Under review as a conference paper at ICLR 2026

FROM LLMS TO LRMS: RETHINKING PRUNING FOR
REASONING-CENTRIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model pruning is a widely-used technique to reduce the significant computational
cost of large language models (LLMs). However, existing research suffers from
two key limitations: (1) pruning is typically evaluated post-hoc on datasets un-
related to the original training corpus, leaving it unclear if the model’s general
capabilities are preserved; and (2) it has focused almost exclusively on stan-
dard instruction-following models (LLM-instruct). The recent rise of reasoning-
augmented models (LLM-think), which generate explicit chain-of-thought steps,
presents an unstudied challenge for established pruning methods due to their sub-
stantially different generation patterns. In this work, we conduct the first system-
atic investigation of pruning across both LLM-instruct and LLM-think families.
We introduce a rigorous experimental framework that leverages the models’ orig-
inal training corpora for both pruning calibration and post-pruning recovery, en-
abling a faithful assessment of performance preservation than prior work. Across
a comprehensive suite of static and dynamic pruning methods evaluated on 17 di-
verse tasks, we find that the effectiveness of pruning strategies differs significantly
between the two model families. Our results reveal that techniques optimized for
concise instruction-following do not seamlessly transfer to preserving complex,
multi-step reasoning. This work provides critical insights and practical guidelines
for efficiently compressing the next generation of reasoning-augmented LLMs.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al.| [2023; [Jiang et al., 2023} [Naveed et al.| [2024)
have rapidly transformed natural language processing, with their success driven primarily by strong
instruction-following capabilities. By learning to understand and follow user instructions, LLMs
can perform a wide range of tasks such as translation (Zhu et al., [2024; Xu et al.| 2024} [Pang et al.,
2024) and dialogue (Abbasian et al., 2024} |Liu et al., 2024; |Guan et al., [2025) without the need to
fine-tune a separate model for each task. This flexibility is made possible by large-scale pretraining
and fine-tuning, which equip LLMs with broad generalization abilities (Kaplan et al.| 2020). How-
ever, scaling also brings enormous computational costs, creating challenges for training (OpenAl
et al., 2024} [Lin et al.| 2024), deployment (DeepSeek-Al et al., [2025b), and real-world usage on
resource-limited platforms (Zhao et al.| [2025).

To address these challenges, pruning has become one of the most widely studied efficiency tech-
niques. By removing redundant parameters, attention heads, or entire layers (Sun et al., [2024; Ma
et al., 2023; Men et al.} 2024])), pruning reduces both model size and inference cost while preserving
much of the original performance. Existing work has largely focused on two strategies: depth prun-
ing, which accelerates inference by removing layers (e.g., ShortGPT (Men et al.| [2024)), Shortened
LLaMA (Kim et al} [2024)); and width pruning, which increases throughput by shrinking hidden
dimensions (e.g., LLM-Pruner (Ma et al.|[2023)), SliceGPT (Ashkboos et al.,2024)). Together, these
methods form a mature toolkit for improving efficiency in instruction-following LLMs.

Despite promising advances, most prior studies apply pruning in a post-hoc manner, typically using
datasets unrelated to the original training corpus. C4 (Raffel et al.l 2020) is unanimously used to
compute calibration metrics for pruning, whereas Alpaca (Taori et al., [2023)) is used for post-fine-
tuning. Recent work (Williams & Aletras, 2023} |Bandari et al.| [2024)) shows that downstream task
performance is highly sensitive to the choice of calibration data. This leaves an important gap: it

Under review as a conference paper at ICLR 2026

remains unclear whether pruning truly preserves a model’s native broad capabilities, or merely
adapts it to narrow downstream tasks.

Meanwhile, the LLM landscape is evolving. The dominant paradigm is shifting from models that
follow instructions to models that can also perform explicit reasoning (Xu et al.l [2025; [DeepSeek-
Al et al., 2025a).[]_-] Unlike LLM-instruct models (Yang et al.| [2024) that directly map prompts to
responses, LLM-think models produce step-by-step reasoning traces before generating final outputs
(Wei et al.l 2022)). This paradigm substantially improves performance on complex tasks but also
yields excessively long generations, often spanning thousands of tokens (Chen et al., 2025} [Yang
et al., 2025a). Despite these differences, almost all existing pruning work has focused exclusively
on LLM-instruct, leaving it unclear whether strategies designed for standard models can transfer
effectively to reasoning-augmented ones. This gap motivates a key question: does pruning require
new strategies to remain effective in LLM-think models, or can existing approaches generalize?

In this work, we revisit pruning through the lens of these two LLM families, leveraging settings
where both models and their training data are fully accessible. For LLM-instruct, we adopt the open-
sourced Tulu language model(Lambert et al., 2024)), along with its complete instruction-following
fine-tuning corpus. For LLM-think, we construct our own model by fine-tuning LLM-instruct on
the OpenThoughts dataset (Guha et al., [2025), which aggregates diverse reasoning-focused corpora.
This setup allows us to systematically test pruning methods while using the original training datasets
both as calibration sets for pruning and as recovery data for post-fine-tuning. Unlike previous stud-
ies, this enables us to directly measure whether pruning can maintain the full capabilities of both
instruction-following and reasoning models when recovery is performed under their native training
distributions.

We conduct a comprehensive study across static depth pruning, static width pruning, and dynamic
depth pruning, evaluating their impact on both LLM-instruct and LLM-think. Our experiments span
17 diverse tasks, covering classification, code generation, mathematics, and open-ended reasoning.
From this analysis, we derive several key insights and practical recommendations for pruning in the
era of reasoning-augmented LLMs.

Our contributions are threefold:

1. We reframe pruning in the context of two major LLM families (LLM-instruct and LLM-
think), highlighting the unique challenges posed by reasoning-augmented models.

2. We establish an experimental framework leveraging open training corpora, enabling prun-
ing and recovery under the same data distributions used to train the original models.

3. Through extensive experiments, we show how pruning affects instruction following and
reasoning, and identify which strategies best preserve performance across cases.

————————————— Output Logits

- § ~
\ e L L L L ________
I/) @D ! f "
| Y ~ | ! { Concatation -> Projection W°
I : i !
| (e ANl R o Transformer Block n I T
| : I
: LayerNorm " LayerNorm L - | [Self-Attention Calculation ”]
1 | IS
| N |
—— ? oL L Lot
. < e B -
I I !
| Route Route | Transformer Block 1 | T T 1
1 | I Encoded Input
S b o
S _@_ o _ﬂ;_q . , Input Embedding \ - y
(a) Dynamic Depth (b) Static Depth (c) Static Width

Figure 1: Overview of the three structured pruning strategies. Static depth pruning removes entire
layers, static width pruning reduces hidden dimensions (neurons or attention heads), and dynamic
depth pruning adaptively skips layers, attention blocks, or MLP modules depending on the input.

