensuring that there is no
pure NE in the game. Instead only mixed strategy NE will be found.
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Figure 10: Pong game in Atari 2600.

Grid World Games. In two-player checker, as shown in Fig. 8a, there is one sensitive player who
gets reward 5 when they collect an apple and 5 when they collect a lemon; a less sensitive player
gets 1 for apple and 1 for lemon. The learning goal is to let the sensitive player get apples and the
other one get lemons to have a higher total reward. In four-player switch, as shown in Fig. 8b, to
reach the targets, agents need to figure out a way to go through a narrow corridor. The agent gets
−1 for taking each step and 5 when arriving at a target. Four-player switch uses the same map as
two-player switch, where two agents start from the left side and the others from the right side to go
through the corridor to reach the targets. With more agents in four-player switch, learning becomes
more challenging. MATRL agents achieved higher total rewards compared to baseline algorithms
within the same number of steps.

Multi-Agent MuJoCo Tasks. We used the three-agent Hopper environment described in (de Witt
et al., 2020), and Fig. 8c, where three agents control three joints of the robot and learn to cooperate to
move forward as far as possible. The agent is rewarded by the number of time steps that they move
without falling. Each agent has 3 continuous output values as the action, and all the agents have a full
observation of the states of size 17. We use the same hyper-parameters for MATRL, MATRL w/o
BR, and IL-PP. For MADDPG agent, we use the hyper-parameters described in the paper (de Witt
et al., 2020).

Multi-Agent Atari Game. The pong game is a multi-agent Atari version2 of table tennis, as shown
in Fig. 10. Two players must prevent a ball from whizzing past their paddles and allowing their
opponent to score. The game ends when one side earns 21 points.

E EXPERIMENTAL PARAMETER SETTINGS

For all the tasks, the most important hyper-parameters are learning rate/step size, the number of
update steps, batch size and value, policy loss coefficient. Appropriate learning rate and update steps
plus larger batch size give a more stable learning curve. And for different environments, policy and
value network loss coefficients that keep two losses at the same scale are essential in improving the
learning result and speed. Also, for meta-game construction and best response update where we use
the importance ratio to do estimation, a clipping factor of the ration is vital to achieving a stable and
monotonic improving result. The followings are the detailed parameter settings for each task.

Matrix Game and Random 2 × 2 Matrix Games. The hyper-parameters settings for MATRL,
IGA-PP, and WoLF are listed in Table 2. As shown in Fig. 9, we also listed the additional convergence
analysis in classical Chicken and Prisoners’ Dilemma Games, which demonstrate good convergence
performance of MATRL on both games. For MATRL, we have the KL-divergence coefficient as an
extra hyper-parameter to add the KL-divergence as part of the loss in policy updating. And for the
baseline algorithm WoLF, we give the real NE of the game as part of the parameters. In all the games,
all the algorithms shared the same initial policy values [0.9, 0.1] for player 1 and [0.2, 0.8] for player
2.

Grid World Games and Multi-agent Continuous Control Task. The hyper-parameters settings
for MATRL are given in Table 3. We used the same hyper-parameters for MATRL, MATRL w/o BR,
IL-PP, and IL. The only difference is whether to use Best Response and the meta-game or not. We

2https://github.com/PettingZoo-Team/Multi-Agent-ALE
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Table 2: Hyper-parameter settings in 2× 2 matrix games.

SETTINGS VALUE DESCRIPTION

COMMON SETTINGS
INITIAL POLICIES 1 [0.9, 0.1] THE INITIAL POLICY VALUES FOR PLAYER 1
INITIAL POLICIES 2 [0.2, 0.8] THE INITIAL POLICY VALUES FOR PLAYER 2
MATRL SETTINGS
BEST RESPONSE LEARNING RATE 0.03 THE LEARNING RATE FOR THE BEST RESPONSE STEP
KL COEFFICIENT 100 THE KL-DIVERGENCE COEFFICIENT IN POLICY LOSS
WOLF SETTINGS
LEARNING RATE MAXIMUM 0.06 THE MAXIMUM LEARNING RATE FOR WOLF LEARN FAST AGENT
LEARNING RATE MINIMUM 0.02 THE MINIMUM LEARNING RATE FOR WOLF WIN AGENT

Table 3: MATRL hyper-parameter settings in grid worlds.

