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ABSTRACT

Model pruning is a widely-used technique to reduce the significant computational
cost of large language models (LLMs). However, existing research suffers from
two key limitations: (1) pruning is typically evaluated post-hoc on datasets un-
related to the original training corpus, leaving it unclear if the model’s general
capabilities are preserved; and (2) it has focused almost exclusively on stan-
dard instruction-following models (LLM-instruct). The recent rise of reasoning-
augmented models (LLM-think), which generate explicit chain-of-thought steps,
presents an unstudied challenge for established pruning methods due to their sub-
stantially different generation patterns. In this work, we conduct the first system-
atic investigation of pruning across both LLM-instruct and LLM-think families.
We introduce a rigorous experimental framework that leverages the models’ orig-
inal training corpora for both pruning calibration and post-pruning recovery, en-
abling a faithful assessment of performance preservation than prior work. Across
a comprehensive suite of static and dynamic pruning methods evaluated on 17 di-
verse tasks, we find that the effectiveness of pruning strategies differs significantly
between the two model families. Our results reveal that techniques optimized for
concise instruction-following do not seamlessly transfer to preserving complex,
multi-step reasoning. This work provides critical insights and practical guidelines
for efficiently compressing the next generation of reasoning-augmented LLMs.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Jiang et al., 2023; Naveed et al., 2024)
have rapidly transformed natural language processing, with their success driven primarily by strong
instruction-following capabilities. By learning to understand and follow user instructions, LLMs
can perform a wide range of tasks such as translation (Zhu et al., 2024; Xu et al., 2024; Pang et al.,
2024) and dialogue (Abbasian et al., 2024; Liu et al., 2024; Guan et al., 2025) without the need to
fine-tune a separate model for each task. This flexibility is made possible by large-scale pretraining
and fine-tuning, which equip LLMs with broad generalization abilities (Kaplan et al., 2020). How-
ever, scaling also brings enormous computational costs, creating challenges for training (OpenAI
et al., 2024; Lin et al., 2024), deployment (DeepSeek-AI et al., 2025b), and real-world usage on
resource-limited platforms (Zhao et al., 2025).

To address these challenges, pruning has become one of the most widely studied efficiency tech-
niques. By removing redundant parameters, attention heads, or entire layers (Sun et al., 2024; Ma
et al., 2023; Men et al., 2024), pruning reduces both model size and inference cost while preserving
much of the original performance. Existing work has largely focused on two strategies: depth prun-
ing, which accelerates inference by removing layers (e.g., ShortGPT (Men et al., 2024), Shortened
LLaMA (Kim et al., 2024)); and width pruning, which increases throughput by shrinking hidden
dimensions (e.g., LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024)). Together, these
methods form a mature toolkit for improving efficiency in instruction-following LLMs.

Despite promising advances, most prior studies apply pruning in a post-hoc manner, typically using
datasets unrelated to the original training corpus. C4 (Raffel et al., 2020) is unanimously used to
compute calibration metrics for pruning, whereas Alpaca (Taori et al., 2023) is used for post-fine-
tuning. Recent work (Williams & Aletras, 2023; Bandari et al., 2024) shows that downstream task
performance is highly sensitive to the choice of calibration data. This leaves an important gap: it

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

remains unclear whether pruning truly preserves a model’s native broad capabilities, or merely
adapts it to narrow downstream tasks.

Meanwhile, the LLM landscape is evolving. The dominant paradigm is shifting from models that
follow instructions to models that can also perform explicit reasoning (Xu et al., 2025; DeepSeek-
AI et al., 2025a). 1 Unlike LLM-instruct models (Yang et al., 2024) that directly map prompts to
responses, LLM-think models produce step-by-step reasoning traces before generating final outputs
(Wei et al., 2022). This paradigm substantially improves performance on complex tasks but also
yields excessively long generations, often spanning thousands of tokens (Chen et al., 2025; Yang
et al., 2025a). Despite these differences, almost all existing pruning work has focused exclusively
on LLM-instruct, leaving it unclear whether strategies designed for standard models can transfer
effectively to reasoning-augmented ones. This gap motivates a key question: does pruning require
new strategies to remain effective in LLM-think models, or can existing approaches generalize?

In this work, we revisit pruning through the lens of these two LLM families, leveraging settings
where both models and their training data are fully accessible. For LLM-instruct, we adopt the open-
sourced Tulu language model(Lambert et al., 2024), along with its complete instruction-following
fine-tuning corpus. For LLM-think, we construct our own model by fine-tuning LLM-instruct on
the OpenThoughts dataset (Guha et al., 2025), which aggregates diverse reasoning-focused corpora.
This setup allows us to systematically test pruning methods while using the original training datasets
both as calibration sets for pruning and as recovery data for post-fine-tuning. Unlike previous stud-
ies, this enables us to directly measure whether pruning can maintain the full capabilities of both
instruction-following and reasoning models when recovery is performed under their native training
distributions.

We conduct a comprehensive study across static depth pruning, static width pruning, and dynamic
depth pruning, evaluating their impact on both LLM-instruct and LLM-think. Our experiments span
17 diverse tasks, covering classification, code generation, mathematics, and open-ended reasoning.
From this analysis, we derive several key insights and practical recommendations for pruning in the
era of reasoning-augmented LLMs.

Our contributions are threefold:

1. We reframe pruning in the context of two major LLM families (LLM-instruct and LLM-
think), highlighting the unique challenges posed by reasoning-augmented models.

2. We establish an experimental framework leveraging open training corpora, enabling prun-
ing and recovery under the same data distributions used to train the original models.

