
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM LLMS TO LRMS: RETHINKING PRUNING FOR
REASONING-CENTRIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model pruning is a widely-used technique to reduce the significant computational
cost of large language models (LLMs). However, existing research suffers from
two key limitations: (1) pruning is typically evaluated post-hoc on datasets un-
related to the original training corpus, leaving it unclear if the model’s general
capabilities are preserved; and (2) it has focused almost exclusively on stan-
dard instruction-following models (LLM-instruct). The recent rise of reasoning-
augmented models (LLM-think), which generate explicit chain-of-thought steps,
presents an unstudied challenge for established pruning methods due to their sub-
stantially different generation patterns. In this work, we conduct the first system-
atic investigation of pruning across both LLM-instruct and LLM-think families.
We introduce a rigorous experimental framework that leverages the models’ orig-
inal training corpora for both pruning calibration and post-pruning recovery, en-
abling a faithful assessment of performance preservation than prior work. Across
a comprehensive suite of static and dynamic pruning methods evaluated on 17 di-
verse tasks, we find that the effectiveness of pruning strategies differs significantly
between the two model families. Our results reveal that techniques optimized for
concise instruction-following do not seamlessly transfer to preserving complex,
multi-step reasoning. This work provides critical insights and practical guidelines
for efficiently compressing the next generation of reasoning-augmented LLMs.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Jiang et al., 2023; Naveed et al., 2024)
have rapidly transformed natural language processing, with their success driven primarily by strong
instruction-following capabilities. By learning to understand and follow user instructions, LLMs
can perform a wide range of tasks such as translation (Zhu et al., 2024; Xu et al., 2024; Pang et al.,
2024) and dialogue (Abbasian et al., 2024; Liu et al., 2024; Guan et al., 2025) without the need to
fine-tune a separate model for each task. This flexibility is made possible by large-scale pretraining
and fine-tuning, which equip LLMs with broad generalization abilities (Kaplan et al., 2020). How-
ever, scaling also brings enormous computational costs, creating challenges for training (OpenAI
et al., 2024; Lin et al., 2024), deployment (DeepSeek-AI et al., 2025b), and real-world usage on
resource-limited platforms (Zhao et al., 2025).

To address these challenges, pruning has become one of the most widely studied efficiency tech-
niques. By removing redundant parameters, attention heads, or entire layers (Sun et al., 2024; Ma
et al., 2023; Men et al., 2024), pruning reduces both model size and inference cost while preserving
much of the original performance. Existing work has largely focused on two strategies: depth prun-
ing, which accelerates inference by removing layers (e.g., ShortGPT (Men et al., 2024), Shortened
LLaMA (Kim et al., 2024)); and width pruning, which increases throughput by shrinking hidden
dimensions (e.g., LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024)). Together, these
methods form a mature toolkit for improving efficiency in instruction-following LLMs.

Despite promising advances, most prior studies apply pruning in a post-hoc manner, typically using
datasets unrelated to the original training corpus. C4 (Raffel et al., 2020) is unanimously used to
compute calibration metrics for pruning, whereas Alpaca (Taori et al., 2023) is used for post-fine-
tuning. Recent work (Williams & Aletras, 2023; Bandari et al., 2024) shows that downstream task
performance is highly sensitive to the choice of calibration data. This leaves an important gap: it

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

remains unclear whether pruning truly preserves a model’s native broad capabilities, or merely
adapts it to narrow downstream tasks.

Meanwhile, the LLM landscape is evolving. The dominant paradigm is shifting from models that
follow instructions to models that can also perform explicit reasoning (Xu et al., 2025; DeepSeek-
AI et al., 2025a). 1 Unlike LLM-instruct models (Yang et al., 2024) that directly map prompts to
responses, LLM-think models produce step-by-step reasoning traces before generating final outputs
(Wei et al., 2022). This paradigm substantially improves performance on complex tasks but also
yields excessively long generations, often spanning thousands of tokens (Chen et al., 2025; Yang
et al., 2025a). Despite these differences, almost all existing pruning work has focused exclusively
on LLM-instruct, leaving it unclear whether strategies designed for standard models can transfer
effectively to reasoning-augmented ones. This gap motivates a key question: does pruning require
new strategies to remain effective in LLM-think models, or can existing approaches generalize?

In this work, we revisit pruning through the lens of these two LLM families, leveraging settings
where both models and their training data are fully accessible. For LLM-instruct, we adopt the open-
sourced Tulu language model(Lambert et al., 2024), along with its complete instruction-following
fine-tuning corpus. For LLM-think, we construct our own model by fine-tuning LLM-instruct on
the OpenThoughts dataset (Guha et al., 2025), which aggregates diverse reasoning-focused corpora.
This setup allows us to systematically test pruning methods while using the original training datasets
both as calibration sets for pruning and as recovery data for post-fine-tuning. Unlike previous stud-
ies, this enables us to directly measure whether pruning can maintain the full capabilities of both
instruction-following and reasoning models when recovery is performed under their native training
distributions.

We conduct a comprehensive study across static depth pruning, static width pruning, and dynamic
depth pruning, evaluating their impact on both LLM-instruct and LLM-think. Our experiments span
17 diverse tasks, covering classification, code generation, mathematics, and open-ended reasoning.
From this analysis, we derive several key insights and practical recommendations for pruning in the
era of reasoning-augmented LLMs.

Our contributions are threefold:

1. We reframe pruning in the context of two major LLM families (LLM-instruct and LLM-
think), highlighting the unique challenges posed by reasoning-augmented models.

2. We establish an experimental framework leveraging open training corpora, enabling prun-
ing and recovery under the same data distributions used to train the original models.

3. Through extensive experiments, we show how pruning affects instruction following and
reasoning, and identify which strategies best preserve performance across cases.

Transformer Block 1

Transformer Block 2

Transformer Block i

Transformer Block n

LM Head

Input Embedding

Encoded Input

Self-Attention Calculation

Concatation -> Projection

LayerNorm

Q K V FFN

Output Logits

(b) Static Depth (c) Static Width

Encoded Output

Route

Atten / FFN layer Atten / FFN Layer

(a) Dynamic Depth

Route

LayerNorm LayerNorm

11

Figure 1: Overview of the three structured pruning strategies. Static depth pruning removes entire
layers, static width pruning reduces hidden dimensions (neurons or attention heads), and dynamic
depth pruning adaptively skips layers, attention blocks, or MLP modules depending on the input.

1For clarity, we refer to standard instruction-following LLMs as LLM-instruct and reasoning-augmented
LLMs that output intermediate reasoning chains before answers as LLM-think.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 LLM-INSTRUCT AND LLM-THINKING MODELS

The rapid progress of LLMs has not only improved their instruction-following ability but also
expanded their scope toward explicit reasoning. This shift has given rise to two major families:
instruction-following models (LLM-instruct), which are trained to directly map user prompts into
concise outputs, and reasoning-augmented models (LLM-think), which are trained to generate long
chains of thought (CoT) reasoning (Wei et al., 2022) before arriving at final answers.

