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Abstract
Linear attention mechanisms deliver significant advantages for Large Language
Models (LLMs) by providing linear computational complexity, enabling efficient
processing of ultra-long sequences (e.g., 1M context). However, existing Sequence
Parallelism (SP) methods, essential for distributing these workloads across devices,
become the primary bottleneck due to substantial communication overhead. In
this paper, we introduce ZeCO (Zero Communication Overhead) sequence paral-
lelism for linear attention models, a new SP method designed to overcome these
limitations and achieve end-to-end near-linear scalability for long sequence train-
ing. For example, training a model with a 1M sequence length across 64 devices
using ZeCO takes roughly the same time as training with an 16k sequence on a
single device. At the heart of ZeCO lies All-Scan, a new collective communication
primitive. All-Scan provides each SP rank with precisely the initial operator state
it requires while maintaining a minimal communication footprint, effectively elimi-
nating communication overhead. Theoretically, we prove the optimaity of ZeCO,
showing that it introduces only negligible time and space overhead. Empirically,
we compare the communication costs of different sequence parallelism strategies
and demonstrate that All-Scan achieves the fastest communication in SP scenarios.
Specifically, on 256 devices with an 8M sequence length, ZeCO achieves a 60%
speedup compared to the current state-of-the-art (SOTA) SP method. We believe
ZeCO establishes a clear path toward efficiently training next-generation LLMs on
previously intractable sequence lengths.

1 Introduction
Long-context capabilities are becoming increasingly critical for Large Language Models (LLMs),
powering advancements in document-level reasoning, multimodal understanding, and retrieval-
augmented generation where extensive context is paramount [1, 2, 3, 4, 5, 6]. The trajectory from
models like GPT-3.5 (4K context) [7] to Gemini 1.5 Pro [8] (1M context) highlights this trend.
However, pre-training models on such vast sequence lengths presents significant computational and
communication challenges. Standard self-attention mechanisms exhibit quadratic complexity (O(L2))
with respect to sequence length L. Scaling from 4k to 128k tokens, for instance, inflates the attention
FLOPs by over 1000×. The prohibitive computational cost of training on ultra-long sequences
restricts the long-context pretraining to a specialized adaptation phase (i.e., mid-training) [9], rather
than allowing for extensive training with long sequences from scratch [10, 11, 12, 13, 14, 15].
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Figure 1: (Left) ZeCO demonstrates near-linear scaling efficiency when scaling sequence length pro-
portionally with device count, approaching the theoretical upper bound. (Right) ZeCO substantially
outperforms SOTA SP methods across three performance metrics: communication time, runtime extra
cost, and per-GPU throughput. Metrics obtained using 256 GPUs (8M sequences) for communication
/ throughput and 128 GPUs (4M sequences) for runtime extra cost.

Linear attention models [16] offer an algorithmic solution by replacing the O(L2) softmax attention
with operations linear in sequence length, typically O(Ld2) where d is the hidden dimension. The
efficiency is achieved by compressing the Key-Value (KV) cache, which would otherwise grow with
sequence length, into a fixed-size hidden state representation. This method effectively eliminates
the computational bottleneck of quadratic complexity and balances the per-token computation
across the sequence, enabling efficient processing of ultra-long sequences. While linear attention
provides these algorithmic advantages, Sequence Parallelism (SP), essential for distributing such
computationally intensive workloads, paradoxically becomes a bottleneck that impedes efficient
scaling across multiple devices. Existing approaches [17, 18, 19]) are often hampered by issues
such as serial execution dependencies or, more significantly, substantial communication overheads
that scale poorly. Consequently, despite the inherent efficiency of linear attention, the practical
implementation of SP, particularly its communication burden, has become the primary impediment to
achieving high throughput and true scalability for long-context training.

In this paper, we introduce ZeCO, a novel sequence parallelism strategy designed to overcome the
limitations of current methods, particularly for linear attention. ZeCO achieves SOTA scalability
through a fundamental redesign of its communication algorithm and communication-computation
scheduling. At the heart of ZeCO lies All-Scan, a new collective operator executing a pipelined
receive-scan-send pattern across devices. This new communication primitive achieves the theoret-
ically minimal communication volume for SP. Crucially, empirical results confirm that All-Scan
consistently delivers the lowest latency among all existing SP communication techniques. To further
minimize communication overhead, ZeCO intelligently schedules All-Scan to overlap with local
device computation, thereby enabling parallel use of both communication and computation resources.
Moreover, ZeCO meticulously optimizes the auxiliary computations inherent in SP, effectively reduc-
ing their associated I/O and computational overheads to a negligible level. In summary, our main
contributions can be summarized as follows.

1. We introduce ZeCO, a novel sequence parallelism method for linear attention models. ZeCO
reformulates sequence parallelism by leveraging our All-Scan collective communication,
which employs pipelined communication to achieve the theoretically minimum communi-
cation volume. This integrated approach enables efficient overlap of communication and
computation, incurring minimal extra computational and I/O overhead.

2. We provide a comparative time-cost analysis of different sequence parallelism strategies
demonstrates that ZeCO constitutes the minimum required cost, establishing its efficiency.

