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Abstract

Cross-cultural emotion recognition is attract-
ing increasing research attention; robustness
to such differences in emotional expression is
important for speech modality emotion recog-
nition. In this work we quantify the accuracy
loss when classifying cross-culturally for mul-
tiple emotional intensities, and investigate the
effect of feature sets, including feature impor-
tance. We find that different emotional inten-
sities yield a similar decrease in cross-culture
accuracy relative to within-culture, and differ-
ent acoustic feature sets also yield similar rel-
ative cross-culture accuracy. The top 10 im-
portant eGeMAPS features for within-cultural
and cross-cultural classification share only one
common feature, which partially explains dif-
ferences in accuracy.

1 Introduction

Emotion recognition aims to predict a person’s
emotional state from external observations. Speech
is one modality, where emotion is expressed in
what a person says and how they say it, and is
also important for multi-modal emotion recogni-
tion (Poria et al., 2017). Of increasing interest
is cross-cultural emotion recognition (Schuller,
2018). Culture influences a person’s language, ac-
cent (Prasad and Jyothi, 2020) and emotional ex-
pression (Laukka et al., 2016), among other effects.
Emotional expression is encoded in acoustic fea-
tures alongside confounding information such as
pronunciation and speakers’ vocal characteristics.
Since there is some universality to emotional ex-
pression (Laukka et al., 2016) it is thus important
for cross-cultural recognition to be predictive of
emotion but robust to changes in acoustic infor-
mation related to culture. Robust cross-cultural

emotion recognition is thus important for affective
computing in an international setting.

This study complements previous work on emo-
tion classification across cultures. We use one of
the largest balanced datasets for cross-cultural emo-
tional speech research, which includes three emo-
tional intensities, to investigate the effect of inten-
sity on within and cross-culture emotion classifica-
tion. We also investigate the effect of feature set on
accuracy differences, and determine which features
are most important for classification.

Our contributions are as follows: 1) We mod-
ify previous cross-culture testing methodology to
include additional test set conditions. 2) We in-
vestigate the difference between within and cross-
culture accuracy for 3 emotional intensities. 3) We
compare the effect of cross-intensity prediction to
cross-culture prediction. 4) We determine whether
the choice of feature representation affects the dif-
ference between within and cross-culture recogni-
tion accuracy. 5) We measure feature importance
for within and cross-culture classification, relating
important features to differences in accuracy.

2 Related Work

The effect of culture on human emotion recogni-
tion has been investigated by Cowen et al. (2019).
Comparing US and Indian ratings, they find an in-
group advantage in recognising emotions within-
culture, but moderate to high correlation between
US and India affective ratings. They also find simi-
lar acoustic correlates to affective ratings between
both countries’ ratings.

Laukka et al. (2014) investigated the effect of
culture on automatic emotion recognition, finding
that within-culture/within-intensity testing yields
higher accuracy than both within-culture/cross-



intensity and within-intensity/cross-culture testing.
In addition Laukka et al. (2016) quantify differ-
ences in a subset of GeMAPS features across the
same cultures. Significant differences were found
in 15 features across emotional expressions, with
significant interaction effects for 9 features, and sig-
nificant cross-cultural differences in some features
for each emotion category.

Some papers have explored feature relevance
for emotion prediction (Schuller et al., 2007;
Ververidis et al., 2004; Busso et al., 2009), but
not for cross-culture classification.

Our results complement previous work by com-
paring additional test conditions, determining the
effect of emotional intensity and feature set, and
analysing feature importance specific to cross-
cultural emotion prediction.

3 Methodology

We use a subset of the VENEC data (Laukka et al.,
2010) containing 10 emotions. Twenty speakers
from each of Australia, India, Singapore, Kenya,
and USA say the same English sentence in all emo-
tions with high, medium and low intensity, yielding
3000 instances in total. We use a support vector
machine (SVM) with linear kernel for multiclass
prediction since it performs similarly to other clas-
sifiers when using utterance-level features (Keesing
et al., 2021). The SVM cost parameter C' is opti-
mised over {276,274, ... 26} using inner speaker-
independent cross-validation.

3.1 Classification accuracy

We use 8 different train/test conditions outlined in
Table 1 where #C is the number of combinations,
and #E is the number of experiments using a con-
sistent train set size.

Condition Combinations  Experiments
wC_Wwi 15 15
WC_oi 5 15
wi_logo_cc 15 60
wi_pair_cc 60 60
oi_logo_cc 5 60
0i_pair_cc 20 60
wc_pair_ci 60 60
pair_cc_ci 120 120

Table 1: Different train/test conditions used in experi-
ments. ‘wc’ = within-culture, ‘wi’ = within-intensity,
‘cc’ = cross-culture, ‘ci’ = cross-intensity, ‘0i’ = omni-
intensity, ‘LOGO’ = leave-one-group-out, ‘pair’ = pair-
wise.

