035

Fisher Divergence for Attribution through Stochastic Differential Equations

Anonymous Authors¹

Abstract

Deep neural networks achieve remarkable performance but often lack interpretability, raising concerns in critical applications. Feature attribution methods, including perturbation-based methods, aim to address this by quantifying the contribution of input features to model outputs. However, existing methods often rely on narrowly defined perturbation spaces or sampling within the predefined large perturbation space, leading to incomplete or misleading explanations, especially in high-dimensional settings. To overcome these limitations, we propose a novel perturbationbased framework to leverage Stochastic Differential Equations to model continuous perturbations and comprehensively explore the input space in an effective way. By connecting Fisher Divergence with the time derivatives of KL divergence and mutual information, our approach provides a rigorous theoretical foundation for quantifying feature importance. Additionally, we integrate the 030 Information Bottleneck (IB) principle into an optimization framework, ensuring the identification of the most informative features while maintaining predictive performance. 034

1. Introduction

Deep neural networks (DNNs) have demonstrated remark-038 able success in a wide range of applications, including 039 computer vision, and natural language processing. Despite their impressive performance, DNNs often function as 041 "black boxes," providing limited insight into their underlying decision-making processes (Pan et al., 2021; Novello et al., 043 2022a; Chen et al., 2024). This lack of transparency raises concerns in high-stakes domains where understanding the 045 rationale behind model predictions is vital for trust, account-046 ability, and adherence to regulatory guidelines (Chaddad 047 et al., 2023; Saraswat et al., 2022; Soundararajan & Shenba-049 garaman, 2024). Consequently, explainability has emerged as a pivotal research area, aiming to elucidate how neural 050 networks transform inputs into outputs (Van der Velden 051 052 et al., 2022; Bai et al., 2021).

053 One well-established strategy for enhancing neural network 054

explainability is feature attribution, which quantifies how each input feature contributes to a model's output (Zhou et al., 2022). Although various techniques exist to achieve this, perturbation-based methods-which systematically modify or remove parts of the input and then measure changes in the model's predictions-are particularly intuitive, offering a clear and direct interpretation of how the model reacts to input modifications and their influence on its behavior (Ivanovs et al., 2021).

A straightforward perturbation-based approach is to consider a feature as important if a small changes leads to a significant prediction change (Small Perturbations \rightarrow Large Output Changes). Gradient-based methods operationalize this idea by computing the gradient of the output with respect to the input (Simonyan et al., 2014; Sundararajan et al., 2017; Smilkov et al., 2017). However, a major limitation of methods relying on small input variations is their dependence on narrowly defined perturbation spaces (Fel et al., 2023), which may fail to trigger changes in the function's output, thereby overlooking certain aspects of feature importance. For example, in the case of piecewise functions, a change in input must reach a certain threshold to activate an output shift, which small perturbations are unlikely to achieve. Consequently, larger-scale perturbations could offer a more comprehensive perspective on feature importance, capturing a wider range of real-world variations.

When the perturbation space is broadened to allow larger input changes, both inputs and outputs can shift significantly (Large Perturbations \rightarrow Large Output Changes). In such scenarios, to assess feature importance is to linearly or non-linearly distribute the total output change across individual input features based on its share of the output change. However, linear decomposition is only suitable for smallscale perturbations. Methods like DeepLIFT (Shrikumar et al., 2017) extending it to larger input changes lack a solid theoretical foundation and may lead to inaccurate attributions. Non-linear decomposition methods like SHAP and its variants (Lundberg & Lee, 2017; Jethani et al., 2021; Tsai et al., 2023), while theoretically sound, are computationally expensive.

Another perspective identifies features whose substantial alteration causes minimal impact on the model's output,

thereby highlighting important features in the input (Large **Perturbations** \rightarrow **Small Output Changes**). However, ex-057 ploring large input changes demands navigating a vast per-058 turbation space, which is computationally expensive, espe-059 cially for high-dimensional data like images. To mitigate 060 this, many methods reduce the complexity by partitioning 061 the inputs into smaller blocks (Novello et al., 2022a) or 062 by sampling within the predefined perturbation space (Fel 063 et al., 2023) rather than performing an exhaustive search. 064 Although these techniques lower computational overhead, 065 they also sacrifice precision: coarse partitioning overlooks 066 fine-grained details, and limited sampling may fail to rep-067 resent the entire perturbation space, potentially leading to 068 imprecise or misleading attributions.

069 To address these limitations, we propose a novel 070 perturbation-based explainability method that leverages Stochastic Differential Equations (SDEs). By modeling the 072 perturbation process as an SDE, we introduce a continuoustime stochastic process that perturbs the data distribution 074 with continuously varying levels of noise. This approach 075 allows us to explore the input space more comprehensively, 076 capturing richer information about feature importance and 077 interactions. To mitigate computational complexity, we con-078 struct an optimization framework that identifies the distribu-079 tion of the most significant features, avoiding an exhaustive search of the entire perturbation space. 081

082 Central to our optimization framework is the introduction 083 of Fisher Divergence in terms of the score function, defined as the derivative of the distribution of the most important 085 features with respect to the input features. And the time 086 integration of Fisher Divergence serves as a quantitative 087 measure of feature importance, reflecting how changes in 088 input features influence the distribution of important features 089 identified by our method. 090

Our contributions can be summarized as follows:

091

092

093

094

095

096

097

098

099

109

- **SDE for Perturbations Space:** We employ SDEs to define an unconstrained perturbation space, rather than a predefined space of fixed size.
- An Optimization Framework: We propose an optimization framework for feature attribution in an unconstrained perturbation space, avoiding the computational burden of exhaustively searching the entire space.
- Linking Between Mutual Information and Fisher
 Divergence: By linking mutual information with
 Fisher divergence, we provide a principled informationtheoretic perspective for quantifying feature importance, enriching the theoretical framework of
 perturbation-based explainability.
 - Connection Between KL Divergence and Fisher Divergence: We establish a novel theoretical relationship

by deriving the time derivative of KL divergence and linking it to Fisher divergence. Since mutual information can be formulated in terms of KL divergence, this connection offers a principled approach to computing mutual information.

2. Related Works

Explainable methods based on input perturbations can be broadly categorized according to how changes in inputs (small or large) correlate with changes in the model's output (small or large). Below, we discuss three main approaches: (1) small perturbations leading to large output changes, (2) large perturbations leading to large output changes, and (3) large perturbations leading to small output changes.