'For clarity, we refer to standard instruction-following LLMs as LLM-instruct and reasoning-augmented
LLMs that output intermediate reasoning chains before answers as LLM-think.

[\

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 LLM-INSTRUCT AND LLM-THINKING MODELS

The rapid progress of LLMs has not only improved their instruction-following ability but also
expanded their scope toward explicit reasoning. This shift has given rise to two major families:
instruction-following models (LLM-instruct), which are trained to directly map user prompts into
concise outputs, and reasoning-augmented models (LLM-think), which are trained to generate long
chains of thought (CoT) reasoning (Wei et al.,|[2022) before arriving at final answers.

Although the two are built upon the same underlying architecture, recent studies show that they
diverge significantly in both internal representations and emergent behaviors. For instance, LLM-
think models retain richer contextual information across layers and exhibit higher token-level en-
tropy (Skean et al., |2025; [Wang et al.l 2025). In terms of attention, LLM-instruct models generally
display diverse specialization across heads, with each attending to different token subsets (Fu et al.,
2024])), whereas LLM-think models show considerable overlap in the key tokens attended by differ-
ent heads (Yang et al., 2025b). Moreover, LLM-think models are highly sensitive to compression:
pruning and distillation pipelines that perform well on language modeling often lead to substantially
larger drops in accuracy on complex reasoning tasks (Zhang et al., 2025). These evidences suggest
that LLM-think models cannot be regarded as a straightforward extension of LLM-instruct.

Despite these differences, nearly all existing pruning studies have been conducted exclusively on
LLM-instruct (Kim et al., 2024; Men et al., [2024). This is a critical omission: pruning is arguably
even more consequential for LLM-think, since their long reasoning traces impose high computa-
tional and memory costs (Chen et al.| 2025)), whereas LLM-instruct typically handles tasks with
long inputs but shorter outputs (Zhou et al.l 2023a). Yet it remains unclear whether pruning strate-
gies validated on LLM-instruct can generalize to LLM-think, or whether new methods are needed.
In this work, we take the first step toward addressing this gap. By leveraging settings where both
models and their training data are fully accessible, we systematically examine how pruning inter-
acts with instruction-following and reasoning behaviors alike. Crucially, our study moves beyond
simple benchmarking: it delivers practical recommendations for the efficient deployment of both
LLM-instruct and LLM-think, offering broader insights into how efficiency techniques must evolve
alongside the changing landscape of LLMs.

2.2 FORMALIZING STRUCTURE PRUNING STRATEGIES

Model pruning in LLMs can be broadly categorized into two approaches: unstructured pruning,
which removes individual weights based on their magnitudes or importance (Liao et al.|[2023), and
structured pruning, which discards entire groups such as neurons, heads, or layers (Cheng et al.,
2024). Although unstructured pruning is conceptually simple, it rarely yields practical acceleration
on modern GPUs (e.g., Nvidia GPUs typically require over 90% sparsity for speedup) , while LLMs
usually collapse once sparsity exceeds 50% (Song et al.| [2024). Therefore, we focus on structured
pruning, which is both hardware-friendly and effective (Men et al. [2024). Structured pruning can
be further categorized into width pruning, which reduces hidden dimensions by removing neurons
or feature channels, and depth pruning, which removes redundant layers either statically (the same
set of layers is pruned for all inputs) or dynamically (the pruned layers vary depending on the input).
The architectures of each method are illustrated in To the best of our knowledge, a unified
and systematic formulation of these strategies has not been explicitly articulated in the existing
literature. We therefore introduce the following formal definitions, which serve as the foundation
for our subsequent analysis.

Formally, let H; € R4 denote the hidden representations at layer I/, where N is the sequence
length and d is the hidden dimension.

* Static width pruning reduces the hidden dimension d to d’ < d by removing less important
neurons:
=W, |l =d, ey
where Z; indexes the retained neurons in layer .
* Static depth pruning removes entire layers, keeping only a subset £’ C {1,..., L} of layers:

Hy ={H;|leLl'}, |L]=L <L)

Under review as a conference paper at ICLR 2026

Static depth pruning computes a fixed importance score for each layer and permanently removes
those identified as redundant. Typical criteria for scoring include:

— Block Influence(BI)(Men et al., 2024)) measures the cosine similarity between the input and
output representations of a layer. Layers with high similarity are considered to contribute little
new information and are thus pruned.

— Perplexity(PPL)(Kim et al.| 2024) quantifies the impact of individually removing a layer on
validation perplexity. Layers that cause minimal degradation are considered less critical.

— Taylor(Kim et al., [2024) estimates the sensitivity of the loss to parameter removal through the
first-order gradient—weight product, and the layer with low aggregated sensitivity are pruned.

* Dynamic depth pruning introduces a router module, denoted as R(-), which determines whether
a block is executed or skipped for each input token (Raposo et al., [2024} Jiang et al.,|2024; Zhao
et al|2025). Let = denote the input to a block, which may correspond to a Transformer layer, an
attention module, or a MLP. A binary gate g governs the execution, and is defined as

g9 = R(z) € {0,1}. 3)

where g = 1 indicates execution and g = 0 indicates skipping. Let f(-) denote the computation
performed by the block; the output is then updated as:

v =g-f(z)+w “)

2.3 PROBLEM SETTING

We formalize the pruning problem as follows. Let M denote an LLM, which can be either an LLM-
instruct or an LLM-think model. Our goal is to obtain a smaller, compressed model M’ through
pruning. Although pruning and compression have been extensively studied, in the context of LLMs
there is still no universally adopted metric for characterizing the degree of pruning. For clarity, we
define the compression ratio as the ratio of the average number of model parameters used per token
after pruning to that before pruning:

M|
|M|°

where | M| and |M’| denote the average per-token parameters in the original and pruned models,
respectively, and a higher R indicates greater compression. We aim to maximize the performance
of M’ on a set of unseen evaluation benchmarks Dey,, where Perf(M’, D,y,) denotes a composite
score that aggregates results across all benchmarks. The pruning problem can thus be formulated as
a compression-constrained optimization:

R(M, M") =1 — 5)

H]{?}X Perf(M’, Deval) s.t. P(M7 M/) < Rtargeta (6)

where Rurer € (0, 1) is the user-specified target compression ratio. In this work, we investigate
this optimization problem under various pruning strategies, instantiating D, with benchmarks that
test instruction-following for LLM-instruct and reasoning for LLM-think. Complementary to com-

. . . Perf(M")
pression ratio, we further define performance retention as Perf(M) *

pruned model preserves the performance of the original dense model.

which quantifies how well the

3 EXPERIMENTAL SETUP

3.1 MODEL

Our study focuses on two representative families of LLMs: LLMe-instruct (instruction-
following) and LLM-think (reasoning-oriented). For LLM-instruct, we adopt
Llama-3.1-Tulu-3-8B-SFT (Lambert et al., 2024), an open-source model that re-
leases both the weights and its instruction-tuning corpus together with detailed training
configurations. ~ For LLM-think, we instantiate a reasoning-oriented counterpart by fine-
tuning Llama-3.1-8B-Instruct on the OpenThoughts dataset (Guha et al.l [2025), yielding

Under review as a conference paper at ICLR 2026

Llama-3. 1—8B—Instruct—OpenThoughtsE] Both models share the same L1ama—-3.1-8B
backbone, ensuring a controlled comparison of pruning effects. A distinctive feature of our setting
is that the original training datasets for both families are fully accessible: they serve as calibration
data during pruning and as recovery data for post-fine-tuning. Consequently, the pruned models are
recovered under their native training distributions—rather than downstream task distributions—thus
retaining their fundamental capabilities (instruction following for LLM-instruct and reasoning for
LLM-think) instead of adapting to specific downstream tasks.