We consider each country and each intensity as a
group, so there are five countries, three intensities,
and 15 (country, intensity) pairs. For the within-
culture conditions train and test data are from the
same country. For the LOGO-cross-culture condi-
tions the train set contains data from four countries
and the test set has the remaining country. For
the pairwise-cross-culture conditions we train on
data from one country and test on data from an-
other country for each pair of countries. Similar
descriptions are for the within-intensity and cross-
intensity conditions. The omni-intensity conditions
are where the train and test sets have data from
all intensities. For the pairwise-cross-culture/cross-
intensity condition, a pair of countries and a pair
of intensities are used such that both country and
intensity differ between train and test sets.

To account for train set size as a factor, we main-
tain similar train set sizes for all experiments (ap-
prox. 200 instances), by selecting a random subset
of speakers using stratified sampling. For example
in the within-intensity/LOGO-cross-culture condi-
tion a quarter of the speakers from each of the four
training countries is used as training set, and we
have four such train sets. This maintains speaker-
independent testing consistently for all train/test
conditions. We also provide open-source code.

These experiments are performed for each of
three feature sets: the extended Geneva Minimal-
istic Acoustic Parameter Set (eGeMAPS) (Eyben
et al., 2016), the INTERSPEECH 2013 Compu-
tational Paralinguistics Challenge features (IS13)
(Schuller et al., 2013), and mean-pooled wav2vec
(Schneider et al., 2019) context embeddings. These
features cover both high and low dimensionality,
include hand crafted features, and have reasonable
performance for emotion classification (Keesing
et al., 2021). In each experiment features are indi-
vidually standardised to zero mean and unit vari-
ance using parameters from the training set.

3.2 Feature importance

We use forward selection on the eGeMAPS set,
since this is relatively small (88 features) and con-
tains hand-crafted features meant to encode various
aspects of speech, which are more interpretable
than wav2vec or IS13 features. Forward selection
greedily selects the feature which maximises accu-
racy each iteration. The resulting feature ordering
indicates the most predictive features for classifica-
tion.



Forward selection is a generic feature selection
method which can be applied to any training task,
so we use it to measure feature importance for both
wc_wi and wi_pair_cc conditions. We again use
SVM with linear kernel but fix the cost parameter
C = 1 since this yielded accuracy within 1% of
hyperparameter tuned accuracy in all cases.

4 Results

The results for the classification experiments is
shown in Table 2. For all conditions, the Shapiro-
Wilks test for normality shows no significant devia-
tion from normality, so we use parametric statistical
tests in our analysis.

We compare differences in accuracy between the
conditions (wc_wi, we_oi, wi_logo_cc, wi_pair_cc,
0i_logo_cc, and oi_pair_cc) using repeated mea-
sures ANOVA for each feature set indepen-
dently. This shows statistically significant re-
sults for all three features sets (p < 0.001 in
all cases). Bonferroni corrected pairwise t-tests
indicate statistically significant differences be-
tween the following pairs when using wav2vec
features: (wi_logo_cc, oi_logo_cc), (wi_logo_cc,
0i_pair_cc), (wi_pair_cc, oi_pair_cc). A boxplot
for the within and cross-culture conditions for
wav2vec features is shown in Figure 1.
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Figure 1: Boxplot of mean accuracy for within and
cross-culture conditions using wav2vec embeddings.

We perform a 2x2 comparison of accuracies
from the wc_wi, wc_pair_ci, wi_pair_cc and
pair_cc_ci conditions, using two-factor repeated
measures ANOVA, where the factors are intensity
and culture, and each has ‘within’ and ‘cross’ lev-
els. Each (country, intensity) pair is a subject, so
we have 15 data points for each condition. Sig-
nificant main effects were found for intensity for
all feature sets (p < 0.028 in all cases), and coun-
try for all feature sets (p < 107> in all cases).
Classifying instances from a different emotional
intensity than training data decreases accuracy by

about 2.2% for wav2vec embeddings, while the
decrease for cross-culture accuracy is about 11%,
and for both together about 12%. Significant in-
teraction effects were only found for eGeMAPS
features (p = 0.003).

For each feature set and (country, intensity)
pair, we calculate the values dpq;r = we_wi —
wi_logo_cc, and djogo = wc_wi — wi_pair_cc.
Repeated measures ANOVA yielded no statisti-
cally significant differences in either d;,4, Or dpgir
across feature sets (p > 0.3 in both cases). There
were also no significant differences in either dj,4,
or dpqir across intensities (p > 0.06 in all cases).
For each feature set d;,, is approx. 7% accuracy,
while dpq;r is between 9% and 11%. The within-
culture accuracy is consistently 1.5 times the pair-
wise cross-culture accuracy, and 1.3-1.4 times the
LOGO cross-culture accuracy.

We repeated all experiments and found the gen-
eral trends to be stable, with the exception of inter-
action effects between intensity and country, and
absolute differences in d,q;, between feature sets,
which were sometimes quite similar and sometimes
quite different.

We report the top 10 features selected using for-
ward selection in Table 3 for within and cross-
culture classification. Accuracy levelled off at
around 15 features, before decreasing when us-
ing more than 50 features. Accuracy when using
features from the opposite column, and baselines
using all 88 features and 10 random features, are
given for comparison.