Although the two are built upon the same underlying architecture, recent studies show that they
diverge significantly in both internal representations and emergent behaviors. For instance, LLM-
think models retain richer contextual information across layers and exhibit higher token-level en-
tropy (Skean et al., 2025; Wang et al., 2025). In terms of attention, LLM-instruct models generally
display diverse specialization across heads, with each attending to different token subsets (Fu et al.,
2024), whereas LLM-think models show considerable overlap in the key tokens attended by differ-
ent heads (Yang et al., 2025b). Moreover, LLM-think models are highly sensitive to compression:
pruning and distillation pipelines that perform well on language modeling often lead to substantially
larger drops in accuracy on complex reasoning tasks (Zhang et al., 2025). These evidences suggest
that LLM-think models cannot be regarded as a straightforward extension of LLM-instruct.

Despite these differences, nearly all existing pruning studies have been conducted exclusively on
LLM-instruct (Kim et al., 2024; Men et al., 2024). This is a critical omission: pruning is arguably
even more consequential for LLM-think, since their long reasoning traces impose high computa-
tional and memory costs (Chen et al., 2025), whereas LLM-instruct typically handles tasks with
long inputs but shorter outputs (Zhou et al., 2023a). Yet it remains unclear whether pruning strate-
gies validated on LLM-instruct can generalize to LLM-think, or whether new methods are needed.
In this work, we take the first step toward addressing this gap. By leveraging settings where both
models and their training data are fully accessible, we systematically examine how pruning inter-
acts with instruction-following and reasoning behaviors alike. Crucially, our study moves beyond
simple benchmarking: it delivers practical recommendations for the efficient deployment of both
LLM-instruct and LLM-think, offering broader insights into how efficiency techniques must evolve
alongside the changing landscape of LLMs.

2.2 FORMALIZING STRUCTURE PRUNING STRATEGIES

Model pruning in LLMs can be broadly categorized into two approaches: unstructured pruning,
which removes individual weights based on their magnitudes or importance (Liao et al., 2023), and
structured pruning, which discards entire groups such as neurons, heads, or layers (Cheng et al.,
2024). Although unstructured pruning is conceptually simple, it rarely yields practical acceleration
on modern GPUs (e.g., Nvidia GPUs typically require over 90% sparsity for speedup) , while LLMs
usually collapse once sparsity exceeds 50% (Song et al., 2024). Therefore, we focus on structured
pruning, which is both hardware-friendly and effective (Men et al., 2024). Structured pruning can
be further categorized into width pruning, which reduces hidden dimensions by removing neurons
or feature channels, and depth pruning, which removes redundant layers either statically (the same
set of layers is pruned for all inputs) or dynamically (the pruned layers vary depending on the input).
The architectures of each method are illustrated in Figure 1. To the best of our knowledge, a unified
and systematic formulation of these strategies has not been explicitly articulated in the existing
literature. We therefore introduce the following formal definitions, which serve as the foundation
for our subsequent analysis.

Formally, let Hl ∈ RN×d denote the hidden representations at layer l, where N is the sequence
length and d is the hidden dimension.

• Static width pruning reduces the hidden dimension d to d′ < d by removing less important
neurons:

H′
l = Hl[:, Il], |Il| = d′, (1)

where Il indexes the retained neurons in layer l.
• Static depth pruning removes entire layers, keeping only a subset L′ ⊆ {1, . . . , L} of layers:

HL′ = {Hl | l ∈ L′}, |L′| = L′ < L. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Static depth pruning computes a fixed importance score for each layer and permanently removes
those identified as redundant. Typical criteria for scoring include:

– Block Influence(BI)(Men et al., 2024) measures the cosine similarity between the input and
output representations of a layer. Layers with high similarity are considered to contribute little
new information and are thus pruned.

– Perplexity(PPL)(Kim et al., 2024) quantifies the impact of individually removing a layer on
validation perplexity. Layers that cause minimal degradation are considered less critical.

– Taylor(Kim et al., 2024) estimates the sensitivity of the loss to parameter removal through the
first-order gradient–weight product, and the layer with low aggregated sensitivity are pruned.

• Dynamic depth pruning introduces a router module, denoted as R(·), which determines whether
a block is executed or skipped for each input token (Raposo et al., 2024; Jiang et al., 2024; Zhao
et al., 2025). Let x denote the input to a block, which may correspond to a Transformer layer, an
attention module, or a MLP. A binary gate g governs the execution, and is defined as

g = R(x) ∈ {0, 1}. (3)

where g = 1 indicates execution and g = 0 indicates skipping. Let f(·) denote the computation
performed by the block; the output is then updated as:

x′ = g · f(x) + x. (4)

2.3 PROBLEM SETTING

We formalize the pruning problem as follows. Let M denote an LLM, which can be either an LLM-
instruct or an LLM-think model. Our goal is to obtain a smaller, compressed model M ′ through
pruning. Although pruning and compression have been extensively studied, in the context of LLMs
there is still no universally adopted metric for characterizing the degree of pruning. For clarity, we
define the compression ratio as the ratio of the average number of model parameters used per token
after pruning to that before pruning:

R(M,M ′) = 1− |M ′|
|M |

, (5)

where |M | and |M ′| denote the average per-token parameters in the original and pruned models,
respectively, and a higher R indicates greater compression. We aim to maximize the performance
of M ′ on a set of unseen evaluation benchmarks Deval, where Perf(M ′,Deval) denotes a composite
score that aggregates results across all benchmarks. The pruning problem can thus be formulated as
a compression-constrained optimization:

max
M ′

Perf(M ′,Deval) s.t. ρ(M,M ′) ≤ Rtarget, (6)

where Rtarget ∈ (0, 1) is the user-specified target compression ratio. In this work, we investigate
this optimization problem under various pruning strategies, instantiating Deval with benchmarks that
test instruction-following for LLM-instruct and reasoning for LLM-think. Complementary to com-
pression ratio, we further define performance retention as Perf(M ′)

Perf(M) , which quantifies how well the
pruned model preserves the performance of the original dense model.