3. Through extensive experiments, we show how pruning affects instruction following and
reasoning, and identify which strategies best preserve performance across cases.
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Figure 1: Overview of the three structured pruning strategies. Static depth pruning removes entire
layers, static width pruning reduces hidden dimensions (neurons or attention heads), and dynamic
depth pruning adaptively skips layers, attention blocks, or MLP modules depending on the input.

1For clarity, we refer to standard instruction-following LLMs as LLM-instruct and reasoning-augmented
LLMs that output intermediate reasoning chains before answers as LLM-think.
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2 BACKGROUND

2.1 LLM-INSTRUCT AND LLM-THINKING MODELS

The rapid progress of LLMs has not only improved their instruction-following ability but also
expanded their scope toward explicit reasoning. This shift has given rise to two major families:
instruction-following models (LLM-instruct), which are trained to directly map user prompts into
concise outputs, and reasoning-augmented models (LLM-think), which are trained to generate long
chains of thought (CoT) reasoning (Wei et al., 2022) before arriving at final answers.

Although the two are built upon the same underlying architecture, recent studies show that they
diverge significantly in both internal representations and emergent behaviors. For instance, LLM-
think models retain richer contextual information across layers and exhibit higher token-level en-
tropy (Skean et al., 2025; Wang et al., 2025). In terms of attention, LLM-instruct models generally
display diverse specialization across heads, with each attending to different token subsets (Fu et al.,
2024), whereas LLM-think models show considerable overlap in the key tokens attended by differ-
ent heads (Yang et al., 2025b). Moreover, LLM-think models are highly sensitive to compression:
pruning and distillation pipelines that perform well on language modeling often lead to substantially
larger drops in accuracy on complex reasoning tasks (Zhang et al., 2025). These evidences suggest
that LLM-think models cannot be regarded as a straightforward extension of LLM-instruct.

Despite these differences, nearly all existing pruning studies have been conducted exclusively on
LLM-instruct (Kim et al., 2024; Men et al., 2024). This is a critical omission: pruning is arguably
even more consequential for LLM-think, since their long reasoning traces impose high computa-
tional and memory costs (Chen et al., 2025), whereas LLM-instruct typically handles tasks with
long inputs but shorter outputs (Zhou et al., 2023a). Yet it remains unclear whether pruning strate-
gies validated on LLM-instruct can generalize to LLM-think, or whether new methods are needed.
In this work, we take the first step toward addressing this gap. By leveraging settings where both
models and their training data are fully accessible, we systematically examine how pruning inter-
acts with instruction-following and reasoning behaviors alike. Crucially, our study moves beyond
simple benchmarking: it delivers practical recommendations for the efficient deployment of both
LLM-instruct and LLM-think, offering broader insights into how efficiency techniques must evolve
alongside the changing landscape of LLMs.

2.2 FORMALIZING STRUCTURE PRUNING STRATEGIES

Model pruning in LLMs can be broadly categorized into two approaches: unstructured pruning,
which removes individual weights based on their magnitudes or importance (Liao et al., 2023), and
structured pruning, which discards entire groups such as neurons, heads, or layers (Cheng et al.,
2024). Although unstructured pruning is conceptually simple, it rarely yields practical acceleration
on modern GPUs (e.g., Nvidia GPUs typically require over 90% sparsity for speedup) , while LLMs
usually collapse once sparsity exceeds 50% (Song et al., 2024). Therefore, we focus on structured
pruning, which is both hardware-friendly and effective (Men et al., 2024). Structured pruning can
be further categorized into width pruning, which reduces hidden dimensions by removing neurons
or feature channels, and depth pruning, which removes redundant layers either statically (the same
set of layers is pruned for all inputs) or dynamically (the pruned layers vary depending on the input).
The architectures of each method are illustrated in Figure 1. To the best of our knowledge, a unified
and systematic formulation of these strategies has not been explicitly articulated in the existing
literature. We therefore introduce the following formal definitions, which serve as the foundation
for our subsequent analysis.

Formally, let Hl ∈ RN×d denote the hidden representations at layer l, where N is the sequence
length and d is the hidden dimension.

• Static width pruning reduces the hidden dimension d to d′ < d by removing less important
neurons:

H′
l = Hl[:, Il], |Il| = d′, (1)

where Il indexes the retained neurons in layer l.
• Static depth pruning removes entire layers, keeping only a subset L′ ⊆ {1, . . . , L} of layers:

HL′ = {Hl | l ∈ L′}, |L′| = L′ < L. (2)
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Static depth pruning computes a fixed importance score for each layer and permanently removes
those identified as redundant. Typical criteria for scoring include:

– Block Influence(BI)(Men et al., 2024) measures the cosine similarity between the input and
output representations of a layer. Layers with high similarity are considered to contribute little
new information and are thus pruned.

– Perplexity(PPL)(Kim et al., 2024) quantifies the impact of individually removing a layer on
validation perplexity. Layers that cause minimal degradation are considered less critical.

– Taylor(Kim et al., 2024) estimates the sensitivity of the loss to parameter removal through the
first-order gradient–weight product, and the layer with low aggregated sensitivity are pruned.