COMMON SETTINGS VALUE DESCRIPTION

POLICY LEARNING RATE 0.002 OPTIMIZER LEARNING RATE.
BATCH SIZE 2000 NUMBER OF DATA POINT FOR EACH UPDATE.
GAMMA 0.99 LONG TERM DISCOUNT FACTOR.
HIDDEN DIMENSION 128 SIZE OF HIDDEN STATES.
NUMBER OF HIDDEN LAYERS 2 NUMBER OF HIDDEN LAYERS.
NASH EQUILIBRIUM SOLVER METHOD CMAES THE METHOD FOR FINDING THE NASH EQUILIBRIUM OF META-GAME
NEURAL NETWORK MLP THE NEURAL NETWORK ARCHITECTURE FOR POLICY AND CRITIC
POLICY UPDATE ITERATIONS 10 NUMBER OF GRADIENT STEPS FOR EACH BATCH OF UPDATE.
BEST RESPONSE LEARNING RATE 0.002 THE LEARNING RATE FOR BEST RESPONSE STEP
BEST RESPONSE INTERACTIONS 5 NUMBER OF GRADIENT STEPS FOR BEST RESPONSE STEP
KL COEFFICIENT 0.001 THE KL DIVERGENCE COEFFICIENT IN CALCULATING LOSS
ENTROPY COEFFICIENT 0.05 THE ENTROPY COEFFICIENT IN CALCULATING LOSS
POLICY RATIO CLIP 0.1 THE CLIP VALUE FOR POLICY RATIO
BEST RESPONSE IMPORTANCE RATIO CLIP 0.1 THE CLIP VALUE FOR BEST RESPONSE IMPORTANCE WEIGHT
2 PLAYER SWITCH
VALUE LOSS COEFFICIENT 0.01 THE VALUE LOSS IS LARGER THAN POLICY LOSS
2 PLAYER CHECKER
VALUE LOSS COEFFICIENT 1.0 THE VALUE LOSS IS AT SAME SCALE AS POLICY LOSS
4 PLAYER SWITCH
VALUE LOSS COEFFICIENT 0.01 THE VALUE LOSS IS LARGER THAN POLICY LOSS

used Leaky ReLU as the activation function for both policies and value networks. For the training,
we used paralleled workers to collect experience data and update the network weights separated then
synchronize all the works to have the final updated weights. We used different value loss and policy
loss coefficients to balance the weights of two losses. For the Switch games, we used small value loss
coefficients because the value loss is between [0− 10] while the absolute value policy loss is smaller
than 1e − 2. For the Checker game, the value loss and policy loss are at the same scale between
[1e − 4, 1e − 2]. Also, we added entropy loss and KL loss to encourage exploration and limit the
policy update for each step. We used (Šebek, 2013) as the Nash equilibrium solver for finding the
meta-game Nash. The Nash solver is CMAES for all the experiments. If not particularly indicated,
all the baselines use common settings as listed in Table 3. VDN, QMIX use common individual
action-value networks as those used by MATRL; each consists of two 128-width hidden layers. We
includes more experiment result on 4-agent ant task multi-agent MuJoCo task in Fig. 9c, which
also demonstrate the superior performance of MATRL compared to other settings. The specialized
parameter settings for each algorithm are provided in Table 4 and 5:

Multi-agent Atari Pong. The hyper-parameters setting for MATRL are listed in Table 6. We used the
same hyper-parameters for MATRL and IL. We take the raw pixel input from the Atari environment,
and we processed it with a convolution network, which has filter sizes [8,4,3], kernel sizes (3,3,3),
and stride sizes [4,2,1] and ”VALID” as padding. Then we pass the processed embedding to a 2 layer
fully connected network to get the policy.
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Table 4: Hyper-parameter settings for baseline algorithms in grid worlds.

SETTINGS VALUE DESCRIPTION

VDN
MONOTONE NETWORK LAYER 2 LAYER NUMBER OF MONOTONE NETWORK.
MONOTONE NETWORK SIZE 128 HIDDEN LAYER SIZE OF MONOTONE NETWORK.
TARGET NETWORK UPDATE INTERVAL 200 NUMBER OF ITERATIONS BETWEEN EACH TARGET NETWORK UPDATE
LEARNER DOUBLE-Q LEARNER THE ALGORITHMS FOR EACH AGENT
QMIX
JOINT ACTION-VALUE NETWORK LAYER 2 LAYER NUMBER OF JOINT ACTION-VALUE NETWORK.
JOINT ACTION-VALUE NETWORK SIZE 128 HIDDEN LAYER SIZE OF JOINT ACTION-VALUE NETWORK.
LEARNER DOUBLE-Q LEARNER THE ALGORITHMS FOR EACH AGENT

Table 5: Hyper-parameter settings in multi-agent MuJoCo hopper.

