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Abstract

Cross-cultural emotion recognition is attract-001
ing increasing research attention; robustness002
to such differences in emotional expression is003
important for speech modality emotion recog-004
nition. In this work we quantify the accuracy005
loss when classifying cross-culturally for mul-006
tiple emotional intensities, and investigate the007
effect of feature sets, including feature impor-008
tance. We find that different emotional inten-009
sities yield a similar decrease in cross-culture010
accuracy relative to within-culture, and differ-011
ent acoustic feature sets also yield similar rel-012
ative cross-culture accuracy. The top 10 im-013
portant eGeMAPS features for within-cultural014
and cross-cultural classification share only one015
common feature, which partially explains dif-016
ferences in accuracy.017

1 Introduction018

Emotion recognition aims to predict a person’s019

emotional state from external observations. Speech020

is one modality, where emotion is expressed in021

what a person says and how they say it, and is022

also important for multi-modal emotion recogni-023

tion (Poria et al., 2017). Of increasing interest024

is cross-cultural emotion recognition (Schuller,025

2018). Culture influences a person’s language, ac-026

cent (Prasad and Jyothi, 2020) and emotional ex-027

pression (Laukka et al., 2016), among other effects.028

Emotional expression is encoded in acoustic fea-029

tures alongside confounding information such as030

pronunciation and speakers’ vocal characteristics.031

Since there is some universality to emotional ex-032

pression (Laukka et al., 2016) it is thus important033

for cross-cultural recognition to be predictive of034

emotion but robust to changes in acoustic infor-035

mation related to culture. Robust cross-cultural036

emotion recognition is thus important for affective 037

computing in an international setting. 038

This study complements previous work on emo- 039

tion classification across cultures. We use one of 040

the largest balanced datasets for cross-cultural emo- 041

tional speech research, which includes three emo- 042

tional intensities, to investigate the effect of inten- 043

sity on within and cross-culture emotion classifica- 044

tion. We also investigate the effect of feature set on 045

accuracy differences, and determine which features 046

are most important for classification. 047

Our contributions are as follows: 1) We mod- 048

ify previous cross-culture testing methodology to 049

include additional test set conditions. 2) We in- 050

vestigate the difference between within and cross- 051

culture accuracy for 3 emotional intensities. 3) We 052

compare the effect of cross-intensity prediction to 053

cross-culture prediction. 4) We determine whether 054

the choice of feature representation affects the dif- 055

ference between within and cross-culture recogni- 056

tion accuracy. 5) We measure feature importance 057

for within and cross-culture classification, relating 058

important features to differences in accuracy. 059

2 Related Work 060

The effect of culture on human emotion recogni- 061

tion has been investigated by Cowen et al. (2019). 062

Comparing US and Indian ratings, they find an in- 063

group advantage in recognising emotions within- 064

culture, but moderate to high correlation between 065

US and India affective ratings. They also find simi- 066

lar acoustic correlates to affective ratings between 067

both countries’ ratings. 068

Laukka et al. (2014) investigated the effect of 069

culture on automatic emotion recognition, finding 070

that within-culture/within-intensity testing yields 071

higher accuracy than both within-culture/cross- 072
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intensity and within-intensity/cross-culture testing.073