3.2 EVALUATION BENCHMARKS

To systematically evaluate the instruction-following capabilities of the LLM-instruct model and the
reasoning capabilities of the LLM-think model, we use a diverse suite of 17 tasks that can be broadly
divided into instruction-following and reasoning benchmarks.

* Instruction Following Benchmarks. To comprehensively assess LLM-instruct on instruction
following, we include both classification and generation tasks. For classification tasks—which
test whether the model can follow restricted answer options and correctly interpret the input—
following (Touvron et al., [2023)), we include BoolQ (Clark et al., 2019), PIQA (Bisk et al.,|2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.l 2021), ARC-Easy / Challenge
(ARC-E/ C) (Clark et al.} 2019), and OpenBookQA (OPQA) (Mihaylov et al.| 2018)). For gener-
ation tasks—designed to evaluate the ability to produce high-quality, coherent text while adhering
to complex instructions—we adopt a similar setup to (Lambert et al., 2024), but exclude tasks
that rely heavily on explicit CoT reasoning (evaluated separately under reasoning benchmarks).
Specifically, we include IFEval (IFE) (Zhou et al., 2023b) to measure instruction-execution pre-
cision; TruthfulQA (TQA) (Lin et al.l [2021) and PopQA (PQA) (Mallen et al., 2022) to assess
factual accuracy and truthfulness; and HumanEval (HE) (Chen et al.l [2021) together with Hu-
manEval+ (HE+) (Liu et al.| |2023)) as constrained code-generation tasks, where strict adherence
to problem specifications is critical.

* Reasoning Benchmarks. To rigorously evaluate the problem-solving abilities of the LLM-think
model, we employ five challenging benchmarks spanning mathematical, coding, and scientific
domains. Specifically, AIME 2024 (AIME) and MATH-500 (MATH) (Lightman et al., [2023)
assess advanced mathematical reasoning and multi-step derivation; LiveCodeBench (LCB) (Jain
et al., 2024) evaluates code generation, debugging, and comprehension in complex programming
tasks; and GPQA-Diamond (GPQA) (Rein et al., [2024) together with JEEBench (JEE) (Arora
et al.,[2023) assess nuanced scientific reasoning and the application of domain-specific knowledge.

3.3 EVALUATED PRUNING METHODS

To systematically evaluate pruning in both LLM-instruct and LLM-think models, we consider rep-
resentative methods from three main categories of structured pruning, as described in Section[2.2]

* Static width pruning methods reduce the model width by removing redundant parameters. LLM-
Pruner is a gradient-based method that prunes unimportant coupled structures (Ma et al., [2023),
while SliceGPT removes low-variance components from weight matrices through principal com-
ponent analysis (PCA) (Ashkboos et al., 2024).

* Static depth pruning methods reduce the depth of the model by removing layers. ShortGPT
(Men et al.l |2024) prunes entire layers using BI, which is based on input-output cosine simi-
larity. Shortened-llama-PPL and Shortened-llama-Taylor (Kim et al., [2024)) evaluate and remove
layers based on a combination of PPL and Taylor expansion.

* Dynamic depth pruning adaptively skips layers, attention blocks, or MLP modules for each in-
put. MOD (Raposo et al., [2024) dynamically selects a subset of tokens for computation in each
layer using a Top-k routing mechanism. D-LLM (Jiang et al., [2024) employs a router module
to adaptively skip each transformer layer. SkipGPT (Zhao et al., 2025) is a dynamic framework
combining global token-aware routing with decoupled pruning for MLP and self-attention layers.

?Llama-3.1-8B-Instruct-OpenThoughts is obtained by fine-tuning Llama-3.1-8B-Instruct on OpenThoughts
(Guha et al.l 2025) using Llama-Factory (Zheng et al.l 2024). Training was performed on 8x H20 (96 GB)
GPUs for 3 epochs (=488 GPU hours). See for details. To our knowledge, it is the first reasoning
model trained on a fully open corpus, with both the model and its training data publicly released.

Under review as a conference paper at ICLR 2026

Table 1: Performance on classification tasks under different pruning ratio. The dense baseline is
Llama 3.1-Tulu-3-8B-SFT(LLM-insturct). For each pruning ratio, the best result is marked in bold,
and the second-best is underlined. Color coding indicates pruning strategy: Static Depth Pruning,
Static Width Pruning, and Dynamic Depth Pruning.

BoolQ OBQA PIQA ‘WinoGrande HeSw ARC-E ARC-C

Ratio Method Avg. Acc.T

Acc AccNorm Acc Acc AccNorm AccNorm AccNorm

0.00% ‘ Dense ‘ 82.26 46.80 80.84 77.74 82.97 87.20 61.43 ‘ 74.18
ShortGPT 68.34 39.60 74.59 75.84 75.16 79.41 51.53 66.35
Shortened-PPL 68.16 43.20 78.12 64.56 71.01 78.28 48.12 64.49
Shortened-Taylor 74.83 42.80 76.49 77.03 77.62 80.05 53.92 68.96

20.0% LITM—Pruner 71.71 38.40 75.40 62.98 68.86 74.11 43.77 62.18
: SliceGPT 80.73 34.80 72.63 69.77 68.45 71.96 44.79 63.59
MOD 69.78 36.00 72.85 66.14 73.43 74.62 47.95 62.40

D-LLM 64.64 27.20 58.65 56.19 60.66 64.52 37.71 52.80

SkipGPT 80.39 47.20 77.80 74.11 78.62 85.56 60.40 72.30

ShortGPT 67.82 29.40 67.62 68.19 60.00 60.85 39.07 56.99
Shortened-PPL 45.65 33.80 71.81 53.98 56.50 66.87 35.32 50.85
Shortened-Taylor 73.60 30.80 69.04 70.40 63.31 65.15 40.52 58.97

40.0% LLM—Pruner 63.24 30.80 66.53 55.01 48.05 56.31 30.80 50.11
SliceGPT 74.77 29.80 63.65 61.01 51.02 55.93 33.87 52.29