SETTINGS VALUE DESCRIPTION

MATRL AND ITS VARIANTS
AGENT ALGORITHM PPO THE LEARNING ALGORITHM FOR AGENT
NETWORK 2 LAYER MLP [128, 128] THE NETWORK ARCHITECTURE AND SIZE FOR THE PPO AGENT
LEARNING RATE 0.002 LEARNING RATE FOR AGENTS
BATCH IZE 4000 BATCH SIZE FOR ONE UPDATE
VALUE LOSS COEFFICIENT 0.001 THE VALUE LOSS COEFFICIENT IN TOTAL LOSS
POLICY LOSS COEFFICIENT 100 THE POLICY LOSS COEFFICIENT IN TOTAL LOSS
POLICY UPDATE ITERATIONS 10 NUMBER OF GRADIENT STEPS FOR EACH BATCH OF UPDATE.
BEST RESPONSE LEARNING RATE 0.002 THE LEARNING RATE FOR BEST RESPONSE STEP
BEST RESPONSE INTERACTIONS 5 NUMBER OF GRADIENT STEPS FOR BEST RESPONSE STEP
ENTROPY COEFFICIENT 0.05 THE ENTROPY COEFFICIENT IN TOTAL LOSS
KL-DIVERGENCE COEFFICIENT 0.01 THE KL-DIVERGENCE COEFFICIENT IN TOTAL LOSS
GAMMA 0.99 DISCOUNT FACTOR
MADDPG
NETWORK 2 LAYER MLP [300, 300] THE NETWORK ARCHITECTURE AND SIZE FOR THE PPO AGENT
LEARNING RATE 0.001 LEARNING RATE FOR AGENTS
BATCH SIZE 100 BATCH SIZE FOR ONE UPDATE
UPDATE INTERVAL 100 UPDATE THE NETWORK EVERY 100 TIME STEPS
PRE-TRAIN TIMETEPS 10000 NUMBER OF TIME STEPS BEFORE NETWORK UPDATE
GAMMA 0.99 DISCOUNT FACTOR

Table 6: Hyper-parameter settings in multi-agent pong Atari.

SETTINGS VALUE DESCRIPTION

MATRL AND ITS VARIANTS
AGENT ALGORITHM PPO THE LEARNING ALGORITHM FOR AGENT
NETWORK 3 LAYER CNN, 2 LAYER FC THE NETWORK ARCHITECTURE AND SIZE FOR THE PPO AGENT
LEARNING RATE 0.002 LEARNING RATE FOR AGENTS
BATCH IZE 4000 BATCH SIZE FOR ONE UPDATE
VALUE LOSS COEFFICIENT 0.1 THE VALUE LOSS COEFFICIENT IN TOTAL LOSS
POLICY LOSS COEFFICIENT 10 THE POLICY LOSS COEFFICIENT IN TOTAL LOSS
POLICY UPDATE ITERATIONS 10 NUMBER OF GRADIENT STEPS FOR EACH BATCH OF UPDATE.
BEST RESPONSE LEARNING RATE 0.002 THE LEARNING RATE FOR BEST RESPONSE STEP
BEST RESPONSE INTERACTIONS 5 NUMBER OF GRADIENT STEPS FOR BEST RESPONSE STEP
ENTROPY COEFFICIENT 0.05 THE ENTROPY COEFFICIENT IN TOTAL LOSS
KL-DIVERGENCE COEFFICIENT 0.01 THE KL-DIVERGENCE COEFFICIENT IN TOTAL LOSS
GAMMA 0.99 DISCOUNT FACTOR

20


	Introduction
	Preliminary
	Multi-Agent Trust Region Policy Optimization
	Independent Trust Payoff Improvement
	Approximating Weak Stable Fixed Point
	Improvement Against Weak Stable Fixed Point

	Related Work
	Experiments
	Conclusion
	MATRL Algorithm Based on PPO
	Independent Trust Payoff Region
	Proof of Theorem 2
	Environment Details
	Experimental Parameter Settings