Small Perturbations → Large Output Changes: If a minor change in a particular feature leads to a substantial difference in the model's output, that feature is deemed influential. Gradient-based methods adopted this strategy via gradients. Saliency Maps (Simonyan et al., 2014) compute these gradients to highlight important features. Integrated Gradients (Sundararajan et al., 2017) and SmoothGrad (Smilkov et al., 2017) also utilize this concept but employ different data augmentation strategies to enhance the estimation of feature importance. Grad-CAM (Selvaraju et al., 2017a) preserves model flexibility by leveraging the gradients of the target class with respect to the activations in the last convolutional layer, highlighting regions of importance. Building on this, Guided-GradCAM (Selvaraju et al., 2017b) enhances Grad-CAM by integrating it with Guided Backpropagation (Springenberg et al., 2014), providing finer and more detailed insights into feature importance.

Large Perturbations → Large Output Changes: Various methods employ this principle of "big changes, big effects." RISE (Petsiuk et al., 2018) uses multiple random binary masks to occlude large portions of the input; the change in model output across many masked samples is aggregated into a saliency map. LIME (Ribeiro et al., 2016) perturbs different subsets of features and then fits a simple local model to approximate how drastically these features affect the original prediction. Meanwhile, SHAP (Lundberg & Lee, 2017) and its variants (FaithSHAP, FastSHAP (Jethani et al., 2021; Tsai et al., 2023)) draw on the game-theoretic concept of Shapley values to systematically credit (or blame) each feature for the overall output change when large combinations of features are removed. Beyond single-pass masking, Remove and Retrain (ROAR) (Hooker et al., 2019) re-trains the model after removing key features, measuring performance deterioration to verify feature importance. Lastly, Explaining by Removing (Covert et al., 2021) provides a unified theoretical framework for such removal-based strategies, analyzing how various large-perturbation methods align with desired explanation properties.

Large Perturbations \rightarrow **Small Output Changes:** This 111 approach focuses on identifying features that are critical 112 to the model's prediction even when large portions of the 113 input are altered but the output change remains minimal. 114 For instance, studies have shown that improving network in-115 terpretability can directly enhance adversarial robustness by 116 ensuring predictions rely on stable feature subsets (Boopa-117 thy et al., 2020). Abduction-based explanations have been 118 proposed to identify invariant features that maintain predic-119 tions under significant input perturbations (Ignatiev et al., 120 2019), while metrics for representativity and consistency 121 have been introduced to evaluate explanation stability in 122 these scenarios (Fel & Vigouroux, 2022). Robustness-based 123 evaluation methods further ensure that explanations remain 124 reliable across large perturbation spaces (Hsieh et al., 2021). 125 Additionally, research has emphasized the importance of sta-126 ble baselines and modeling uncertainty in feature attribution 127 methods to ensure consistent and interpretable explanations 128 when extensive input changes occur (Sturmfels et al., 2020; 129 Slack et al., 2021). EVA (Fel et al., 2023) introduces a frame-130 work that guarantees the stability of explanations across 131 a predefined perturbation space, ensuring that changes in 132 unimportant features do not mislead the explanation. 133

3. Methodology

3.1. Background

134

135

136

146

147

137 Perturbation-based feature attribution methods assess the 138 importance of input features by examining how changes in 139 the inputs affect the model's output. One common approach 140 considers that if small changes in an input feature lead to 141 significant changes in the model's output, then that feature 142 is important. This is often captured using gradient-based 143 methods, where the gradient of the output with respect to 144 the input indicates feature importance: 145

$$\phi_i = \frac{\partial f(\mathbf{x})}{\partial x_i}.$$
 (1)

148 149 149 150 150 151 152 A larger gradient magnitude $|\phi_i|$ implies that small changes in x_i can significantly affect the output. However, this small changes may not reflect the full range of input feature variations encountered in real-world scenarios.

153 When we increase the perturbation space by considering 154 larger input changes, both the inputs and outputs may 155 change significantly. To assess feature importance under 156 these conditions, we can decompose the output changes into 157 contributions from individual input features. By attributing 158 the overall output change to each input feature's change, we 159 determine feature importance based on their contributions. 160 Methods like DeepLIFT implement this by considering both 161 input and output differences:

162
163
$$\phi_i = (f(\mathbf{x}) - f(\mathbf{x}_{ref})) \cdot \frac{x_i - x_{i,ref}}{\sum_j (x_j - x_{j,ref})},$$
 (2)

where \mathbf{x}_{ref} is a reference input (e.g., a baseline). This method attributes the total output change to individual input features proportionally to their deviations from the baseline. However, linearly decomposing output changes to input features is problematic because linear decomposition relies on the assumption of small perturbations, similar to a Taylor expansion.

In this paper, we consider an alternative approach: identifying features that, when significantly altered, cause minimal change in the model's output. By fixing certain parts of the input and allowing other parts to change as much as possible while keeping the output change small, we can consider the fixed parts as important features.

Considering large input changes inevitably leads to searching a vast perturbation space, which is computationally expensive, especially in high-dimensional inputs like images. To mitigate this challenge, common methods often comprise attribution precision by dividing the input into smaller regions or patches to limit the search space. For example, HSIC (Novello et al., 2022a) partitions images into blocks to assess their importance. Alternatively, some approaches sample within the perturbation space rather than exhaustively searching it (Fel et al., 2021; Scott et al., 2017; Novello et al., 2022b; Petsiuk et al., 2018). While these strategies reduce computational demands, they come at the cost of precision. Dividing the input into patches results in evaluating the importance of blocks rather than individual features, potentially missing fine-grained details. Moreover, sampling methods may not adequately explore the entire perturbation space, leading to imprecise or erroneous assessments of feature importance.

3.2. Our Proposed Method

Our method begins by defining the perturbation space and formulating the attribution problem as an optimization task. To address the challenge of computing mutual information within this task, we leverage SDEs to expand the perturbation space and derive a differential formulation of Fisher divergence for mutual information representation. Building on this formulation, we establish an optimization objective and framework. Finally, leveraging diffusion models, we develop an efficient method for computing Fisher divergence and demonstrate how its integral form can be used to estimate mutual information as an attribution function.

3.2.1. Optimization Problems for Perturbation Space Search

We construct an optimization function that provides a direction towards the goal, significantly reducing computational costs while aiming to accurately identify important features. This approach allows us to navigate the perturbation space more effectively, enabling a practical and scalable assess165 ment of feature importance in complex models.

