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Abstract
Deep neural networks achieve remarkable perfor-
mance but often lack interpretability, raising con-
cerns in critical applications. Feature attribution
methods, including perturbation-based methods,
aim to address this by quantifying the contribu-
tion of input features to model outputs. How-
ever, existing methods often rely on narrowly
defined perturbation spaces or sampling within
the predefined large perturbation space, leading
to incomplete or misleading explanations, espe-
cially in high-dimensional settings. To overcome
these limitations, we propose a novel perturbation-
based framework to leverage Stochastic Differen-
tial Equations to model continuous perturbations
and comprehensively explore the input space in
an effective way. By connecting Fisher Diver-
gence with the time derivatives of KL divergence
and mutual information, our approach provides
a rigorous theoretical foundation for quantifying
feature importance. Additionally, we integrate the
Information Bottleneck (IB) principle into an op-
timization framework, ensuring the identification
of the most informative features while maintain-
ing predictive performance.

1. Introduction
Deep neural networks (DNNs) have demonstrated remark-
able success in a wide range of applications, including
computer vision, and natural language processing. De-
spite their impressive performance, DNNs often function as
“black boxes,” providing limited insight into their underlying
decision-making processes (Pan et al., 2021; Novello et al.,
2022a; Chen et al., 2024). This lack of transparency raises
concerns in high-stakes domains where understanding the
rationale behind model predictions is vital for trust, account-
ability, and adherence to regulatory guidelines (Chaddad
et al., 2023; Saraswat et al., 2022; Soundararajan & Shenba-
garaman, 2024). Consequently, explainability has emerged
as a pivotal research area, aiming to elucidate how neural
networks transform inputs into outputs (Van der Velden
et al., 2022; Bai et al., 2021).

One well-established strategy for enhancing neural network

explainability is feature attribution, which quantifies how
each input feature contributes to a model’s output (Zhou
et al., 2022). Although various techniques exist to achieve
this, perturbation-based methods—which systematically
modify or remove parts of the input and then measure
changes in the model’s predictions—are particularly intu-
itive, offering a clear and direct interpretation of how the
model reacts to input modifications and their influence on
its behavior (Ivanovs et al., 2021).

A straightforward perturbation-based approach is to con-
sider a feature as important if a small changes leads to
a significant prediction change (Small Perturbations →
Large Output Changes). Gradient-based methods opera-
tionalize this idea by computing the gradient of the output
with respect to the input (Simonyan et al., 2014; Sundarara-
jan et al., 2017; Smilkov et al., 2017). However, a major
limitation of methods relying on small input variations is
their dependence on narrowly defined perturbation spaces
(Fel et al., 2023), which may fail to trigger changes in the
function’s output, thereby overlooking certain aspects of
feature importance. For example, in the case of piecewise
functions, a change in input must reach a certain thresh-
old to activate an output shift, which small perturbations
are unlikely to achieve. Consequently, larger-scale pertur-
bations could offer a more comprehensive perspective on
feature importance, capturing a wider range of real-world
variations.

When the perturbation space is broadened to allow larger in-
put changes, both inputs and outputs can shift significantly
(Large Perturbations → Large Output Changes). In
such scenarios, to assess feature importance is to linearly or
non-linearly distribute the total output change across indi-
vidual input features based on its share of the output change.
However, linear decomposition is only suitable for small-
scale perturbations. Methods like DeepLIFT (Shrikumar
et al., 2017) extending it to larger input changes lack a solid
theoretical foundation and may lead to inaccurate attribu-
tions. Non-linear decomposition methods like SHAP and its
variants (Lundberg & Lee, 2017; Jethani et al., 2021; Tsai
et al., 2023), while theoretically sound, are computationally
expensive.

Another perspective identifies features whose substantial
alteration causes minimal impact on the model’s output,
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thereby highlighting important features in the input (Large
Perturbations → Small Output Changes). However, ex-
ploring large input changes demands navigating a vast per-
turbation space, which is computationally expensive, espe-
cially for high-dimensional data like images. To mitigate
this, many methods reduce the complexity by partitioning
the inputs into smaller blocks (Novello et al., 2022a) or
by sampling within the predefined perturbation space (Fel
et al., 2023) rather than performing an exhaustive search.
Although these techniques lower computational overhead,
they also sacrifice precision: coarse partitioning overlooks
fine-grained details, and limited sampling may fail to rep-
resent the entire perturbation space, potentially leading to
imprecise or misleading attributions.