5 Discussion

We obtain highest accuracy when predicting on
data from the same country and intensity as the
train set, which is expected because optimal clas-
sification is achieved on test data from the same
distribution. Hence on data with a different distribu-
tion, as in the cross-culture conditions, the model
performs more poorly. The omni-intensity con-
ditions have somewhat lower accuracy than their
corresponding within-intensity conditions because
when intensities are pooled, the model must predict
accurately for all three intensities together instead
of only one. This yields lower accuracy for each
intensity, and thus lower accuracy than the within-
intensity accuracies.

Predicting with four countries in the train set
(LOGO) yields 4-5% higher accuracy than when us-
ing only one country (pairwise), because the train-



wc_wi wc_oi wi_logo_cc wi_pair_cc oi_logo_cc  oi_pair_cc wc_pair_ci  pair_cc_ci

AUS 336+19 26.8+2.1 240+14 20716 2234+06 178+14 281+£13 196+0.8

IND 36.8+20 340£20 23714 198+14 206=+09 1754+14 335£13 181£09

KEN 241416 183+16 21.54+09 188+10 187+£09 160+13 265+09 174408

SIN 25.8+1.6 25.8+23 247+1.0 2094+06 21.0£07 185£11 264+£12 20.6£0.7

USA 377419 295+£20 290+1.1 205+15 256+£08 188+14 322+13 19.74+0.9
Table 2: Within and cross-culture accuracy % (mean + std. err.) for 10-class classification using wav2vec

embeddings, mean over all results per country.

# Features | we_wi Accuracy | wi_pair_cc Accuracy
1 | loudness mean falling slope  17.2 £ 0.6 | FO percentile range 13.6 £0.3

2 | MFCC 1 mean 20.0 £ 0.6 | logRelF0O-H1-A3 mean 16.2+0.4

3 | FO percentile range 22.14+0.7 | HNRdABACF mean 17.8+04

4 | F1logRel FO std. dev. 23.2+£0.8 | MFCC 2 mean 18.5+0.5

5 | loudness std. dev. 24.6 £0.8 | alphaRatio std. dev. 18.8£0.5

6 | voiced segment rate 24.7 £ 0.8 | shimmerLocaldB mean 19.2+04

7 | logRel FO-H1-H2 mean 24.9+0.8 | MFCC 4 mean 19.5+0.4

8 | loudness percentile range 25.5 £0.8 | FO median 19.7+£ 04

9 | loudness mean rising slope ~ 25.8 0.8 | voiced segment mean 19.7+£0.5

10 | F2logRel FO std. dev. 25.8 + 0.8 | Hammarberg index std. dev. 19.8 0.5

88 25.6 £ 0.8 16.3 £ 0.5
Random 10 19.3 £ 04 14.2 £ 0.2
10 from opposite column 21.7 £ 0.7 15.7 £ 0.5

Table 3: Top 10 features cumulatively selected with forward selection for within and cross-culture classification,
accuracy % (mean =+ std. err.) for each feature added from top to bottom.

ing distribution is more broad and hence the trained
model is more general. As the number of training
countries increases, the accuracy should approach
that of the within-culture conditions.

The two-factor ANOVA results suggest there is
no interaction between cross-intensity conditions
and cross-culture conditions, except perhaps for
eGeMAPS features. Additionally, the difference
between within and cross-culture accuracy is simi-
lar for each intensity separately. This suggests that
low intensity emotions are not relatively more diffi-
cult to recognise in a cross-culture setting than high
intensity emotions, and emotional intensity does
not significantly influence cross-cultural emotion
recognition.

Feature importance results show that only a hand-
ful of features are necessary to attain high accu-
racy. Using only the 10 most important features
yields similar or higher accuracy than using all 88
eGeMAPS features and the difference is more pro-
nounced for cross-culture classification. This sug-
gests using too many features hinders performance,
although it may depend on the classifier used, and
we only tested linear SVM for these results. The
top 10 features for within-culture classification are
mostly different than the top 10 features for cross-
culture classification, even to the extent that using

each set of features on the opposite task causes a
significant drop in accuracy. The exception is FO
percentile range, present in both columns. The
top features for within-culture classification should
be those that are correlated with emotion class,
while the top features for cross-culture classifica-
tion should be those which correlate with emotion
class but do not correlate with country and hence
are robust to different countries. Different impor-
tant features account for some difference in accu-
racy, since top features for one case yield lower
accuracy when used for the other. However, top
features for cross-culture recognition yield similar
accuracy for both within and cross-culture recog-
nition, supporting the idea they are predictive of
emotion but robust to differences across countries.

6 Conclusion

In this study we quantify differences between
within and cross-cultural accuracy for five English-
speaking countries, for three emotional intensities.
While emotional intensity has little effect, the im-
portant features for each case explain some dif-
ferences in accuracy. In future we plan to investi-
gate accuracy and feature importance for individual
emotions, and also determine unimportant features
for classification.
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