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Abstract

In this paper, we extend mean-field Langevin dynamics to minimax optimization
over probability distributions for the first time with symmetric and provably con-
vergent updates. We propose mean-field Langevin averaged gradient (MFL-AG), a
single-loop algorithm that implements gradient descent ascent in the distribution
spaces with a novel weighted averaging, and establish average-iterate convergence
to the mixed Nash equilibrium. We also study both time and particle discretiza-
tion regimes and prove a new uniform-in-time propagation of chaos result which
accounts for the dependency of the particle interactions on all previous distri-
butions. Furthermore, we propose mean-field Langevin anchored best response
(MFL-ABR), a symmetric double-loop algorithm based on best response dynamics
with linear last-iterate convergence. Finally, we study applications to zero-sum
Markov games and conduct simulations demonstrating long-term optimality.

1 Introduction

The mean-field Langevin dynamics (MFLD) provides powerful theoretical tools to analyze optimiza-
tion on the space of probability measures such as the training of two-layer neural networks (Mei et al.,
2018; Chizat and Bach, 2018). Langevin-based methods are especially attractive as they capture
nonlinear aspects of learning as well as admit efficient particle discretizations. However, it remains
unclear how to extend beyond single-objective problems in a principled manner.

In this work, we study the MFLD for distributional minimax optimization problems. Denote by
Pa(X),P2(Y) the spaces of probability measures with finite variance on X',) with fixed base
measures p*, p¥’. We consider the entropy-regularized saddle point problem for a convex-concave
functional £ : P2 (X) x P2()) — R with regularization strength or temperature A > 0,

. . o v

,hin, | max Lx(p,v),  La(p,v) == L(p,v) + AKL(pl[p*) = AKL([[p"). (1)
This formulation encompasses all objectives of the form L(y,v) = [[ Q(z,y)u(dz)v(dy) for
generic nonconvex-nonconcave potentials ). Such problems naturally arise for example in training
generative adversarial networks (Goodfellow et al., 2020; Arjovsky et al., 2017; Hsieh et al., 2019),
robust learning (Madry et al., 2018; Sinha et al., 2018) or solving zero-sum games in reinforcement
learning (Daskalakis and Panageas, 2019; Domingo-Enrich et al., 2020; Zeng et al., 2022).

One is immediately led to consider mean-field Langevin descent ascent (MFL-DA) dynamics, the
coupled distribution-dependent stochastic processes which seek to simultaneously minimize £ over

!"Throughout the paper, sub/superscripts such as p*, p* differentiate quantities related to the min and max
variables, and do not indicate dependency on the distributions p, v. Our results are easily extended to different
temperatures for each variable. We will also present many results for ;¢ and omit the analogous statement for v.
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1 and maximize over v (see Appendix A.2 for definitions of functional derivative and convexity):
dXt = (* VT%(ut, I/t)(Xt) + /\VT log pM(Xt)) dt —+ V 2\ thH, Mt = La,W(Xt),
dY; = (Vy2E (e, 1) (Y2) + AV log p” (Y3)) dt + V2AdWY, vy = Law(Y;),

where W/', W/ are independent Brownian motions. Descent ascent methods are more challenging to
analyze compared to their single optimization counterparts; it is known that simultaneous updates may
display cyclic or divergent behavior even for the simplest matrix games (Daskalakis and Panageas,
2019). For finite strategy spaces, a vigorous line of research has established convergence guarantees
by employing optimistic or extragradient update rules (Cen et al., 2023; Zeng et al., 2022).

Unfortunately, the convergence of MFL-DA is to the best of our knowledge still an open problem,
and mean-field minimax dynamics remains largely unexplored. Existing results fail to establish
convergence guarantees (Domingo-Enrich et al., 2020) or only give proofs for near-static flows
where one strategy updates extremely or even infinitely quickly compared to the other (Ma and Ying,
2021; Lu, 2022). These works also impose the unrealistic assumption that A", ) are both compact
Riemannian manifolds without boundary. In contrast, we allow X, ) to be Euclidean spaces.