To address these limitations, we propose a novel
perturbation-based explainability method that leverages
Stochastic Differential Equations (SDEs). By modeling the
perturbation process as an SDE, we introduce a continuous-
time stochastic process that perturbs the data distribution
with continuously varying levels of noise. This approach
allows us to explore the input space more comprehensively,
capturing richer information about feature importance and
interactions. To mitigate computational complexity, we con-
struct an optimization framework that identifies the distribu-
tion of the most significant features, avoiding an exhaustive
search of the entire perturbation space.

Central to our optimization framework is the introduction
of Fisher Divergence in terms of the score function, defined
as the derivative of the distribution of the most important
features with respect to the input features. And the time
integration of Fisher Divergence serves as a quantitative
measure of feature importance, reflecting how changes in
input features influence the distribution of important features
identified by our method.

Our contributions can be summarized as follows:

• SDE for Perturbations Space: We employ SDEs to
define an unconstrained perturbation space, rather than
a predefined space of fixed size.

• An Optimization Framework: We propose an opti-
mization framework for feature attribution in an uncon-
strained perturbation space, avoiding the computational
burden of exhaustively searching the entire space.

• Linking Between Mutual Information and Fisher
Divergence: By linking mutual information with
Fisher divergence, we provide a principled information-
theoretic perspective for quantifying feature im-
portance, enriching the theoretical framework of
perturbation-based explainability.

• Connection Between KL Divergence and Fisher Di-
vergence: We establish a novel theoretical relationship

by deriving the time derivative of KL divergence and
linking it to Fisher divergence. Since mutual informa-
tion can be formulated in terms of KL divergence, this
connection offers a principled approach to computing
mutual information.

2. Related Works
Explainable methods based on input perturbations can be
broadly categorized according to how changes in inputs
(small or large) correlate with changes in the model’s output
(small or large). Below, we discuss three main approaches:
(1) small perturbations leading to large output changes, (2)
large perturbations leading to large output changes, and (3)
large perturbations leading to small output changes.

Small Perturbations → Large Output Changes: If a mi-
nor change in a particular feature leads to a substantial differ-
ence in the model’s output, that feature is deemed influential.
Gradient-based methods adopted this strategy via gradients.
Saliency Maps (Simonyan et al., 2014) compute these gra-
dients to highlight important features. Integrated Gradients
(Sundararajan et al., 2017) and SmoothGrad (Smilkov et al.,
2017) also utilize this concept but employ different data
augmentation strategies to enhance the estimation of feature
importance. Grad-CAM (Selvaraju et al., 2017a) preserves
model flexibility by leveraging the gradients of the target
class with respect to the activations in the last convolutional
layer, highlighting regions of importance. Building on this,
Guided-GradCAM (Selvaraju et al., 2017b) enhances Grad-
CAM by integrating it with Guided Backpropagation (Sprin-
genberg et al., 2014), providing finer and more detailed
insights into feature importance.

Large Perturbations → Large Output Changes: Various
methods employ this principle of ”big changes, big effects.”
RISE (Petsiuk et al., 2018) uses multiple random binary
masks to occlude large portions of the input; the change in
model output across many masked samples is aggregated
into a saliency map. LIME (Ribeiro et al., 2016) perturbs dif-
ferent subsets of features and then fits a simple local model
to approximate how drastically these features affect the orig-
inal prediction. Meanwhile, SHAP (Lundberg & Lee, 2017)
and its variants (FaithSHAP, FastSHAP (Jethani et al., 2021;
Tsai et al., 2023)) draw on the game-theoretic concept of
Shapley values to systematically credit (or blame) each fea-
ture for the overall output change when large combinations
of features are removed. Beyond single-pass masking, Re-
move and Retrain (ROAR) (Hooker et al., 2019) re-trains the
model after removing key features, measuring performance
deterioration to verify feature importance. Lastly, Explain-
ing by Removing (Covert et al., 2021) provides a unified
theoretical framework for such removal-based strategies, an-
alyzing how various large-perturbation methods align with
desired explanation properties.
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Large Perturbations → Small Output Changes: This
approach focuses on identifying features that are critical
to the model’s prediction even when large portions of the
input are altered but the output change remains minimal.
For instance, studies have shown that improving network in-
terpretability can directly enhance adversarial robustness by
ensuring predictions rely on stable feature subsets (Boopa-
thy et al., 2020). Abduction-based explanations have been
proposed to identify invariant features that maintain predic-
tions under significant input perturbations (Ignatiev et al.,
2019), while metrics for representativity and consistency
have been introduced to evaluate explanation stability in
these scenarios (Fel & Vigouroux, 2022). Robustness-based
evaluation methods further ensure that explanations remain
reliable across large perturbation spaces (Hsieh et al., 2021).
Additionally, research has emphasized the importance of sta-
ble baselines and modeling uncertainty in feature attribution
methods to ensure consistent and interpretable explanations
when extensive input changes occur (Sturmfels et al., 2020;
Slack et al., 2021). EVA (Fel et al., 2023) introduces a frame-
work that guarantees the stability of explanations across
a predefined perturbation space, ensuring that changes in
unimportant features do not mislead the explanation.