In addition Laukka et al. (2016) quantify differ-074

ences in a subset of GeMAPS features across the075

same cultures. Significant differences were found076

in 15 features across emotional expressions, with077

significant interaction effects for 9 features, and sig-078

nificant cross-cultural differences in some features079

for each emotion category.080

Some papers have explored feature relevance081

for emotion prediction (Schuller et al., 2007;082

Ververidis et al., 2004; Busso et al., 2009), but083

not for cross-culture classification.084

Our results complement previous work by com-085

paring additional test conditions, determining the086

effect of emotional intensity and feature set, and087

analysing feature importance specific to cross-088

cultural emotion prediction.089

3 Methodology090

We use a subset of the VENEC data (Laukka et al.,091

2010) containing 10 emotions. Twenty speakers092

from each of Australia, India, Singapore, Kenya,093

and USA say the same English sentence in all emo-094

tions with high, medium and low intensity, yielding095

3000 instances in total. We use a support vector096

machine (SVM) with linear kernel for multiclass097

prediction since it performs similarly to other clas-098

sifiers when using utterance-level features (Keesing099

et al., 2021). The SVM cost parameter C is opti-100

mised over {2−6, 2−4, . . . , 26} using inner speaker-101

independent cross-validation.102

3.1 Classification accuracy103

We use 8 different train/test conditions outlined in104

Table 1 where #C is the number of combinations,105

and #E is the number of experiments using a con-106

sistent train set size.107

Condition Combinations Experiments

wc_wi 15 15
wc_oi 5 15
wi_logo_cc 15 60
wi_pair_cc 60 60
oi_logo_cc 5 60
oi_pair_cc 20 60
wc_pair_ci 60 60
pair_cc_ci 120 120

Table 1: Different train/test conditions used in experi-
ments. ‘wc’ = within-culture, ‘wi’ = within-intensity,
‘cc’ = cross-culture, ‘ci’ = cross-intensity, ‘oi’ = omni-
intensity, ‘LOGO’ = leave-one-group-out, ‘pair’ = pair-
wise.

We consider each country and each intensity as a 108

group, so there are five countries, three intensities, 109

and 15 (country, intensity) pairs. For the within- 110

culture conditions train and test data are from the 111

same country. For the LOGO-cross-culture condi- 112

tions the train set contains data from four countries 113

and the test set has the remaining country. For 114

the pairwise-cross-culture conditions we train on 115

data from one country and test on data from an- 116

other country for each pair of countries. Similar 117

descriptions are for the within-intensity and cross- 118

intensity conditions. The omni-intensity conditions 119

are where the train and test sets have data from 120

all intensities. For the pairwise-cross-culture/cross- 121

intensity condition, a pair of countries and a pair 122

of intensities are used such that both country and 123

intensity differ between train and test sets. 124

To account for train set size as a factor, we main- 125

tain similar train set sizes for all experiments (ap- 126

prox. 200 instances), by selecting a random subset 127

of speakers using stratified sampling. For example 128

in the within-intensity/LOGO-cross-culture condi- 129

tion a quarter of the speakers from each of the four 130

training countries is used as training set, and we 131

have four such train sets. This maintains speaker- 132

independent testing consistently for all train/test 133

conditions. We also provide open-source code. 134

These experiments are performed for each of 135

three feature sets: the extended Geneva Minimal- 136

istic Acoustic Parameter Set (eGeMAPS) (Eyben 137

et al., 2016), the INTERSPEECH 2013 Compu- 138

tational Paralinguistics Challenge features (IS13) 139

(Schuller et al., 2013), and mean-pooled wav2vec 140

(Schneider et al., 2019) context embeddings. These 141

features cover both high and low dimensionality, 142

include hand crafted features, and have reasonable 143

performance for emotion classification (Keesing 144

et al., 2021). In each experiment features are indi- 145

vidually standardised to zero mean and unit vari- 146

ance using parameters from the training set. 147

3.2 Feature importance 148

We use forward selection on the eGeMAPS set, 149

since this is relatively small (88 features) and con- 150

tains hand-crafted features meant to encode various 151

aspects of speech, which are more interpretable 152

than wav2vec or IS13 features. Forward selection 153

greedily selects the feature which maximises accu- 154

racy each iteration. The resulting feature ordering 155

indicates the most predictive features for classifica- 156

tion. 157
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Forward selection is a generic feature selection158

method which can be applied to any training task,159

so we use it to measure feature importance for both160

wc_wi and wi_pair_cc conditions. We again use161

SVM with linear kernel but fix the cost parameter162

C = 1 since this yielded accuracy within 1% of163

hyperparameter tuned accuracy in all cases.164

4 Results165

The results for the classification experiments is166

shown in Table 2. For all conditions, the Shapiro-167

Wilks test for normality shows no significant devia-168

tion from normality, so we use parametric statistical169

tests in our analysis.170

We compare differences in accuracy between the171

conditions (wc_wi, wc_oi, wi_logo_cc, wi_pair_cc,172

oi_logo_cc, and oi_pair_cc) using repeated mea-173

sures ANOVA for each feature set indepen-174

dently. This shows statistically significant re-175

sults for all three features sets (p < 0.001 in176

all cases). Bonferroni corrected pairwise t-tests177

indicate statistically significant differences be-178

tween the following pairs when using wav2vec179

features: (wi_logo_cc, oi_logo_cc), (wi_logo_cc,180

oi_pair_cc), (wi_pair_cc, oi_pair_cc). A boxplot181

for the within and cross-culture conditions for182

wav2vec features is shown in Figure 1.183

Figure 1: Boxplot of mean accuracy for within and
cross-culture conditions using wav2vec embeddings.