Another fundamental consideration when implementing mean-field dynamics is to account for the
errors arising from time discretization and particle approximation in a non-asymptotic manner, the
latter referred to as propagation of chaos (Sznitman, 1991). Prior works generally give error bounds
that blow up exponentially as training progresses (Mei et al., 2018; De Bortoli et al., 2020); uniform-
in-time results were proven in the single optimization case only recently by Chen et al. (2022); Suzuki
et al. (2023). Hence we are faced with the following research question:

Can we develop symmetric MFLD algorithms for distributional minimax problems with global
convergence guarantees, and further provide uniform-in-time control over discretization errors?

Our Contributions. We address the above problem by proposing mean-field Langevin averaged
gradient, a symmetric single-loop algorithm inspired by dual averaging, and prove average-iterate
convergence to the mixed Nash equilibrium. We also study both time and particle discretization and
establish a new propagation of chaos result. The analysis is greatly complicated by the dependence of
the interactions on all previous distributions and the techniques are of independent interest.

In addition, we propose a symmetric double-loop algorithm, mean-field Langevin anchored best
response, which realizes the best-response flow Lascu et al. (2023) via an inner loop running Langevin
dynamics in Appendix D. We show that the outer loop updates enjoy last-iterate linear convergence
to the mixed Nash equilibrium. Furthermore, we apply our theory to zero-sum Markov games and
propose an iterative scheme that finds the regularized Markov perfect equilibrium in Appendix E.
Finally, we numerically demonstrate the superior optimality of both algorithms compared to MFL-DA
in Appendix F.

2 Problem Setting and Assumptions

Denote by ?Q(Rd) the space of probability measures on R? equipped with the Borel o-algebra

with finite second moment. Let X = R% ) = R and £ : P5(X) x P2(Y) — R be a weakly
convex-concave functional. Our objective is to find the mixed Nash equilibrium (MNE) solving (1).

We proceed to state our assumptions which are standard in the MFLD literature (Suzuki et al., 2023).

Assumption 1 (Regularity of p*, p¥). We assume that p* = exp(—U*") and p¥ = exp(=U") for
r,- and r,-strongly convex potentials U* : X — Rand U” : Y — R, respectively. Furthermore,
VU* and V,U" are R,,- and R, -Lipschitz, repsectively, and V,U*(0) = V,U"(0) = 0.

Assumption 2 (Regularity of £ for MFL-AG). We assume L is convex-concave and admits C*
functional derivatives gﬁ, ‘;L at any (p, v), whose gradients are uniformly bounded, and Lipschitz
continuous with respect to the input and v, v. That is, there exist constants K,,, L,,, M,, > 0 such

that ||V, §5 (1, )( )| < M, and
V252 10)(0) — 2 B2 )| £ B o = ]+ L (W) + Wa) 2
orall z, ', ji, and v. The same properties hold for V%% with K,,, L,,, M, > 0.
u prop Yu




This implies in particular that g—ﬁ is M,,-Lipschitz and p — L(u,v) is M,-Lipschitz in W;. The
KL regularization then assures existence and uniqueness of the MNE (u*, v*) via the Kakutani
fixed-point theorem even though X', ) are noncompact; see Appendix A.2 for the proof.

The suboptimality of any given pair (u, v) is quantified via the Nikaidé-Isoda (NI) error (Nikaidd
and Isoda, 1955),
/ : /
NI(u,v) : V(g%%)((y)ﬁA(u, V') ulen%r(lx)ﬁ)\(u V).

From the discussion in the proof of Proposition A.9, it follows that NI(y, ) > 0 and NI(u,v) =0
if and only if p = p*,v = v*. A pair (i, v) satisfying NI(u,v) < e is called an e-MNE. As is
usual in both discrete (Cen et al., 2021; Wei et al., 2021) and continuous (Lu, 2022; Lascu et al.,
2023) minimax settings, our main goal is to prove convergence of the NI error along the proposed
algorithms, which also implies convergence to the MNE in relative entropy (Lemma 3.4).