3. Comprehensive multi-level experiments (collective communication, operator, and model)
demonstrate the significant performance gains of ZeCO. As shown in Figure 1, the All-
Scan collective achieves up to 3.9× communication speedup, the fastest existing sequence
parallelism method, while the ZeCO sequence parallel operator delivers up to 9.3× overall
speedup. At the model level, ZeCO boosts throughput by over 60% and demonstrates
near-linear scalability from 8 to 256 devices, even with context lengths up to 8M tokens.
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2 Background & Related Work
In this section, we firstly provide a brief background on Gated Linear Attention (GLA), a general
linear attention operator that encompasses a family of linear attention mechanisms [20, 21, 22, 23,
24, 25]. Then, we introduce the existing sequence parallelism methods.

We use bold upper-case letters (e.g., Q) to denote matrices, And the same alphabet to represent
rows of a matrix, such that Qt refers to the t-th row of Q. Unless otherwise specified, p denotes the
number of devices, L denotes the sequence length per device, d denotes the hidden dimension, h
denotes the number of attention heads, and C denotes the chunk length.

2.1 Recurrent and Chunk-wise Form of General Linear Attention
The linear attention mechanism uses the kernel trick to remove the softmax computation in full
attention and exchange the calculation order to reduce the attention computational complexity from
quadratic to linear [16, 26]. There are many ways to implement this mechanism. Sevaral works [27,
22, 28] has summarized a unified form of (diagonal decay) linear model. In this paper, we use gated
linear attention (GLA) operator [27], one of the generalization forms of linear models, to demonstrate
our algorithm. The attention state is updated recurrently as:

St = (α⊤
t 1)⊙ St−1 +K⊤

t Vt, Ot = QtSt, (1)

where α⊤
t ∈ (0, 1)dk is decay factor.To enable efficient parallelism during training, the sequence is

partitioned into N chunks of length C, and the recurrence is reformulated in a chunkwise manner.
Let chunk i include tokens from iC to (i+ 1)C − 1, with decay vectors αiC+j . Let S[i] ∈ Rd×d be
the chunk-level hidden state after processing i chunks, i.e., S[i] := SiC . GLA define, Cumulative

decay for the chunk: γ[i] =
∏C

j=1 αiC+j , Token-wise scaling: ΓiC+j =
b(i+1)C

biC+j
, ΛiC+j =

biC+j

biC
,

where bt =
∏t

s=1 αs. The chunk-level GLA state and output are calculated as:

S[i] = (γ⊤
[i]1)⊙ S[i−1] + (K[i] ⊙ Γ[i])

⊤V[i], (2)

The output of each chunk should be computed as:

O[i] = (Q[i] ⊙Λ[i]) · S[i−1]︸ ︷︷ ︸
Ointer

[i]

+
[(
(Q[i] ⊙Λ[i]) · (K[i] ⊙ Γ[i])

⊤)⊙M
]
·V[i]︸ ︷︷ ︸

Ointra
[i]

, (3)

the inter-chunk recurrently updates the global state, while the intra-chunk term handles mask attention
computation on the diagonal.

2.2 Sequence Parallelism for Linear Attention Models
LASP1 [17] adopts a chunkwise parallelization strategy by dividing the input sequence into multiple
contiguous chunks and evenly distributing them across devices. Each device serially computes the
output of each device based on a linear attention formula. For communication, each device receives
the state from the previous block and updates it before passing it to the next device. Although this
avoids redundant communication volume, it enforces a strict serial order to be executed across devices,
causing the total computation time to grow linearly with the number of devices, which severely limits
parallel efficiency and throughput.

LASP2 [18, 19] follows a similar chunkwise computation structure, but replaces the serial state
passing with All-Gather communication. Each device must first collect the local states from all
other devices and subsequently perform an identical scan operation on the same data. This enables
devices to do computation parallelism, but introduces substantial communication overhead. The total
communication volume grows linearly with the number of devices, as each device must collect state
tensors from all others.

2.3 Sequence Parallelism for Full Attention
The sequence parallelism in Megatron-LM [29] (also known as Context Parallelism) and Ring
Attention [30, 31] achieve global synchronization of KV blocks in either an all-at-once or pipelined
manner, based on All Gather and P2P communication respectively, and have been widely adopted [10,
18]. Ulysses [32]distributes the computation of different self-attention heads across devices, which is
easy to implement but incompatible with tensor parallelism (TP) and limited by the number of heads.
Ring Self Attention [33] was the earliest method to propose full attention sequence parallelism, but it
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Figure 2: Illustration of ZeCO. ZeCO highlights its strengths in three dimensions: (1) Parallel
Scalability: achieving efficiency comparable to DP (sub-figure: Algorithm Comparison); (2) Operator-
Level Computation: enabling overlap of communication and local computation for maximal resource
utilization (sub-figure: ZeCO Computation); and (3) Communication Pattern: utilizing a customized
pipelined All-Scan Communication pattern to substantially reduce inter-device synchronization
delays. (sub-figure: All-Scan Communication)

does not leverage the I/O-efficient optimizations of self-attention [34, 35, 36, 37], which limits its
applicability. Nevertheless, sequence parallelism for full attention is fundamentally constrained by
the self-attention algorithm itself: even disregarding communication, the computational cost becomes
prohibitively expensive for ultra-long sequences due to the algorithm’s inherent complexity.

3 Method
3.1 ZeCO Sequence Parallel Methods and Communication Requirements
Let each device be assigned a sequence of length L, which is partitioned into N = L/C. After projec-
tion of input X ∈ RL×d, partitioned into N = L/C, we get non-overlapping chunks Q[n],K[n],G[n]

for n ∈ N . We use Si, i ∈ PL to denote the Global states, and S[n], n ∈ N denote local chunk states
on each device.