3 EXPERIMENTAL SETUP

3.1 MODEL

Our study focuses on two representative families of LLMs: LLM-instruct (instruction-
following) and LLM-think (reasoning-oriented). For LLM-instruct, we adopt
Llama-3.1-Tulu-3-8B-SFT (Lambert et al., 2024), an open-source model that re-
leases both the weights and its instruction-tuning corpus together with detailed training
configurations. For LLM-think, we instantiate a reasoning-oriented counterpart by fine-
tuning Llama-3.1-8B-Instruct on the OpenThoughts dataset (Guha et al., 2025), yielding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Llama-3.1-8B-Instruct-OpenThoughts.2 Both models share the same Llama-3.1-8B
backbone, ensuring a controlled comparison of pruning effects. A distinctive feature of our setting
is that the original training datasets for both families are fully accessible: they serve as calibration
data during pruning and as recovery data for post-fine-tuning. Consequently, the pruned models are
recovered under their native training distributions—rather than downstream task distributions—thus
retaining their fundamental capabilities (instruction following for LLM-instruct and reasoning for
LLM-think) instead of adapting to specific downstream tasks.

3.2 EVALUATION BENCHMARKS

To systematically evaluate the instruction-following capabilities of the LLM-instruct model and the
reasoning capabilities of the LLM-think model, we use a diverse suite of 17 tasks that can be broadly
divided into instruction-following and reasoning benchmarks.

• Instruction Following Benchmarks. To comprehensively assess LLM-instruct on instruction
following, we include both classification and generation tasks. For classification tasks—which
test whether the model can follow restricted answer options and correctly interpret the input—
following (Touvron et al., 2023), we include BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy / Challenge
(ARC-E / C) (Clark et al., 2019), and OpenBookQA (OPQA) (Mihaylov et al., 2018). For gener-
ation tasks—designed to evaluate the ability to produce high-quality, coherent text while adhering
to complex instructions—we adopt a similar setup to (Lambert et al., 2024), but exclude tasks
that rely heavily on explicit CoT reasoning (evaluated separately under reasoning benchmarks).
Specifically, we include IFEval (IFE) (Zhou et al., 2023b) to measure instruction-execution pre-
cision; TruthfulQA (TQA) (Lin et al., 2021) and PopQA (PQA) (Mallen et al., 2022) to assess
factual accuracy and truthfulness; and HumanEval (HE) (Chen et al., 2021) together with Hu-
manEval+ (HE+) (Liu et al., 2023) as constrained code-generation tasks, where strict adherence
to problem specifications is critical.

• Reasoning Benchmarks. To rigorously evaluate the problem-solving abilities of the LLM-think
model, we employ five challenging benchmarks spanning mathematical, coding, and scientific
domains. Specifically, AIME 2024 (AIME) and MATH-500 (MATH) (Lightman et al., 2023)
assess advanced mathematical reasoning and multi-step derivation; LiveCodeBench (LCB) (Jain
et al., 2024) evaluates code generation, debugging, and comprehension in complex programming
tasks; and GPQA-Diamond (GPQA) (Rein et al., 2024) together with JEEBench (JEE) (Arora
et al., 2023) assess nuanced scientific reasoning and the application of domain-specific knowledge.

3.3 EVALUATED PRUNING METHODS

To systematically evaluate pruning in both LLM-instruct and LLM-think models, we consider rep-
resentative methods from three main categories of structured pruning, as described in Section 2.2.

• Static width pruning methods reduce the model width by removing redundant parameters. LLM-
Pruner is a gradient-based method that prunes unimportant coupled structures (Ma et al., 2023),
while SliceGPT removes low-variance components from weight matrices through principal com-
ponent analysis (PCA) (Ashkboos et al., 2024).

• Static depth pruning methods reduce the depth of the model by removing layers. ShortGPT
(Men et al., 2024) prunes entire layers using BI, which is based on input-output cosine simi-
larity. Shortened-llama-PPL and Shortened-llama-Taylor (Kim et al., 2024) evaluate and remove
layers based on a combination of PPL and Taylor expansion.

• Dynamic depth pruning adaptively skips layers, attention blocks, or MLP modules for each in-
put. MOD (Raposo et al., 2024) dynamically selects a subset of tokens for computation in each
layer using a Top-k routing mechanism. D-LLM (Jiang et al., 2024) employs a router module
to adaptively skip each transformer layer. SkipGPT (Zhao et al., 2025) is a dynamic framework
combining global token-aware routing with decoupled pruning for MLP and self-attention layers.

2Llama-3.1-8B-Instruct-OpenThoughts is obtained by fine-tuning Llama-3.1-8B-Instruct on OpenThoughts
(Guha et al., 2025) using Llama-Factory (Zheng et al., 2024). Training was performed on 8×H20 (96 GB)
GPUs for 3 epochs (≈ 488 GPU hours). See Table 4 for details. To our knowledge, it is the first reasoning
model trained on a fully open corpus, with both the model and its training data publicly released.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance on classification tasks under different pruning ratio. The dense baseline is
Llama 3.1-Tulu-3-8B-SFT(LLM-insturct). For each pruning ratio, the best result is marked in bold,
and the second-best is underlined. Color coding indicates pruning strategy: Static Depth Pruning,
Static Width Pruning, and Dynamic Depth Pruning.

Ratio Method BoolQ OBQA PIQA WinoGrande HeSw ARC-E ARC-C Avg. Acc.↑Acc AccNorm Acc Acc AccNorm AccNorm AccNorm

0.00% Dense 82.26 46.80 80.84 77.74 82.97 87.20 61.43 74.18

20.0%

ShortGPT 68.34 39.60 74.59 75.84 75.16 79.41 51.53 66.35
Shortened-PPL 68.16 43.20 78.12 64.56 71.01 78.28 48.12 64.49
Shortened-Taylor 74.83 42.80 76.49 77.03 77.62 80.05 53.92 68.96
LLM-Pruner 71.71 38.40 75.40 62.98 68.86 74.11 43.77 62.18
SliceGPT 80.73 34.80 72.63 69.77 68.45 71.96 44.79 63.59
MOD 69.78 36.00 72.85 66.14 73.43 74.62 47.95 62.40
D-LLM 64.64 27.20 58.65 56.19 60.66 64.52 37.71 52.80
SkipGPT 80.39 47.20 77.80 74.11 78.62 85.56 60.40 72.30

40.0%

ShortGPT 67.82 29.40 67.62 68.19 60.00 60.85 39.07 56.99
Shortened-PPL 45.65 33.80 71.81 53.98 56.50 66.87 35.32 50.85
Shortened-Taylor 73.60 30.80 69.04 70.40 63.31 65.15 40.52 58.97
LLM-Pruner 63.24 30.80 66.53 55.01 48.05 56.31 30.80 50.11
SliceGPT 74.77 29.80 63.65 61.01 51.02 55.93 33.87 52.29
MOD 64.18 32.20 69.85 62.27 65.67 68.98 42.49 57.66
D-LLM 58.13 26.60 52.72 54.14 41.58 46.96 28.92 44.86
SkipGPT 81.74 41.20 77.31 75.29 82.01 86.44 60.58 72.94