3 Mean-field Langevin Averaged Gradient

3.1 Proposed Method

We propose the mean-field Langevin averaged gradient (MFL-AG) flow with a weighting scheme
(Bt)t>0 and temperature A > 0 as the coupled pair of history-dependent McKean—Vlasov processes

1 t

ax, = - (B | 895 v () ds+ A%U*‘(Xt)) dt + VIR AW},
t Jo H

)

I 5L
ay, = (B/ BVy 5 (s, v2)(Yy) ds — )\VyU”(Yt)> dt +V2xdwy,
tJo

where p; = Law(X}), vy = Law(Y;) and W}, W} are independent Brownian motions on X’ and
Y, respectively. By weighting scheme we mean any integrable function 5 = (8;) : R>9 — Rxo
where the normalizing weight B; = fot Bs ds satisfies By — oo and ;/B; — 0 as t — co. These
conditions ensure that the most recent update continues to influence the rolling average, but at an
ever-decreasing rate. We will often substitute 5; = " for a fixed exponent r to obtain explicit rates.

The dependence on previous distributions (us, Vs)s<¢ serves as a major point of departure from most
existing works on mean-field dynamics. Nevertheless, existence and uniqueness of the flow (3) is
verified in Appendix B.1 by extending the classical contraction argument of Sznitman (1991).
Proposition 3.1. Under Assumptions 1 and 2, the MFL-AG flow (X;,Y;) (3) with continuous sample
paths uniquely exists for all t € [0, 00) for any initial distribution pg € P2(X), v € Pa()).

To study the evolution of MFL-AG, we define the history-dependent Gibbs proximal distributions

1, o ptexp (f )\1Bt fot Bs%(us, Vs) ds) and U; o p” exp <,\113t fot ﬁs%(us, Vs) ds). As usual,
fiy, Uy satisfy log-Sobolev inequalities with constants «,,, o, which are crucial to controlling the
mean-field flows. The mild dependency o, = (1/dy) is the only potential manifestation of
dimensional dependence in our results. See Definition A.2 and Proposition A.7 for details.

MFL-AG is similar in spirit to fictitious play methods (Brown, 1951) in the two-player zero-sum
game setting with 5; = 1, where each player assumes their opponent has a stationary strategy and
optimizes based on the average behavior of the opponent; the ideal fictitious play algorithm would
perform the update 1,1 = fi,. However, such methods require exact computation of the optimal
response at every step which is generally unfeasible.

3.2 Continuous-Time Convergence

We first study the properties of the flow (3). At each time ¢ the policies evolve towards the proximal
distributions. The key observation is that unlike MFL-DA, the deceleration of the rolling average
allows the flow to catch up.

Proposition 3.2 (Proximal convergence of MFL-AG flow). Under Assumptions 1 and 2, for the
weighting scheme 3, = t" with a fixed exponent v > —1 the proximal KL gap is bounded as

2(r +1)°M;

o(t™3).
aixiz )

KL (el 1) <
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Algorithm 1 Mean-field Langevin Averaged Gradient

Require: temperature A, max epochs K, learning rate 7, number of particles [V, exponent r
Initialization: 2k, %k + @, 21, %
fork=1,--- , K—1do
For all particles i = 1,--- , N sample &"* ~ N (0,14, ), §" ~ N (0,14,,) and update
Xipr < X — &; Z§:1 BiVa 5 (nary, vy ) (XE) = MpVLUR(XE) + V2Xe)
Yig <Y+ 4 Z?:l BiVy 5o (nary vay ) (V) = MV, U (V) + V2Ang"
end for
fork=1,--- ,Kdo L
Sample | 5, N/ By | particles from 2%, %}, and concatenate with 2 x, % i, resp.
endfor
return 2 i, ¥ i

See Appendix B.2 for the proof. It is then clear that if MFL-AG converges, it must converge to the
MNE (5) by setting (oo = o> Voo = Voo-

For ordinary MFLD, KL gap convergence of the above type is generally enough to show absolute
convergence (Nitanda et al., 2022; Lu, 2022). In our case, however, the relative entropy no longer
quantifies the optimality gap at (p, 1) since the proximal distributions are no longer ‘state functions’
and depend on the entire history. Nevertheless, we are able to obtain our first main result, average-
iterate convergence of MFL-AG. Our approach, detailed in Appendix B.3, extends conjugate function
arguments from dual averaging to the minimax setting.

