
Extendable Navigation Network based Reinforcement Learning
for Indoor Robot Exploration

Woo-Cheol Lee1 Ming Chong Lim1 and Han-Lim Choi1

Abstract— This paper presents a navigation network based
deep reinforcement learning framework for autonomous indoor
robot exploration. The presented method features a pattern
cognitive non-myopic exploration strategy that can better reflect
universal preferences for structure. We propose the Extendable
Navigation Network (ENN) to encode the partially observed
high-dimensional indoor Euclidean space to a sparse graph
representation. The robot’s motion is generated by a learned
Q-network whose input is the ENN. The proposed framework
is applied to a robot equipped with a 2D LIDAR sensor in
the GAZEBO simulation where floor plans of real buildings
are implemented. The experiments demonstrate the efficiency
of the framework in terms of exploration time.

I. INTRODUCTION

In robot application, autonomous planning of trajectories
to reduce the unknown area in a given environment and
build a map incrementally at the same time is known as
robot exploration. Robot exploration plays an important role
in a variety of tasks, such as search and rescue, planetary
exploration and structure investigation, and the efficiency
of the exploration process is crucial in maximizing the
performance of these tasks.

Robot exploration is known to be close to an NP-complete
problem such as the traveling salesman problem (TSP) or the
art gallery problem [1]–[4]. Frontier exploration methods [1],
[4]–[10] have traditionally been used, from a practical point
of view, to overcome the complexity and uncertainty of the
exploration problems resulting from the gradually expanding
environment. In these approaches, the one-step information
gain is inferred through either geometric heuristics [6], [7],
[10] or prediction of map features in a probabilistic manner
[1], [4], [8], [9] and greedy optimization is performed to
maximize the information gain with respect to distance
traveled.

Despite the difficulty of predicting future observations,
non-myopic approaches have also been proposed [2], [3],
[11], [12]. Oßwald et al. [3] proposed the use of TSP solver
assuming that a prior map information in the form of topo-
metric graph is available. Recently, deep reinforcement learn-
ing (DRL) techniques were also implemented to solve the
autonomous exploration problems [2], [12]. The state-action
value is inferred directly rather than making predictions on
the features of the map. These approaches, however, suffers
from the curse of dimensionality as the number of state-
action pairs can be very significant as exploration progresses.
Niroui et al. [2] used a frontier detection module to build

1W.-C. Lee, M.C. Lim and H.-L. Choi are with the Depart-
ment of Aerospace Engineering, KAIST, Daejeon, Korea. {wclee,
mclim}@lics.kaist.ac.kr, hanlimc@kaist.ac.kr

Fig. 1. A representative overview of the proposed ENN-RL. The robot
generates an extendable navigation network (ENN) based on the observa-
tions up to the current time-step. The ENN maintains information regarding
the current exploration such as the position of the robot (red node), visited
positions (black nodes) and possible targets for exploration (white nodes).
The Q-network takes the ENN as the input and outputs the destination for
the next time-step.

the action space and resize the occupancy grid map to
reduce the state dimension. Bai et al. [13] suggested setting
discrete actions with a fixed distance from the robot at regular
angular intervals. These reduction processes generally do
not consider navigation-related features, resulting in possible
exploration performance degradation.

Leveraging on these existing works, the DRL approach
with a domain conversion of the map from 2D Euclidean
space to a graph representation, as seen in Figure 1, is
considered in this paper. We inherit the philosophy of ex-
isting studies that try to represent the indoor environment
using the navigation network [14]–[17]. Among them, we
focus on the visibility-based navigation network generation
method [14], [15], which is based on the inter-visibility of
locations. Generally, visibility-based approaches are good at
capturing characteristic locations of significance (i.e., inter-
sections, near the frontiers, behind walls, locations where
the direction changes) which make the nodes in these nav-
igation networks good action candidates. Previous works
were generally focused on generating the network using a
complete map. Hence, we propose a modified network called
the Extended Navigation Network (ENN) which expands on
a network recursively as new observations are obtained from
the exploration.