Local State Computation. According to Equation (2). Within each device, we sequentially compute
the local states starting from the initial state S[0] = 0:

S[n] =
(
γ⊤
[n]1

)
⊙ S[n−1] + K̃⊤

[n]V[n], for n = 1, . . . , N. (4)

Compared to GLA, we additionally maintain the cumulative decay vector γ̃[n], which saves the total
multiplicative decay from the first to the n-th chunk:

γ̃[n] =

n∏
i=0

γ[i], for n = 1, . . . , N. (5)

At the end of this local recurrence, we obtain a list of local chunk states {S[0],S[1] . . .S[N ]}
Global State Update. The recurrence for the global state is defined as Equation (1). To obtain the
series of global states of the device p, the device p must get the last global state S(p−1)L from device
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Algorithm 1 Forward pass for ZeCO with All-Scan comunication

1: Note: The Highlighted part represents the SP adaptation of GLA Algorithm by ZeCO algorithm,
and the lower cost of the red part represents the lower extra cost of SP.

2: Input: Q,K,∈ RL×dk , V ∈ RL×dv , G = [α1...αL] ∈ RL×dk , chunk size C, num_device P ,
device_rank p ∈ {0, 1, . . . , P − 1}

3: Divide Q,K,G into N = L
C blocks {Q[1]...Q[N ]}, {K[1]...K[N ]}, {G[1]...G[N ]} of size C×dk

each. Divide V into N blocks {V[1]...V[N ]} of size C × dv each.
4: Initialize S = 0 ∈ Rdk×dv , γ̃ = 1 ∈ Rdk on SRAM
5: Write γ̃,S to HBM as γ̃[0],S[0].
6: for n← 0, N do
7: Load K[n],G[n],V[n] from HBM to SRAM.
8: On chip, compute γ[n] ∈ Rdk ,Γ[n] ∈ RC×dk and K̄[n] = K[n] ⊙ Γ[n], γ̃ = γ̃ ⊙ γ[n]

9: Write γ̃ to HBM as γ̃[n].

10: On chip, compute S =
(
γ⊤
[n]1

)
⊙ S+ K̃⊤

[n]V[n].
11: Write S to HBM as S[n].
12: end for
13: In parallel do:
14: parallel stream 1:
15: S(p−1)L, SpL ← All-Scan(S[N], γ̃[N ])
16: parallel stream 2:
17: parfor n← 1, N do
18: Load Q[n],K[n],G[n] ∈ RC×dk from HBM to SRAM.
19: On chip, construct causal mask M ∈ RC×C

20: On chip, compute Λ[n],∈ RC×dk , Q̃[n] = Q[n] ⊙Λ[n], K̄[n] = K[n]/Λ[n]

21: On chip, compute P = (Q̃[n]K̄
⊤
[n])⊙M ∈ RC×C

22: Write P as P[i] to HBM.
23: end parfor
24: stream barrier
25: for n← 1, N do
26: Load Q[n],G[n],V[n],S(p−1)L,S[n], γ̃[n−1],P from HBM to SRAM.
27: On chip, compute Λ[n]

28: On chip, compute Q̃[n] = Q[n] ⊙Λ[n]

29: On chip, compute Ointer
[n] = Q̃[n](S[n−1]+(γ̃⊤

[n-1]1)⊙ S(p−1)L),O
intra = PV[n] ∈ RC×dv

30: On chip, compute O[n] = Ointer +Ointra

31: Store O[n] to HBM.
32: end for
33: return O = {O[1]...O[N ]}, S = {S(p−1)L,S[1]...S[N ],SpL}.

p− 1. Then we can update the global State of the current device by applying:

S(p−1)L+nC = (γ̃⊤
[n]1)⊙ S(p−1)L + S[n]. (6)

We give a proof of the above global update computation in Appendix A.1. Since updating each local
state S[n] to its global state S(p−1)L+nC is independent across chunks, we can first update S[N ] to
the last global state SpL of device p, and send it to enable the global state update in p+ 1 device.

To fulfill this communication requirement, we propose the All-Scan Collective Communication
operator in Section 3.2. All-Scan Communication is overlapped with the local computations that do
not depend on communication; in practice, we compute the diagonal attention scores simultaneously
as shown in Figure 2. All-Scan allows ZeCO to parallelize both inter-device communication and intra-
device computation. In implementation, ZeCO rearranges the standard form of GLA with minimal
extra computation and I/O cost, so as to achieve efficient sequential parallel training Algorithm 1.

3.2 All-Scan Collective Communication
To convert local chunk states in each device into globally consistent values, each device p requires
the final state S(p−1)L from its predecessor. It presents a dependency chain between devices, which
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Algorithm 2 All-Scan Algorithm

1: Input: num_device P , device_rank p ∈ [P ], Local State Slocal, factor γ̃, the direction tag DIR
2: if DIR == FWD then
3: send_rank = p+ 1, recv rank = p− 1 for device p, start = 0, last = P − 1
4: else if DIR == BWD then
5: compute send_rank = p− 1, recv_rank = p+ 1 for device p, start = P − 1, last = 0
6: end if ▷ Single Direction Communication
7: Initialize the send state as Ssend,
8: if p is not 0 then
9: Receive state from recv_rank as Srecv,

10: end if
11: Slice Srecv,Ssend,Slocal, γ̃ alone the first dimension in K blocks.
12: for k ← 0,K − 1 do
13: if p is start then
14: Send Slocal to recv_rank
15: else if p is not 0 then
16: Sk

send = Sk
local + (γ̃

(k)
[N ]1)× Sk

recv

17: Send Slocal to recv_rank
18: else if p is last then
19: Sk

send = Sk
local + (γ̃

(k)
[N ]1)× Sk

recv

20: end if
21: end for
22: return Srecv,Ssend

will cause a communication latency related to the number of devices. To address this efficiently, we
propose an All-Scan Collective Communication strategy to receive, update, and send. Specifically,
All-Scan splits large state tensors into smaller segments that can be sequentially transmitted and
processed.