60.0%

ShortGPT 60.27 26.60 57.23 52.40 35.56 35.56 23.12 41.53
Shortened-PPL 60.42 28.00 63.11 51.53 32.81 49.24 26.36 44.21
Shortened-Taylor 55.41 27.80 60.33 55.80 38.47 41.75 24.74 43.19
LLM-Pruner 53.51 26.20 60.88 51.38 32.41 41.49 20.90 40.11
SliceGPT 63.12 26.40 57.72 52.56 35.44 39.23 23.98 42.92
MOD 59.69 27.80 55.60 54.06 47.17 48.48 31.14 46.56
D-LLM 57.06 24.80 52.06 50.43 31.98 37.20 23.97 39.64
SkipGPT 83.21 39.60 77.14 73.79 81.64 86.32 60.66 71.77

4 EXPERIMENTS

In this section, we present a comprehensive study of three pruning strategies applied to the LLM-
instruct and LLM-think models. Specifically, both models and datasets are fully accessible, we used
Tulu-Mixture-SFT as the calibration and post-fine-tuning recovery dataset for Llama-3.1-Tulu-3-8B
(LLM-instruct), and similarly employed OpenThoughts for Llama-3.1-8B-instruct-OpenThoughts
(LLM-think). For evaluation, each model was tested on tasks aligned with its respective capabilities:
LLM-instruct on instruction-following benchmarks, and LLM-think on reasoning benchmarks.

This setup allows us to answer several key questions: 1) Among dynamic depth, static depth, and
static width pruning strategies, which is most effective, and is this ranking consistent across tasks? 2)
Can pruning strategies developed for LLM-instruct be directly transferred to LLM-think? 3) Which
model exhibits greater sensitivity to pruning within its domain of expertise? 4) Does leveraging the
native training distribution enable more effective recovery of a model’s performance after pruning?

4.1 PRUNING STRATEGIES: PERFORMANCE ACROSS DIVERSE TASKS

In this subsection, we examine how the three pruning strategies interact with the three task
types—classification, generation, and reasoning—and investigate whether pruning can fully restore
each model’s capabilities within its native training distribution.

Static depth vs. width pruning. As shown in Figure 2, both static pruning strategies achieve
similar performance on classification tasks. However, as shown in Table 3, for the generation and
reasoning tasks, a clear trend emerges: as the pruning ratio increases, static width pruning exhibits
a notably slower degradation in performance compared to static depth pruning. For instance, as
reported in Table 1, with the pruning ratio 20%, both static pruning strategies perform similarly on
generation tasks (48.72 vs. 48.02). When the pruning ratio increases to 40%, the performance of
static depth pruning drops by an average of 55.64%, while static width pruning degrades by 41.51%.
Furthermore, while static depth pruning achieves better performance than static width pruning at
20% pruning (20.23 vs. 17.78), both methods experience severe degradation at 40%, with static
depth pruning dropping by 88.40% compared to 77.69% for static width pruning. These results

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance on generation (w/o CoT) and reasoning tasks under different pruning ratio.
For each pruning ratio, the best result is in bold, and the second-best is underlined.

Ratio Method
LLM-instruct: Generation (w/o CoT)

Avg.↑
LLM-think: Reasoning Tasks

Avg.↑
IFE TQA PQA HE HE+ MATH AIME LCB GPQA JEE
Pr. mc2 p@10 p@10 Acc Acc Acc Acc Acc

0.00% Dense 74.12 46.78 29.44 84.22 77.49 62.41 71.80 20.00 10.03 42.42 32.33 35.72

20.0%

ShortGPT 60.81 45.24 13.16 66.82 60.88 49.38 52.00 3.33 3.25 23.74 19.37 20.34
Shortened-PPL 48.42 36.00 21.55 42.77 40.33 37.81 53.00 0.00 1.63 29.80 17.86 20.46
Shortened-Taylor 65.61 45.47 15.31 80.63 73.36 56.88 53.40 3.33 0.00 23.74 19.08 19.91
LLM-Pruner 52.49 42.62 15.16 57.29 53.34 44.58 52.30 3.33 1.85 22.50 5.35 17.07
SliceGPT 63.58 44.74 10.77 74.71 70.47 52.85 60.00 3.33 0.00 22.50 6.69 18.50
MOD 68.20 44.74 14.75 82.18 78.40 57.65 0.00 0.00 0.00 2.25 0.00 0.45
D-LLM 29.75 42.63 10.94 26.68 20.47 26.49 1.00 0.00 0.00 15.00 4.17 4.03
SkipGPT 67.09 47.03 17.10 83.65 76.12 58.20 0.00 0.00 0.00 13.63 0.00 2.73

40.0%

ShortGPT 31.60 46.89 9.44 13.71 11.88 22.70 3.40 0.00 0.00 15.15 4.27 4.56
Shortened-PPL 27.91 37.34 13.49 18.92 15.15 22.36 0.40 0.00 0.00 13.64 2.52 3.31
Shortened-Taylor 50.09 43.69 10.92 46.18 41.11 38.00 3.80 0.00 0.00 16.16 2.86 4.56
LLM-Pruner 36.41 42.98 9.60 23.90 22.19 27.42 0.00 3.33 0.00 20.00 0.00 4.67
SliceGPT 57.30 48.12 6.83 60.59 55.10 45.59 29.00 0.00 0.00 25.00 2.37 11.27
MOD 48.79 42.26 14.08 72.23 67.77 49.03 0.00 0.00 0.00 0.00 0.00 0.00
D-LLM 20.14 44.39 7.63 11.63 8.67 18.89 3.00 0.00 0.00 17.50 3.78 4.86
SkipGPT 70.61 50.04 23.88 83.09 75.67 60.66 0.00 0.00 0.00 10.33 0.00 2.07

60.0%

ShortGPT 10.90 47.10 5.69 0.00 0.30 12.40 0.00 0.00 0.00 1.51 0.00 0.30
Shortened-PPL 18.11 41.99 5.40 7.37 6.17 15.01 0.00 0.00 0.00 12.46 0.00 2.49
Shortened-Taylor 17.56 43.74 6.46 6.99 5.13 15.18 0.00 0.00 0.00 16.66 0.00 3.33
LLM-Pruner 20.14 47.19 2.29 6.58 6.39 16.92 0.00 0.00 0.00 13.75 0.00 2.75
SliceGPT 35.12 47.54 6.61 29.00 25.59 28.77 3.00 0.00 0.00 2.00 0.67 1.13
MOD 10.35 44.16 3.73 55.93 48.39 32.91 0.00 0.00 0.00 0.00 0.00 0.00
D-LLM 11.46 47.22 3.74 2.31 2.10 13.77 3.00 0.00 0.00 11.25 5.38 3.93
SkipGPT 69.68 45.19 22.97 83.15 77.25 59.65 0.00 0.00 0.00 2.83 0.00 0.57

Table 3: Performance decline of pruning methods on classification, generation, and reasoning tasks.
The row Dense shows the unpruned model performance. Rows marked AD (avg) shows the average
relative performance drop of methods within the same pruning strategy at each sparsity level.