Theorem 3.3 (Average-iterate convergence of MFL-AG flow). Denote the weighted average of
the MFL-AG distributions up to time t as iy = B% fot Bspis ds, Uy = B% fot Bsvs ds. Then under

Assumptions 1 and 2, for the weighting scheme 3, = t" with fixed exponent r > 0, the NI error of the
averaged pair [i, Uy converges with rate

ME) 4(r+1)?2 Lo,

M2
NI, o) < | —£
(e, 72) < (ai + A2t

aj
and the leading term is optimized when 3; = t. For the unweighted averaging scheme 3; = 1, the

2
rate is NI(jig, ) < (% n Mf)zuogt Lo,

— o2 A2t

We note that the dependency on weighting exponent 7 is in agreement with works such as Tao et al.
(2021) on dual averaging and Guo et al. (2020) on which incorporate averaging with increasing
weights [3; o t to obtain improved rates. In light of Lemma 3.4 (proved in Appendix A.2), Theorem
3.3 immediately implies O(1/t) convergence of (fi;, 7;) in relative entropy to the MNE.

Lemma 3.4 (Entropy sandwich lower bound). For any p € P2(X) and v € P2(Y) it holds that
KL(ull*) + KL|lv") < A~ NI(,v).

3.3 Time and Space Discretization

We now summarize our discretization analysis of MFL-AG developed throughout Appendix C. Our
study incorporates both a discrete time step 7 for the Langevin flow and particle approximations for
the laws /1, v. Denote ordered sets of N particlesby 2" = (X)), € AV, % = (Y)N, € YN and
the corresponding empirical distributions by p g = % ZfV:1 Oxi,Voy = % Zfil dyi. The update
Zk+1, @1 will depend on the full history (Z71.x, 1.1 ), Where Z7 and % are sampled i.i.d. from
initial laws p° € Po(X) and v° € P()).

In order to implement gradient averaging, the integral in (3) must be replaced by the discrete-time
average with respect to a sequence of weights (0 )ren; the cumulative weights are denoted as
By = Z?:l Bj. Moreover, the final average of (14, - , tg, may be computed by randomly
sampling S, N/ By particles from each set 2}, and concatenating. See Algorithm 1 for details.

The propagation of chaos framework recently developed in Chen et al. (2022); Suzuki et al. (2023)
relies on a lifted proximal distribution ﬁ(N) on the configuration space X’ N By integrating out the



conditioning on the previous step in the continuity equation, this is used to elegantly control the
evolution of the joint distribution (V) of the N particles. In our case, however, the dependency on
the full history (2Z7.x, 1.1 ) cannot be integrated out consistently and must be retained:

k
fiy, (X)) o p (%)exp< /\Bk/){;ﬁgdﬂ(u%w%)uz(dx) :

This renders the KL gap argument with (") inaccessible and we must work step-by-step with the
atomic measures [t g, , V#;, , which further complicates matters as we cannot directly utilize metrics
involving p g, in order to avoid the curse of dimensionality. Instead, we prove and exploit the
following uniform law of large numbers (Appendix C.3).

Proposition 3.5. Let F' : Po(X) X P2(Y) x X = R, (v, ) — F(u,v)(x) be a functional such
that F(p,v) is M,,-Lipschitz on X and further satisfies

HF(Ma V) - F(/’le V/)HLiP < LH(WI (/1% :u’/) + Wi (V’ V/))'
Ifn<mn:= Q(LME/\)\RM)z A 4;;%3 A Z(LU:_”/%RU)Q A 4;1”33 and the weight sequence By, = k" forr > 0,
then for all integers k, N it holds that

~ r—+1 C
E0 900 [ / Pl vo) (o~ M) (o) | < =il + Covfii+ % @)
x N

The same bound also holds for the max policy v. The constants Cy, C3 only depend on problem
quantities (including the LSI constants) with at most polynomial order, while the function Cy depends
on problem quantities and 7.