Pipelined State Scan. Rather than receive the full state S(p−1)L, we partition it along the dk
dimension into K contiguous blocks to send from device p− 1:

S(p−1)L =
[
S
(1)
(p−1)L,S

(2)
(p−1)L, . . . ,S

(K)
(p−1)L

]
, S

(k)
(p−1)L ∈ R

dk
K ×dv . (7)

Correspondingly, the decay factor is split into aligned segments γ̃(j)
[N ] ∈ R1× dk

K . Each block of state
is transmitted pipelined from p− 1 to p, and immediately applies the update and send:

S
(k)
pL = (γ̃

(k)⊤
[N ] 1)⊙ S

(k)
(p−1)L + S

(k)
[N ] for k = 0, ...,K (8)

This design enables device p+1 to begin updating its last global state S(p+1)L in All-Scan as soon as
it receives the first block of SpL, as shown in Algorithm 2. As a Communication Primitive, All-Scan
could run independently with other CUDA stream, achieves fine-grained communication-computation
overlap, maximizing device utilization and throughput in long-context training.

3.3 Efficiency Analysis
We now formally analyze the time cost of sequence parallelism strategies and show that using the
All-Scan collective communication algorithm yields the most efficient design for linear attention SP
under our analytical framework. We identify two key conditions that characterize such efficiency and
demonstrate that ZeCO satisfies both.

1. Zero Communication Overhead: Each device transmits and receives only the minimal
essential size of information (data). No redundant communication.

2. Low Extra Cost: Communication is overlapped with other computations as much as
possible to minimize idle computational resources. Furthermore, the additional computation
and I/O overhead introduced by SP is reduced to a minimum.
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Zero Communication Overhead Let S ∈ Rdk×dv denote the accumulated state tensor. According
to linear attention output Equation (3), this state represents the minimal information that must be
communicated between chunks.

For a sequence distributed across P devices, any SP algorithm must communicate at least the state
information across device boundaries. Let V (p)

ZeCO denote the communication volume of the p-th device
in ZeCO (All-Scan) Each device sends a last global state to the next device exactly once, resulting in:

V
(p)

ZeCO = |S| = dk × dv. (9)

This represents the theoretical lower bound. However, existing approaches such as LASP-2 rely on all-
gather operations, receive local states from all the other P − 1 devices, resulting in a communication
volume of (P − 1)× dk × dv , which increases with the number of devices.

Which grows linearly with P . As shown in Figure 3, ZeCO achieves the minimal communication
volume possible for the SP scenario.

Idealized SP strategy Let TP
SP(L) denote the total runtime for processing a sequence of length L

using P devices with sequence parallelism, and let T 1
SP(PL) represent the runtime for processing

a total sequence of length PL on a single device. Let TP
ideal-SP(PL) denote the runtime under ideal

conditions, assuming perfect parallelism with zero additional overhead. For an ideal SP, the following
properties should be satisfied:

TP
ideal-sp(PL) = T 1

ideal-SP(L) =
T 1

ideal-SP(PL)

P
. (10)

The implication of Equation (10) is that, in the ideal case, the throughput of sequence parallelism
should scale linearly with the number of devices (i.e., the processing time is inversely proportional to
the throughput). In practice, however, sequence parallelism introduces additional overhead. Therefore,
we next analyze the latency under practical scenarios.

In practice, the prerequisite communication latency, computation, and I/O for transferring and
synchronizing data between devices introduce additional latency. For ZeCO (and other sequence
parallelism), the relation becomes ideal sequence parallelism cost + extra cost, which can be
formularized as follow:

TP
SP(PL) = TP

ideal-SP(PL) +Textra_comp&I/O + (TAll_Scan − Toverlaped_comp). (11)

For ZeCO, the first two components are independent of communication. The last two represent
communication latency, accounting for the portion of the All-Scan operator that cannot be overlapped
by local diagonal attention (we suppose the worst-case scenario). This can also be viewed as the
gap relative to the ideal SP. From Equation (11), we can see that TP

ideal-SP(PL) and Toverlaped_comp are
inherent to the algorithm. Therefore, the key question in SP is to what extent the additional time cost
of linear attention, namely Textra_comp&I/O and TAll_Scan, can be reduced. The following presents how
ZeCO achieves its efficiency through an analysis of the All-Scan communication strategy, and proves
that the additional computation and I/O overhead is negligible.

For ZeCO, the first two components are independent of communication, while the last two correspond
to communication latency—specifically, the portion of the All-Scan operation that cannot be fully
overlapped by local diagonal attention (we consider the worst-case scenario). This latency can also
be viewed as the residual gap relative to the ideal SP case. From Equation (11), TP

ideal-SP(PL) and
Toverlaped_comp are intrinsic to the algorithm design. Hence, the central question in SP is to what
extent the additional costs of linear attention, namely Textra_comp&I/O and TAll_Scan, can be minimized.
In the following, we show that ZeCO achieves near-optimal efficiency by analyzing the All-Scan
communication behavior, and we further demonstrate that extra_computation&I/O constitutes a
negligible portion of the overall system cost.