166

167

168

169

170

171

172

173

174

175

176

177

178

197

199

200

201

202

203 204

206

208 209 We begin by defining the perturbation space. The *Perturbation Space* defines how input features are modified to explore the model's response to different input variations. For a machine learning model $f : \mathbb{R}^n \to \mathbb{R}$ that maps an input feature vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^\top$ to an output $f(\mathbf{x})$, a general perturbation of a feature x_i can be expressed as:

$$x_i' = \mu_i x_i + \delta_i,\tag{3}$$

where $\mu_i \in \mathbb{R}$ serves as a scaling factor to adjust the magnitude of x_i , and δ_i represents an additive perturbation drawn from a distribution D_i , introducing random fluctuations.

This formulation encompasses various perturbation strate-179 gies, including additive noise, where $\mu_i = 1$ and $\delta_i \sim D_i$ 180 (e.g., Gaussian noise), adding random noise to the feature; 181 small perturbations, where $\mu_i = 1$ and $\delta_i = dx$, repre-182 senting infinitesimal changes in the input features, as em-183 ployed by gradient-based methods such as Saliency Maps 184 (Simonyan et al., 2014), SmoothGrad (Smilkov et al., 2017), 185 and Integrated Gradients (Sundararajan et al., 2017); feature 186 occlusion (masking), where $\mu_i = 0$ and $\delta_i = 0$, effectively 187 removing or replacing the feature, with RISE (Randomized Input Sampling for Explanation) (Petsiuk et al., 2018) apply-189 ing random masks to generate attribution maps; baselines, 190 where $\mu_i = 0$ and $\delta_i = b_i$ (a baseline value), providing 191 a reference point for comparison, as used in DeepLIFT (Shrikumar et al., 2017) with the concept of a reference input; and custom perturbations, which involve any combination of μ_i and δ_i tailored to specific requirements. The 195 perturbed input vector is then expressed as: 196

$$\mathbf{x}' = [x'_1, x'_2, \dots, x'_n]^{\top}$$

Searching the entire perturbation space to find the maximum input change with minimal output change is computationally infeasible for high-dimensional inputs. Instead, we formulate this as an optimization problem:

$$\begin{array}{ll} \underset{\mathbf{x}'}{\text{maximize}} & \|\mathbf{x}' - \mathbf{x}\| \\ \text{subject to} & |f(\mathbf{x}') - f(\mathbf{x})| \leq \xi \end{array}$$
(4)

where ξ is a small threshold ensuring the output change is minimal.

210 While the optimization problem aims to maximize the input 211 change $\|\mathbf{x}' - \mathbf{x}\|$ under the constraint of minimal output 212 change, simply using the norm $\|\mathbf{x}' - \mathbf{x}\|$ as the objective 213 function may not yield satisfactory results. This approach 214 treats all input changes equally without considering the 215 informational content or dependencies between features. It 216 may overlook important structural information and fail to 217 capture the complexity of feature interactions within the 218 data. 219

To address this limitation, we adopt the mutual information approach. Considering the dataset X with samples $\mathbf{x} \sim X$, we aim to optimize \mathbf{x}' such that the resulting dataset X'contains as little information as possible about the original dataset X, while ensuring that the classifier's predictions remain unchanged after perturbation. This reduction in shared information is quantified by the mutual information Bottleneck (IB) (Alemi et al., 2016) principle, which provides a theoretical framework for balancing input compression with output preservation. And the objective is defined as:

$$\mathcal{L}_{\rm IB} = I(X; X') - \beta I(X'; Y), \tag{5}$$

where I(X'; Y) is the mutual information between X' and the output Y, ensuring that X' preserves information relevant for predicting Y. And $\beta \ge 0$ is a trade-off parameter controlling the balance between input compression and output preservation.

3.2.2. PERTURBING DATA WITH AN SDE

However, directly computing mutual information I(X; X')in high-dimensional data is intractable due to computational complexity (Schulz et al., 2020; Zhang et al., 2021). To overcome this challenge, we introduce SDEs to define continuous perturbation spaces. By modeling the perturbation process as a continuous transformation governed by SDEs, we can compute the mutual information changes in a continuous-time manner.

When the perturbation levels become infinitesimally small and densely packed, the cumulative effect leads to a continuous transformation of the input data. In this scenario, the noise perturbation procedure becomes a continuous-time stochastic process. To represent such a stochastic process concisely, we turn to SDEs. In general, an SDE has the following form:

$$dX_t = \mu(t) dt + \sigma(t) dW_t, \tag{6}$$

where X_t represents the perturbed input at time t; $\mu(t)$ is the *drift term* capturing the deterministic component of the perturbation; $\sigma(t)$ is the *diffusion coefficient* controlling the magnitude of the stochastic perturbations; and dW_t is the differential of a Wiener process representing the random fluctuations added to the system.

3.2.3. THE TIME DERIVATIVE OF MUTUAL INFORMATION

By integrating this SDE over time, we generate a continuous path of perturbed inputs X_t . In the following, we will demonstrate how mathematical analyses of SDEs, such as the Fokker-Planck equation, allow us to track the evolution of mutual information over time across the entire perturbation space and compute the exact mutual information
through the integration of Fisher divergence.

Theorem 3.1. Let $dy_t = \mu(t) dt + \sigma(t) dW_t$ for $t \ge 0$ and $y_0 = x$. Denote by $p_t(\mathbf{y})$ and $q_t(\mathbf{y})$ the densities of \mathbf{y} when the initial distribution is $p(\mathbf{x})$ or $q(\mathbf{x})$, respectively. Assume that $p_t(\mathbf{y})$ and $q_t(\mathbf{y})$ are smooth and sufficiently decaying, such that their logarithms grow at most polynomially in t. Then we have:

$$\frac{d}{dt}D_{\rm KL}(p_t||q_t) = -\frac{1}{2}\sigma(t)^2 D_F(p_t||q_t),$$
(7)

where D_{KL} denotes the Kullback–Leibler divergence and D_F denotes the Fisher divergence.

Proof. To simplify notation and improve readability, explicit references to variables (e.g., \mathbf{x} , \mathbf{y}) and integration measures (e.g., $d\mathbf{y}$) are omitted throughout the proof whenever their omission does not cause ambiguity. The proof proceeds as follows.