3. Methodology
3.1. Background

Perturbation-based feature attribution methods assess the
importance of input features by examining how changes in
the inputs affect the model’s output. One common approach
considers that if small changes in an input feature lead to
significant changes in the model’s output, then that feature
is important. This is often captured using gradient-based
methods, where the gradient of the output with respect to
the input indicates feature importance:

ϕi =
∂f(x)

∂xi
. (1)

A larger gradient magnitude |ϕi| implies that small changes
in xi can significantly affect the output. However, this
small changes may not reflect the full range of input feature
variations encountered in real-world scenarios.

When we increase the perturbation space by considering
larger input changes, both the inputs and outputs may
change significantly. To assess feature importance under
these conditions, we can decompose the output changes into
contributions from individual input features. By attributing
the overall output change to each input feature’s change, we
determine feature importance based on their contributions.
Methods like DeepLIFT implement this by considering both
input and output differences:

ϕi = (f(x)− f(xref)) ·
xi − xi,ref∑
j(xj − xj,ref)

, (2)

where xref is a reference input (e.g., a baseline). This method
attributes the total output change to individual input features
proportionally to their deviations from the baseline. How-
ever, linearly decomposing output changes to input features
is problematic because linear decomposition relies on the
assumption of small perturbations, similar to a Taylor ex-
pansion.

In this paper, we consider an alternative approach: identify-
ing features that, when significantly altered, cause minimal
change in the model’s output. By fixing certain parts of the
input and allowing other parts to change as much as possible
while keeping the output change small, we can consider the
fixed parts as important features.

Considering large input changes inevitably leads to search-
ing a vast perturbation space, which is computationally ex-
pensive, especially in high-dimensional inputs like images.
To mitigate this challenge, common methods often com-
prise attribution precision by dividing the input into smaller
regions or patches to limit the search space. For exam-
ple, HSIC (Novello et al., 2022a) partitions images into
blocks to assess their importance. Alternatively, some ap-
proaches sample within the perturbation space rather than
exhaustively searching it (Fel et al., 2021; Scott et al., 2017;
Novello et al., 2022b; Petsiuk et al., 2018). While these
strategies reduce computational demands, they come at the
cost of precision. Dividing the input into patches results in
evaluating the importance of blocks rather than individual
features, potentially missing fine-grained details. Moreover,
sampling methods may not adequately explore the entire
perturbation space, leading to imprecise or erroneous assess-
ments of feature importance.

3.2. Our Proposed Method

Our method begins by defining the perturbation space and
formulating the attribution problem as an optimization task.
To address the challenge of computing mutual information
within this task, we leverage SDEs to expand the perturba-
tion space and derive a differential formulation of Fisher
divergence for mutual information representation. Building
on this formulation, we establish an optimization objective
and framework. Finally, leveraging diffusion models, we
develop an efficient method for computing Fisher diver-
gence and demonstrate how its integral form can be used to
estimate mutual information as an attribution function.

3.2.1. OPTIMIZATION PROBLEMS FOR PERTURBATION
SPACE SEARCH

We construct an optimization function that provides a direc-
tion towards the goal, significantly reducing computational
costs while aiming to accurately identify important features.
This approach allows us to navigate the perturbation space
more effectively, enabling a practical and scalable assess-
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ment of feature importance in complex models.

We begin by defining the perturbation space. The Pertur-
bation Space defines how input features are modified to
explore the model’s response to different input variations.
For a machine learning model f : Rn → R that maps an in-
put feature vector x = [x1, x2, . . . , xn]

⊤ to an output f(x),
a general perturbation of a feature xi can be expressed as:

x′
i = µixi + δi, (3)

where µi ∈ R serves as a scaling factor to adjust the magni-
tude of xi, and δi represents an additive perturbation drawn
from a distribution Di, introducing random fluctuations.

This formulation encompasses various perturbation strate-
gies, including additive noise, where µi = 1 and δi ∼ Di

(e.g., Gaussian noise), adding random noise to the feature;
small perturbations, where µi = 1 and δi = dx, repre-
senting infinitesimal changes in the input features, as em-
ployed by gradient-based methods such as Saliency Maps
(Simonyan et al., 2014), SmoothGrad (Smilkov et al., 2017),
and Integrated Gradients (Sundararajan et al., 2017); feature
occlusion (masking), where µi = 0 and δi = 0, effectively
removing or replacing the feature, with RISE (Randomized
Input Sampling for Explanation) (Petsiuk et al., 2018) apply-
ing random masks to generate attribution maps; baselines,
where µi = 0 and δi = bi (a baseline value), providing
a reference point for comparison, as used in DeepLIFT
(Shrikumar et al., 2017) with the concept of a reference
input; and custom perturbations, which involve any combi-
nation of µi and δi tailored to specific requirements. The
perturbed input vector is then expressed as:

x′ = [x′
1, x

′
2, . . . , x

′
n]

⊤.