In All-scan, we partition S into K blocks, each of size R
dk
K ×dv , and transmit these blocks in a

pipelined fashion as shown in Figure 2. By partitioning the state S into K blocks and updating them
in a pipeline, the effective communication latency could be computed as:

TAll_Scan = τ(dk × dv) +
(P − 1)τ(dk × dv)

K
, (12)
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Figure 3: ZeCO has the lowest communication time while satisfying the lowest communication
volume. The left two figures show the theoretical values of the algorithm calculation speed and
communication volume, and the right figure shows the actual communication time.

where τ(·) represents the time required to communicate a tensor of the given size. Equation12
shows the two components of the cost TAll_Scan. The first term represents the overhead that can
be parallelized by the pipelined approach, which is necessary and corresponds to the minimum
communication requirement. The second term accounts for the overhead at the boundaries. As K
increases, the boundary overhead decrease, and the degree of overlap improves. Consequently, when
K becomes sufficiently large, the boundary overhead approaches zero. Thus, ZeCO with All-Scan
achieves the minimal time cost of communication.

The term Textra_comp&I/O consists of two parts: a small number of additional floating-point operations,
and HBM load and store operations for a few auxiliary tensors. In Algorithm 1, the load and store
operations for γ̃[n] in lines 9 and 26 are vector, constituting only 1

dv
of the state tensor. The required

additional state can be reused N times, incurring just a 1
N overhead. For a sequence length of 8192

and a chunk size of 64 (N = 128), which is comparable to typical dv, the added overhead is less
than 1%. The cost of element-wise multiplications is negligible. Hence, Textra_comp&I/O can be safely
ignored in practice. It proved that the time of ZeCO Equation (11) should be:

TP
ZeCO(PL) = T 1

ideal-SP(L)− Toverlaped_comp + τ(dk × dv) + ϵ (13)

≈ T 1
ideal-SP(L)− Toverlaped_comp + τ(dk × dv), (14)

where ϵ represents a negligible computation and I/O cost.

In contrast, existing methods like LASP have a strictly serial dependency across devices, resulting in
(We assume that the Textra_comp&I/O term in other methods can also be optimized to a negligible level.
Even so, these methods remain suboptimal. ):

TP
LASP(PL) = P × (T 1

ideal-SP(L) + τ(dk × dv)) > TP
ZeCO(PL). (15)

While LASP-2 improves on LASP with parallel computation, but suffers from higher communication
cost:

TP
LASP-2(PL) = T 1

ideal-SP(L) + P × τ(dk × dv) > TP
ZeCO(PL). (16)

Thus, ZeCO effectively eliminates redundant communication overhead and establishes an efficient
sequence parallelism strategy with minimal extra cost. This efficiency directly translates into superior
performance.In Figure 3, we show the theoretical values of communication cost and computational
overhead, and the actual values of communication time for different SP algorithms. We also present a
unified communication and runtime analysis of existing SP algorithm in Appendix A.2.

4 Experiments
We evaluate the efficiency and scalability of the proposed ZeCO SP Algorithm and All-Scan Commu-
nication Operator on 1B-GLA models. Our assessment focuses on two aspects: (1) Communication
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Figure 4: Scalability evaluation of LASP on SP operator runtime(top half) and Scalability evaluation
of LASP on Throughput(bottom half). In the comparison test of 16k and 32k sequence length
per GPU, ZeCO algorithm shows the same stable time as the DP algorithm. In both 16k and 32k,
ZeCO exhibits a linear scaling curve of throughput growth approach to DP, while the other methods
degenerate.

speed of different Collective Communication Operators; (2) The Algorithm-level and model-level
scalability under increasing GPU count.

All experiments are conducted on a GPU cluster equipped with 256×H100 80GB GPUs. Model
is trained in Lingua [38], a PyTorch-based distributed training. We implement the All-Scan com-
munication algorithm using the Triton-Distributed framework, which integrates OpenSHMEM into
the Triton compiler to enable distributed communication within operator implementations [39, 40].
To ensure a fair comparison with baseline sequence parallelism (SP) methods such as LASP1 [17]
and LASP2 [18], we adapt the chunk-wise gated linear attention operator from the Flash Linear
Attention [41] repository for our implementation. The complete experimental setup and data are
provided in the Appendix A.3.

4.1 Communication Speed
In this experiment, we evaluate the communication Runtime of different communication operators
under their own communication workload sufficient for correct training. Experiments are conducted
with P from 8 to 256 GPUs, and each GPU is assigned 8K sequence length.

We warm up each communication kernel for 5 rounds, then report the average over 50 runs. More
details of communication workloads and protocol differences are discussed in Appendix A.2.

As shown in Figure 3, memory-out occurred in the experiments of 128 GPUs and 256 GPUs All-
gather (Megatron). For other methods, it should be noted that, for presentation purposes, the upper
half of the Y-axis represents the rendering results after taking the log scale. All-Scan significantly
outperforms other methods in different scales of clusters. Notably, on 256 GPUs, All-Gather (LASP2)
is 4× slower than All-Scan.

4.2 SP Algorithm Runtime and Model Throughput
Next, we evaluate both micro-level (algorithm) and macro-level (model training) performance for
Linear Attention SP methods, including LASP1, LASP2, and ZeCO.