By applying the Lemma 1 in (Lyu, 2012), the Fisher divergence can be expressed as:

$$D_F(p_t || q_t) = \int p_t (||\nabla \log p_t||^2 + ||\nabla \log q_t||^2 + 2\Delta \log q_t).$$
(8)

Further simplifications lead to:

230 231

232

233 234

235

236

237

238

239 240

241

246

247 248 249

251 252

253

254

255

261

263

264

265 266

268

269

270 271 272

274

$$D_F(p_t \| q_t) = \int p_t \left(\|\nabla \log p_t\|^2 + \frac{\Delta q_t}{q_t} + \Delta \log q_t \right).$$
(9)

Expanding the Time Derivative of $D_{\text{KL}}(p_t || q_t)$:

We then begin by expanding the time derivative of the KL divergence:

$$\frac{d}{dt}D_{\mathrm{KL}}(p_t||q_t) = \int \frac{\partial p_t}{\partial t} \log \frac{p_t}{q_t} + \int \frac{\partial p_t}{\partial t} - \int \frac{\partial p_t}{\partial t} \log q_t.$$
 (10)

Elimination of the Second Term:

The second term vanishes because the integral of p_t over the entire space is constant (due to normalization):

$$\int \frac{\partial p_t}{\partial t} = \frac{\partial}{\partial t} \int p_t = \frac{\partial}{\partial t} (1) = 0.$$
(11)

Thus, we have:

$$\frac{d}{dt}D_{\mathrm{KL}}(p_t||q_t) = \int \frac{\partial p_t}{\partial t} \log \frac{p_t}{q_t} - \int \frac{\partial p_t}{\partial t} \log q_t. \quad (12)$$

Using Fokker–Planck equation:

$$\frac{\partial p_t}{\partial t} = -\nabla \cdot (\mu(t)p_t) + \frac{1}{2}\sigma(t)^2 \Delta p_t, \qquad (13)$$

we decompose $\frac{d}{dt}D_{\text{KL}}(p_t||q_t)$ into two main terms:

$$\frac{d}{dt}D_{\rm KL}(p_t||q_t) = I_1 + \frac{1}{2}\sigma(t)^2 I_2,$$
(14)

where the drift term I_1 and diffusion term I_2 are defined as:

$$I_{1} = -\mu(t) \int \nabla p_{t} \log p_{t} + \mu(t) \int \nabla p_{t} \log q_{t} - \int p_{t} \frac{\partial}{\partial t} \log q_{t}, \quad (15)$$

$$I_{2} = \int \Delta p_{t} \log p_{t} - \int \Delta p_{t} \log q_{t} - \int \Delta p_{t} \log q_{t}.$$
 (16)

Simplifying *I*₁:

By integration by parts, $\int \nabla p_t \log p_t = 0$, so:

$$I_1 = -\mu(t) \int p_t \frac{\nabla q_t}{q_t} - \int p_t \frac{d}{dt} \log q_t.$$
 (17)

Using the chain rule and Fokker–Planck equation:

$$\frac{d}{dt}\log q_t = -\mu(t)\frac{\nabla q_t}{q_t},\tag{18}$$

we find:

$$I_{1} = -\mu(t) \int p_{t} \frac{\nabla q_{t}}{q_{t}} + \mu(t) \int p_{t} \frac{\nabla q_{t}}{q_{t}} = 0.$$
(19)

Simplifying *I*₂: Using integration by parts:

$$\int \Delta p_t \log p_t = -\int p_t \|\nabla \log p_t\|^2, \qquad (20)$$

$$\int \Delta p_t \log q_t = \int p_t \Delta \log q_t.$$
⁽²¹⁾

Thus:

$$I_2 = -\int p_t \|\nabla \log p_t\|^2 - \int p_t \Delta \log q_t - \int p_t \frac{\Delta q_t}{q_t}.$$
(22)

Using the definition of $D_F(p_t || q_t)$:

$$I_2 = -D_F(p_t || q_t).$$
(23)

Combining Results:

Since $I_1 = 0$, we have:

$$\frac{d}{dt}D_{\rm KL}(p_t||q_t) = -\frac{\sigma(t)^2}{2}D_F(p_t||q_t),$$
(24)

which completes the proof.

311 312

313

314

315 316 317

318

319 320

321

322 323

324 325

326

327

328

329

Lemma 3.2 (Time Derivative of Mutual Information). Under the same assumptions as Theorem 3.1, let X_t satisfy

$$dX_t = \mu(t) dt + \sigma(t) dW_t, \quad X_0 \sim p(\mathbf{x}).$$

Then the mutual information between X_t and X_0 satisfies

$$\frac{d}{dt}I(X_t;X_0) = -\frac{1}{2}\sigma^2(t)\mathbb{E}[\|s_t(X_t) - s_t(X_t \mid X_0)\|^2],$$
(25)

where $s_t(\cdot)$ and $s_t(\cdot \mid X_0)$ are the score functions of the marginal and conditional distributions, respectively.

Proof. By definition,

$$I(X_t; X_0) = \mathbb{E}_{p(x_0)} \Big[D_{\mathrm{KL}} \big(p_t(\cdot \mid x_0) \, \| \, p_t(\cdot) \big) \Big].$$
 (26)

Under sufficient smoothness and decay conditions, differentiation under the integral sign is valid, giving

$$\frac{d}{dt}I(X_t;X_0) = \mathbb{E}_{p(x_0)}\left[\frac{d}{dt}D_{\mathrm{KL}}\left(p_t(\cdot \mid x_0) \parallel p_t(\cdot)\right)\right].$$
(27)

By Theorem 3.1,

$$\frac{d}{dt} D_{\mathrm{KL}} \left(p_t(\cdot \mid x_0) \parallel p_t(\cdot) \right) = -\frac{1}{2} \sigma^2(t)$$
$$D_F \left(p_t(\cdot \mid x_0) \parallel p_t(\cdot) \right). \quad (28)$$

Here, the Fisher divergence can be written as

$$D_F(p_t(\cdot \mid x_0) \parallel p_t(\cdot)) = \mathbb{E}[\|s_t(X_t \mid X_0) - s_t(X_t)\|^2],$$
(29)

where the score functions $s_t(x) = \nabla_x \log p_t(x)$ and $s_t(x \mid$ x_0 = $\nabla_x \log p_t(x \mid x_0)$ represent the gradients of the log-probability densities for the marginal and conditional distributions, respectively.