Deep Q-learning is used to learn the optimal policy. While
Convolution Neural Network (CNN) is popular in resolving
tasks with two dimensional image representation inputs, we
consider inputs in the form of a graph, and therefore, a Q-
network consisting of graph convolution network (GCN)s is

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

11508

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
10

40

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. An overview of the ENN-RL framework.

required. GCN can be broadly classified into two categories
according to the local filtering method — the spectral method
[18], [19] and spatial method [20]–[23]. In the spectral
method, the filtering is performed using graph Laplacian,
and the graph is limited to have a fixed structure with
only changes in the node features. In our application, this
is not a viable option since the number of nodes adjacent
to a particular node, and also the ordering of the nodes,
can change as the graph structure expands. On the other
hand, spatial method performs local filtering in a way where
weights are shared between neighbors, and works with
graphs of varying sizes and connectivities. Among them,
Edge-Conditioned Convolution (ECC) [23] consider not only
node features but also the edge features, which is suitable for
our application where geometric relationship of the indoor
structure is important.

In this paper, Extendable Navigation Network based re-
inforcement learning (ENN-RL) framework is proposed to
learn an efficient exploration policy. For this, ENN for
2D partial map encoding and ECC based Q-network are
introduced. Our contributions are follows:

1) Firstly, the suggestion of domain conversion from 2D
Euclidean space to a navigational graph network which
can hold representative information in a concise yet
sufficient manner for robot exploration,

2) secondly, the introduction of ENN to encode the indoor
structures in an iterative and computationally efficient
way,

3) and, lastly, an implementation of ECC based Q-
network to learn the policy.

The structure of this paper is as follow: Section II presents
the problem statement, which includes the concept of domain
conversion. Section III describes the proposed framework. In
section IV and V, the proposed ENN and ECC embedded
Q-network are described, respectively. Section VI provides
the performance evaluation. Finally, section VII is devoted
to the conclusion.

II. PROBLEM STATEMENT

We consider a nonholonomic mobile robot equipped with a
2D LIDAR with limited sensing range. The robot operates in
a closed 2D indoor environment M ∈ Fw×h, incrementally
building an estimated map M̂ ∈ Fw×h, in which F ∈

{Fo : occupied, Ff : free, Fu : unknown} is the possible
map configuration, where w and h are the maximum width
and height of map, respectively. Following typical discounted
return, the expected return at time k is given as:

Rk = E[ΣK
k′=kγ

k′−kρ(sk′ , h(sk′), sk′+1)]

sk+1 ∼ f(sk, h(sk))
(1)

where, sk = (M̂k, xk) ∈ S is the state at time k, x ∈ R2 is
the robot position, f : S ×U → S is the transition function,
ρ : S×U×S → R1 is the reward function, h : S → U ∈ R2

is the policy (goal point in the 2D map), and γ ∈ [0, 1) is
the discount factor. The objective of this paper is to define
a proper reward structure ρ(·), and to find an optimal policy
h∗ that maximizes the expected return Rk while reducing
the total distance travelled in the exploration process.

Instead of dealing with the above problem directly, we
propose the domain conversion from the Euclidean space to
a graph which is represented as follows:

G = T (M̂, x) (2)

where, T : Fw×h×R2 → G is the conversion function from a
Euclidean space map to a directed graph, G = (V, X, E , E)
with |V| nodes and |E| edges, where V = {v1, ..., v|V|} is
the set of nodes, X ∈ R|V|×dN is the collection of node
features, E ∈ {e1, ..., e|E|} is the set of edges, E ∈ R|E|×dE

is the collection of edge features, dN is dimension of the
node features, and dE is the dimension of the edge features.
To apply the conversion from (1) to (2), the following
assumptions are made:

Assumption 1: G is the sufficient statistics for M̂ in terms
of the navigation with the following components:

• Spatially representative nodes,
• proper connectivity between nodes,
• descriptive attributes for the nodes and edges (i.e., the

robot location, the closeness with frontier, the distance
and angle between nodes).

Assumption 2: The node set V provides sufficient actions
for exploration.

With above assumptions, the problem in equation (1) is
rewritten as follows:

Rk = E[ΣK
k′=kγ

k′−kρg(Gk′ , hg(sk′), Gk′+1)] (3)

11509

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

where, ρg : G × U × G → <1 is the reward function, and
hg : G → U ∈ V is the policy whose output is a node
in the graph network G. The detailed domain conversion
mechanism, reward design, and policy learning method are
described in the following sections.