SP Algorithm Runtime We measure the forward and backward pass time of each SP operator
under the same setting (L = 16K or 32K, H = 16) and compare it against the ideal case of a DP
operator. The time of the DP operator serves as the theoretical lower bound.
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Figure 4 demonstrates that in the 128 GPUs experiment (2M and 4M sequence length), ZeCO is only
3 ms slower than the theoretical lower bound for a single forward and backward pass, which satisfies
our analysis in Section 3.3 and demonstrates the efficiency of our algorithm.

Model Throughput We experimented with 1B-GLA models with different sequence parallel
methods to test the training throughput, under the same setting (L = 16K or 32K, H = 16) and
compare it against the ideal case of a Model that uses DP. The throughput of the GLA model uses DP
in training, serves as the theoretical upper bound.

For the result shown in Figure 4, as the number of GPUs increases, ZeCO achieves a linear increase
in total throughput, which meets the original intention of sequence parallelism, while other methods
experience a serious degradation.

5 Conclusion and Future Works
In this work, we propose ZeCO sequence parallelism for linear attention, achieving SOTA for both
theoretical and empirical results. More importantly, our method fully unleashes the algorithmic
efficiency of linear models and, for the first time, enables near-linear throughput scaling for sequence
parallelism. At the system level, our approach introduces the novel All-Scan collective communication
primitive, which not only underpins the efficiency of ZeCO but also provides a foundational innovation
for advancing distributed computing in the linear model community.

In the future, we plan to pursue three main directions. First, we will further improve the algorithmic
implementation of the All-Scan collective communication primitive. For example, tree-like imple-
mentation. Second, we aim to generalize the sequence parallelism algorithm for linear attention
beyond diagonal decay, extending it to support various forms, including matrix transform structures.
Third, we will investigate efficient parallel topologies for sequence parallelism in large-scale models.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We give a theoretical proof in Section 3.3 of (1) Zero communication overhead
in (2) Analysis of ZeCO as the sota sequential parallel strategy. The experimental data, see
in Section 4, proves that ZeCO achieves the fastest running speed, communication efficiency,
and throughput,

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: ZeCO’s specifically refers to the sequential parallelism of the linear attention
model. The high computational overhead of full attention is not the problem solved by
the sequential parallel algorithm, so this limitation is not discussed in the paper. ZeCO’s
experiments are covered in the case of the 1B model, and the experimental limitations are
not discussed since the additional number of parameters does not affect how the cost is
calculated.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present in section3.3 (1) a rigorous proof of the Zero Communication
Overhead conclusion and (2) an analysis of the extra overhead. And Rigorous calculations
of the volume of communication and extra computation are given in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section3, we give the complete algorithm and communication strategy, and
how to adapt it to a specific open-resources model GLA. We provide complete configuration
details in Section 4, including model size (1B GLA), input chunk size (C), number of chunks
per GPU (N ), hardware setup (256×H100), and training framework (Lingua). We specify
how throughput and operator latency were measured, including warmup steps, averaging
strategy (50 runs), and comparison baselines (e.g., LASP1/2, Ulysses). For fairness, we
adopt the same communication primitives and chunk counts as used in the original baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to open source the complete code in the near future, and this article
provides all the conditions for reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the complete experimental setup in section4 and in the Appendix

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Although we conducted multiple runs (e.g., 50 iterations per communication
operator) to average performance and reduce variance, we did not report explicit error bars
or statistical significance intervals in the current version. The primary metrics shown (e.g.,
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communication time, throughput) are deterministic in nature and highly stable across runs
in our setting.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the complete experimental setup in section 4 and in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work focuses on algorithmic and systems-level innovations in distributed
training for long-sequence models. It does not involve human subjects, sensitive data, or
potentially harmful applications. All experiments are conducted using publicly available
models and infrastructure. We have reviewed and complied with the NeurIPS Code of
Ethics.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on fundamental algorithmic and systems-level contributions
to distributed training of long-sequence models. It does not involve human subjects, user
data, deployment systems, or application-specific models. Therefore, it does not present any
direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve the release of pretrained models, generative sys-
tems, or datasets that pose a high risk of misuse. It focuses on communication-efficient
distributed training algorithms for long-sequence models, and thus does not require addi-
tional safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All reused code assets are respected under their respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There is no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research presented in this paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components of the core methods.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix: Supplementary Proof and Experimental Data
A.1 Global Chunk Update Proof
We prove the correctness of the global correction formula used in Equation (6) of the main text, which
expresses the global state at position (p− 1)L+ nC as:

S(p−1)L+nC = (γ̃[n]1)⊙ S(p−1)L + S[n]. (17)

We begin from the chunkwise recurrence of the Gated Linear Attention (GLA) state update within
each device. For any chunk n, the recurrence is:

S[n] =
(
γ⊤
[n]1

)
⊙ S[n−1] + K̃⊤

[n]V[n], (18)

with initial state S[0] = 0. Unfolding the recurrence, we obtain the closed-form expression of the
final local state S[n]:

S[n] =

n∑
i=1

 n∏
j=i+1

γ⊤
[j]1

⊙ (
K̃⊤

[i]V[i]

)
+

 n∏
j=1

γ⊤
[j]1

⊙ S[0]. (19)

Equation 19 represents the result of local computation, it captures the final local state obtained by
starting from a zero initial state and considering only the local contribution within the current chunk n.
The key observation is that the second term

(∏n
j=1 γ

⊤
[j]

)
⊙ S[0] vanishes due to the initial condition

S[0] = 0, making S[n] completely determined by local information. We now demonstrate the linear
decomposition property of global state updates. The key insight is that when non-zero initial state
exists, the final global state can be decomposed into two independent linear contributions: attenuated
propagation of global computation and the current chunk’s local contribution. Now suppose we
instead perform the same recurrence starting from a non-zero initial state S(p−1)L, which is the final
global state of the previous device. The updated state at global index (p− 1)L+ nC becomes:

S(p−1)L+nC =

n∑
i=1

 n∏
j=i+1

γ⊤
[j]1

⊙ (
K̃⊤

[i]V[i]

)
+

 n∏
j=1

γ⊤
[j]1

⊙ (0+ S(p−1)L) (20)

= (γ̃[n]1)⊙ S(p−1)L + S[n]. (21)

This linear property allows local computation S[n] stores only the residual contribution from chunk n,
and multiplying the incoming global state S(p−1)L by the cumulative decay γ̃[n] precisely reconstructs
the full global state.