Taking the expectation over x_0 thus yields

$$\frac{d}{dt}I(X_t;X_0) = -\frac{1}{2}\sigma^2(t) \\ \mathbb{E}[\|s_t(X_t) - s_t(X_t \mid X_0)\|^2], \quad (30)$$

which completes the proof.

3.2.4. OPTIMIZATION OBJECTIVE WITH DIFFUSION MODELS

From the time derivative of mutual information:

$$\frac{d}{dt}I(X_t;X_0) = -\frac{1}{2}\sigma^2(X_t,t)\mathbb{E}\left[\|s_t(X_t) - s_t(X_t \mid X_0)\|^2\right],$$
(31)

we note that $\sigma^2(X_t, t) \ge 0$ and the expected squared norm is non-negative, implying $I(X_t; X_0)$ decreases monotonically with t. As t increases, more noise is introduced into X_t , reducing its mutual information with the original input X_0 .

To leverage this property, we define a mutual information loss function proportional to -t:

$$L_{\rm MI} = -t. \tag{32}$$

Our objective is to minimize mutual information while preserving the model's predictive performance. Therefore, we combine $L_{\rm MI}$ with a task-specific loss function, such as the cross-entropy loss L_{CE} for classification tasks:

$$L = L_{\rm MI} + L_{\rm CE}.$$
 (33)

However, training a neural network using this loss function necessitates computing X_t by integrating the stochastic differential equation (SDE):

$$X_t = X_0 + \int_0^t \mu(s) \, ds + \int_0^t \sigma(s) \, dW_s, \qquad (34)$$

where $\mu(s)$ is the drift term, $\sigma(s)$ is the diffusion coefficient, and W_s represents a Wiener process. Evaluating this integral at each training iteration is computationally infeasible, especially for high-dimensional data.

To address this, we refer to the Variance Exploding (VE) Process and the Variance Preserving (VP) Process (Song et al., 2020), which provide analytical expressions for X_t in terms of X_0 .

The VE process is defined by the following SDE:

$$dX_t = \sqrt{\frac{d[\sigma^2(t)]}{dt}} \, dW_t. \tag{35}$$

In practice, we choose the variance function $\sigma(t)$ as:

$$\sigma(t) = \sigma_{\min} \left(\frac{\sigma_{\max}}{\sigma_{\min}}\right)^t, \qquad (36)$$

where $\sigma_{\min} = 0.01(Songet \ al., \ 2020)$ and σ_{\max} is set based on the dataset to ensure X_1 is approximately independent of X_0 . Using this, we can express X_t directly:

$$X_t = X_0 + \sigma(t)\epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}). \tag{37}$$

The VP process is defined by:

$$dX_t = -\frac{1}{2}\beta(t)X_t dt + \sqrt{\beta(t)} dW_t.$$
 (38)

We typically define $\beta(t)$ as:

$$\beta(t) = \beta_{\min} + t(\beta_{\max} - \beta_{\min}), \qquad (39)$$

with $\beta_{\min} = 0.1$ and $\beta_{\max} = 20$ (Song et al., 2020). Then X_t can be expressed as:

$$X_t = X_0 e^{-\frac{1}{2} \int_0^t \beta(s) ds} + \sqrt{1 - e^{-\int_0^t \beta(s) ds}} \epsilon, \qquad (40)$$

330 where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. We can explicitly compute the inte-331 gral $\int_0^t \beta(s) ds$ due to the linear form of $\beta(s)$:

$$\int_0^t \beta(s)ds = \beta_{\min}t + \frac{1}{2}(\beta_{\max} - \beta_{\min})t^2.$$
(41)

3.2.5. COMPUTING THE FISHER DIVERGENCE

333

334

335

336

337

364 365

369

370 371

372

373

374 375 376

338 Computing the Fisher divergence involves evaluating the 339 expected squared difference between the two score func-340 tions $s_t(X_t)$ and $s_t(X_t \mid X_0)$. While the conditional 341 score function $s_t(X_t \mid X_0)$ can be computed analytically 342 due to the Gaussian nature of $p_t(X_t \mid X_0)$, obtaining the 343 marginal score function $s_t(X_t)$ is more challenging because 344 the marginal distribution $p_t(X_t)$ is generally unknown and 345 complex.

To approximate $s_t(X_t)$ for the Variance Preserving (VP) Process, we employ denoising score matching (Vincent, 2011), training a neural network $s_{\theta}(X_t, \sigma)$ to estimate the score function of the perturbed data distribution at different noise levels σ . Therefore, using the trained $s_{\theta}(X_t, \sigma)$ and the analytically tractable $s_t(X_t \mid X_0)$, we can compute the Fisher divergence between them.

354 For the Variance Preserving (VP) Process, we leverage the 355 relationships derived in Denoising Diffusion Probabilistic 356 Models (DDPM) (Ho et al., 2020), which is the discrete-357 time formulation of the VP process. In DDPM, the forward 358 diffusion process gradually adds Gaussian noise to the data 359 over T timesteps, resulting in noisy samples X_t . These 360 relationships allow us to express X_t and X_0 in terms of 361 each other and the noise components. 362

The forward diffusion process in DDPM is defined as:

$$X_t = \sqrt{\bar{\alpha}_t} X_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}), \tag{42}$$

where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$, and the relationship between the noise scheduling parameters α_t and β_t is given by:

$$\alpha_t = 1 - \beta_t. \tag{43}$$

The conditional distribution $p_t(X_t \mid X_0)$ is Gaussian with mean $\sqrt{\overline{\alpha}_t} X_0$ and variance $(1 - \overline{\alpha}_t) \mathbf{I}$. Therefore, the conditional score function can be computed analytically:

$$s_t(X_t \mid X_0) = \nabla_{X_t} \log p_t(X_t \mid X_0) = -\frac{X_t - \sqrt{\bar{\alpha}_t} X_0}{1 - \bar{\alpha}_t}.$$
(44)

To approximate the marginal score function $s_t(X_t) = \nabla_{X_t} \log p_t(X_t)$, we train a neural network $\epsilon_{\theta}(X_t, t)$ to predict the noise ϵ given X_t , as proposed in DDPM. The marginal score function can then be approximated as:

$$s_t(X_t) \approx -\frac{1}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(X_t, t).$$
(45)

By substituting X_t from Eq. (42) into Eq. (44), we simplify the conditional score function:

$$s_t(X_t \mid X_0) = -\frac{\sqrt{1 - \bar{\alpha}_t} \epsilon}{1 - \bar{\alpha}_t} = -\frac{\epsilon}{\sqrt{1 - \bar{\alpha}_t}}.$$
 (46)

With both $s_t(X_t)$ and $s_t(X_t \mid X_0)$ expressed in terms of ϵ and $\epsilon_{\theta}(X_t, t)$, then we have:

$$\|s_t(X_t) - s_t(X_t \mid X_0)\|^2 \approx \frac{1}{1 - \bar{\alpha}_t} \|\epsilon_\theta(X_t, t) - \epsilon\|^2.$$
(47)

3.2.6. Computing Mutual Information via Time Integration

Based on our optimization framework, for each pixel value x_i , we can obtain a corresponding t_i that represents the distance in the forward diffusion process. In the Variance Preserving (VP) process, this t_i can be expressed in terms of the noise level σ_i .