We perform a 2x2 comparison of accuracies184

from the wc_wi, wc_pair_ci, wi_pair_cc and185

pair_cc_ci conditions, using two-factor repeated186

measures ANOVA, where the factors are intensity187

and culture, and each has ‘within’ and ‘cross’ lev-188

els. Each (country, intensity) pair is a subject, so189

we have 15 data points for each condition. Sig-190

nificant main effects were found for intensity for191

all feature sets (p < 0.028 in all cases), and coun-192

try for all feature sets (p < 10−5 in all cases).193

Classifying instances from a different emotional194

intensity than training data decreases accuracy by195

about 2.2% for wav2vec embeddings, while the 196

decrease for cross-culture accuracy is about 11%, 197

and for both together about 12%. Significant in- 198

teraction effects were only found for eGeMAPS 199

features (p = 0.003). 200

For each feature set and (country, intensity) 201

pair, we calculate the values dpair = wc_wi − 202

wi_logo_cc, and dlogo = wc_wi − wi_pair_cc. 203

Repeated measures ANOVA yielded no statisti- 204

cally significant differences in either dlogo or dpair 205

across feature sets (p > 0.3 in both cases). There 206

were also no significant differences in either dlogo 207

or dpair across intensities (p > 0.06 in all cases). 208

For each feature set dlogo is approx. 7% accuracy, 209

while dpair is between 9% and 11%. The within- 210

culture accuracy is consistently 1.5 times the pair- 211

wise cross-culture accuracy, and 1.3-1.4 times the 212

LOGO cross-culture accuracy. 213

We repeated all experiments and found the gen- 214

eral trends to be stable, with the exception of inter- 215

action effects between intensity and country, and 216

absolute differences in dpair between feature sets, 217

which were sometimes quite similar and sometimes 218

quite different. 219

We report the top 10 features selected using for- 220

ward selection in Table 3 for within and cross- 221

culture classification. Accuracy levelled off at 222

around 15 features, before decreasing when us- 223

ing more than 50 features. Accuracy when using 224

features from the opposite column, and baselines 225

using all 88 features and 10 random features, are 226

given for comparison. 227

5 Discussion 228

We obtain highest accuracy when predicting on 229

data from the same country and intensity as the 230

train set, which is expected because optimal clas- 231

sification is achieved on test data from the same 232

distribution. Hence on data with a different distribu- 233

tion, as in the cross-culture conditions, the model 234

performs more poorly. The omni-intensity con- 235

ditions have somewhat lower accuracy than their 236

corresponding within-intensity conditions because 237

when intensities are pooled, the model must predict 238

accurately for all three intensities together instead 239

of only one. This yields lower accuracy for each 240

intensity, and thus lower accuracy than the within- 241

intensity accuracies. 242

Predicting with four countries in the train set 243

(LOGO) yields 4-5% higher accuracy than when us- 244

ing only one country (pairwise), because the train- 245
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wc_wi wc_oi wi_logo_cc wi_pair_cc oi_logo_cc oi_pair_cc wc_pair_ci pair_cc_ci

AUS 33.6± 1.9 26.8± 2.1 24.0± 1.4 20.7± 1.6 22.3± 0.6 17.8± 1.4 28.1± 1.3 19.6± 0.8
IND 36.8± 2.0 34.0± 2.0 23.7± 1.4 19.8± 1.4 20.6± 0.9 17.5± 1.4 33.5± 1.3 18.1± 0.9
KEN 24.1± 1.6 18.3± 1.6 21.5± 0.9 18.8± 1.0 18.7± 0.9 16.0± 1.3 26.5± 0.9 17.4± 0.8
SIN 25.8± 1.6 25.8± 2.3 24.7± 1.0 20.9± 0.6 21.0± 0.7 18.5± 1.1 26.4± 1.2 20.6± 0.7
USA 37.7± 1.9 29.5± 2.0 29.0± 1.1 20.5± 1.5 25.6± 0.8 18.8± 1.4 32.2± 1.3 19.7± 0.9

Table 2: Within and cross-culture accuracy % (mean ± std. err.) for 10-class classification using wav2vec
embeddings, mean over all results per country.