• Dynamic depth pruning introduces a router module, denoted as R(·), which determines whether
a block is executed or skipped for each input token (Raposo et al., 2024; Jiang et al., 2024; Zhao
et al., 2025). Let x denote the input to a block, which may correspond to a Transformer layer, an
attention module, or a MLP. A binary gate g governs the execution, and is defined as

g = R(x) ∈ {0, 1}. (3)

where g = 1 indicates execution and g = 0 indicates skipping. Let f(·) denote the computation
performed by the block; the output is then updated as:

x′ = g · f(x) + x. (4)

2.3 PROBLEM SETTING

We formalize the pruning problem as follows. Let M denote an LLM, which can be either an LLM-
instruct or an LLM-think model. Our goal is to obtain a smaller, compressed model M ′ through
pruning. Although pruning and compression have been extensively studied, in the context of LLMs
there is still no universally adopted metric for characterizing the degree of pruning. For clarity, we
define the compression ratio as the ratio of the average number of model parameters used per token
after pruning to that before pruning:

R(M,M ′) = 1− |M ′|
|M |

, (5)

where |M | and |M ′| denote the average per-token parameters in the original and pruned models,
respectively, and a higher R indicates greater compression. We aim to maximize the performance
of M ′ on a set of unseen evaluation benchmarks Deval, where Perf(M ′,Deval) denotes a composite
score that aggregates results across all benchmarks. The pruning problem can thus be formulated as
a compression-constrained optimization:

max
M ′

Perf(M ′,Deval) s.t. ρ(M,M ′) ≤ Rtarget, (6)

where Rtarget ∈ (0, 1) is the user-specified target compression ratio. In this work, we investigate
this optimization problem under various pruning strategies, instantiating Deval with benchmarks that
test instruction-following for LLM-instruct and reasoning for LLM-think. Complementary to com-
pression ratio, we further define performance retention as Perf(M ′)

Perf(M) , which quantifies how well the
pruned model preserves the performance of the original dense model.

3 EXPERIMENTAL SETUP

3.1 MODEL

Our study focuses on two representative families of LLMs: LLM-instruct (instruction-
following) and LLM-think (reasoning-oriented). For LLM-instruct, we adopt
Llama-3.1-Tulu-3-8B-SFT (Lambert et al., 2024), an open-source model that re-
leases both the weights and its instruction-tuning corpus together with detailed training
configurations. For LLM-think, we instantiate a reasoning-oriented counterpart by fine-
tuning Llama-3.1-8B-Instruct on the OpenThoughts dataset (Guha et al., 2025), yielding
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Llama-3.1-8B-Instruct-OpenThoughts.2 Both models share the same Llama-3.1-8B
backbone, ensuring a controlled comparison of pruning effects. A distinctive feature of our setting
is that the original training datasets for both families are fully accessible: they serve as calibration
data during pruning and as recovery data for post-fine-tuning. Consequently, the pruned models are
recovered under their native training distributions—rather than downstream task distributions—thus
retaining their fundamental capabilities (instruction following for LLM-instruct and reasoning for
LLM-think) instead of adapting to specific downstream tasks.

3.2 EVALUATION BENCHMARKS

To systematically evaluate the instruction-following capabilities of the LLM-instruct model and the
reasoning capabilities of the LLM-think model, we use a diverse suite of 17 tasks that can be broadly
divided into instruction-following and reasoning benchmarks.

• Instruction Following Benchmarks. To comprehensively assess LLM-instruct on instruction
following, we include both classification and generation tasks. For classification tasks—which
test whether the model can follow restricted answer options and correctly interpret the input—
following (Touvron et al., 2023), we include BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy / Challenge
(ARC-E / C) (Clark et al., 2019), and OpenBookQA (OPQA) (Mihaylov et al., 2018). For gener-
ation tasks—designed to evaluate the ability to produce high-quality, coherent text while adhering
to complex instructions—we adopt a similar setup to (Lambert et al., 2024), but exclude tasks
that rely heavily on explicit CoT reasoning (evaluated separately under reasoning benchmarks).
Specifically, we include IFEval (IFE) (Zhou et al., 2023b) to measure instruction-execution pre-
cision; TruthfulQA (TQA) (Lin et al., 2021) and PopQA (PQA) (Mallen et al., 2022) to assess
factual accuracy and truthfulness; and HumanEval (HE) (Chen et al., 2021) together with Hu-
manEval+ (HE+) (Liu et al., 2023) as constrained code-generation tasks, where strict adherence
to problem specifications is critical.

• Reasoning Benchmarks. To rigorously evaluate the problem-solving abilities of the LLM-think
model, we employ five challenging benchmarks spanning mathematical, coding, and scientific
domains. Specifically, AIME 2024 (AIME) and MATH-500 (MATH) (Lightman et al., 2023)
assess advanced mathematical reasoning and multi-step derivation; LiveCodeBench (LCB) (Jain
et al., 2024) evaluates code generation, debugging, and comprehension in complex programming
tasks; and GPQA-Diamond (GPQA) (Rein et al., 2024) together with JEEBench (JEE) (Arora
et al., 2023) assess nuanced scientific reasoning and the application of domain-specific knowledge.

3.3 EVALUATED PRUNING METHODS

To systematically evaluate pruning in both LLM-instruct and LLM-think models, we consider rep-
resentative methods from three main categories of structured pruning, as described in Section 2.2.

• Static width pruning methods reduce the model width by removing redundant parameters. LLM-
Pruner is a gradient-based method that prunes unimportant coupled structures (Ma et al., 2023),
while SliceGPT removes low-variance components from weight matrices through principal com-
ponent analysis (PCA) (Ashkboos et al., 2024).

• Static depth pruning methods reduce the depth of the model by removing layers. ShortGPT
(Men et al., 2024) prunes entire layers using BI, which is based on input-output cosine simi-
larity. Shortened-llama-PPL and Shortened-llama-Taylor (Kim et al., 2024) evaluate and remove
layers based on a combination of PPL and Taylor expansion.

• Dynamic depth pruning adaptively skips layers, attention blocks, or MLP modules for each in-
put. MOD (Raposo et al., 2024) dynamically selects a subset of tokens for computation in each
layer using a Top-k routing mechanism. D-LLM (Jiang et al., 2024) employs a router module
to adaptively skip each transformer layer. SkipGPT (Zhao et al., 2025) is a dynamic framework
combining global token-aware routing with decoupled pruning for MLP and self-attention layers.