Searching the entire perturbation space to find the maximum
input change with minimal output change is computation-
ally infeasible for high-dimensional inputs. Instead, we
formulate this as an optimization problem:

maximize
x′

∥x′ − x∥

subject to |f(x′)− f(x)| ≤ ξ
(4)

where ξ is a small threshold ensuring the output change is
minimal.

While the optimization problem aims to maximize the input
change ∥x′ − x∥ under the constraint of minimal output
change, simply using the norm ∥x′ − x∥ as the objective
function may not yield satisfactory results. This approach
treats all input changes equally without considering the
informational content or dependencies between features. It
may overlook important structural information and fail to
capture the complexity of feature interactions within the
data.

To address this limitation, we adopt the mutual information
approach. Considering the dataset X with samples x ∼ X ,
we aim to optimize x′ such that the resulting dataset X ′

contains as little information as possible about the original
dataset X , while ensuring that the classifier’s predictions
remain unchanged after perturbation. This reduction in
shared information is quantified by the mutual information
I(X;X ′). Minimizing I(X;X ′) aligns with the Informa-
tion Bottleneck (IB) (Alemi et al., 2016) principle, which
provides a theoretical framework for balancing input com-
pression with output preservation. And the objective is
defined as:

LIB = I(X;X ′)− βI(X ′;Y ), (5)

where I(X ′;Y ) is the mutual information between X ′ and
the output Y , ensuring that X ′ preserves information rele-
vant for predicting Y . And β ≥ 0 is a trade-off parameter
controlling the balance between input compression and out-
put preservation.

3.2.2. PERTURBING DATA WITH AN SDE

However, directly computing mutual information I(X;X ′)
in high-dimensional data is intractable due to computational
complexity (Schulz et al., 2020; Zhang et al., 2021). To
overcome this challenge, we introduce SDEs to define con-
tinuous perturbation spaces. By modeling the perturba-
tion process as a continuous transformation governed by
SDEs, we can compute the mutual information changes in a
continuous-time manner.

When the perturbation levels become infinitesimally small
and densely packed, the cumulative effect leads to a contin-
uous transformation of the input data. In this scenario, the
noise perturbation procedure becomes a continuous-time
stochastic process. To represent such a stochastic process
concisely, we turn to SDEs. In general, an SDE has the
following form:

dXt = µ(t) dt+ σ(t) dWt, (6)

where Xt represents the perturbed input at time t; µ(t) is
the drift term capturing the deterministic component of the
perturbation; σ(t) is the diffusion coefficient controlling the
magnitude of the stochastic perturbations; and dWt is the
differential of a Wiener process representing the random
fluctuations added to the system.

3.2.3. THE TIME DERIVATIVE OF MUTUAL
INFORMATION

By integrating this SDE over time, we generate a continu-
ous path of perturbed inputs Xt. In the following, we will
demonstrate how mathematical analyses of SDEs, such as
the Fokker-Planck equation, allow us to track the evolution

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Fisher Divergence for Attribution through Stochastic Differential Equations

of mutual information over time across the entire pertur-
bation space and compute the exact mutual information
through the integration of Fisher divergence.
Theorem 3.1. Let dyt = µ(t) dt+ σ(t) dWt for t ≥ 0 and
y0 = x. Denote by pt(y) and qt(y) the densities of y when
the initial distribution is p(x) or q(x), respectively. Assume
that pt(y) and qt(y) are smooth and sufficiently decaying,
such that their logarithms grow at most polynomially in t.
Then we have:

d

dt
DKL(pt∥qt) = −1

2
σ(t)2DF (pt∥qt), (7)

where DKL denotes the Kullback–Leibler divergence and
DF denotes the Fisher divergence.

Proof. To simplify notation and improve readability, ex-
plicit references to variables (e.g., x, y) and integration
measures (e.g., dy) are omitted throughout the proof when-
ever their omission does not cause ambiguity. The proof
proceeds as follows.