Classification Generation (w/o CoT) Reasoning
Dense 74.18 62.41 35.72

Sparsity 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

ShortGPT 66.35↓10.56 56.99↓23.17 41.53↓44.01 49.38↓20.88 22.70↓63.63 12.40↓80.13 20.34↓43.06 4.56↓87.23 0.30↓99.16

Shortened-PPL 64.49↓13.06 50.85↓31.45 44.21↓40.40 37.81↓39.42 22.36↓64.17 15.01↓75.95 20.46↓42.72 3.31↓90.73 2.49↓93.03

Shortened-Taylor 68.96↓7.04 58.97↓20.50 43.19↓41.78 56.88↓8.86 38.00↓39.11 15.18↓75.68 19.91↓44.26 4.56↓87.23 3.33↓90.68

AD (avg) 10.22% 25.04% 42.06% 23.05% 55.64% 77.25% 43.35% 88.40% 94.29%

LLM-Pruner 62.18↓16.18 50.11↓32.45 40.11↓45.93 44.58↓28.57 27.42↓56.06 16.92↓72.89 17.07↓52.21 4.67↓86.93 2.75↓92.30

SliceGPT 63.59↓14.28 52.29↓29.51 42.92↓42.14 52.85↓15.32 45.59↓26.95 28.77↓53.90 18.50↓48.21 11.27↓68.45 1.13↓96.84

AD (avg) 15.23% 30.98% 44.04% 21.95% 41.51% 63.40% 50.21% 77.69% 94.57%

SKIPGPT 72.30↓2.53 72.94↓1.67 71.77↓3.25 58.20↓6.75 60.66↓2.80 59.65↓4.42 2.73↓92.36 2.07↓94.20 0.57↓98.40

mod 62.40↓15.88 57.66↓22.27 46.56↓37.23 57.65↓7.63 49.03↓21.44 32.91↓47.27 0.45↓98.74 0.00↓100.00 0.00↓100.00

dllm 52.80↓28.82 44.86↓39.53 39.64↓46.56 26.49↓57.55 18.89↓69.73 13.77↓77.94 4.03↓88.72 4.86↓86.39 3.93↓89.00

AD (avg) 15.74% 21.16% 29.01% 23.98% 31.32% 43.21% 93.27% 93.53% 95.80%

indicate that, in both generation and reasoning tasks, pruning along the depth dimension degrades
performance more severely than pruning along the width dimension.

Dynamic vs. Static pruning. Results on classification and generation tasks reveal that dynamic
depth pruning achieves consistent gains over both static pruning at all pruning ratios. At a 60% prun-
ing ratio, the best dynamic method (SkipGPT) retains over 95% of the performance of instruction
following capabilities, highlighting its strong robustness, while the best static method (SliceGPT)
drops below 50%. Overall, these results indicate that for classification and generation tasks, dy-
namic depth achieves the highest performance, followed by static width and then static depth.

However, at a pruning ratio of only 20%, dynamic depth pruning retains merely 6.73% of the original
reasoning performance, making it almost entirely ineffective. In contrast, static methods retain more
than 53.46% of their performance at the same pruning ratio. Among them, static width pruning
demonstrates the greatest robustness, maintaining 31.55% performance and some reasoning ability

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

even at a 40% ratio. Taken together, these results show that for reasoning tasks, static width pruning
is the most effective, while static depth pruning is weaker and dynamic depth pruning lags far behind.

These experiments demonstrate that no single pruning strategy is universally optimal. The per-
formance of different strategies varies across tasks: while dynamic depth pruning achieves strong
results on classification and generation, it fails to transfer effectively to reasoning tasks.

The optimal pruning strategy depends on the task type. Dynamic depth pruning is most effective
for classification and generation, while static width pruning shows the greatest robustness in
reasoning. Static depth pruning consistently lags behind.

Conclusion

4.2 SENSITIVITY OF LLM-INSTRUCT AND LLM-THINK MODELS TO PRUNING RATIOS

20% 40% 60%
Sparsity

0

20

40

60

80

100

Re
te

nt
io

n
(%

)

Classification Task

20% 40% 60%
Sparsity

0

20

40

60

80

100

Re
te

nt
io

n
(%

)

Generation Task

20% 40% 60%
Sparsity

0

20

40

60

80

100

Re
te

nt
io

n
(%

)

Reasoning Task

SKIPGPT
mod

dllm
LLM-Pruner

SliceGPT
ShortGPT

Shortened-PPL
Shortened-Taylor

Figure 2: Performance of different pruning methods under varying pruning ratios on classification,
generation, and reasoning tasks.

0 20 40 60
Sparsity (%)

0
10
20
30
40
50
60
70
80
90

100

Pe
rfo

rm
an

ce
 R

et
en

tio
n

(%
)

100.0%

86.5%

74.9%

62.3%

100.0%

76.9%

57.0%

39.0%

100.0%

36.2%

12.4%
5.1%

Classification (LLM-instruct)
Generation (LLM-instruct)
Reasoning(LLM-think)

BoolQ

OBQA
PIQA

WinoGrande

HeSw

ARC-E
ARC-C

0 20 40 60 80 100

IFE

TQA

PQA

HE

HE+

0 20 40 60 80 100

MATH

AIME

LCB

GPQA

JEE

0 20 40 60 80 100

(a) Performance Retention (b) Classification (c) Generation (d) Reasoning

Ratio 0% Ratio 20% Ratio 40% Ratio 60%

Figure 3: The average impact of different pruning ratios on model performance: (a) Performance
Retention (b) generation, (c) classification, and (d) reasoning. For each pruning ratio, the perfor-
mance score represents the average across all pruning methods at that ratio.

The previous section revealed a clear task dependency in pruning strategy performance, raising
a key question: does this discrepancy stem from a mismatch between method and task, or from
fundamental model differences? To investigate, we examine sensitivity within each model’s domain
of expertise. Specifically, we measure performance degradation of LLM-instruct on instruction-
following benchmarks and LLM-think on reasoning benchmarks under identical pruning strategies
and ratios.