2Llama-3.1-8B-Instruct-OpenThoughts is obtained by fine-tuning Llama-3.1-8B-Instruct on OpenThoughts
(Guha et al., 2025) using Llama-Factory (Zheng et al., 2024). Training was performed on 8×H20 (96 GB)
GPUs for 3 epochs (≈ 488 GPU hours). See Table 4 for details. To our knowledge, it is the first reasoning
model trained on a fully open corpus, with both the model and its training data publicly released.
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Table 1: Performance on classification tasks under different pruning ratio. The dense baseline is
Llama 3.1-Tulu-3-8B-SFT(LLM-insturct). For each pruning ratio, the best result is marked in bold,
and the second-best is underlined. Color coding indicates pruning strategy: Static Depth Pruning,
Static Width Pruning, and Dynamic Depth Pruning.

Ratio Method BoolQ OBQA PIQA WinoGrande HeSw ARC-E ARC-C Avg. Acc.↑Acc AccNorm Acc Acc AccNorm AccNorm AccNorm

0.00% Dense 82.26 46.80 80.84 77.74 82.97 87.20 61.43 74.18

20.0%

ShortGPT 68.34 39.60 74.59 75.84 75.16 79.41 51.53 66.35
Shortened-PPL 68.16 43.20 78.12 64.56 71.01 78.28 48.12 64.49
Shortened-Taylor 74.83 42.80 76.49 77.03 77.62 80.05 53.92 68.96
LLM-Pruner 71.71 38.40 75.40 62.98 68.86 74.11 43.77 62.18
SliceGPT 80.73 34.80 72.63 69.77 68.45 71.96 44.79 63.59
MOD 69.78 36.00 72.85 66.14 73.43 74.62 47.95 62.40
D-LLM 64.64 27.20 58.65 56.19 60.66 64.52 37.71 52.80
SkipGPT 80.39 47.20 77.80 74.11 78.62 85.56 60.40 72.30

40.0%

ShortGPT 67.82 29.40 67.62 68.19 60.00 60.85 39.07 56.99
Shortened-PPL 45.65 33.80 71.81 53.98 56.50 66.87 35.32 50.85
Shortened-Taylor 73.60 30.80 69.04 70.40 63.31 65.15 40.52 58.97
LLM-Pruner 63.24 30.80 66.53 55.01 48.05 56.31 30.80 50.11
SliceGPT 74.77 29.80 63.65 61.01 51.02 55.93 33.87 52.29
MOD 64.18 32.20 69.85 62.27 65.67 68.98 42.49 57.66
D-LLM 58.13 26.60 52.72 54.14 41.58 46.96 28.92 44.86
SkipGPT 81.74 41.20 77.31 75.29 82.01 86.44 60.58 72.94

60.0%

ShortGPT 60.27 26.60 57.23 52.40 35.56 35.56 23.12 41.53
Shortened-PPL 60.42 28.00 63.11 51.53 32.81 49.24 26.36 44.21
Shortened-Taylor 55.41 27.80 60.33 55.80 38.47 41.75 24.74 43.19
LLM-Pruner 53.51 26.20 60.88 51.38 32.41 41.49 20.90 40.11
SliceGPT 63.12 26.40 57.72 52.56 35.44 39.23 23.98 42.92
MOD 59.69 27.80 55.60 54.06 47.17 48.48 31.14 46.56
D-LLM 57.06 24.80 52.06 50.43 31.98 37.20 23.97 39.64
SkipGPT 83.21 39.60 77.14 73.79 81.64 86.32 60.66 71.77

4 EXPERIMENTS

In this section, we present a comprehensive study of three pruning strategies applied to the LLM-
instruct and LLM-think models. Specifically, both models and datasets are fully accessible, we used
Tulu-Mixture-SFT as the calibration and post-fine-tuning recovery dataset for Llama-3.1-Tulu-3-8B
(LLM-instruct), and similarly employed OpenThoughts for Llama-3.1-8B-instruct-OpenThoughts
(LLM-think). For evaluation, each model was tested on tasks aligned with its respective capabilities:
LLM-instruct on instruction-following benchmarks, and LLM-think on reasoning benchmarks.

This setup allows us to answer several key questions: 1) Among dynamic depth, static depth, and
static width pruning strategies, which is most effective, and is this ranking consistent across tasks? 2)
Can pruning strategies developed for LLM-instruct be directly transferred to LLM-think? 3) Which
model exhibits greater sensitivity to pruning within its domain of expertise? 4) Does leveraging the
native training distribution enable more effective recovery of a model’s performance after pruning?

4.1 PRUNING STRATEGIES: PERFORMANCE ACROSS DIVERSE TASKS

In this subsection, we examine how the three pruning strategies interact with the three task
types—classification, generation, and reasoning—and investigate whether pruning can fully restore
each model’s capabilities within its native training distribution.

Static depth vs. width pruning. As shown in Figure 2, both static pruning strategies achieve
similar performance on classification tasks. However, as shown in Table 3, for the generation and
reasoning tasks, a clear trend emerges: as the pruning ratio increases, static width pruning exhibits
a notably slower degradation in performance compared to static depth pruning. For instance, as
reported in Table 1, with the pruning ratio 20%, both static pruning strategies perform similarly on
generation tasks (48.72 vs. 48.02). When the pruning ratio increases to 40%, the performance of
static depth pruning drops by an average of 55.64%, while static width pruning degrades by 41.51%.
Furthermore, while static depth pruning achieves better performance than static width pruning at
20% pruning (20.23 vs. 17.78), both methods experience severe degradation at 40%, with static
depth pruning dropping by 88.40% compared to 77.69% for static width pruning. These results
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Table 2: Performance on generation (w/o CoT) and reasoning tasks under different pruning ratio.
For each pruning ratio, the best result is in bold, and the second-best is underlined.