Here, 11 denotes the average of the N pushforward operators along the coordinate projection maps
2+ X', The main idea of the proof is to look backwards in time: close enough so that the dynamics
is nearly particle-independent due to the slowdown of the averaged gradient, but far enough to assure
exponential convergence to the approximate stationary distribution. Furthermore, the W -Lipschitz
leave-one-out argument in Step 3 shows that the O(1/+/N) rate is optimal.

We finally present our main discretization error bound; the proof is presented in Appendix C.5.

Theorem 3.6 (Convergence of discretized MFL-AG). Denote the averaged empirical distributions as

k k _ )
W, = Bik R Bik_ =1 Bjvey;. If n < 7 and By, = k" withr > 0, the MFL-AG

discrete update satisfies for all K, N,

r 2 ~ C.
W B, L) + WS, o) < CE G + o O

with similar constants as in Proposition 3.5. If r = 0, the first term is replaced by O(log K /K).

Hence the errors arising from time and particle discretization are separately bounded as O(,/7)

and O(1/+/N). An unfortunate byproduct of the perturbation analysis is a roughly 7~/ order
dependency in the constant C (7); nonetheless, the convergence in time is O(1/K) for any fixed
7. In particular, for any specified error ¢ > 0 we can take 7 = O(e?) and N = O(e~?) as well as
K = O(e~1/@n"ev) 50 that Wi (Elpg, ], 1) + WP (Elvg, |, v*) <e

We remark that the squared Wasserstein distance is a natural measure of optimality consistent with
the continuous-time rate obtained in Theorem 3.3 in view of Lemma 3.4. Note that Theorem 3.6
quantifies the bias of the MFL-AG outputs, but does not tell us anything about the variance. In
Appendix C.6, we give a bound for the expected distance E[W1 (5, , u*) + Wi(vz, ,v*)] and also
discuss why the curse of dimensionality is unavoidable in this setting.

4 Conclusion

In this paper, we developed the first symmetric mean-field Langevin dynamics for regularized minimax
problems with global convergence guarantees. We proposed the single-loop MFL-AG algorithm
and proved average-iterate convergence to the MNE. We also established a new uniform-in-time
analysis of propagation of chaos that accounts for dependence on history using novel perturbative
techniques. Furthermore, we proposed the double-loop MFL-ABR algorithm with time-discretized
linear last-iterate convergence and studied applications to zero-sum Markov games.
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Appendix

A Preliminaries

A.1 Optimal Transport

We begin by introducing basic concepts and inequalities from optimal transport theory that will be
useful in analyzing the behavior of Langevin dynamics.
Definition A.1 (p-Wasserstein metric). For p € [1,00), let P,(R?) be the space of probability

measures on R? with finite pth moment. The p-Wasserstein distance between u, v € Pp(Rd) is
defined as

YEI(p,v)

wumuw=( mfiédx—ypdwayoé

where II(u, ) denotes the set of joint distributions on RY x R? with marginal laws p and v on the
first and second factors, respectively. By Kantorovich-Rubinstein duality, the metric W) can also be
written as

Wi(nv) = sup /Rdfdu—/Rdfdu

£l <1

Definition A.2 (Log-Sobolev inequality). A probability measure v € Ps (Rd) is said to satisfy the
logarithmic Sobolev inequality (LSI) with constant o > 0 if for any smooth function f : R - R,

Bty (/2) = B, /2 log /7] ~ E, /] lg B, /7] < ~E, | 73]

For any measure p € Pz(Rd) absolutely continuous with respect to v, the LSI implies that KL
divergence is upper bounded by the relative Fisher information,
2]

Proposition A.3 (Bakry and Emery, 1985). If f : RY — R is a function such that V2f = alg, the
probability density p < exp(—f) satisfies the LSI with constant c.