III. FRAMEWORK OVERVIEW

Figure 2 shows the overall framework of our method. A
“Graph Encoding” block generates Gk and instead of a direct
conversion from M̂k to Gk, we opt to reduce computational
burden by incrementally deriving Gk from existing map
M̂k−1 and local observation Ok. We first approximate M̂k

as follows:

M̂k =
k⋃

k′=0

Ok

= M̂k−1 ∪Ok

(4)

where Ok is one frame observation at time k. We assume
that the conversion function T in equation (2) allows the
following operation:

T (A ∪B, x) = T (A, x)⊕ T (B, x) (5)

where ⊕ is the merging operation that combines two graphs.
Then, following relationship can be established:

Gk = T (M̂k−1, xk)⊕ T (Ok, xk) (6)

Based on equation (6), the computational load to obtain
Gk is significantly reduced due to the following reasons:
1) T (M̂k−1, xk) can be obtained from Gk−1, with only
changes to the attributes describing the robot location and
2) T (Ok, xk) will be significantly smaller than T (M̂k, xk)
as the exploration progresses.

With the Gk input, a Q-network composed of Dropout
(DO) and ECC layers is used to predict the Q-values of
every nodes in Gk (shown as red bars in Figure 2). The
Q-values pass through the user-designed filter and the Q-
network outputs the final action. In the training phase, the
weights in the network are learned through trial and error in
the indoor environment. In the evaluation phase, action ak
is chosen based on the Q-values.

IV. EXTENDABLE NAVIGATION NETWORK

In this section, detailed description of equation (6) is
provided. We design the conversion function T (·) and merg-
ing operation ⊕ with consideration of assumptions 1 and
2. We propose the ENN, taking visibility-based navigation
network modeling approach [14] as a benchmark. The overall
procedures are shown in Figure 3.

A. Visibility Map

The visibility map Bk (Figure 3-(a)) is obtained based
on the inter-visibility perspective in Ok. Each cell i of Ok

is given a value bi ∈ {0, 0.5, 1} representing obstacles,
shadows and free space, respectively. The visibility of every
other cells from i are determined using Bresenham’s line

algorithm [24]. Then, the visibility score Bk,i is calculated
as follows:

Bk,i =

∑
j∈cv bj∑
j∈cf bj

(7)

where cv and cf are the set of visible and free cells in Ok,
respectively.

B. Local Navigation Network

To build local navigation network T (Ok, xk), we need
to generate nodes and make connections between them.
The candidate nodes are generated using the Ok and Bk.
Jenk natural breaks optimization method [25] is applied to
divide the cells into discrete number of levels (5 is used
in this paper) according to their visibility scores (Algorithm
1, line 3). Cells within the same level are spatially clustered
using connected components labeling (CCL) method. Unique
labels and centroids Ck are given to every clustered regions
excluding small or non-visible regions (Algorithm 1, line 5∼
10). Also, depending on the adjacency with unknown regions
and relative level with neighboring regions, attributes Xi,u

(adjacency with unknown region) and Xi,t (relative level)
are assigned to the nodes (Algorithm 1, line 11∼ 14).

Edges are added in a similar way to [14] (Algorithm 2).
Firstly, because ‘peak’ and ‘pit’ nodes captures characteristic
locations, they are registered by default (Algorithm 2, line
3). Then starting from ‘pit’ nodes, edges are made to
neighboring nodes based on visibility and distance until it
is connected to a ‘peak’ node (Algorithm 2, line 4∼23).
Multiple subnetworks may be generated in one map due
to the (possible) presence of multiple ‘peak’ nodes. The
subnetworks are also combined based on the distance and
visibility (Algorithm 2, line 24∼35).