Ratio Method
LLM-instruct: Generation (w/o CoT)

Avg.↑
LLM-think: Reasoning Tasks

Avg.↑
IFE TQA PQA HE HE+ MATH AIME LCB GPQA JEE
Pr. mc2 p@10 p@10 Acc Acc Acc Acc Acc

0.00% Dense 74.12 46.78 29.44 84.22 77.49 62.41 71.80 20.00 10.03 42.42 32.33 35.72

20.0%

ShortGPT 60.81 45.24 13.16 66.82 60.88 49.38 52.00 3.33 3.25 23.74 19.37 20.34
Shortened-PPL 48.42 36.00 21.55 42.77 40.33 37.81 53.00 0.00 1.63 29.80 17.86 20.46
Shortened-Taylor 65.61 45.47 15.31 80.63 73.36 56.88 53.40 3.33 0.00 23.74 19.08 19.91
LLM-Pruner 52.49 42.62 15.16 57.29 53.34 44.58 52.30 3.33 1.85 22.50 5.35 17.07
SliceGPT 63.58 44.74 10.77 74.71 70.47 52.85 60.00 3.33 0.00 22.50 6.69 18.50
MOD 68.20 44.74 14.75 82.18 78.40 57.65 0.00 0.00 0.00 2.25 0.00 0.45
D-LLM 29.75 42.63 10.94 26.68 20.47 26.49 1.00 0.00 0.00 15.00 4.17 4.03
SkipGPT 67.09 47.03 17.10 83.65 76.12 58.20 0.00 0.00 0.00 13.63 0.00 2.73

40.0%

ShortGPT 31.60 46.89 9.44 13.71 11.88 22.70 3.40 0.00 0.00 15.15 4.27 4.56
Shortened-PPL 27.91 37.34 13.49 18.92 15.15 22.36 0.40 0.00 0.00 13.64 2.52 3.31
Shortened-Taylor 50.09 43.69 10.92 46.18 41.11 38.00 3.80 0.00 0.00 16.16 2.86 4.56
LLM-Pruner 36.41 42.98 9.60 23.90 22.19 27.42 0.00 3.33 0.00 20.00 0.00 4.67
SliceGPT 57.30 48.12 6.83 60.59 55.10 45.59 29.00 0.00 0.00 25.00 2.37 11.27
MOD 48.79 42.26 14.08 72.23 67.77 49.03 0.00 0.00 0.00 0.00 0.00 0.00
D-LLM 20.14 44.39 7.63 11.63 8.67 18.89 3.00 0.00 0.00 17.50 3.78 4.86
SkipGPT 70.61 50.04 23.88 83.09 75.67 60.66 0.00 0.00 0.00 10.33 0.00 2.07

60.0%

ShortGPT 10.90 47.10 5.69 0.00 0.30 12.40 0.00 0.00 0.00 1.51 0.00 0.30
Shortened-PPL 18.11 41.99 5.40 7.37 6.17 15.01 0.00 0.00 0.00 12.46 0.00 2.49
Shortened-Taylor 17.56 43.74 6.46 6.99 5.13 15.18 0.00 0.00 0.00 16.66 0.00 3.33
LLM-Pruner 20.14 47.19 2.29 6.58 6.39 16.92 0.00 0.00 0.00 13.75 0.00 2.75
SliceGPT 35.12 47.54 6.61 29.00 25.59 28.77 3.00 0.00 0.00 2.00 0.67 1.13
MOD 10.35 44.16 3.73 55.93 48.39 32.91 0.00 0.00 0.00 0.00 0.00 0.00
D-LLM 11.46 47.22 3.74 2.31 2.10 13.77 3.00 0.00 0.00 11.25 5.38 3.93
SkipGPT 69.68 45.19 22.97 83.15 77.25 59.65 0.00 0.00 0.00 2.83 0.00 0.57

Table 3: Performance decline of pruning methods on classification, generation, and reasoning tasks.
The row Dense shows the unpruned model performance. Rows marked AD (avg) shows the average
relative performance drop of methods within the same pruning strategy at each sparsity level.

Classification Generation (w/o CoT) Reasoning
Dense 74.18 62.41 35.72

Sparsity 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

ShortGPT 66.35↓10.56 56.99↓23.17 41.53↓44.01 49.38↓20.88 22.70↓63.63 12.40↓80.13 20.34↓43.06 4.56↓87.23 0.30↓99.16

Shortened-PPL 64.49↓13.06 50.85↓31.45 44.21↓40.40 37.81↓39.42 22.36↓64.17 15.01↓75.95 20.46↓42.72 3.31↓90.73 2.49↓93.03

Shortened-Taylor 68.96↓7.04 58.97↓20.50 43.19↓41.78 56.88↓8.86 38.00↓39.11 15.18↓75.68 19.91↓44.26 4.56↓87.23 3.33↓90.68

AD (avg) 10.22% 25.04% 42.06% 23.05% 55.64% 77.25% 43.35% 88.40% 94.29%

LLM-Pruner 62.18↓16.18 50.11↓32.45 40.11↓45.93 44.58↓28.57 27.42↓56.06 16.92↓72.89 17.07↓52.21 4.67↓86.93 2.75↓92.30

SliceGPT 63.59↓14.28 52.29↓29.51 42.92↓42.14 52.85↓15.32 45.59↓26.95 28.77↓53.90 18.50↓48.21 11.27↓68.45 1.13↓96.84