By applying the Lemma 1 in (Lyu, 2012) , the Fisher diver-
gence can be expressed as:

DF (pt∥qt) =
∫

pt
(
∥∇ log pt∥2 + ∥∇ log qt∥2

+ 2∆ log qt
)
. (8)

Further simplifications lead to:

DF (pt∥qt) =
∫

pt
(
∥∇ log pt∥2 +

∆qt
qt

+∆ log qt
)
. (9)

Expanding the Time Derivative of DKL(pt∥qt):

We then begin by expanding the time derivative of the KL
divergence:

d

dt
DKL(pt∥qt) =

∫
∂pt
∂t

log
pt
qt

+

∫
∂pt
∂t

−
∫

∂pt
∂t

log qt. (10)

Elimination of the Second Term:

The second term vanishes because the integral of pt over
the entire space is constant (due to normalization):∫

∂pt
∂t

=
∂

∂t

∫
pt =

∂

∂t
(1) = 0. (11)

Thus, we have:

d

dt
DKL(pt∥qt) =

∫
∂pt
∂t

log
pt
qt

−
∫

∂pt
∂t

log qt. (12)

Using Fokker–Planck equation:

∂pt
∂t

= −∇ · (µ(t)pt) +
1

2
σ(t)2∆pt, (13)

we decompose d
dtDKL(pt∥qt) into two main terms:

d

dt
DKL(pt∥qt) = I1 +

1

2
σ(t)2I2, (14)

where the drift term I1 and diffusion term I2 are defined as:

I1 = −µ(t)

∫
∇pt log pt + µ(t)

∫
∇pt log qt

−
∫

pt
∂

∂t
log qt, (15)

I2 =

∫
∆pt log pt −

∫
∆pt log qt

−
∫

∆pt log qt. (16)

Simplifying I1:

By integration by parts,
∫
∇pt log pt = 0, so:

I1 = −µ(t)

∫
pt
∇qt
qt

−
∫

pt
d

dt
log qt. (17)

Using the chain rule and Fokker–Planck equation:

d

dt
log qt = −µ(t)

∇qt
qt

, (18)

we find:

I1 = −µ(t)

∫
pt
∇qt
qt

+ µ(t)

∫
pt
∇qt
qt

= 0. (19)

Simplifying I2: Using integration by parts:∫
∆pt log pt = −

∫
pt∥∇ log pt∥2, (20)∫

∆pt log qt =

∫
pt∆ log qt. (21)

Thus:

I2 = −
∫

pt∥∇ log pt∥2 −
∫

pt∆ log qt −
∫

pt
∆qt
qt

.

(22)
Using the definition of DF (pt∥qt):

I2 = −DF (pt∥qt). (23)

Combining Results:

Since I1 = 0, we have:

d

dt
DKL(pt∥qt) = −σ(t)2

2
DF (pt∥qt), (24)

which completes the proof.

5
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Lemma 3.2 (Time Derivative of Mutual Information). Un-
der the same assumptions as Theorem 3.1, let Xt satisfy

dXt = µ(t) dt + σ(t) dWt, X0 ∼ p(x).

Then the mutual information between Xt and X0 satisfies

d

dt
I(Xt;X0) = −1

2
σ2(t)E

[
∥ st(Xt)− st(Xt | X0)∥2

]
,

(25)
where st(·) and st(· | X0) are the score functions of the
marginal and conditional distributions, respectively.

Proof. By definition,

I(Xt;X0) = Ep(x0)

[
DKL

(
pt(· | x0) ∥ pt(·)

)]
. (26)

Under sufficient smoothness and decay conditions, differen-
tiation under the integral sign is valid, giving

d

dt
I(Xt;X0) = Ep(x0)

[ d

dt
DKL

(
pt(· | x0) ∥ pt(·)

)]
.

(27)

By Theorem 3.1,

d

dt
DKL

(
pt(· | x0) ∥ pt(·)

)
= −1

2
σ2(t)

DF

(
pt(· | x0) ∥ pt(·)

)
. (28)

Here, the Fisher divergence can be written as

DF

(
pt(· | x0) ∥ pt(·)

)
= E

[
∥ st(Xt | X0)− st(Xt)∥2

]
,

(29)
where the score functions st(x) = ∇x log pt(x) and st(x |
x0) = ∇x log pt(x | x0) represent the gradients of the
log-probability densities for the marginal and conditional
distributions, respectively.

Taking the expectation over x0 thus yields

d

dt
I(Xt;X0) = −1

2
σ2(t)

E
[
∥ st(Xt)− st(Xt | X0)∥2

]
, (30)

which completes the proof.

3.2.4. OPTIMIZATION OBJECTIVE WITH DIFFUSION
MODELS

From the time derivative of mutual information:

d

dt
I(Xt;X0) = −1

2
σ2(Xt, t)E

[
∥st(Xt)− st(Xt | X0)∥2

]
,

(31)
we note that σ2(Xt, t) ≥ 0 and the expected squared norm is
non-negative, implying I(Xt;X0) decreases monotonically

with t. As t increases, more noise is introduced into Xt,
reducing its mutual information with the original input X0.