C. Merge

This section describes the merge operation ⊕ in the
equation (6). A distance-based cost matrix is built between
the two node sets of T (M̂k−1, xk) and T (Ok, xk) as follows:

cij =

{
d2ij (if dij < λ and visible(i, j)=True)
D (otherwise)

(8)

where dij is the distance between node i in T (M̂k−1, xk)
and node j in T (Ok, xk), λ is the gating threshold, and D
is a sufficiently large number. The desired merge is one that
minimizes the sum of costs and the Kuhn-Munkres algorithm
[26] is used to obtained the optimal solution. When merging
node j to node i, all neighbors of node j should also be
visible of node i, otherwise, node i are j connected by
an additional edge. Then, for every edges (i, j), the indoor
structure related attributes are set — the angle encoding
(sin(θij), cos(θij)) and distance d(i, j).

V. Q-NETWORK

In this section, we describe the Q-network configurations
including the reward design, and action filtering.

11510

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example of ENN process. At initial time k = 1, it starts with a empty graph G0. (a) is the Visibility map of Ok and (b) is the level map and
local navigation network T (Ok, xk). The node attributes are represented as the colors: red (the robot location), white (near frontier), black (otherwise).

Algorithm 1 Nodes Generation
1: Set area threshold θ, the number of level NL

2: Input one frame observation Ok and visibility map Bk

3: Generate level map Lk by solving Jenks method with
the input (Bk, NL)

4: Ck = {}
5: for all l ∈ {1, 2, ..., NL} do
6: Get masked level map Ll,k

7: Get centroid nodes Cl,k using CCL with input Ll,k

8: Cl,k ← Cl,k \ ({i|A(i) < θ} ∪ {i|v(i) = 0})
9: Ck ← Ck ∪ Cl,k

10: end for
11: for all i ∈ Ck do
12:

Xi,u =

{
1 (if i is adjacent to unknown region)
0 (otherwise)

(9)
13:

Xi,t =


′peak′ (∀j ∈ N(i), lj < li)
′pit′ (∀j ∈ N(i), li < lj)
′pass′ (otherwise)

(10)

14: end for

A. Network Configuration

Gk lies on non-Euclidean graph domain with a varying
structure (expanding and arbitrarily ordered) and the edge
attributes, such as distances and angles between nodes,
should be considered. Edge-conditioned convolution [23]
was selected for the Q-network for the following properties
— local filtering for varying structure and edge conditioned
filter generation. The ECC layer is formalized as follows:

Zl
i =

∑
j∈N(i)∪i

MLP l(Eji)X
l−1
j + bl (11)

where l ∈ {0, ..., lmax} is the layer index of the neural
network, N(i) = {j|(j, i) ∈ E} is the neighbor nodes of
i, Eji ∈ <dE is the attribute of edge (j, i), MLP l(·) is
the trainable neural network, and bl ∈ <dl is the bias. In

Algorithm 2 Local Navigation Network Generation
1: Input one frame observation Ok and nodes set Ck

2: Initialize empty local navigation network GL =
(VL, EL)

3: VL ← VL ∪ {i|Xi,t ∈ ′peak′,′ pit′}
4: for all n ∈ {n|Xn,t =′ pit′} do
5: i← n
6: flagpeak ← False
7: while flagpeak = False do
8: J ← {j|Xj,t =′ peak′} ∩ {j|visible(i, j) = True}
9: j ← arg minj∈J ||xi − xj ||

10: if j 6= ∅ then
11: EL ← EL ∪ {(n, j), (j, n)}
12: flagpeak ← True
13: else
14: K ← {k|k ∈ N(i)} ∩ {k|visible(i, k) = True}
15: k ← arg mink∈K A(k)
16: EL ← EL ∪ {(n, j), (j, n)}
17: if Xk,t =′ peak′ then
18: flagpeak ← True
19: end if
20: i← k
21: end if
22: end while
23: end for
24: S ← connected subgraphs in GL

25: while |S| > 1 do
26: Gs ← S(1)
27: E ← {(i, j), (j, i)|i ∈ V(Gs) and j ∈ (Ck \

V(Gs)) and visible(i, j) = True}
28: e← arg mine∈E d(E)
29: if e 6= ∅ then
30: EL ← EL ∪ e
31: else
32: GL ← GL \Gs

33: end if
34: S ← connected subgraphs in GL

35: end while

our application, the node and edge attributes are defined as

11511

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

follows:

Xi = {Ir,i, If,i}
Eij = {sin(θij), cos(θij), d(i, j)}

(12)

where Ir,i is the indicator function and is 1 if the robot
is at node i and 0 otherwise, If,i ∈ {0, 1} is 1 if region
i is adjacent to unknown region, and θij is the angle
of the edge (i, j). Our Q-network has 3 ECC layers and
the configuration is described as DO(0.5)-ECC(Relu,32,32)-
DO(0.5)-ECC(Relu,32,32)-ECC(Linear,1,16), where DO(p)
denotes dropout with probability p, ECC(l,c,m) is the ECC
layer with activation function l, c output channels, and m
hidden neurons in the MLP.

B. Reward Function

Considering the similarity between exploration and the
TSP problem, we define the reward function as follows:

ρg,k =


1 (if vrk ∈ N(vrk−1

) and Xrk,u = 1)
−0.5 (if vrk /∈ N(vrk−1

) and Xrk,u = 1)
−1 (otherwise)

(13)

For the clarity of the reward signal, we exclude continuous
distance or area metrics, which will be compensated in the
action filtering process (section V-C). When the robot reaches
a node that is a neighbor of the previous node and is adjacent
to the unknown area, it receives +1 reward. Likewise, if
the robot reaches to a node that is adjacent to the unknown
area but not a neighbor of the previous node, it receives
−0.5 reward. The −1 reward is given when the robot visits
nodes that provide no information gain (Xrk,u = 0). The
reward structure above induces the robot to minimize passing
through already visited nodes, since moving to a node that is
not the neighbor of the current position will require transiting
through some node(s) that has already been visited. With this
reward function, we expect the robot to learn the pattern of
the navigation network and explores in the direction of open
space, as much as possible, at the start of the exploration by
minimizing revisits. The Q-values are updated in the training
phase using the Bellman equation as an iterative update:

Qk+1(G, a) = EG[ρg,k + γmax
a′

Qk(G′, a′)|G, a] (14)

C. Action Filtering

It is difficult to differentiate between superior and inferior
nodes, of the same setting, when simply relying on the above-
mentioned equation (13). To compensate, we introduce the
filtering process for Q-values by considering the distances:

q′i =

{
qi (if d(i, vrk−1

) < θd)
qi − αd(i, vrk−1

) (otherwise)
(15)

We discount the Q-values of the nodes at a distance greater
than an arbitrary threshold θd to discourage traveling over
long distances in a single time-step. Using the filtered Q-
values Q′ = {q′1, q′2, ..., q′|V|}, the action that has the maxi-
mum value is selected:

a = arg max
vi

(Q′) (16)

Fig. 4. (a) The three maps were used for training the Q-network. (b) A
single map was used for evaluation of the Q-network. Two different starting
positions were considered in the exploration evaluation.

VI. EXPERIMENT

A. Environment Setup

The GAZEBO simulation is used to generate the indoor
environment and evaluate the exploration. The KTH floor
plan dataset [27] is used as the indoor environment. The
dataset provides floor plans of actual buildings on the KTH
campus. We selected three floor plans for policy learning
and one for evaluation (Figure 4). In the training step, for
simplicity, we assume that the robot is equipped with a
360°LIDAR sensor as it moves from one node to another. In
the evaluation phase, we transfer the trained Q-network to the
GAZEBO environment, using the Turtlebot model equipped
with a 2D LIDAR sensor. Gmapping [28] is used to build
the cumulative slam map M̂k and and the dynamic window
approach (DWA) planner is used to guide the robot from one
node to another. The simulation example is shown in Figure
5.