AD (avg) 15.23% 30.98% 44.04% 21.95% 41.51% 63.40% 50.21% 77.69% 94.57%

SKIPGPT 72.30↓2.53 72.94↓1.67 71.77↓3.25 58.20↓6.75 60.66↓2.80 59.65↓4.42 2.73↓92.36 2.07↓94.20 0.57↓98.40

mod 62.40↓15.88 57.66↓22.27 46.56↓37.23 57.65↓7.63 49.03↓21.44 32.91↓47.27 0.45↓98.74 0.00↓100.00 0.00↓100.00

dllm 52.80↓28.82 44.86↓39.53 39.64↓46.56 26.49↓57.55 18.89↓69.73 13.77↓77.94 4.03↓88.72 4.86↓86.39 3.93↓89.00

AD (avg) 15.74% 21.16% 29.01% 23.98% 31.32% 43.21% 93.27% 93.53% 95.80%

indicate that, in both generation and reasoning tasks, pruning along the depth dimension degrades
performance more severely than pruning along the width dimension.

Dynamic vs. Static pruning. Results on classification and generation tasks reveal that dynamic
depth pruning achieves consistent gains over both static pruning at all pruning ratios. At a 60% prun-
ing ratio, the best dynamic method (SkipGPT) retains over 95% of the performance of instruction
following capabilities, highlighting its strong robustness, while the best static method (SliceGPT)
drops below 50%. Overall, these results indicate that for classification and generation tasks, dy-
namic depth achieves the highest performance, followed by static width and then static depth.

However, at a pruning ratio of only 20%, dynamic depth pruning retains merely 6.73% of the original
reasoning performance, making it almost entirely ineffective. In contrast, static methods retain more
than 53.46% of their performance at the same pruning ratio. Among them, static width pruning
demonstrates the greatest robustness, maintaining 31.55% performance and some reasoning ability
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even at a 40% ratio. Taken together, these results show that for reasoning tasks, static width pruning
is the most effective, while static depth pruning is weaker and dynamic depth pruning lags far behind.

These experiments demonstrate that no single pruning strategy is universally optimal. The per-
formance of different strategies varies across tasks: while dynamic depth pruning achieves strong
results on classification and generation, it fails to transfer effectively to reasoning tasks.

The optimal pruning strategy depends on the task type. Dynamic depth pruning is most effective
for classification and generation, while static width pruning shows the greatest robustness in
reasoning. Static depth pruning consistently lags behind.

Conclusion

4.2 SENSITIVITY OF LLM-INSTRUCT AND LLM-THINK MODELS TO PRUNING RATIOS
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Figure 2: Performance of different pruning methods under varying pruning ratios on classification,
generation, and reasoning tasks.
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Figure 3: The average impact of different pruning ratios on model performance: (a) Performance
Retention (b) generation, (c) classification, and (d) reasoning. For each pruning ratio, the perfor-
mance score represents the average across all pruning methods at that ratio.

The previous section revealed a clear task dependency in pruning strategy performance, raising
a key question: does this discrepancy stem from a mismatch between method and task, or from
fundamental model differences? To investigate, we examine sensitivity within each model’s domain
of expertise. Specifically, we measure performance degradation of LLM-instruct on instruction-
following benchmarks and LLM-think on reasoning benchmarks under identical pruning strategies
and ratios.

Our experiments first uncover a divergence within the LLM-instruct model. As shown in Figure 2,
both classification and generation tasks experience an linear decrease in performance, with the slope
substantially steeper for generation. With a 60% pruning ratio, classification retains approximately
62.3% of its original performance, while generation drops to 39.8%. We attribute this difference
to task-specific structural dependencies: classification tasks rely on redundant global semantic rep-
resentations, whereas generation tasks are highly sensitive to disruptions in local sequential depen-
dencies, where even small perturbations can propagate and significantly affect output quality.
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Furthermore, our experiments reveal fundamental differences between the two model paradigms
under pruning. As shown in Figure 2, their behaviors under pruning are strikingly different: LLM-
instruct demonstrates high robustness, with near-linear, smooth, and predictable performance degra-
dation as sparsity increases. In contrast, as shown in Figure 3, the outer blue polygon with high
scores on the MATH axis indicates strong reasoning ability. Once pruning is applied, however,
LLM-think shows extreme sensitivity, with reasoning performance collapsing in a cliff-like man-
ner. Specifically, at 20% pruning, the performance retention rate of LLM-instruct models is reduced
to below 60%, and at 40% sparsity, their complex reasoning ability is almost entirely lost. Over-
all, LLM-think is substantially more sensitive to pruning ratios than LLM-instruct, indicating that
models optimized for reasoning are far less stable than instruction following models.

Pruning affects LLM-instruct and LLM-think models in fundamentally different ways. LLM-
instruct models are relatively robust to pruning, whereas LLM-think models are highly sensitive:
even light pruning can cause in logical errors and catastrophic failures.

Conclusion

4.3 THE EFFECTIVE OF CALIBRATION AND POST-FINE-TUNING DATASETS

We conduct a series of experiments to examine whether using the model’s native training data for
pruning calibration, combined with post-fine-tuning, can effectively restore its general capabilities.
Since our focus in this section is on the effect of calibration and post-fine-tuning datasets rather than
a comparison of pruning methods, we select ShortGPT—the best-performing static depth pruning
strategy in our previous experiments—as a representative method. We then apply it to the LLM-
instruct model at a 20% pruning ratio, using four calibration datasets: Tulu-mixture-SFT (the native
training dataset of Llama-3.1-Tulu-3-8B-SFT), C4 (Raffel et al., 2020), BookCorpus (Zhu et al.,
2015), and OpenThoughts. As shown in Table 5, these four calibrations yielded only two distinct
pruned models, indicating that some calibration data produce identical layer selection results. These
observations imply that without recovery fine-tuning, simply changing the calibration dataset has a
negligible effect on the performance of the pruned model.