For each pixel x_i , the mutual information $I(x_{i,t_i}; x_{i,0})$ can be similarly computed by integrating the per-pixel contribution of the time derivative:

$$I(x_{i,t_i}; x_{i,0}) = \int_0^{t_i} -\frac{1}{2}\sigma^2(t)\mathbb{E}\bigg[(s_t(x_{i,t}) - s_t(x_{i,t} \mid x_{i,0})^2\bigg]dt.$$
 (48)

Here, $s_t(x_{i,t})$ and $s_t(x_{i,t} | x_{i,0})$ are the score functions for the marginal and conditional distributions of pixel x_i , respectively.

In practice, we perform numerical integration over discrete time steps t_k to compute the mutual information:

$$I(x_{i,t_i}; x_{i,0}) \approx -\sum_{k=0}^{K} \frac{\beta(t_k)}{2(1 - \bar{\alpha}_{t_k})} \left(\epsilon_{\theta}^{\text{VP}}(x_{i,t_k}, t_k) - \epsilon_k\right)^2 \Delta t. \quad (49)$$

for the VP process, and

$$I(x_{i,t_i}; x_{i,0}) \approx -\sum_{k=0}^{K} \frac{1}{2} \left(\frac{d\sigma_{t_k}^2}{dt} \right) \left(s_{\theta}^{\text{VE}}(x_{i,t_k}, t_k) + \frac{x_{i,t_k} - x_{i,0}}{\sigma_{t_k}^2} \right)^2 \Delta t.$$
(50)

for the VE process, where Δt is the time step size, and K is the total number of time steps.

4. Experiments

In this section, we systematically evaluate our method by comparing it against several benchmark attribution approaches. For baseline methods, we selected IBA (Schulz 385 et al., 2020), InputIBA (Zhang et al., 2021), Integrated Gra-386 dients (Sundararajan et al., 2017), Guided-BP (Springenberg 387 et al., 2014), DeepLIFT (Shrikumar et al., 2017), and HSIC 388 (Novello et al., 2022a). We conduct both qualitative and 389 quantitative analyses, with qualitative comparisons provided 390 in the appendix. We begin with a Parameter Randomization Sanity Check experiment to ensure that our attribution 392 method is sensitive to the learned model parameters rather than arbitrary network structures. For quantitative evaluation, we report results based on Insertion and Deletion 395 experiments, and the Segmentation-based Ratio metric. The 396 experimental setup are included in the appendix. 397

4.1. Parameter Randomization Sanity Check

The Parameter Randomization Sanity Check (Adebayo et al., 400 2018) aims to assess whether attribution methods reliably 401 explain model behavior by analyzing their sensitivity to 402 parameter changes. This evaluation is performed using 403 the Structural Similarity Index Metric (SSIM (Wang et al., 404 2004)). A lower SSIM value between the attribution map 405 of the original model and that of a randomized model in-406 dicates that the method is sensitive to parameter changes, 407 effectively capturing key features influencing the model's 408 decisions. Our experimental results demonstrate consis-409 tently low SSIM values across all layers where parameter 410 randomization begins, highlighting the robustness of our 411 approach in identifying essential features. We show the 412 figure of SSIM in the Appendix. 413

415 **4.2. Insertion and Deletion AUCs**

414

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

The Deletion and Insertion methods (Zhang et al., 2021) evaluate attribution performance by progressively removing or adding pixels based on importance scores, with predictions monitored at each step to compute the Area Under the Curve (AUC). A larger difference between Insertion and Deletion AUCs (DAUC) reflects better attribution quality. As shown in Table 1, our method achieves the highest DAUC scores, outperforming baseline methods.

Table 1. Insertion and deletion experiments. The results demonstrate that our method achieves the best performance, outperforming all baselines.

Method	DAUCs
IBA	0.771 ± 0.0
InputIBA	0.833 ± 0.0
Integrated Gradients	0.153 ± 0.0
Guided-BP	0.151 ± 0.00
Deep-Lift	0.157 ± 0.00
Ours	0.836 ± 0.00
HSIC	0.133 ± 0.00

4.3. Quantitative Visual Evaluation via Effective Heat Ratios (EHR)

To further validate the effectiveness of our attribution method, we conduct a quantitative visual evaluation using Effective Heat Ratios (EHR). This metric assesses the concentration of attribution scores within meaningful regions, providing a structured way to compare feature importance across different methods. We perform this evaluation on the FSS-1000 dataset (Li et al., 2020), leveraging its highquality segmentation annotations to establish ground truth regions of interest. The EHR metric quantifies the proportion of attribution scores assigned to these annotated regions, where a higher EHR indicates that an attribution method successfully localizes important features while minimizing noise in less relevant areas.

By comparing our approach with baseline attribution methods, the results in Table 2 demonstrate that our method achieves the highest Effective Heat Ratio (EHR), indicating its superior ability to focus attributions on semantically meaningful regions.

Table 2. EHR experiment results. The results demonstrate that our method achieves the highest Effective Heat Ratio (EHR), significantly outperforming all baselines. InputIBA ranks second, while other methods exhibit substantially lower EHR values.