B. Analysis Method

To evaluate our framework, we use distance-cost-based
frontier exploration (FE) as the baseline. Additionally, we
implemented a similar cost-based greedy approach in the
graph domain (ENN-greedy) for comparison. In the ENN-
greedy approach, a node which is adjacent to the unknown
area and is of the minimum distance from the current robot
position is selected as the action for each time-step:

a = arg min
vi

(d(vrk , vi)) (17)

The evaluation metrics are as follows:
1) Cumulative reward gains from steps (ENN-RL vs

ENN-greedy)
2) Information gain (in m2) against travel distance (in m)

(ENN-RL vs ENN-greedy vs Frontier exploration)
The first evaluation metric provides a measure of the learned
ENN-RL model’s performance improvement compared to the
ENN-greedy. Five Monte Carlo simulations of the training
phase with 20 episodes each are performed, and the average
value is taken every step for the last 10 episodes judged to
have been sufficiently learned. The second evaluation metric
provides a measure of the information gain throughout the
exploration. As described in Section V-B, we expect the
robot to try to obtain as much information as possible in

11512

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Simulation example

the early phase of the exploration. From the two starting
positions shown in Figure 4-(b), 5 episodes of exploration
were conducted for each position with the mean values used
to compute both evaluation metrics.

C. Result

The simulation results are shown in Figure 6 ∼ 8. Figure 6
shows that the learned ENN-RL model has a faster expected
reward acquisition rate compared to ENN-greedy. The ratio
of average, minimum, and maximum cumulative reward sizes
is up to 10%, 17%, and 16%, respectively (Figure 7).

ENN-greedy approach and frontier exploration provides
similar levels of information gain throughout the exploration
process (Figure 8). Despite ENN being a sparse repre-
sentation of the high-dimensional indoor Euclidean space,
no obvious degradation in performance was observed. The
comparable results show that our strategy of exploration
using ENN, rather than the 2D Euclidean map, is feasible.

ENN-RL obtains higher levels of information gain at
early stages of the exploration as seen from the gradient
of the curve in Figure 8 and distance needed for 80%
coverage. This performance improvement can be attributed
to the design of the reward function in the Q-network. As
mentioned in Section V-B, the reward function was designed
to minimize revisits which motivates the robot to explore in
the direction of open space as much as possible. The ability
of the robot to obtain higher amounts of information at the
early stages of exploration is a desirable characteristic since
most exploration related tasks, such as search and rescue
operations, can occur concurrently and is usually limited by
the information of the environment. It is evident that a non-
myopic graph-based deep reinforcement learning approach
can achieve higher levels of efficiency for exploration in
indoor environments compared to traditional myopic ap-
proaches.

VII. CONCLUSION AND FUTURE WORK

In this paper, the indoor robot exploration problem using
a reinforcement learning framework was investigated. A
methodology for converting the map in high-dimensional
Euclidean domain to a graph representation was introduced
and ECC embedded Q-network was used for the policy
learning. The superior results obtained from the application

Fig. 6. Cumulative reward gains of ENN-greedy and ENN-RL

Fig. 7. Differences (left) and ratio (right) of cumulative reward gains
between ENN-greedy and ENN-RL

Fig. 8. Information gain against travel distance from the two starting points
(a) and (b) shown in Figure 4.

of ENN-RL in the indoor environment of real buildings
shows that pattern cognitive exploration can be a feasible
way to achieve efficient exploration in indoor environments.

The ENN, in terms of proper expression of indoor spaces,
can be improved in future works. The capability of the graph
network is not limited to the storage of only geometric
information and additional information of explored spaces,
such as semantic descriptions, can be included in the ENN to
enhance the exploration efficiency. In this paper, the merging
operation between two graphs was performed in a simplistic
and deterministic manner with only consideration on distance
and visibility. Improvements may include a more holistic
and complete approach to the clustering of nodes such that
(possibly) redundant nodes (e.g., multiple nodes within a
room) can be minimized.

ACKNOWLEDGMENT

This research was supported by Unmanned Vehicles Core
Technology Research and Development Program through the
National Research Foundation of Korea(NRF), Unmanned
Vehicle Advanced Research Center(UVARC) funded by
the Ministry of Science and ICT, the Republic of Korea
(2020M3C1C1A01082375)

11513

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Shrestha, F.-P. Tian, W. Feng, P. Tan, and R. Vaughan, “Learned
map prediction for enhanced mobile robot exploration,” in 2019 Inter-
national Conference on Robotics and Automation (ICRA), pp. 1197–
1204, IEEE, 2019.

[2] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 610–617, 2019.

[3] S. Oßwald, M. Bennewitz, W. Burgard, and C. Stachniss, “Speeding-
up robot exploration by exploiting background information,” IEEE
Robotics and Automation Letters, vol. 1, no. 2, pp. 716–723, 2016.