To leverage this property, we define a mutual information
loss function proportional to −t:

LMI = −t. (32)

Our objective is to minimize mutual information while pre-
serving the model’s predictive performance. Therefore, we
combine LMI with a task-specific loss function, such as the
cross-entropy loss LCE for classification tasks:

L = LMI + LCE. (33)

However, training a neural network using this loss func-
tion necessitates computing Xt by integrating the stochastic
differential equation (SDE):

Xt = X0 +

∫ t

0

µ(s) ds+

∫ t

0

σ(s) dWs, (34)

where µ(s) is the drift term, σ(s) is the diffusion coefficient,
and Ws represents a Wiener process. Evaluating this inte-
gral at each training iteration is computationally infeasible,
especially for high-dimensional data.

To address this, we refer to the Variance Exploding (VE)
Process and the Variance Preserving (VP) Process (Song
et al., 2020), which provide analytical expressions for Xt in
terms of X0.

The VE process is defined by the following SDE:

dXt =

√
d[σ2(t)]

dt
dWt. (35)

In practice, we choose the variance function σ(t) as:

σ(t) = σmin

(
σmax

σmin

)t

, (36)

where σmin = 0.01(Songet al., 2020) and σmax is set based
on the dataset to ensure X1 is approximately independent
of X0. Using this, we can express Xt directly:

Xt = X0 + σ(t)ϵ, ϵ ∼ N (0, I). (37)

The VP process is defined by:

dXt = −1

2
β(t)Xt dt+

√
β(t) dWt. (38)

We typically define β(t) as:

β(t) = βmin + t(βmax − βmin), (39)

with βmin = 0.1 and βmax = 20 (Song et al., 2020). Then
Xt can be expressed as:

Xt = X0e
− 1

2

∫ t
0
β(s)ds +

√
1− e−

∫ t
0
β(s)dsϵ, (40)
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where ϵ ∼ N (0, I). We can explicitly compute the inte-
gral

∫ t

0
β(s)ds due to the linear form of β(s):∫ t

0

β(s)ds = βmint+
1

2
(βmax − βmin)t

2. (41)

3.2.5. COMPUTING THE FISHER DIVERGENCE

Computing the Fisher divergence involves evaluating the
expected squared difference between the two score func-
tions st(Xt) and st(Xt | X0). While the conditional
score function st(Xt | X0) can be computed analytically
due to the Gaussian nature of pt(Xt | X0), obtaining the
marginal score function st(Xt) is more challenging because
the marginal distribution pt(Xt) is generally unknown and
complex.

To approximate st(Xt) for the Variance Preserving (VP)
Process, we employ denoising score matching (Vincent,
2011), training a neural network sθ(Xt, σ) to estimate the
score function of the perturbed data distribution at different
noise levels σ. Therefore, using the trained sθ(Xt, σ) and
the analytically tractable st(Xt | X0), we can compute the
Fisher divergence between them.

For the Variance Preserving (VP) Process, we leverage the
relationships derived in Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020), which is the discrete-
time formulation of the VP process. In DDPM, the forward
diffusion process gradually adds Gaussian noise to the data
over T timesteps, resulting in noisy samples Xt. These
relationships allow us to express Xt and X0 in terms of
each other and the noise components.

The forward diffusion process in DDPM is defined as:

Xt =
√
ᾱt X0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (42)

where ᾱt =
∏t

s=1 αs, and the relationship between the
noise scheduling parameters αt and βt is given by:

αt = 1− βt. (43)

The conditional distribution pt(Xt | X0) is Gaussian with
mean

√
ᾱt X0 and variance (1− ᾱt) I. Therefore, the con-

ditional score function can be computed analytically:

st(Xt | X0) = ∇Xt
log pt(Xt | X0) = −Xt −

√
ᾱt X0

1− ᾱt
.

(44)
To approximate the marginal score function st(Xt) =
∇Xt

log pt(Xt), we train a neural network ϵθ(Xt, t) to
predict the noise ϵ given Xt, as proposed in DDPM. The
marginal score function can then be approximated as:

st(Xt) ≈ − 1√
1− ᾱt

ϵθ(Xt, t). (45)

By substituting Xt from Eq. (42) into Eq. (44), we simplify
the conditional score function:

st(Xt | X0) = −
√
1− ᾱt ϵ

1− ᾱt
= − ϵ√

1− ᾱt
. (46)

With both st(Xt) and st(Xt | X0) expressed in terms of ϵ
and ϵθ(Xt, t), then we have:

∥st(Xt)− st(Xt | X0)∥2 ≈ 1

1− ᾱt
∥ϵθ(Xt, t)− ϵ∥2 .