Having established that calibration datasets have minimal effect, we turn to the choice of recov-
ery training datasets in the post-fine-tuning stage. We employ Tulu-Mixture-SFT and Alpaca,
while the pruned model is obtained from calibration on Tulu-Mixture-SFT (BookCorpus) and C4
(OpenThoughts). As shown in Table 6, post-fine-tuning with the original training dataset Tulu-
Mixture-SFT achieves the best performance, demonstrating that alignment with the original data
distribution is essential for effectively recovering the performance of the pruned model.

Effective recovery of pruned models depends mainly on post-fine-tuning with datasets aligned to
the model’s original training distribution, whereas calibration data choice has little impact.

Conclusion

5 CONCLUSION

We present the first systematic study of pruning across instruction-following (LLM-instruct) and
reasoning-augmented (LLM-think) models. Leveraging open training corpora, we build an ex-
perimental framework for pruning and recovery within the original data distribution, and release
Llama-3.1-8B-Instruct-OpenThoughts, the first reasoning model trained on a fully open
corpus. Our results show that pruning effectiveness is task- and model-dependent. Dynamic depth
pruning is most effective for classification and generation, while static width pruning is most robust
for reasoning, with static depth consistently lagging. Strategies designed for LLM-instruct do not
transfer to LLM-think, which proves far more sensitive to pruning. Effective recovery relies mainly
on post-fine-tuning with data aligned to the original training distribution, whereas calibration data
matter little. Overall, pruning interacts deeply with model family, task type, and data distribution,
offering guidance for compressing reasoning-augmented LLMs.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All experiments were con-
ducted using the official repositories introduced in these papers. The training configurations, includ-
ing hyperparameters, are detailed in Table 4. We believe these measures will enable other researchers
to reproduce our results and build upon our work.
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A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to support the writing and editing of this manuscript.
Specifically, we employed an LLM to refine the language, improve readability, and enhance clarity
in selected sections. The model was used for tasks such as sentence rephrasing, grammar correction,
and improving the overall flow of the text.

The LLM was not involved in generating the study’s ideas, designing the research methodology,
conducting experiments, analyzing data, or interpreting results. All scientific concepts, methods,
and analyses presented in this work were independently conceived and carried out by the authors.

The authors take full responsibility for the content of the manuscript, including portions refined with
the assistance of the LLM. Its use followed ethical standards and did not contribute to plagiarism or
scientific misconduct.

B RELATED WORK

The multi-layer Transformer architecture of LLMs inherently exhibits substantial parameter redun-
dancy. Model pruning serves as a key technique to address this issue by eliminating non-essential
components. In practice, however, unstructured pruning induces sparsity that is challenging to ex-
ploit on modern hardware, hardware-friendly structured pruning has emerged as the predominant
approach. Structured pruning removes entire components such as channels, attention heads, or lay-
ers, and can be broadly categorized into static and dynamic methods.

B.1 STATIC PRUNING

Static pruning aims to permanently remove parameters of a pretrained model to create a smaller
dense model that is efficient across inputs. This approach can be divided into width and depth
pruning based on the dimension of removal.

Width pruning focuses on reducing the width of the network by removing components within each
layer, such as attention heads, MLP neurons, or coupled structures. A central challenge is to de-
fine the importance criteria for these components. Some methods leverage gradient information to
identify and eliminate unimportant coupled structures (Ma et al., 2023). Other comprehensive ap-
proaches perform end-to-end pruning across layers, attention heads, and hidden dimensions simul-
taneously (Xia et al., 2023). More recent works have explored training-free criteria; for instance,
Wanda prunes channels based on the product of weights and input activations without requiring re-
training (Sun et al., 2023), while others use fluctuation-based importance metrics (An et al., 2024).
Beyond importance-based pruning, another direction exploits computational invariance in Trans-
formers, using PCA to remove minor components and densify weight matrices (Ashkboos et al.,
2024).

Depth pruning offers a more direct compression strategy by removing entire Transformer lay-
ers, thereby reducing model depth. The main challenge is to assess layer importance accurately
to avoid severe performance degradation. Researchers have proposed various metrics to this end,
such as measuring the cosine similarity between a block’s input and output to quantify its influ-
ence (Men et al., 2024), or leveraging the high similarity between adjacent blocks to remove re-
dundant ones (Song et al., 2024). Others combine perplexity (PPL) with Taylor expansion methods
to evaluate and remove multiple layers at once (Kim et al., 2024). Furthermore, some strategies
propose joint pruning of both attention and MLP modules within layers to achieve a better trade-off
between compression and performance (He et al., 2024).

B.2 DYNAMIC PRUNING

In contrast to static methods, dynamic pruning customizes the computational path for each input at
inference time, reducing computation by executing only essential components.

A widely studied approach is early exit (Schuster et al., 2022; Varshney et al., 2023; Del Corro et al.,
2023; Din et al., 2023; Chen et al., 2024; Fan et al., 2024). By adding intermediate classifiers at var-
ious depths of the model, early exit allows “simple” inputs to terminate inference prematurely, thus
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bypassing the remaining layers. While effective for acceleration, this can potentially compromise
the model’s capacity for deep semantic reasoning.