A.2 Unified Analysis of Sequence Parallel Methods
In this section, we use multi-head attention with head H = 32, dk = dv = D

H = e. We present a
unified analysis of several representative sequence parallel (SP) methods across both full attention
and linear attention models. Specifically, we compare them from the following three perspectives:

• Communication Volume: The total amount of data transferred per device during SP
execution.

• Computation Cost: The total computation time to process a sequence of length PL in
parallel.

• Additional Computation Overhead: The extra operations introduced due to SP-specific
logic.

Full Attention Models.

• Ulysses: Uses All-to-All communication to exchange Q, K, V, and Output tensors. Com-
munication volume is 4LD per device. Due to full attention’s quadratic complexity, the
computation cost is L2DP .

• Megatron CP: Utilizes All-Gather to collect Q and K from all devices. Communication
volume is 2PLD. Computation cost is the same as Ulysses, L2DP .
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Linear Attention Models. In linear attention, since each device processes a sequence of length
L, the inherent computation per device is LDe (here we ignore the additional lower-order terms
introduced by the chunk-wise algorithm), which is independent of P .

• LASP-1: Employs serial P2P communication. Each device transmits a single state tensor
S ∈ RH×e×e, with communication volume De. However, the devices execute sequentially,
resulting in an equivalent time overhead (including both communication and computation)
as if each device performed P times the workload.

• LASP-2: Uses All-Gather to collect all intermediate state tensors across devices. Each
device processes all P global states, leading to PDe communication volume and additional
computation cost of log(P )De+NDe for sum reduction and state updates.

• ZeCO (Ours): Implements pipelined communication via All-Scan. Each device
sends/receives only one state S, with communication volume De. It additionally maintains
N cumulative decay vectors γ̃ and updates N intermediate states using global recurrence.
So, here is an extra computation cost NDe+Nd.

In conclusion, for sequence parallelism with full attention, both the computation cost and the
number of device parameters are strongly dependent on the number of devices P , which becomes a
major efficiency bottleneck. In the case of linear attention, although both the communication and
computation costs of LASP-1 and LASP-2 scale with P , the computation cost constitutes only a small
fraction of the total overhead. As a result, the communication cost’s dependence on P becomes the
primary bottleneck. In contrast, our ZeCO algorithm achieves both communication and computation
costs that are independent of the number of devices P .

Table 1: Comparison of Sequence Parallel Methods: Communication Volume and Computation Cost
(For LASP-1, we consider the sequential execution order)

Method Communication Volume Computation Cost

Ulysses (Full) 4LD L2DP
Megatron CP (Full) 2PLD L2DP
LASP-1 (Linear) PDe PLDe
LASP-2 (Linear) PDe LDe+ log(P )De+NDe
ZeCO (Ours, Linear) De LDe+NDe+Nd

A.3 Experimental Setting and Supplementary Data
In experiment Section 4.1, H is 32, the tensor size of each chunk of segmentation is 16384, the
hidden dimension d is 4096, and sequence length per device L is 8192. The experimental setup with
5 rounds of warm-up and 50 rounds of experiment was averaged, see in Table 2.

In experiment Section 4.2, In the experiment of algorithm run time, we test the GLA-attention
algorithm equipped with different SP methods, record the time of 1 iteration of FWD and BWD. H
is 16, the tensor size of each chunk of segmentation is 16384, the hidden dimension d is 2048, and
sequence length per device L is 16384 and 32768. The experimental setup with 5 rounds of warm-up
and reported the average of 50 rounds of experiment, see in Table 3, Table 4. In the experiment of
Model throughput, we test the GLA-1B Model equipped with different SP methods, and record the
throughput in the training stage. H is 32, the tensor size of each chunk of segmentation is 16384, the
number of model layers is 20, the hidden dimension d is 2048, and the sequence length per device L
is 16384 and 32768. The experimental setup with 5 rounds of warm-up reported the average of 100
steps of the experiment, see in Table 5, Table 6.