MOD 64.18 32.20 69.85 62.27 65.67 68.98 42.49 57.66

D-LLM 58.13 26.60 52.72 54.14 41.58 46.96 28.92 44.86

SkipGPT 81.74 41.20 77.31 75.29 82.01 86.44 60.58 72.94

ShortGPT 60.27 26.60 57.23 52.40 35.56 35.56 23.12 41.53
Shortened-PPL 60.42 28.00 63.11 51.53 32.81 49.24 26.36 44.21
Shortened-Taylor 55.41 27.80 60.33 55.80 38.47 41.75 24.74 43.19

60.0% LLM-Pruner 53.51 26.20 60.88 51.38 3241 41.49 20.90 40.11
: SliceGPT 63.12 26.40 57.72 52.56 35.44 39.23 23.98 42.92
MOD 59.69 27.80 55.60 54.06 47.17 48.48 31.14 46.56

D-LLM 57.06 24.80 52.06 50.43 31.98 37.20 23.97 39.64

SkipGPT 83.21 39.60 77.14 73.79 81.64 86.32 60.66 71.77

4 EXPERIMENTS

In this section, we present a comprehensive study of three pruning strategies applied to the LLM-
instruct and LLM-think models. Specifically, both models and datasets are fully accessible, we used
Tulu-Mixture-SFT as the calibration and post-fine-tuning recovery dataset for Llama-3.1-Tulu-3-8B
(LLM-instruct), and similarly employed OpenThoughts for Llama-3.1-8B-instruct-OpenThoughts
(LLM-think). For evaluation, each model was tested on tasks aligned with its respective capabilities:
LLM-instruct on instruction-following benchmarks, and LLM-think on reasoning benchmarks.

This setup allows us to answer several key questions: 1) Among dynamic depth, static depth, and
static width pruning strategies, which is most effective, and is this ranking consistent across tasks? 2)
Can pruning strategies developed for LLM-instruct be directly transferred to LLM-think? 3) Which
model exhibits greater sensitivity to pruning within its domain of expertise? 4) Does leveraging the
native training distribution enable more effective recovery of a model’s performance after pruning?

4.1 PRUNING STRATEGIES: PERFORMANCE ACROSS DIVERSE TASKS

In this subsection, we examine how the three pruning strategies interact with the three task
types—classification, generation, and reasoning—and investigate whether pruning can fully restore
each model’s capabilities within its native training distribution.

Static depth vs. width pruning. As shown in both static pruning strategies achieve
similar performance on classification tasks. However, as shown in for the generation and
reasoning tasks, a clear trend emerges: as the pruning ratio increases, static width pruning exhibits
a notably slower degradation in performance compared to static depth pruning. For instance, as
reported in with the pruning ratio 20%, both static pruning strategies perform similarly on
generation tasks (48.72 vs. 48.02). When the pruning ratio increases to 40%, the performance of
static depth pruning drops by an average of 55.64%, while static width pruning degrades by 41.51%.
Furthermore, while static depth pruning achieves better performance than static width pruning at
20% pruning (20.23 vs. 17.78), both methods experience severe degradation at 40%, with static
depth pruning dropping by 88.40% compared to 77.69% for static width pruning. These results

Under review as a conference paper at ICLR 2026

Table 2: Performance on generation (w/o CoT) and reasoning tasks under different pruning ratio.
For each pruning ratio, the best result is in bold, and the second-best is underlined.

‘ | LLMe-instruct: Generation (w/o CoT) | \ LLM-think: Reasoning Tasks \
Ratio | Method Ave.
atio) Vetho ve. T ‘ MATH AIME LCB GPQA JEE

Avg.
IFE TQA PQA HE HE+ ve- T

Pr. mc2 p@l0 p@l0 Acc Acc Acc Acc Acc

0.00% ‘ Dense ‘ 74.12 46.78 29.44 8422 7749 ‘ 62.41 ‘ 71.80 20.00 10.03 4242 3233 ‘ 35.72
ShortGPT 60.81 4524 13.16 66.82 60.88 | 49.38 | 52.00 333 325 2374 19.37 | 20.34
Shortened-PPL 4842 36.00 21.55 42.77 40.33 | 37.81 53.00 0.00 1.63 29.80 17.86 | 20.46
Shortened-Taylor | 65.61 45.47 1531 80.63 73.36 | 56.88 | 53.40 3.33 0.00 2374 19.08 | 1991

20.0% LLM—Pruner 5249 42,62 15.16 5729 53.34 | 44.58 | 52.30 3.33 1.85 2250 535 17.07
’ SliceGPT 63.58 4474 10.77 7471 7047 | 52.85 | 60.00 333 0.00 2250 6.69 18.50
MOD 68.20 4474 1475 82.18 78.40 | 57.65 0.00 0.00 0.00 225 0.00 0.45

D-LLM 29.75 42,63 1094 26.68 2047 | 2649 1.00 0.00 0.00 1500 4.17 4.03

SkipGPT 67.09 47.03 17.10 83.65 76.12 | 58.20 0.00 0.00 0.00 13.63 0.00 2.73
ShortGPT 31.60 46.89 944 1371 11.88 | 22.70 3.40 0.00 0.00 15.15 4.27 4.56
Shortened-PPL 2791 3734 1349 1892 15.15 | 22.36 0.40 0.00 0.00 13.64 2.52 3.31
Shortened-Taylor | 50.09 43.69 10.92 46.18 41.11 | 38.00 3.80 0.00 0.00 16.16 2.86 4.56

40.0% LI'_M-Pruner 36.41 4298 9.60 2390 22.19 | 27.42 0.00 3.33 0.00 20.00 0.00 4.67
SliceGPT 57.30 48.12 6.83 60.59 55.10 | 45.59 | 29.00 0.00 0.00 25.00 237 11.27

MOD 48.79 4226 14.08 7223 67.77 | 49.03 0.00 0.00 0.00 0.00 0.00 0.00

D-LLM 20.14 4439 7.63 11.63 8.67 18.89 3.00 0.00 0.00 17.50 3.78 4.86
SkipGPT 70.61 50.04 23.88 83.09 75.67 | 60.66 0.00 0.00 0.00 1033 0.00 2.07
ShortGPT 1090 47.10 5.69 0.00 0.30 12.40 0.00 0.00 0.00 1.51 0.00 0.30
Shortened-PPL 18.11 4199 540 7.37 6.17 15.01 0.00 0.00 0.00 1246 0.00 2.49
Shortened-Taylor | 17.56 43.74 6.46 6.99 5.13 15.18 0.00 0.00 0.00 16.66 0.00 3.33

60.0% LLM-Pruner 20.14 47.19 229 6.58 6.39 16.92 0.00 0.00 0.00 13.75 0.00 2.75
SliceGPT 35.12 4754 6.61 29.00 25.59 | 28.77 3.00 0.00 0.00 2.00 0.67 1.13

MOD 1035 44.16 3.73 5593 4839 | 3291 0.00 0.00 0.00 0.00 0.00 0.00

D-LLM 1146 4722 374 2.31 2.10 13.77 3.00 0.00 0.00 11.25 5.38 3.93
SkipGPT 69.68 45.19 2297 83.15 77.25| 59.65 0.00 0.00 0.00 2.83 0.00 0.57

Table 3: Performance decline of pruning methods on classification, generation, and reasoning tasks.
The row Dense shows the unpruned model performance. Rows marked AD (avg) shows the average
relative performance drop of methods within the same pruning strategy at each sparsity level.