Another paradigm is layer skipping, where router modules are employed to dynamically decide
whether a layer should be executed or bypassed. For example, some methods propose dynamic
computation allocation that uses a top-k routing mechanism to select which tokens are processed
by each layer’s self-attention and MLP modules (Raposo et al., 2024). D-LLM designs a dynamic
decision module at each layer to adaptively execute network units and introduces an efficient eviction
strategy to address the resulting KV cache challenges (Jiang et al., 2024). Similarly, SkipGPT
proposes a framework that combines global token-aware routing with decoupled pruning strategies
for MLP and self-attention layers to achieve fine-grained resource allocation (Zhao et al., 2025).
Together, these methods offer a flexible way to balance inference efficiency and model performance
on a per-input basis.

C EXPERIMENTS DETAILS

For LLM-instruct model, all experiments are conducted on a single A800 GPU without using Deep-
Speed. We adopt Llama 3.1-Tulu-3-8B-SFT, obtained through supervised fine-tuning (SFT) on
Llama 3.1-8B (Lambert et al., 2024), as our dense baseline model. The SFT training corpus is
adopted both as the calibration set for model pruning and as the training set for subsequent LoRA
fine-tuning. Specifically, we use a batch size of 16 and train all baselines for 10,000 steps. For each
baseline, we conduct a grid search over learning rates to select the optimal value. We use a cosine
decay learning rate schedule and set the warmup ratio to 0.1. The maximum token length is set to
4,096.

For the LLM-think model, no reasoning-oriented model exists with fully open-source training data.
To address this gap, we fine-tuned Llama-3.1-8B-Instruct on the OpenThoughts dataset, resulting
in a new model, Llama-3.1-3-8B-Instruct-OpenThoughts. The detailed hyperparameters are sum-
marized in Table 4. For all baseline pruning methods, experiments are conducted on a single A800
GPU with DeepSpeed Stage-2 offloading and gradient checkpointing enabled. Following the setup
in LLM-instruct experiments, the OpenThoughts dataset is used both as the calibration set for model
pruning and as the training set for subsequent LoRA fine-tuning. Specifically, we adopt a batch size
of 16 and train all baselines for 3,000 steps, applying early stopping if the training converges before
reaching this limit. For each baseline, we conduct a grid search over learning rates to select the
optimal value. We employ a cosine decay learning rate schedule and set the warmup ratio to 0.1.
The maximum token length is set to 16,384.

Table 4: Full fine-tuning hyperparameters for training LLaMA-3.1-8B-Instruct on OpenThoughts
to obtain the LLM-think model.

Hyperparameter Value
Max token length 16,384
Per-device train batch size 1
Per-device eval batch size 8
Gradient accumulation steps 3
Learning rate 1× 10−5

Number of training epochs 3
LR scheduler type Cosine
Warmup ratio 0.1
Seed 42
Optimizer AdamW (torch)
Weight decay 0
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−8

Max gradient norm 1.0
bf16 precision True
fp16 precision False

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D THE GENERATED TOKEN NUMBER AND PERFORMANCE IN HUMANEVAL
AND HUMANEVALPLUS TASKS.

As the pruning ratio increases, we observe that the evaluation on HumanEval and HumanEval+ be-
comes more time-consuming. Figure 4 reports a comparative analysis of different pruning methods,
where task performance (Score) is plotted against inference efficiency (Generated Tokens). An ideal
pruning strategy should lie in the top-left region of the plot, reflecting high accuracy with low com-
putational cost. The results highlight the effectiveness of SKIPGPT (green circles) and mod (purple
circles), which achieve a favorable balance between performance and efficiency.
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Figure 4: Performance vs. Generated Tokens on (a) HumanEval and (b) HumanEval+.

E CALIBRATION AND FINE-TUNING DATASETS OF BASELINES

Table 5: Different calibration datasets are used to guide the pruning of ShortGPT, and the pruned
models (w/o LoRA) are subsequently evaluated.

Calibrations / Tasks BoolQ OPQA PIQA Winogrande Avg. ↑
Dense 82.26 46.8 80.84 77.74 71.91
Tulu 69.33 39.4 70.18 72.30 62.80
Bookcorpus 69.33 39.4 70.18 72.30 62.80
OpenThoughts 76.76 38.2 72.09 73.09 65.03
C4 76.76 38.2 72.09 73.09 65.03

Table 6: The post-fine-tuning performance of pruned models using Tulu-Mixture-SFT and Alpaca
as recovery training datasets.

with lora Calibrations Fine-tuning PIQA Winogrande ARC-C IFE HE+ Avg. ↑
Dense - - 80.84 77.74 87.20 74.12 84.22 80.82
ShortGPT Tulu/BookCorpus Tulu 74.59 75.84 79.41 60.81 60.88 70.30
ShortGPT Tulu/BookCorpus Alpaca 75.68 75.61 81.36 52.86 60.27 69.15
ShortGPT C4/OpenThoughts Alpaca 76.39 74.66 81.69 53.60 58.61 68.99

In this section, we summarize the original calibrations and fine-tuning datasets adopted by the base-
line models:

• ShortGPT employs PG19 (Rae et al., 2019) for computing BI scores and Samsum (Gliwa et al.,
2019) for fine-tuning.

• Shortened-llama-PPL and Shortened-llama-Taylor utilize BookCorpus (Zhu et al., 2015) to
estimate block scores (based on PPL or Taylor expansion) and Alpaca (Taori et al., 2023) for
LoRA-based fine-tuning.

• LLM-pruner leverages BookCorpus (Zhu et al., 2015) to capture coupled structures and Alpaca
(Taori et al., 2023) for LoRA fine-tuning.
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• SliceGPT adopts either WikiText-2 (Merity et al., 2016) or Alpaca (Taori et al., 2023) for both
calibration and fine-tuning.

• SKIPGPT uses RedPajama (Weber et al., 2024) for router tuning and applies a two-stage LoRA
training procedure.
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