Our experiments first uncover a divergence within the LLM-instruct model. As shown in Figure 2,
both classification and generation tasks experience an linear decrease in performance, with the slope
substantially steeper for generation. With a 60% pruning ratio, classification retains approximately
62.3% of its original performance, while generation drops to 39.8%. We attribute this difference
to task-specific structural dependencies: classification tasks rely on redundant global semantic rep-
resentations, whereas generation tasks are highly sensitive to disruptions in local sequential depen-
dencies, where even small perturbations can propagate and significantly affect output quality.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Furthermore, our experiments reveal fundamental differences between the two model paradigms
under pruning. As shown in Figure 2, their behaviors under pruning are strikingly different: LLM-
instruct demonstrates high robustness, with near-linear, smooth, and predictable performance degra-
dation as sparsity increases. In contrast, as shown in Figure 3, the outer blue polygon with high
scores on the MATH axis indicates strong reasoning ability. Once pruning is applied, however,
LLM-think shows extreme sensitivity, with reasoning performance collapsing in a cliff-like man-
ner. Specifically, at 20% pruning, the performance retention rate of LLM-instruct models is reduced
to below 60%, and at 40% sparsity, their complex reasoning ability is almost entirely lost. Over-
all, LLM-think is substantially more sensitive to pruning ratios than LLM-instruct, indicating that
models optimized for reasoning are far less stable than instruction following models.

Pruning affects LLM-instruct and LLM-think models in fundamentally different ways. LLM-
instruct models are relatively robust to pruning, whereas LLM-think models are highly sensitive:
even light pruning can cause in logical errors and catastrophic failures.

Conclusion

4.3 THE EFFECTIVE OF CALIBRATION AND POST-FINE-TUNING DATASETS

We conduct a series of experiments to examine whether using the model’s native training data for
pruning calibration, combined with post-fine-tuning, can effectively restore its general capabilities.
Since our focus in this section is on the effect of calibration and post-fine-tuning datasets rather than
a comparison of pruning methods, we select ShortGPT—the best-performing static depth pruning
strategy in our previous experiments—as a representative method. We then apply it to the LLM-
instruct model at a 20% pruning ratio, using four calibration datasets: Tulu-mixture-SFT (the native
training dataset of Llama-3.1-Tulu-3-8B-SFT), C4 (Raffel et al., 2020), BookCorpus (Zhu et al.,
2015), and OpenThoughts. As shown in Table 5, these four calibrations yielded only two distinct
pruned models, indicating that some calibration data produce identical layer selection results. These
observations imply that without recovery fine-tuning, simply changing the calibration dataset has a
negligible effect on the performance of the pruned model.

Having established that calibration datasets have minimal effect, we turn to the choice of recov-
ery training datasets in the post-fine-tuning stage. We employ Tulu-Mixture-SFT and Alpaca,
while the pruned model is obtained from calibration on Tulu-Mixture-SFT (BookCorpus) and C4
(OpenThoughts). As shown in Table 6, post-fine-tuning with the original training dataset Tulu-
Mixture-SFT achieves the best performance, demonstrating that alignment with the original data
distribution is essential for effectively recovering the performance of the pruned model.

Effective recovery of pruned models depends mainly on post-fine-tuning with datasets aligned to
the model’s original training distribution, whereas calibration data choice has little impact.

Conclusion

5 CONCLUSION

We present the first systematic study of pruning across instruction-following (LLM-instruct) and
reasoning-augmented (LLM-think) models. Leveraging open training corpora, we build an ex-
perimental framework for pruning and recovery within the original data distribution, and release
Llama-3.1-8B-Instruct-OpenThoughts, the first reasoning model trained on a fully open
corpus. Our results show that pruning effectiveness is task- and model-dependent. Dynamic depth
pruning is most effective for classification and generation, while static width pruning is most robust
for reasoning, with static depth consistently lagging. Strategies designed for LLM-instruct do not
transfer to LLM-think, which proves far more sensitive to pruning. Effective recovery relies mainly
on post-fine-tuning with data aligned to the original training distribution, whereas calibration data
matter little. Overall, pruning interacts deeply with model family, task type, and data distribution,
offering guidance for compressing reasoning-augmented LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All experiments were con-
ducted using the official repositories introduced in these papers. The training configurations, includ-
ing hyperparameters, are detailed in Table 4. We believe these measures will enable other researchers
to reproduce our results and build upon our work.

REFERENCES

Mahyar Abbasian, Iman Azimi, Amir M. Rahmani, and Ramesh Jain. Conversational health agents:
A personalized llm-powered agent framework, 2024. URL https://arxiv.org/abs/
2310.02374.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Daman Arora, Himanshu Gaurav Singh, et al. Have llms advanced enough? a challenging problem
solving benchmark for large language models. arXiv preprint arXiv:2305.15074, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns, 2024. URL
https://arxiv.org/abs/2401.15024.

Abhinav Bandari, Lu Yin, Cheng-Yu Hsieh, Ajay Kumar Jaiswal, Tianlong Chen, Li Shen, Ranjay
Krishna, and Shiwei Liu. Is c4 dataset optimal for pruning? an investigation of calibration data for
llm pruning. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 18089–18099, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL https://arxiv.
org/abs/2412.21187.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale training
and inference of early-exit large language models with 3d parallelism, 2024. URL https:
//arxiv.org/abs/2312.04916.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai

10

https://arxiv.org/abs/2310.02374
https://arxiv.org/abs/2310.02374
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2312.04916
https://arxiv.org/abs/2312.04916

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025a. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025b. URL
https://arxiv.org/abs/2412.19437.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
llm inference. arXiv preprint arXiv:2307.02628, 2023.

Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to conclusions: Short-
cutting transformers with linear transformations. arXiv preprint arXiv:2303.09435, 2023.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. Not all layers of llms are necessary during inference, 2024. URL https:
//arxiv.org/abs/2403.02181.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
large language model compression. arXiv preprint arXiv:2406.14909, 2024.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Shengyue Guan, Haoyi Xiong, Jindong Wang, Jiang Bian, Bin Zhu, and Jian guang Lou. Evaluating
llm-based agents for multi-turn conversations: A survey, 2025. URL https://arxiv.org/
abs/2503.22458.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
is needed. arXiv preprint arXiv:2406.15786, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Yikun Jiang, Huanyu Wang, Lei Xie, Hanbin Zhao, Hui Qian, John Lui, et al. D-llm: A token
adaptive computing resource allocation strategy for large language models. Advances in Neural
Information Processing Systems, 37:1725–1749, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: Depth pruning for large language models with comparison
of retraining methods, 2024. URL https://arxiv.org/abs/2402.02834.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1402–1406, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-
training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 26689–26699, June 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

12

https://arxiv.org/abs/2403.02181
https://arxiv.org/abs/2403.02181
https://arxiv.org/abs/2503.22458
https://arxiv.org/abs/2503.22458
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2402.02834

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From llm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models, 2024.
URL https://arxiv.org/abs/2401.02777.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural prun-
ing of large language models. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 21702–21720. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
44956951349095f74492a5471128a7e0-Paper-Conference.pdf.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness and limitations of parametric and
non-parametric memories. arXiv preprint arXiv:2212.10511, 7, 2022.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024. URL https://arxiv.org/abs/2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models, 2024. URL https://arxiv.org/abs/2307.06435.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel

13

https://arxiv.org/abs/2401.02777
https://proceedings.neurips.cc/paper_files/paper/2023/file/44956951349095f74492a5471128a7e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/44956951349095f74492a5471128a7e0-Paper-Conference.pdf
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2307.06435

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Jianhui Pang, Fanghua Ye, Longyue Wang, Dian Yu, Derek F. Wong, Shuming Shi, and Zhaopeng
Tu. Salute the classic: Revisiting challenges of machine translation in the age of large language
models, 2024. URL https://arxiv.org/abs/2401.08350.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456–17472, 2022.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models, 2025. URL
https://arxiv.org/abs/2502.02013.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

14

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2401.08350
https://arxiv.org/abs/2502.02013
https://arxiv.org/abs/2306.11695

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and Chitta Baral. Accelerating llama inference
by enabling intermediate layer decoding via instruction tuning with lite, 2023. URL https:
//arxiv.org/abs/2310.18581.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
training large language models. Advances in neural information processing systems, 37:116462–
116492, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Miles Williams and Nikolaos Aletras. On the impact of calibration data in post-training quantization
and pruning. arXiv preprint arXiv:2311.09755, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
https://arxiv.org/abs/2501.09686.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Hassan Awadalla. A paradigm shift in machine
translation: Boosting translation performance of large language models, 2024. URL https:
//arxiv.org/abs/2309.11674.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger

15

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.18581
https://arxiv.org/abs/2310.18581
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2407.10671

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Lijie Yang, Zhihao Zhang, Arti Jain, Shijie Cao, Baihong Yuan, Yiwei Chen, Zhihao Jia, and Ravi
Netravali. Less is more: Training-free sparse attention with global locality for efficient reasoning.
arXiv preprint arXiv:2508.07101, 2025b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression:
Benchmarking compressed large reasoning models on complex reasoning tasks. arXiv preprint
arXiv:2504.02010, 2025.

Anhao Zhao, Fanghua Ye, Yingqi Fan, Junlong Tong, Zhiwei Fei, Hui Su, and Xiaoyu Shen.
Skipgpt: Dynamic layer pruning reinvented with token awareness and module decoupling, 2025.
URL https://arxiv.org/abs/2506.04179.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023a. URL https:
//arxiv.org/abs/2311.07911.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023b.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis, 2024. URL https://arxiv.org/abs/2304.04675.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

16

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2506.04179
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2304.04675

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to support the writing and editing of this manuscript.
Specifically, we employed an LLM to refine the language, improve readability, and enhance clarity
in selected sections. The model was used for tasks such as sentence rephrasing, grammar correction,
and improving the overall flow of the text.

The LLM was not involved in generating the study’s ideas, designing the research methodology,
conducting experiments, analyzing data, or interpreting results. All scientific concepts, methods,
and analyses presented in this work were independently conceived and carried out by the authors.

The authors take full responsibility for the content of the manuscript, including portions refined with
the assistance of the LLM. Its use followed ethical standards and did not contribute to plagiarism or
scientific misconduct.

B RELATED WORK

The multi-layer Transformer architecture of LLMs inherently exhibits substantial parameter redun-
dancy. Model pruning serves as a key technique to address this issue by eliminating non-essential
components. In practice, however, unstructured pruning induces sparsity that is challenging to ex-
ploit on modern hardware, hardware-friendly structured pruning has emerged as the predominant
approach. Structured pruning removes entire components such as channels, attention heads, or lay-
ers, and can be broadly categorized into static and dynamic methods.

B.1 STATIC PRUNING

Static pruning aims to permanently remove parameters of a pretrained model to create a smaller
dense model that is efficient across inputs. This approach can be divided into width and depth
pruning based on the dimension of removal.

Width pruning focuses on reducing the width of the network by removing components within each
layer, such as attention heads, MLP neurons, or coupled structures. A central challenge is to de-
fine the importance criteria for these components. Some methods leverage gradient information to
identify and eliminate unimportant coupled structures (Ma et al., 2023). Other comprehensive ap-
proaches perform end-to-end pruning across layers, attention heads, and hidden dimensions simul-
taneously (Xia et al., 2023). More recent works have explored training-free criteria; for instance,
Wanda prunes channels based on the product of weights and input activations without requiring re-
training (Sun et al., 2023), while others use fluctuation-based importance metrics (An et al., 2024).
Beyond importance-based pruning, another direction exploits computational invariance in Trans-
formers, using PCA to remove minor components and densify weight matrices (Ashkboos et al.,
2024).

Depth pruning offers a more direct compression strategy by removing entire Transformer lay-
ers, thereby reducing model depth. The main challenge is to assess layer importance accurately
to avoid severe performance degradation. Researchers have proposed various metrics to this end,
such as measuring the cosine similarity between a block’s input and output to quantify its influ-
ence (Men et al., 2024), or leveraging the high similarity between adjacent blocks to remove re-
dundant ones (Song et al., 2024). Others combine perplexity (PPL) with Taylor expansion methods
to evaluate and remove multiple layers at once (Kim et al., 2024). Furthermore, some strategies
propose joint pruning of both attention and MLP modules within layers to achieve a better trade-off
between compression and performance (He et al., 2024).

B.2 DYNAMIC PRUNING

In contrast to static methods, dynamic pruning customizes the computational path for each input at
inference time, reducing computation by executing only essential components.

A widely studied approach is early exit (Schuster et al., 2022; Varshney et al., 2023; Del Corro et al.,
2023; Din et al., 2023; Chen et al., 2024; Fan et al., 2024). By adding intermediate classifiers at var-
ious depths of the model, early exit allows “simple” inputs to terminate inference prematurely, thus

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

bypassing the remaining layers. While effective for acceleration, this can potentially compromise
the model’s capacity for deep semantic reasoning.

Another paradigm is layer skipping, where router modules are employed to dynamically decide
whether a layer should be executed or bypassed. For example, some methods propose dynamic
computation allocation that uses a top-k routing mechanism to select which tokens are processed
by each layer’s self-attention and MLP modules (Raposo et al., 2024). D-LLM designs a dynamic
decision module at each layer to adaptively execute network units and introduces an efficient eviction
strategy to address the resulting KV cache challenges (Jiang et al., 2024). Similarly, SkipGPT
proposes a framework that combines global token-aware routing with decoupled pruning strategies
for MLP and self-attention layers to achieve fine-grained resource allocation (Zhao et al., 2025).
Together, these methods offer a flexible way to balance inference efficiency and model performance
on a per-input basis.