(47)

3.2.6. COMPUTING MUTUAL INFORMATION VIA TIME
INTEGRATION

Based on our optimization framework, for each pixel value
xi, we can obtain a corresponding ti that represents the
distance in the forward diffusion process. In the Variance
Preserving (VP) process, this ti can be expressed in terms
of the noise level σi.

For each pixel xi, the mutual information I(xi,ti ;xi,0) can
be similarly computed by integrating the per-pixel contribu-
tion of the time derivative:

I(xi,ti ;xi,0) =

∫ ti

0

−1

2
σ2(t)E

[
(st(xi,t)

− st(xi,t | xi,0)
2

]
dt. (48)

Here, st(xi,t) and st(xi,t | xi,0) are the score functions
for the marginal and conditional distributions of pixel xi,
respectively.

In practice, we perform numerical integration over discrete
time steps tk to compute the mutual information:

I(xi,ti ;xi,0) ≈ −
K∑

k=0

β(tk)

2(1− ᾱtk)

(
ϵVP
θ (xi,tk , tk)

− ϵk
)2

∆t. (49)

for the VP process, and

I(xi,ti ;xi,0) ≈ −
K∑

k=0

1

2

(
dσ2

tk

dt

) (
sVE
θ (xi,tk , tk)

+
xi,tk − xi,0

σ2
tk

)2

∆t. (50)

for the VE process, where ∆t is the time step size, and K is
the total number of time steps.

4. Experiments
In this section, we systematically evaluate our method
by comparing it against several benchmark attribution ap-
proaches. For baseline methods, we selected IBA (Schulz
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et al., 2020), InputIBA (Zhang et al., 2021), Integrated Gra-
dients (Sundararajan et al., 2017), Guided-BP (Springenberg
et al., 2014), DeepLIFT (Shrikumar et al., 2017), and HSIC
(Novello et al., 2022a). We conduct both qualitative and
quantitative analyses, with qualitative comparisons provided
in the appendix. We begin with a Parameter Randomiza-
tion Sanity Check experiment to ensure that our attribution
method is sensitive to the learned model parameters rather
than arbitrary network structures. For quantitative evalu-
ation, we report results based on Insertion and Deletion
experiments, and the Segmentation-based Ratio metric. The
experimental setup are included in the appendix.

4.1. Parameter Randomization Sanity Check

The Parameter Randomization Sanity Check (Adebayo et al.,
2018) aims to assess whether attribution methods reliably
explain model behavior by analyzing their sensitivity to
parameter changes. This evaluation is performed using
the Structural Similarity Index Metric (SSIM (Wang et al.,
2004)). A lower SSIM value between the attribution map
of the original model and that of a randomized model in-
dicates that the method is sensitive to parameter changes,
effectively capturing key features influencing the model’s
decisions. Our experimental results demonstrate consis-
tently low SSIM values across all layers where parameter
randomization begins, highlighting the robustness of our
approach in identifying essential features. We show the
figure of SSIM in the Appendix.

4.2. Insertion and Deletion AUCs

The Deletion and Insertion methods (Zhang et al., 2021)
evaluate attribution performance by progressively removing
or adding pixels based on importance scores, with predic-
tions monitored at each step to compute the Area Under
the Curve (AUC). A larger difference between Insertion
and Deletion AUCs (DAUC) reflects better attribution qual-
ity. As shown in Table 1, our method achieves the highest
DAUC scores, outperforming baseline methods.

Table 1. Insertion and deletion experiments. The results demon-
strate that our method achieves the best performance, outperform-
ing all baselines.

Method DAUCs
IBA 0.771 ± 0.006
InputIBA 0.833 ± 0.002
Integrated Gradients 0.153 ± 0.004
Guided-BP 0.151 ± 0.007
Deep-Lift 0.157 ± 0.008
Ours 0.836 ± 0.003
HSIC 0.133 ± 0.002

4.3. Quantitative Visual Evaluation via Effective Heat
Ratios (EHR)

To further validate the effectiveness of our attribution
method, we conduct a quantitative visual evaluation using
Effective Heat Ratios (EHR). This metric assesses the con-
centration of attribution scores within meaningful regions,
providing a structured way to compare feature importance
across different methods. We perform this evaluation on
the FSS-1000 dataset (Li et al., 2020), leveraging its high-
quality segmentation annotations to establish ground truth
regions of interest. The EHR metric quantifies the propor-
tion of attribution scores assigned to these annotated regions,
where a higher EHR indicates that an attribution method
successfully localizes important features while minimizing
noise in less relevant areas.

By comparing our approach with baseline attribution meth-
ods, the results in Table 2 demonstrate that our method
achieves the highest Effective Heat Ratio (EHR), indicat-
ing its superior ability to focus attributions on semantically
meaningful regions.