Method	EHR
IBA	0.355 ± 0.004
InputIBA	0.466 ± 0.005
Integrated Gradients	0.160 ± 0.003
Guided-BP	0.273 ± 0.007
Deep-Lift	0.155 ± 0.008
Ours	$\textbf{0.587} \pm 0.006$
HSIC	0.121 ± 0.003

5. Conclusion

In this work, we introduced a novel perturbation-based feature attribution method that leverages SDEs to explore the input space in a continuous and data-adaptive manner. By formulating the process as an optimization problem and directly linking Fisher divergence to the time derivative of mutual information, our approach provides a principled theoretical framework for quantifying feature importance. Moreover, integrating the Information Bottleneck principle ensures that we identify only the most informative features without sacrificing model performance. Our empirical findings validate that this method yields more accurate and robust attributions compared to existing perturbation-based strategies, especially in high-dimensional scenarios. Moving forward, we plan to investigate the efficacy of alternative diffusion processes for even more fine-grained explanations of model behavior.

440 **References**

441

442

443

444

445

446

447

448

449

464

- Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim, B. Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018.
- Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep variational information bottleneck. *arXiv preprint arXiv:1612.00410*, 2016.
- Bai, X., Wang, X., Liu, X., Liu, Q., Song, J., Sebe, N., and Kim, B. Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. *Pattern Recognition*, 120:108102, 2021.
- Boopathy, A., Liu, S., Zhang, G., Liu, C., Chen, P.-Y.,
 Chang, S., and Daniel, L. Proper network interpretability
 helps adversarial robustness in classification. In *International Conference on Machine Learning*, pp. 1014–1023.
 PMLR, 2020.
- 461 Chaddad, A., Peng, J., Xu, J., and Bouridane, A. Survey of
 462 explainable ai techniques in healthcare. *Sensors*, 23(2):
 463 634, 2023.
- 465 Chen, R., Zhang, H., Liang, S., Li, J., and Cao, X. Less is
 466 more: Fewer interpretable region via submodular subset
 467 selection. In *The Twelfth International Conference on*468 *Learning Representations*, 2024.
- 470 Covert, I., Lundberg, S., and Lee, S.-I. Explaining by remov471 ing: A unified framework for model explanation. *Journal*472 of Machine Learning Research, 22(209):1–90, 2021.
- Fel, T. and Vigouroux, D. Representativity and consistency measures for deep neural network explanations. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2022.
- Fel, T., Cadène, R., Chalvidal, M., Cord, M., Vigouroux,
 D., and Serre, T. Look at the variance! efficient blackbox explanations with sobol-based sensitivity analysis.
 Advances in neural information processing systems, 34: 26005–26014, 2021.
- Fel, T., Ducoffe, M., Vigouroux, D., Cadène, R., Capelle, M., Nicodème, C., and Serre, T. Don't lie to me! robust and efficient explainability with verified perturbation analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16153– 16163, 2023.
- Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. *Advances in neural information process-ing systems*, 33:6840–6851, 2020.

- Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A benchmark for interpretability methods in deep neural networks. *Advances in neural information processing systems*, 32, 2019.
- Hsieh, C.-Y., Yeh, C.-K., Liu, X., Ravikumar, P., Kim, S., Kumar, S., and Hsieh, C.-J. Evaluations and methods for explanation through robustness analysis. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2021.
- Ignatiev, A., Narodytska, N., and Marques-Silva, J. Abduction-based explanations for machine learning models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 1511–1519, 2019.
- Ivanovs, M., Kadikis, R., and Ozols, K. Perturbation-based methods for explaining deep neural networks: A survey. *Pattern Recognition Letters*, 150:228–234, 2021.
- Jethani, N., Sudarshan, M., Covert, I. C., Lee, S.-I., and Ranganath, R. Fastshap: Real-time shapley value estimation. In *International conference on learning representations*, 2021.
- Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N., Araya, C., Yan, S., and Reblitz-Richardson, O. Captum: A unified and generic model interpretability library for pytorch, 2020.
- Li, X., Wei, T., Chen, Y. P., Tai, Y.-W., and Tang, C.-K. Fss-1000: A 1000-class dataset for few-shot segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2869–2878, 2020.
- Lundberg, S. M. and Lee, S.-I. A unified approach to interpreting model predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems 30*, pp. 4765–4774. Curran Associates, Inc., 2017.
- Lyu, S. Interpretation and generalization of score matching. arXiv preprint arXiv:1205.2629, 2012.
- Novello, P., Fel, T., and Vigouroux, D. Making sense of dependence: Efficient black-box explanations using dependence measure. Advances in Neural Information Processing Systems, 35:4344–4357, 2022a.
- Novello, P., Fel, T., and Vigouroux, D. Making sense of dependence: Efficient black-box explanations using dependence measure. *Advances in Neural Information Processing Systems*, 35:4344–4357, 2022b.
- Pan, D., Li, X., and Zhu, D. Explaining deep neural network models with adversarial gradient integration. In *Thirtieth*

495 International Joint Conference on Artificial Intelligence 496 (IJCAI), 2021.

497

529

533

534

535

537

- 498 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., 499 Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, 500 Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, 501 B., Fang, L., Bai, J., and Chintala, S. Pytorch: An 502 imperative style, high-performance deep learning library. 503 In Advances in Neural Information Processing Systems 504 32, pp. 8024-8035. Curran Associates, Inc., 2019. 505 URL http://papers.neurips.cc/paper/ 506 9015-pytorch-an-imperative-style-high-performance-deep-learning-library. Smilkov, D., Thorat, N., Kim, B., Viegas, F., and Watten-507 pdf. 508 509
- Petsiuk, V., Das, A., and Saenko, K. Rise: Randomized in-510 put sampling for explanation of black-box models. arXiv 511 preprint arXiv:1806.07421, 2018. 512
- 513 Ribeiro, M. T., Singh, S., and Guestrin, C. " why should 514 i trust you?" explaining the predictions of any classifier. 515 In Proceedings of the 22nd ACM SIGKDD international 516 conference on knowledge discovery and data mining, pp. 517 1135-1144, 2016. 518
- 519 Saraswat, D., Bhattacharya, P., Verma, A., Prasad, V. K., 520 Tanwar, S., Sharma, G., Bokoro, P. N., and Sharma, R. 521 Explainable ai for healthcare 5.0: opportunities and chal-522 lenges. IEEE Access, 10:84486-84517, 2022. 523
- 524 Schulz, K., Sixt, L., Tombari, F., and Landgraf, T. Restrict-525 ing the flow: Information bottlenecks for attribution. In 526 International Conference on Learning Representations, 527 2020. URL https://openreview.net/forum? 528 id=S1xWh1rYwB.
- Scott, M., Su-In, L., et al. A unified approach to interpret-530 ing model predictions. Advances in neural information 531 processing systems, 30:4765-4774, 2017. 532
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. 536 In Proceedings of the IEEE international conference on computer vision, pp. 618-626, 2017a.
- 539 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., 540 Parikh, D., and Batra, D. Grad-cam: Visual explana-541 tions from deep networks via gradient-based localization. 542 In Proceedings of the IEEE international conference on 543 computer vision, pp. 618-626, 2017b. 544
- 545 Shrikumar, A., Greenside, P., and Kundaje, A. Learning 546 important features through propagating activation differ-547 ences. In International conference on machine learning, 548 pp. 3145-3153. PMLR, 2017. 549

- Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- Simonyan, K., Vedaldi, A., and Zisserman, A. Visualising image classification models and saliency maps. Deep Inside Convolutional Networks, 2, 2014.
- Slack, D., Hilgard, A., Singh, S., and Lakkaraju, H. Reliable post hoc explanations: Modeling uncertainty in explainability. Advances in neural information processing systems, 34:9391-9404, 2021.
- berg, M. Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.
- Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.
- Soundararajan, R. and Shenbagaraman, V. Enhancing financial decision-making through explainable ai and blockchain integration: Improving transparency and trust in predictive models. Educational Administration: Theory and Practice, 30(4):9341-9351, 2024.
- Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.
- Sturmfels, P., Lundberg, S., and Lee, S.-I. Visualizing the impact of feature attribution baselines. Distill, 5(1):e22, 2020.
- Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. In International conference on machine learning, pp. 3319-3328. PMLR, 2017.
- Tsai, C.-P., Yeh, C.-K., and Ravikumar, P. Faith-shap: The faithful shapley interaction index. Journal of Machine Learning Research, 24(94):1-42, 2023.
- Van der Velden, B. H., Kuijf, H. J., Gilhuijs, K. G., and Viergever, M. A. Explainable artificial intelligence (xai) in deep learning-based medical image analysis. Medical Image Analysis, 79:102470, 2022.
- Vincent, P. A connection between score matching and denoising autoencoders. Neural computation, 23(7):1661-1674, 2011.
- Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600-612, 2004.

550 551 552 553 554	Zhang, Y., Khakzar, A., Li, Y., Farshad, A., Kim, S. T., and Navab, N. Fine-grained neural network explanation by identifying input features with predictive information. <i>Advances in Neural Information Processing Systems</i> , 34: 20040–20051, 2021.
555 556 557 558 559	Zhou, Y., Booth, S., Ribeiro, M. T., and Shah, J. Do fea- ture attribution methods correctly attribute features? In <i>Proceedings of the AAAI Conference on Artificial Intelli-</i> <i>gence</i> , volume 36, pp. 9623–9633, 2022.
560 561 562 563	
564 565 566 567	
568 569 570 571	
572 573 574 575	
576 577 578 579	
580 581 582 583	
585 586 587	
588 589 590 591	
592 593 594 595	
596 597 598 599	
600 601 602	

605 A. Experimental Setup

613

616

617

618 619 620

621 622

623

624 625

626 627

628 629 630

631 632

633

634 635

636

637 638 639

640

We compared our method against several widely used baselines, including IBA, InputIBA, Integrated Gradients, Guided-BP, DeepLIFT, and HSIC. Our method is implemented using the Variance Preserving (VP) process. And the three methods (Guided-BP, Integrated Gradients, DeepLIFT) were implemented with Captum (Kokhlikyan et al., 2020) in PyTorch (Paszke et al., 2019), relying on the default parameter settings. For IBA, InputIBA, and HSIC, we ran the official code releases without altering their recommended configurations. All evaluations were conducted on a VGG16 (Simonyan & Zisserman, 2014) classification model.

B. the Figure of Parameter Randomization Sanity Check

Figure 1. Parameter Randomization Sanity Check results. Our results show that SSIM values decrease sharply as randomization moves to earlier layers, demonstrating that our method effectively responds to parameter modifications and robustly identifies essential features.

C. Qualitative Comparision

The qualitative results in Figure 2 reveal significant variations in the clarity and interpretability of attribution maps generated by different methods. IBA and HSIC tend to produce smooth but overly blurred visualizations, largely due to interpolation effects that obscure fine-grained details and diminish the sharpness of object boundaries. While such methods maintain a degree of consistency in attribution, they fail to capture precise feature importance at a granular level, limiting their interpretability in complex visual tasks.

In contrast, DeepSHAP and Integrated Gradients yield more detailed and fine-grained attributions, which can be beneficial
 for analyzing subtle model behaviors. However, their attribution maps often appear cluttered and chaotic, with dispersed
 importance scores that do not always align with semantically meaningful structures. This lack of spatial coherence reduces
 their reliability in pinpointing the most influential features driving the model's predictions.

InputIBA enhances IBA's attributions by increasing the sharpness of highlighted regions. However, it still struggles with maintaining well-defined object edges, leading to some leakage of importance scores into background areas. This dilution of feature importance can hinder precise interpretation, especially in cases where separating foreground from background is crucial.

Guided-BP stands out for its ability to generate highly detailed attributions with sharp object boundaries and intricate textures. The visual clarity of these maps makes them aesthetically appealing, but they also suffer from a major drawback: a tendency to amplify high-frequency features, which often leads to the misallocation of importance scores to irrelevant background regions. This overemphasis on fine structures can introduce misleading interpretations, as it may attribute 660 significance to pixels that do not directly influence the model's decision.

In contrast, our method consistently produces clear and structured attribution maps that accurately delineate object contours while avoiding unnecessary noise in the background. By balancing fine-grained feature representation with spatial coherence, our approach effectively isolates the most relevant features, providing a sharper and more intuitive visualization of the model's decision-making process. The enhanced focus and reduced attribution noise make our method particularly advantageous for applications where precise feature localization is essential.

Figure 2. Qualitative comparison of attribution maps generated by different methods. IBA and HSIC produce smooth but overly blurred attributions, failing to capture fine-grained details. Integrated Gradients and DeepLIFT generate highly detailed attributions but appear chaotic, lacking clear spatial coherence. Guided-BP enhances edge sharpness but often misallocates importance to irrelevant background regions. InputIBA improves upon IBA but still struggles with clearly delineating object boundaries. In contrast, our method produces well-defined and focused attributions, accurately highlighting the most relevant features while minimizing noise, demonstrating superior interpretability and robustness.