Classification Generation (w/o CoT) Reasoning
Dense 74.18 62.41 | 35.72
Sparsity 0.2 0.4 0.6 0.2 0.4 0.6 | 0.2 0.4 0.6
ShortGPT 66.3511056 56.9912317 41.53 14401 | 49.3812088 22.7046363 12.404s013 | 20.34 14306 4.5618723 0.30199.16

Shortened-PPL 644911306 50.8513145 44.21 14040
Shortened-Taylor 68.9617.04 589712050 43.1914178

378113042 223646417 15.01 17505
56.881886 38.00430.11 15.1847568

204614272 3.3119%07 2.49 19303
1991 14426 4.5618723 3.33 19068

|
\
| |
LLM-Pruner 62.18 11618 50.1143245 40.11 44503 ‘ 44.5812857 274215606 16.9217289 ‘ 17.07 15221 4.67 18693 2.7519230
| |
\

AD (avg) 10.22% 25.04% 42.06% 23.05% 55.64% 77.25% 43.35% 88.40% 94.29%
SliceGPT 63.59 11428 52.2912051 42.92442104 | 52.8511532 45.5912695 28.774s390 | 18.5044821 11.27 16845 1.13 19684
AD (avg) 15.23% 30.98% 44.04% 21.95% 41.51% 63.40% 50.21% 77.69% 94.57%
SKIPGPT 72.304253 729406 T1.774325 | 58201675 60.661280 59.651442 2.73 19236 2.0719420 0.57 19840
mod 624011588 57.661227 46.5613723 | 57.651763 49.0312144 329144727 | 0.451087¢4 0.00410000 0.001100.00
dllm 52.801288 44.8613953 39.64 14656 | 264915155 18.8916073 13.7717794 | 4.031s8.72 4.86486.39 3.93 18900
AD (avg) 15.74% 21.16% 29.01% 23.98% 31.32% 4321% | 93.27% 93.53% 95.80%

indicate that, in both generation and reasoning tasks, pruning along the depth dimension degrades
performance more severely than pruning along the width dimension.

Dynamic vs. Static pruning. Results on classification and generation tasks reveal that dynamic
depth pruning achieves consistent gains over both static pruning at all pruning ratios. At a 60% prun-
ing ratio, the best dynamic method (SkipGPT) retains over 95% of the performance of instruction
following capabilities, highlighting its strong robustness, while the best static method (SliceGPT)
drops below 50%. Overall, these results indicate that for classification and generation tasks, dy-
namic depth achieves the highest performance, followed by static width and then static depth.

However, at a pruning ratio of only 20%, dynamic depth pruning retains merely 6.73% of the original
reasoning performance, making it almost entirely ineffective. In contrast, static methods retain more
than 53.46% of their performance at the same pruning ratio. Among them, static width pruning
demonstrates the greatest robustness, maintaining 31.55% performance and some reasoning ability

Under review as a conference paper at ICLR 2026

even at a 40% ratio. Taken together, these results show that for reasoning tasks, static width pruning
is the most effective, while static depth pruning is weaker and dynamic depth pruning lags far behind.

These experiments demonstrate that no single pruning strategy is universally optimal. The per-
formance of different strategies varies across tasks: while dynamic depth pruning achieves strong
results on classification and generation, it fails to transfer effectively to reasoning tasks.

Conclusion

The optimal pruning strategy depends on the task type. Dynamic depth pruning is most effective
for classification and generation, while static width pruning shows the greatest robustness in
reasoning. Static depth pruning consistently lags behind.

4.2 SENSITIVITY OF LLM-INSTRUCT AND LLM-THINK MODELS TO PRUNING RATIOS

@ SKIPGPT ’ dlim V SliceGPT Y Shortened-PPL
@ mod A LLM-Pruner g ShortGPT 9 Shortened-Taylor
100 Classification Task 100 Generation Task 100 Task
3 80 3 80 3 80
8 ° - ® ® B g
£ go| HAV™ % S 601 em 5 e ® S 60
S 'Y K S A o S
- ’ [u] vm - A v -
S 40 PN S 40 * % S 40
5 3 * A Sy g
£ 20 € 20 e £ 20 R
C “-l-‘:’83 A v
0 0 o a-Oh i acOA
20% 40% 60% 20% 40% 60% 20% 40% 60%
Sparsity Sparsity Sparsity

Figure 2: Performance of different pruning methods under varying pruning ratios on classification,
generation, and reasoning tasks.

100.0%

86.5%

76.9%

362%

74.9%

62.3%
57.0%

39.0%

—— Ratio 0%

WinoGrante

PIQA

Ratio 20%

—— Ratio 40%

TQA

—— Ratio 60%

AIME

Performance Retention (%)

ARC-E

0 20 40
Sparsity (%)

(a) Performance Retention (b) Classification (c) Generation (d) Reasoning

Figure 3: The average impact of different pruning ratios on model performance: (a) Performance
Retention (b) generation, (c) classification, and (d) reasoning. For each pruning ratio, the perfor-
mance score represents the average across all pruning methods at that ratio.

The previous section revealed a clear task dependency in pruning strategy performance, raising
a key question: does this discrepancy stem from a mismatch between method and task, or from
fundamental model differences? To investigate, we examine sensitivity within each model’s domain
of expertise. Specifically, we measure performance degradation of LLM-instruct on instruction-
following benchmarks and LLM-think on reasoning benchmarks under identical pruning strategies
and ratios.

Our experiments first uncover a divergence within the LLM-instruct model. As shown in [Figure 2]
both classification and generation tasks experience an linear decrease in performance, with the slope
substantially steeper for generation. With a 60% pruning ratio, classification retains approximately
62.3% of its original performance, while generation drops to 39.8%. We attribute this difference
to task-specific structural dependencies: classification tasks rely on redundant global semantic rep-
resentations, whereas generation tasks are highly sensitive to disruptions in local sequential depen-
dencies, where even small perturbations can propagate and significantly affect output quality.