Table 2. EHR experiment results. The results demonstrate that our
method achieves the highest Effective Heat Ratio (EHR), signifi-
cantly outperforming all baselines. InputIBA ranks second, while
other methods exhibit substantially lower EHR values.

Method EHR
IBA 0.355 ± 0.004
InputIBA 0.466 ± 0.005
Integrated Gradients 0.160 ± 0.003
Guided-BP 0.273 ± 0.007
Deep-Lift 0.155 ± 0.008
Ours 0.587 ± 0.006
HSIC 0.121 ± 0.003

5. Conclusion
In this work, we introduced a novel perturbation-based fea-
ture attribution method that leverages SDEs to explore the
input space in a continuous and data-adaptive manner. By
formulating the process as an optimization problem and
directly linking Fisher divergence to the time derivative
of mutual information, our approach provides a principled
theoretical framework for quantifying feature importance.
Moreover, integrating the Information Bottleneck principle
ensures that we identify only the most informative features
without sacrificing model performance. Our empirical find-
ings validate that this method yields more accurate and
robust attributions compared to existing perturbation-based
strategies, especially in high-dimensional scenarios. Mov-
ing forward, we plan to investigate the efficacy of alternative
diffusion processes for even more fine-grained explanations
of model behavior.
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A. Experimental Setup
We compared our method against several widely used baselines, including IBA, InputIBA, Integrated Gradients, Guided-BP,
DeepLIFT, and HSIC. Our method is implemented using the Variance Preserving (VP) process. And the three methods
(Guided-BP, Integrated Gradients, DeepLIFT) were implemented with Captum (Kokhlikyan et al., 2020) in PyTorch (Paszke
et al., 2019), relying on the default parameter settings. For IBA, InputIBA, and HSIC, we ran the official code releases
without altering their recommended configurations. All evaluations were conducted on a VGG16 (Simonyan & Zisserman,
2014) classification model.

B. the Figure of Parameter Randomization Sanity Check

Figure 1. Parameter Randomization Sanity Check results. Our results show that SSIM values decrease sharply as randomization moves to
earlier layers, demonstrating that our method effectively responds to parameter modifications and robustly identifies essential features.

C. Qualitative Comparision
The qualitative results in Figure 2 reveal significant variations in the clarity and interpretability of attribution maps generated
by different methods. IBA and HSIC tend to produce smooth but overly blurred visualizations, largely due to interpolation
effects that obscure fine-grained details and diminish the sharpness of object boundaries. While such methods maintain
a degree of consistency in attribution, they fail to capture precise feature importance at a granular level, limiting their
interpretability in complex visual tasks.

In contrast, DeepSHAP and Integrated Gradients yield more detailed and fine-grained attributions, which can be beneficial
for analyzing subtle model behaviors. However, their attribution maps often appear cluttered and chaotic, with dispersed
importance scores that do not always align with semantically meaningful structures. This lack of spatial coherence reduces
their reliability in pinpointing the most influential features driving the model’s predictions.

InputIBA enhances IBA’s attributions by increasing the sharpness of highlighted regions. However, it still struggles with
maintaining well-defined object edges, leading to some leakage of importance scores into background areas. This dilution of
feature importance can hinder precise interpretation, especially in cases where separating foreground from background is
crucial.

Guided-BP stands out for its ability to generate highly detailed attributions with sharp object boundaries and intricate
textures. The visual clarity of these maps makes them aesthetically appealing, but they also suffer from a major drawback:
a tendency to amplify high-frequency features, which often leads to the misallocation of importance scores to irrelevant
background regions. This overemphasis on fine structures can introduce misleading interpretations, as it may attribute
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significance to pixels that do not directly influence the model’s decision.

In contrast, our method consistently produces clear and structured attribution maps that accurately delineate object contours
while avoiding unnecessary noise in the background. By balancing fine-grained feature representation with spatial coherence,
our approach effectively isolates the most relevant features, providing a sharper and more intuitive visualization of the model’s
decision-making process. The enhanced focus and reduced attribution noise make our method particularly advantageous for
applications where precise feature localization is essential.

Figure 2. Qualitative comparison of attribution maps generated by different methods. IBA and HSIC produce smooth but overly blurred
attributions, failing to capture fine-grained details. Integrated Gradients and DeepLIFT generate highly detailed attributions but appear
chaotic, lacking clear spatial coherence. Guided-BP enhances edge sharpness but often misallocates importance to irrelevant background
regions. InputIBA improves upon IBA but still struggles with clearly delineating object boundaries. In contrast, our method produces
well-defined and focused attributions, accurately highlighting the most relevant features while minimizing noise, demonstrating superior
interpretability and robustness.
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