A.4 Backward pass for ZeCO with All-Scan comunication
In the backward propagation of the ZeCO algorithm, most of the process is similar to the forward
propagation. It is important to note the difference in notation here: γ̃[n] denotes the decay factor for
the reverse cumulative product. Furthermore, in the official implementation of gated linear attention,
S[n] needs to be recomputed during the backward pass. However, since the global initial state has
already been obtained during the forward pass, there is no need for all-scan communication when
recomputing S[n].
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Algorithm 3 Backward pass for ZeCO with All-Scan comunication
Input: Q,K,G ∈ RL×dk ,V,dO ∈ RL×dv , chunk size C, num_device P , device_rank p ∈
{0, 1, . . . , P − 1}
Initialize dS = 0 ∈ Rdk×dv on SRAM

1: for n← N to 0 do
2: Load G[n] ∈ RC×dk , Q[n] ∈ RC×dk , dO[n] ∈ RC×dv from HBM to SRAM
3: On chip, compute γ[n],Γ[n] and Q̃[n] = Q[n] ⊙G[n], γ̃ = γ̃ ⊙ γ[n]

4: Store γ̃ in HBM as γ̃[n]

5: On chip, compute dS = (γ⊤
[n]1)⊙ dS+ Q̃⊤

[n]dO[n]

6: Store dS in HBM as dS[n]
7: end for
8: In parallel do:
9: parallel stream 1:

10: dS(p−1)L, dSpL ← All-Scan(dS[0], γ̃[0])
11: parallel stream 2:
12: Load S(p−1)L from HBM to SRAM
13: On chip, recompute S[n] with S[0] = S(p−1)L, n = {0, 1, 2, . . . , N − 1}
14: Store {S[n], n ∈ {0, 1, 2, . . . , N − 1}}
15: for n← 1 to N in parallel do
16: Load Q[n],K[n],G[n],V[n],dO[n] from HBM to SRAM
17: Load ,∈ Rdk×dv , from HBM to SRAM
18: On chip, construct causal mask M ∈ RB×B

19: On chip, compute Λ[n],Γ[n] ∈ RC×dk

20: On chip, compute Q̃[n] = Q[n] ⊙Λ[n], K̃[n] = K[n] ⊙ Γ[n]

21: On chip, compute P[n] = (Q̃[n]K̃
⊤
[n])⊙M ∈ RC×C

22: On chip, compute dP[n] = (dO[n]V
⊤
[n])⊙M

23: On chip, compute dK̄[n] = Q̃⊤
[n]dP

24: On chip, compute dK[n] = dK̄[n]/Λ[n]

25: On chip, compute dQ̃[n] = dPK̄[n]

26: On chip, compute dQ[n] = dQ̃[n] ⊙Λ[n]

27: Store P[n],dQ[n],dK[n] in HBM.
28: end for
29: stream barrier
30: for n← 1 to N in parallel do
31: Load P[n],dQ[n],dK[n],dO[n],Q[n],K[n],G[n], γ̃[n-1],dSpL,S[n−1], from HBM to

SRAM
32: On chip, compute Λ[n],Γ[n] ∈ RC×dk

33: On chip, compute K̃[n] = K[n] ⊙ Γ[n]

34: On chip, compute dK̃[n] = V[n](dS
⊤
[n−1]+(γ̃⊤

[n-1]1)⊙ dS⊤
pL)

35: On chip, compute dK[n] = dK[n] + dK̃[n] ⊙ Γ[n]

36: On chip, compute dQ̃[n] = dO[n]S
⊤
[n−1]

37: On chip, compute dQ[n] = dQ[n] + dQ̃[n] ⊙Λ[n]

38: On chip, compute dV[n] = P⊤
[n]dO[n] + K̃[n](dS

⊤
[n−1]+(γ̃⊤

[n-1]1)⊙ dS⊤
pL)

39: Store dK[n],dV[n] in HBM
40: end for
41: Let dQ = {dQ[1], . . . ,dQ[N ]}, dK = {dK[1], . . . ,dK[N ]}, dV = {dV[1], . . . ,dV[N ]}
42: Compute dA = Q⊙ dQ−K⊙ dK, dG = revcum(dA)
43: return dQ,dK,dV,dG
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Table 2: Communication Runtime

GPU Number Method
All Gather Linear All-Scan All Reduce

8 0.37488 0.22578 0.1375
16 0.65769 0.29686 0.22803
32 1.61594 0.44775 0.31073
64 2.54305 0.73899 0.41486

128 4.35 1.27166 0.50084
256 8.51388 2.16454 0.60405

Table 3: Algorithm Runtime (16k sequence length)

GPU Number Method
LASP1 LASP2 ZeCO GLA (baseline)

8 22.59ms 19.39ms 7.32ms 6.39ms
16 28.20ms 24.48ms 7.45ms 6.47ms
32 39.03ms 25.72ms 7.65ms 6.44ms
64 61.18ms 29.17ms 8.04ms 6.12ms

128 113.71ms 35.72ms 9.88ms 6.55ms

Table 4: Algorithm Runtime (32k sequence length)

GPU Number Method
LASP1 LASP2 ZeCO GLA (baseline)

8 41.64ms 27.57ms 12.12ms 11.76ms
16 52.14ms 30.80ms 12.41ms 11.74ms
32 72.97ms 33.08ms 12.98ms 11.74ms
64 119.79ms 39.44ms 13.56ms 11.79ms

128 217.20ms 42.50ms 15.06ms 11.74ms

Table 5: GLA Model SP Throughput/GPU (tokens/sec) on 1B-16k

GPU Number Method
LASP1 LASP2 ZeCO GLA (baseline)

8 26428 37812 44497 47594
16 22244 31415 42328 46786
32 17813 29802 40463 46214
64 12596 27166 39832 45744

128 - 22386 37955 44847
256 - 15196 34400 42838

Table 6: GLA Model SP Throughput/GPU (tokens/sec) on 1B-32k

GPU Number Method
LASP1 LASP2 ZeCO GLA (baseline)

8 27014 42946 47369 49633
16 23302 41190 46209 49058
32 18129 39669 45091 47980
64 12268 37485 44468 48230

128 - 33327 43278 47848
256 - 25402 40967 46588
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