Under review as a conference paper at ICLR 2026

Furthermore, our experiments reveal fundamental differences between the two model paradigms
under pruning. As shown in their behaviors under pruning are strikingly different: LLM-
instruct demonstrates high robustness, with near-linear, smooth, and predictable performance degra-
dation as sparsity increases. In contrast, as shown in the outer blue polygon with high
scores on the MATH axis indicates strong reasoning ability. Once pruning is applied, however,
LLM-think shows extreme sensitivity, with reasoning performance collapsing in a cliff-like man-
ner. Specifically, at 20% pruning, the performance retention rate of LLM-instruct models is reduced
to below 60%, and at 40% sparsity, their complex reasoning ability is almost entirely lost. Over-
all, LLM-think is substantially more sensitive to pruning ratios than LLM-instruct, indicating that
models optimized for reasoning are far less stable than instruction following models.

Conclusion

Pruning affects LLM-instruct and LLM-think models in fundamentally different ways. LLM-
instruct models are relatively robust to pruning, whereas LLM-think models are highly sensitive:
even light pruning can cause in logical errors and catastrophic failures.

4.3 THE EFFECTIVE OF CALIBRATION AND POST-FINE-TUNING DATASETS

We conduct a series of experiments to examine whether using the model’s native training data for
pruning calibration, combined with post-fine-tuning, can effectively restore its general capabilities.
Since our focus in this section is on the effect of calibration and post-fine-tuning datasets rather than
a comparison of pruning methods, we select ShortGPT—the best-performing static depth pruning
strategy in our previous experiments—as a representative method. We then apply it to the LLM-
instruct model at a 20% pruning ratio, using four calibration datasets: Tulu-mixture-SFT (the native
training dataset of Llama-3.1-Tulu-3-8B-SFT), C4 (Raffel et al., [2020), BookCorpus (Zhu et al.,
2013), and OpenThoughts. As shown in these four calibrations yielded only two distinct
pruned models, indicating that some calibration data produce identical layer selection results. These
observations imply that without recovery fine-tuning, simply changing the calibration dataset has a
negligible effect on the performance of the pruned model.

Having established that calibration datasets have minimal effect, we turn to the choice of recov-
ery training datasets in the post-fine-tuning stage. We employ Tulu-Mixture-SFT and Alpaca,
while the pruned model is obtained from calibration on Tulu-Mixture-SFT (BookCorpus) and C4
(OpenThoughts). As shown in post-fine-tuning with the original training dataset Tulu-
Mixture-SFT achieves the best performance, demonstrating that alignment with the original data
distribution is essential for effectively recovering the performance of the pruned model.

Conclusion

Effective recovery of pruned models depends mainly on post-fine-tuning with datasets aligned to
the model’s original training distribution, whereas calibration data choice has little impact.

5 CONCLUSION

We present the first systematic study of pruning across instruction-following (LLM-instruct) and
reasoning-augmented (LLM-think) models. Leveraging open training corpora, we build an ex-
perimental framework for pruning and recovery within the original data distribution, and release
Llama-3.1-8B-Instruct-OpenThoughts, the first reasoning model trained on a fully open
corpus. Our results show that pruning effectiveness is task- and model-dependent. Dynamic depth
pruning is most effective for classification and generation, while static width pruning is most robust
for reasoning, with static depth consistently lagging. Strategies designed for LLM-instruct do not
transfer to LLM-think, which proves far more sensitive to pruning. Effective recovery relies mainly
on post-fine-tuning with data aligned to the original training distribution, whereas calibration data
matter little. Overall, pruning interacts deeply with model family, task type, and data distribution,
offering guidance for compressing reasoning-augmented LLMs.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All experiments were con-
ducted using the official repositories introduced in these papers. The training configurations, includ-
ing hyperparameters, are detailed in[Table 4] We believe these measures will enable other researchers
to reproduce our results and build upon our work.

REFERENCES

Mahyar Abbasian, Iman Azimi, Amir M. Rahmani, and Ramesh Jain. Conversational health agents:
A personalized llm-powered agent framework, 2024. URL https://arxiv.org/abs/
2310.02374.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865-10873, 2024.

Daman Arora, Himanshu Gaurav Singh, et al. Have llms advanced enough? a challenging problem
solving benchmark for large language models. arXiv preprint arXiv:2305.15074, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns, 2024. URL
https://arxiv.org/abs/2401.15024.

Abhinav Bandari, Lu Yin, Cheng-Yu Hsieh, Ajay Kumar Jaiswal, Tianlong Chen, Li Shen, Ranjay
Krishna, and Shiwei Liu. Is c4 dataset optimal for pruning? an investigation of calibration data for
Ilm pruning. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 18089-18099, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of ol-like 1lms, 2025. URL https://arxiv.
org/abs/2412.21187.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale training
and inference of early-exit large language models with 3d parallelism, 2024. URL https:
//arxiv.org/abs/2312.04916.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai

10

https://arxiv.org/abs/2310.02374
https://arxiv.org/abs/2310.02374
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2312.04916
https://arxiv.org/abs/2312.04916

Under review as a conference paper at ICLR 2026

Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025b. URL
https://arxiv.org/abs/2412.19437.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
IIm inference. arXiv preprint arXiv:2307.02628, 2023.

Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to conclusions: Short-
cutting transformers with linear transformations. arXiv preprint arXiv:2303.09435, 2023.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437

Under review as a conference paper at ICLR 2026

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. Not all layers of llms are necessary during inference, 2024. URL https:
//arxiv.org/abs/2403.02181.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
large language model compression. arXiv preprint arXiv:2406.14909, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Shengyue Guan, Haoyi Xiong, Jindong Wang, Jiang Bian, Bin Zhu, and Jian guang Lou. Evaluating
Ilm-based agents for multi-turn conversations: A survey, 2025. URL https://arxiv.org/
abs/2503.22458.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
is needed. arXiv preprint arXiv:2406.15786, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.orqg/abs/2310.06825.

Yikun Jiang, Huanyu Wang, Lei Xie, Hanbin Zhao, Hui Qian, John Lui, et al. D-llm: A token
adaptive computing resource allocation strategy for large language models. Advances in Neural
Information Processing Systems, 37:1725-1749, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: Depth pruning for large language models with comparison
of retraining methods, 2024. URL https://arxiv.org/abs/2402.02834.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1402-1406, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-
training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 26689-26699, June 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

12

https://arxiv.org/abs/2403.02181
https://arxiv.org/abs/2403.02181
https://arxiv.org/abs/2503.22458
https://arxiv.org/abs/2503.22458
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2402.02834

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558-21572, 2023.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From 1lm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models, 2024.
URLhttps://arxiv.org/abs/2401.02777.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural prun-
ing of large language models. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 21702-21720. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
44956951349095£74492a5471128a7e0-Paper—-Conference.pdfl.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness and limitations of parametric and
non-parametric memories. arXiv preprint arXiv:2212.10511, 7, 2022.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024. URL https://arxiv.org/abs/2403.03853\

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct

electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2024. URL https://arxiv.org/abs/2307.06435.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel

13

https://arxiv.org/abs/2401.02777
https://proceedings.neurips.cc/paper_files/paper/2023/file/44956951349095f74492a5471128a7e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/44956951349095f74492a5471128a7e0-Paper-Conference.pdf
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2307.06435

Under review as a conference paper at ICLR 2026

Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Jianhui Pang, Fanghua Ye, Longyue Wang, Dian Yu, Derek F. Wong, Shuming Shi, and Zhaopeng
Tu. Salute the classic: Revisiting challenges of machine translation in the age of large language
models, 2024. URL https://arxiv.org/abs/2401.08350.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models, 2025. URL
https://arxiv.org/abs/2502.02013!.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695,

14

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2401.08350
https://arxiv.org/abs/2502.02013
https://arxiv.org/abs/2306.11695

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971,

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and Chitta Baral. Accelerating llama inference
by enabling intermediate layer decoding via instruction tuning with lite, 2023. URL https:
//arxiv.org/abs/2310.18581.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
training large language models. Advances in neural information processing systems, 37:116462—
116492, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
f1le/9d5609613524ecfd4fl5af0f7b3labcad4-Paper—-Conference.pdf.

Miles Williams and Nikolaos Aletras. On the impact of calibration data in post-training quantization
and pruning. arXiv preprint arXiv:2311.09755, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
https://arxiv.org/abs/2501.09686.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. A paradigm shift in machine
translation: Boosting translation performance of large language models, 2024. URL https:
//arxiv.org/abs/2309.11674.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.orqg/abs/2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger

15

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.18581
https://arxiv.org/abs/2310.18581
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2407.10671

Under review as a conference paper at ICLR 2026

Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Lijie Yang, Zhihao Zhang, Arti Jain, Shijie Cao, Baihong Yuan, Yiwei Chen, Zhihao Jia, and Ravi
Netravali. Less is more: Training-free sparse attention with global locality for efficient reasoning.
arXiv preprint arXiv:2508.07101, 2025b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression:
Benchmarking compressed large reasoning models on complex reasoning tasks. arXiv preprint
arXiv:2504.02010, 2025.

Anhao Zhao, Fanghua Ye, Yingqi Fan, Junlong Tong, Zhiwei Fei, Hui Su, and Xiaoyu Shen.
Skipgpt: Dynamic layer pruning reinvented with token awareness and module decoupling, 2025.
URLhttps://arxiv.org/abs/2506.041709.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023a. URL https:
//arxiv.org/abs/2311.07911.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023b.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis, 2024. URL https://arxiv.org/abs/2304.04675.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19-27, 2015.

16

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2506.04179
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2304.04675

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to support the writing and editing of this manuscript.
Specifically, we employed an LLM to refine the language, improve readability, and enhance clarity
in selected sections. The model was used for tasks such as sentence rephrasing, grammar correction,
and improving the overall flow of the text.

The LLM was not involved in generating the study’s ideas, designing the research methodology,
conducting experiments, analyzing data, or interpreting results. All scientific concepts, methods,
and analyses presented in this work were independently conceived and carried out by the authors.

The authors take full responsibility for the content of the manuscript, including portions refined with
the assistance of the LLM. Its use followed ethical standards and did not contribute to plagiarism or
scientific misconduct.

B RELATED WORK

The multi-layer Transformer architecture of LLMs inherently exhibits substantial parameter redun-
dancy. Model pruning serves as a key technique to address this issue by eliminating non-essential
components. In practice, however, unstructured pruning induces sparsity that is challenging to ex-
ploit on modern hardware, hardware-friendly structured pruning has emerged as the predominant
approach. Structured pruning removes entire components such as channels, attention heads, or lay-
ers, and can be broadly categorized into static and dynamic methods.

B.1 STATIC PRUNING

Static pruning aims to permanently remove parameters of a pretrained model to create a smaller
dense model that is efficient across inputs. This approach can be divided into width and depth
pruning based on the dimension of removal.

Width pruning focuses on reducing the width of the network by removing components within each
layer, such as attention heads, MLP neurons, or coupled structures. A central challenge is to de-
fine the importance criteria for these components. Some methods leverage gradient information to
identify and eliminate unimportant coupled structures (Ma et al., 2023). Other comprehensive ap-
proaches perform end-to-end pruning across layers, attention heads, and hidden dimensions simul-
taneously (Xia et al., 2023). More recent works have explored training-free criteria; for instance,
Wanda prunes channels based on the product of weights and input activations without requiring re-
training (Sun et al.l 2023), while others use fluctuation-based importance metrics (An et al.,[2024)).
Beyond importance-based pruning, another direction exploits computational invariance in Trans-
formers, using PCA to remove minor components and densify weight matrices (Ashkboos et al.,
2024).

Depth pruning offers a more direct compression strategy by removing entire Transformer lay-
ers, thereby reducing model depth. The main challenge is to assess layer importance accurately
to avoid severe performance degradation. Researchers have proposed various metrics to this end,
such as measuring the cosine similarity between a block’s input and output to quantify its influ-
ence (Men et al., [2024)), or leveraging the high similarity between adjacent blocks to remove re-
dundant ones (Song et al.l 2024)). Others combine perplexity (PPL) with Taylor expansion methods
to evaluate and remove multiple layers at once (Kim et al.| 2024). Furthermore, some strategies
propose joint pruning of both attention and MLP modules within layers to achieve a better trade-off
between compression and performance (He et al.l 2024)).

B.2 DYNAMIC PRUNING

In contrast to static methods, dynamic pruning customizes the computational path for each input at
inference time, reducing computation by executing only essential components.

A widely studied approach is early exit (Schuster et al.,|2022; |Varshney et al.,[2023;|Del Corro et al.,
2023} Din et al., 2023} |Chen et al., 2024} [Fan et al.| 2024)). By adding intermediate classifiers at var-
ious depths of the model, early exit allows “simple” inputs to terminate inference prematurely, thus

17

Under review as a conference paper at ICLR 2026

bypassing the remaining layers. While effective for acceleration, this can potentially compromise
the model’s capacity for deep semantic reasoning.

Another paradigm is layer skipping, where router modules are employed to dynamically decide
whether a layer should be executed or bypassed. For example, some methods propose dynamic
computation allocation that uses a top-k routing mechanism to select which tokens are processed
by each layer’s self-attention and MLP modules (Raposo et al., [2024). D-LLM designs a dynamic
decision module at each layer to adaptively execute network units and introduces an efficient eviction
strategy to address the resulting KV cache challenges (Jiang et al) [2024). Similarly, SkipGPT
proposes a framework that combines global token-aware routing with decoupled pruning strategies
for MLP and self-attention layers to achieve fine-grained resource allocation (Zhao et al. [2025).
Together, these methods offer a flexible way to balance inference efficiency and model performance
on a per-input basis.