[4] L. Ly and Y.-H. R. Tsai, “Autonomous exploration, reconstruction,
and surveillance of 3d environments aided by deep learning,” in
2019 International Conference on Robotics and Automation (ICRA),
pp. 5467–5473, IEEE, 2019.

[5] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation CIRA’97.’Towards New
Computational Principles for Robotics and Automation’, pp. 146–151,
IEEE, 1997.

[6] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration
based on multiple rapidly-exploring randomized trees,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1396–1402, IEEE, 2017.

[7] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and
H. F. Durrant-Whyte, “Information based adaptive robotic explo-
ration,” in IEEE/RSJ international conference on intelligent robots and
systems, vol. 1, pp. 540–545, IEEE, 2002.

[8] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Mutual information-
based exploration on continuous occupancy maps,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 6086–6092, IEEE, 2015.

[9] S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic ex-
ploration with bayesian optimization,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1816–1822,
IEEE, 2016.

[10] J. M. Pimentel, M. S. Alvim, M. F. Campos, and D. G. Macharet,
“Information-driven rapidly-exploring random tree for efficient en-
vironment exploration,” Journal of Intelligent & Robotic Systems,
vol. 91, no. 2, pp. 313–331, 2018.

[11] F. Niroui, B. Sprenger, and G. Nejat, “Robot exploration in unknown
cluttered environments when dealing with uncertainty,” in 2017 IEEE
International Symposium on Robotics and Intelligent Sensors (IRIS),
pp. 224–229, IEEE, 2017.

[12] L. Tai and M. Liu, “A robot exploration strategy based on q-learning
network,” in 2016 IEEE International Conference on Real-time Com-
puting and Robotics (RCAR), pp. 57–62, IEEE, 2016.

[13] S. Bai, F. Chen, and B. Englot, “Toward autonomous mapping and
exploration for mobile robots through deep supervised learning,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2379–2384, IEEE, 2017.

[14] Y. Pang, L. Zhou, B. Lin, G. Lv, and C. Zhang, “Generation of
navigation networks for corridor spaces based on indoor visibility
map,” International Journal of Geographical Information Science,
vol. 34, no. 1, pp. 177–201, 2020.

[15] A. Kneidl, A. Borrmann, and D. Hartmann, “Generation and use
of sparse navigation graphs for microscopic pedestrian simulation
models,” Advanced Engineering Informatics, vol. 26, no. 4, pp. 669–
680, 2012.

[16] A. Jamali, A. A. Rahman, P. Boguslawski, P. Kumar, and C. M. Gold,
“An automated 3d modeling of topological indoor navigation network,”
GeoJournal, vol. 82, no. 1, pp. 157–170, 2017.

[17] G. Gröger and L. Plümer, “Derivation of 3d indoor models
by grammars for route planning,” Photogrammetrie-Fernerkundung-
Geoinformation, vol. 2010, no. 3, pp. 191–206, 2010.

[18] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” arXiv preprint
arXiv:1312.6203, 2013.

[19] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Advances in neural information processing systems, pp. 3844–3852,
2016.

[20] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional net-
works on graphs for learning molecular fingerprints,” in Advances in
neural information processing systems, pp. 2224–2232, 2015.

[21] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in neural information processing systems, pp. 1993–2001,
2016.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[23] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned fil-
ters in convolutional neural networks on graphs,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 3693–3702, 2017.

[24] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach
to connected-component labeling for arbitrary image representations,”
Journal of the ACM (JACM), vol. 39, no. 2, pp. 253–280, 1992.

[25] G. F. Jenks, “The data model concept in statistical mapping,” Inter-
national yearbook of cartography, vol. 7, pp. 186–190, 1967.

[26] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[27] A. Aydemir, P. Jensfelt, and J. Folkesson, “What can we learn from
38,000 rooms? reasoning about unexplored space in indoor environ-
ments,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4675–4682, IEEE, 2012.

[28] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

11514

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on June 08,2024 at 04:32:47 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T12:45:02-0400
	Preflight Ticket Signature