# Features wc_wi Accuracy wi_pair_cc Accuracy

1 loudness mean falling slope 17.2± 0.6 F0 percentile range 13.6± 0.3
2 MFCC 1 mean 20.0± 0.6 logRelF0-H1-A3 mean 16.2± 0.4
3 F0 percentile range 22.1± 0.7 HNRdBACF mean 17.8± 0.4
4 F1 logRel F0 std. dev. 23.2± 0.8 MFCC 2 mean 18.5± 0.5
5 loudness std. dev. 24.6± 0.8 alphaRatio std. dev. 18.8± 0.5
6 voiced segment rate 24.7± 0.8 shimmerLocaldB mean 19.2± 0.4
7 logRel F0-H1-H2 mean 24.9± 0.8 MFCC 4 mean 19.5± 0.4
8 loudness percentile range 25.5± 0.8 F0 median 19.7± 0.4
9 loudness mean rising slope 25.8± 0.8 voiced segment mean 19.7± 0.5

10 F2 logRel F0 std. dev. 25.8 ± 0.8 Hammarberg index std. dev. 19.8 ± 0.5

88 25.6 ± 0.8 16.3 ± 0.5
Random 10 19.3 ± 0.4 14.2 ± 0.2

10 from opposite column 21.7 ± 0.7 15.7 ± 0.5

Table 3: Top 10 features cumulatively selected with forward selection for within and cross-culture classification,
accuracy % (mean ± std. err.) for each feature added from top to bottom.

ing distribution is more broad and hence the trained246

model is more general. As the number of training247

countries increases, the accuracy should approach248

that of the within-culture conditions.249

The two-factor ANOVA results suggest there is250

no interaction between cross-intensity conditions251

and cross-culture conditions, except perhaps for252

eGeMAPS features. Additionally, the difference253

between within and cross-culture accuracy is simi-254

lar for each intensity separately. This suggests that255

low intensity emotions are not relatively more diffi-256

cult to recognise in a cross-culture setting than high257

intensity emotions, and emotional intensity does258

not significantly influence cross-cultural emotion259

recognition.260

Feature importance results show that only a hand-261

ful of features are necessary to attain high accu-262

racy. Using only the 10 most important features263

yields similar or higher accuracy than using all 88264

eGeMAPS features and the difference is more pro-265

nounced for cross-culture classification. This sug-266

gests using too many features hinders performance,267

although it may depend on the classifier used, and268

we only tested linear SVM for these results. The269

top 10 features for within-culture classification are270

mostly different than the top 10 features for cross-271

culture classification, even to the extent that using272

each set of features on the opposite task causes a 273

significant drop in accuracy. The exception is F0 274

percentile range, present in both columns. The 275

top features for within-culture classification should 276

be those that are correlated with emotion class, 277

while the top features for cross-culture classifica- 278

tion should be those which correlate with emotion 279

class but do not correlate with country and hence 280

are robust to different countries. Different impor- 281

tant features account for some difference in accu- 282

racy, since top features for one case yield lower 283

accuracy when used for the other. However, top 284

features for cross-culture recognition yield similar 285

accuracy for both within and cross-culture recog- 286

nition, supporting the idea they are predictive of 287

emotion but robust to differences across countries. 288

6 Conclusion 289

In this study we quantify differences between 290

within and cross-cultural accuracy for five English- 291

speaking countries, for three emotional intensities. 292

While emotional intensity has little effect, the im- 293

portant features for each case explain some dif- 294

ferences in accuracy. In future we plan to investi- 295

gate accuracy and feature importance for individual 296

emotions, and also determine unimportant features 297

for classification. 298
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