C EXPERIMENTS DETAILS

For LLM-instruct model, all experiments are conducted on a single A800 GPU without using Deep-
Speed. We adopt Llama 3.1-Tulu-3-8B-SFT, obtained through supervised fine-tuning (SFT) on
Llama 3.1-8B (Lambert et al., [2024), as our dense baseline model. The SFT training corpus is
adopted both as the calibration set for model pruning and as the training set for subsequent LoRA
fine-tuning. Specifically, we use a batch size of 16 and train all baselines for 10,000 steps. For each
baseline, we conduct a grid search over learning rates to select the optimal value. We use a cosine
decay learning rate schedule and set the warmup ratio to 0.1. The maximum token length is set to
4,096.

For the LLM-think model, no reasoning-oriented model exists with fully open-source training data.
To address this gap, we fine-tuned Llama-3.1-8B-Instruct on the OpenThoughts dataset, resulting
in a new model, Llama-3.1-3-8B-Instruct-OpenThoughts. The detailed hyperparameters are sum-
marized in For all baseline pruning methods, experiments are conducted on a single A800
GPU with DeepSpeed Stage-2 offloading and gradient checkpointing enabled. Following the setup
in LLM-instruct experiments, the OpenThoughts dataset is used both as the calibration set for model
pruning and as the training set for subsequent LoRA fine-tuning. Specifically, we adopt a batch size
of 16 and train all baselines for 3,000 steps, applying early stopping if the training converges before
reaching this limit. For each baseline, we conduct a grid search over learning rates to select the
optimal value. We employ a cosine decay learning rate schedule and set the warmup ratio to 0.1.
The maximum token length is set to 16,384.

Table 4: Full fine-tuning hyperparameters for training LLaMA-3.1-8B-Instruct on OpenThoughts
to obtain the LLM-think model.

Hyperparameter Value
Max token length 16,384
Per-device train batch size 1
Per-device eval batch size 8
Gradient accumulation steps 3
Learning rate 1x107°
Number of training epochs 3

LR scheduler type Cosine
Warmup ratio 0.1

Seed 42
Optimizer AdamW (torch)
Weight decay 0

Adam 3 0.9
Adam (35 0.999
Adam € 1x1078
Max gradient norm 1.0

bf16 precision True
fp16 precision False

18

Under review as a conference paper at ICLR 2026

D THE GENERATED TOKEN NUMBER AND PERFORMANCE IN HUMANEVAL
AND HUMANEVALPLUS TASKS.

As the pruning ratio increases, we observe that the evaluation on HumanEval and HumanEval+ be-
comes more time-consuming. [Figure 4]reports a comparative analysis of different pruning methods,
where task performance (Score) is plotted against inference efficiency (Generated Tokens). An ideal
pruning strategy should lie in the top-left region of the plot, reflecting high accuracy with low com-
putational cost. The results highlight the effectiveness of SKIPGPT (green circles) and mod (purple
circles), which achieve a favorable balance between performance and efficiency.

qm LLM-Pruner LLM-Pruner
0.8 0=== Llama-3.1-Tulu-3-8B-SFT 0.8 9, Llama-3.1-Tulu-3-8B-SFT
0%2 SKIPGPT Q.2 SKIPGPT
0.2 dlim 0. dlim
0.6 08-.4 mod 0.6 0.2 mod
6 shortened-llama-ppl 0;-4 shortened-llama-ppl
E 0042 shortened-llama-taylor E) .6 shortened-llama-taylor
8 0.4 : shortgpt 8 0.4 2 shortgpt
] slicegpt] slicegpt
0.6
0.2 0.6
0.4
0.2 o 0.2 e ® P
0.4 @ : 03
0.0 L o“so's
0.0 D 0% 0.0 g 0%
107 103 102 103
Generated Tokens (log scale) Generated Tokens (log scale)
(a) HumanEval (b) HumanEval+

Figure 4: Performance vs. Generated Tokens on (a) HumanEval and (b) HumanEval+.

E CALIBRATION AND FINE-TUNING DATASETS OF BASELINES

Table 5: Different calibration datasets are used to guide the pruning of ShortGPT, and the pruned
models (w/o LoRA) are subsequently evaluated.

Calibrations / Tasks BoolQ OPQA PIQA Winogrande Avg.1

Dense 82.26 46.8 80.84 77.74 71.91
Tulu 69.33 394 70.18 72.30 62.80
Bookcorpus 69.33 394 70.18 72.30 62.80
OpenThoughts 76.76 382 72.09 73.09 65.03
C4 76.76 382 72.09 73.09 65.03

Table 6: The post-fine-tuning performance of pruned models using Tulu-Mixture-SFT and Alpaca
as recovery training datasets.

with lora Calibrations Fine-tuning PIQA Winogrande ARC-C IFE HE+ Avg.t
Dense - - 80.84 77.74 8720 74.12 8422 80.82
ShortGPT Tulu/BookCorpus Tulu 74.59 75.84 79.41 60.81 60.88 70.30
ShortGPT Tulu/BookCorpus Alpaca 75.68 75.61 81.36 52.86 60.27 69.15
ShortGPT C4/OpenThoughts Alpaca 76.39 74.66 81.69 53.60 58.61 68.99

In this section, we summarize the original calibrations and fine-tuning datasets adopted by the base-
line models:

* ShortGPT employs PG19 (Rae et al.,[2019) for computing BI scores and Samsum (Gliwa et al.,
2019) for fine-tuning.

* Shortened-llama-PPL and Shortened-llama-Taylor utilize BookCorpus (Zhu et al., 2015) to
estimate block scores (based on PPL or Taylor expansion) and Alpaca (Taori et al., [2023) for
LoRA-based fine-tuning.

* LLM-pruner leverages BookCorpus (Zhu et al.| 2015) to capture coupled structures and Alpaca
(Taori et al.,|2023) for LoRA fine-tuning.

19

Under review as a conference paper at ICLR 2026

* SliceGPT adopts either WikiText-2 (Merity et al., [2016) or Alpaca (Taori et al., [2023) for both
calibration and fine-tuning.

* SKIPGPT uses RedPajama (Weber et al., [2024) for router tuning and applies a two-stage LoRA
training procedure.

20

	Introduction
	Background
	LLM-instruct and LLM-thinking models
	Formalizing Structure Pruning Strategies
	Problem Setting

	Experimental setup
	Model
	Evaluation Benchmarks
	Evaluated Pruning Methods

	experiments
	Pruning Strategies: Performance Across Diverse Tasks
	Sensitivity of LLM-Instruct and LLM-Think Models to Pruning Ratios
	The Effective of Calibration and Post-Fine-tuning Datasets

	Conclusion
	The Use of Large Language Models
	Related Work
	Static Pruning
	Dynamic Pruning

	Experiments Details
	The Generated Token Number and Performance in HumanEval and HumanEvalPlus tasks.
	Calibration and Fine-tuning Datasets of Baselines