C EXPERIMENTS DETAILS

For LLM-instruct model, all experiments are conducted on a single A800 GPU without using Deep-
Speed. We adopt Llama 3.1-Tulu-3-8B-SFT, obtained through supervised fine-tuning (SFT) on
Llama 3.1-8B (Lambert et al., 2024), as our dense baseline model. The SFT training corpus is
adopted both as the calibration set for model pruning and as the training set for subsequent LoRA
fine-tuning. Specifically, we use a batch size of 16 and train all baselines for 10,000 steps. For each
baseline, we conduct a grid search over learning rates to select the optimal value. We use a cosine
decay learning rate schedule and set the warmup ratio to 0.1. The maximum token length is set to
4,096.

For the LLM-think model, no reasoning-oriented model exists with fully open-source training data.
To address this gap, we fine-tuned Llama-3.1-8B-Instruct on the OpenThoughts dataset, resulting
in a new model, Llama-3.1-3-8B-Instruct-OpenThoughts. The detailed hyperparameters are sum-
marized in Table 4. For all baseline pruning methods, experiments are conducted on a single A800
GPU with DeepSpeed Stage-2 offloading and gradient checkpointing enabled. Following the setup
in LLM-instruct experiments, the OpenThoughts dataset is used both as the calibration set for model
pruning and as the training set for subsequent LoRA fine-tuning. Specifically, we adopt a batch size
of 16 and train all baselines for 3,000 steps, applying early stopping if the training converges before
reaching this limit. For each baseline, we conduct a grid search over learning rates to select the
optimal value. We employ a cosine decay learning rate schedule and set the warmup ratio to 0.1.
The maximum token length is set to 16,384.

Table 4: Full fine-tuning hyperparameters for training LLaMA-3.1-8B-Instruct on OpenThoughts
to obtain the LLM-think model.

Hyperparameter Value
Max token length 16,384
Per-device train batch size 1
Per-device eval batch size 8
Gradient accumulation steps 3
Learning rate 1× 10−5

Number of training epochs 3
LR scheduler type Cosine
Warmup ratio 0.1
Seed 42
Optimizer AdamW (torch)
Weight decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Max gradient norm 1.0
bf16 precision True
fp16 precision False

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D THE GENERATED TOKEN NUMBER AND PERFORMANCE IN HUMANEVAL
AND HUMANEVALPLUS TASKS.

As the pruning ratio increases, we observe that the evaluation on HumanEval and HumanEval+ be-
comes more time-consuming. Figure 4 reports a comparative analysis of different pruning methods,
where task performance (Score) is plotted against inference efficiency (Generated Tokens). An ideal
pruning strategy should lie in the top-left region of the plot, reflecting high accuracy with low com-
putational cost. The results highlight the effectiveness of SKIPGPT (green circles) and mod (purple
circles), which achieve a favorable balance between performance and efficiency.

102 103

Generated Tokens (log scale)

0.0

0.2

0.4

0.6

0.8

Sc
or

e

0.4

0.6

0.2

0.00.60.20.4

0.2

0.4
0.6

0.4

0.6

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.2

0.6

0.4

0.6

0.2

0.4

LLM-Pruner
Llama-3.1-Tulu-3-8B-SFT
SKIPGPT
dllm
mod
shortened-llama-ppl
shortened-llama-taylor
shortgpt
slicegpt

(a) HumanEval

102 103

Generated Tokens (log scale)

0.0

0.2

0.4

0.6

0.8

Sc
or

e

0.4

0.6

0.2

0.00.60.20.4

0.2

0.4
0.6

0.4

0.6

0.2

0.4
0.6

0.2

0.6

0.2

0.4

0.2

0.6

0.4

0.6

0.2

0.4

LLM-Pruner
Llama-3.1-Tulu-3-8B-SFT
SKIPGPT
dllm
mod
shortened-llama-ppl
shortened-llama-taylor
shortgpt
slicegpt

(b) HumanEval+

Figure 4: Performance vs. Generated Tokens on (a) HumanEval and (b) HumanEval+.

E CALIBRATION AND FINE-TUNING DATASETS OF BASELINES

Table 5: Different calibration datasets are used to guide the pruning of ShortGPT, and the pruned
models (w/o LoRA) are subsequently evaluated.

Calibrations / Tasks BoolQ OPQA PIQA Winogrande Avg. ↑
Dense 82.26 46.8 80.84 77.74 71.91
Tulu 69.33 39.4 70.18 72.30 62.80
Bookcorpus 69.33 39.4 70.18 72.30 62.80
OpenThoughts 76.76 38.2 72.09 73.09 65.03
C4 76.76 38.2 72.09 73.09 65.03

Table 6: The post-fine-tuning performance of pruned models using Tulu-Mixture-SFT and Alpaca
as recovery training datasets.

with lora Calibrations Fine-tuning PIQA Winogrande ARC-C IFE HE+ Avg. ↑
Dense - - 80.84 77.74 87.20 74.12 84.22 80.82
ShortGPT Tulu/BookCorpus Tulu 74.59 75.84 79.41 60.81 60.88 70.30
ShortGPT Tulu/BookCorpus Alpaca 75.68 75.61 81.36 52.86 60.27 69.15
ShortGPT C4/OpenThoughts Alpaca 76.39 74.66 81.69 53.60 58.61 68.99

In this section, we summarize the original calibrations and fine-tuning datasets adopted by the base-
line models:

• ShortGPT employs PG19 (Rae et al., 2019) for computing BI scores and Samsum (Gliwa et al.,
2019) for fine-tuning.

• Shortened-llama-PPL and Shortened-llama-Taylor utilize BookCorpus (Zhu et al., 2015) to
estimate block scores (based on PPL or Taylor expansion) and Alpaca (Taori et al., 2023) for
LoRA-based fine-tuning.

• LLM-pruner leverages BookCorpus (Zhu et al., 2015) to capture coupled structures and Alpaca
(Taori et al., 2023) for LoRA fine-tuning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• SliceGPT adopts either WikiText-2 (Merity et al., 2016) or Alpaca (Taori et al., 2023) for both
calibration and fine-tuning.

• SKIPGPT uses RedPajama (Weber et al., 2024) for router tuning and applies a two-stage LoRA
training procedure.

20

	Introduction
	Background
	LLM-instruct and LLM-thinking models
	Formalizing Structure Pruning Strategies
	Problem Setting

	Experimental setup
	Model
	Evaluation Benchmarks
	Evaluated Pruning Methods

	experiments
	Pruning Strategies: Performance Across Diverse Tasks
	Sensitivity of LLM-Instruct and LLM-Think Models to Pruning Ratios
	The Effective of Calibration and Post-Fine-tuning Datasets

	Conclusion
	The Use of Large Language Models
	Related Work
	Static Pruning
	Dynamic Pruning

	Experiments Details
	The Generated Token Number and Performance in HumanEval and HumanEvalPlus tasks.
	Calibration and Fine-tuning Datasets of Baselines