1
KL(|lv) < 5F,

dp
1 _
HV 8 dv

Proposition A.4 (Holley and Stroock, 1987). Let p be a density on R4 satisfying the LSI with constant
a. For a bounded function B : R — R, the perturbed distribution

exp(B(x))p(x)
By [exp(B(z))]
also satisfies the LSI with constant o/ exp(4 || Bl| .. )-

pp(z)dr = dx

Definition A.5 (Poincaré and Talagrand’s inequalities). A probability measure v € Ps (Rd) is said to
satisfy the Poincaré inequality with constant o > 0 if for any smooth function f : RY - R,

Var, (f) = E,[f*] - (E,[f])* < éEu[IIVfllgl

Moreover, v is said to satisfy Talagrand’s inequality with constant o > 0 if for any measure
wE Py (Rd) absolutely continuous with respect to v, the 2-Wasserstein distance is upper bounded as

@]
§W22(u,1/) < KL(pl|v).

If v satisfies the LSI with constant «, then it satisfies the Poincaré inequality with the same constant.
We also have the following implication.

Theorem A.6 (Otto and Villani, 2000). If a probability measure v € Py (Rd) satisfies the LSI with

constant «, then it satisfies Talagrand’s inequality with the same constant.

The MFL-AG proximal distributions can be seen as Lipschitz perturbations of p*, p* and hence
satisfies the following LSI. The adverse exponential dependence on A seems to be a general drawback
of Langevin diffusion methods in the low temperature regime (Menz and Schlichting, 2014).
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Proposition A.7. Let the probability measure ji < p* exp(—A"1h) € Pa(X) with [Pl < My
Then under Assumption 1, | satisfies the log-Sobolev and Talagrand’s inequalities with constant

_AME [3an 2 2 4AM? M2 -1
Qy 2 %”e P2V (4 + <M# + 2) <2+ d%log ¢y + “)e%i?) :

2
Ty TuA Ty Ty T

Proof. We take the stronger of the two bounds in Lemma 2.1 of Bardet et al. (2018) and Theorem 2.7
of Cattiaux and Guillin (2022); the latter removes the exponential dependency on d y in exchange for
more complicated polynomial terms. See Lemma 6 of Suzuki et al. (2023) for more details. O

A.2 Mixed Nash Equilibrium

Definition A.8 (functional derivative). Let F' be a functional on Ps (Rd). The functional derivative
‘g—}; at i1 € Po(R?) is defined as a functional Py(R?) x R? — R satisfying for all v € Py(R?),

d oF
TFU - = [ 5@ = mia)

As the functional derivative is defined up to additive constants, we impose the additional condition
fRd g—i (1) dpe = 0. Furthermore, F' is defined to be convex if its satisfies the convexity condition for

all v € Py(RY):

oF

Flv)>F —
)= P+ [ 5
Finally, F' is defined to be concave if —F" is convex.

Proposition A.9 (Existence and uniqueness of MNE). Under Assumptions I and 2, the solution
(u*, v*) to (1) uniquely exists and satisfies the first-order equations

(1)(@)(v = p)(dz).

M*o(pﬂexp(—%%(ﬂ*’y*))7 y*o(pVeXp (%%(M*)y*)) (5)

Proof. Recall that the 2-Wasserstein distance is finite and metrizes weak convergence on P, (Rd)
(Villani, 2009, Theorem 6.9). Also, the divergence p +— KL(u||p") is proper and lower semi-
continuous with respect to the weak topology (Lanzetti et al., 2022). Furthermore, p* satisfies
Talagrand’s inequality with constant 7, by Theorem A.6 so that the map o — £ (p, v) is strongly
convex. Hence the minimizer of u — L (s, V) is unique, and similarly the maximizer of v —
L (i, V) is unique. Existence of the MNE is now guaranteed by Theorem 3.6 in Conforti et al. (2020)
by verifying Assumption 2.1 and conditions (i)-(iii).

For uniqueness, suppose to the contrary that (u*, v*), (*, 7*) are two distinct solutions of (1). The
optimality conditions yield the chain of strict inequalities

La(p*,v") > La(u*,0%) > LA(B",07) > La(f%,v7) > La(p*, "),

a contradiction. Finally, the first-order conditions follow from Corollary 3.3 in Conforti et al. (2020),
adjusting the base measures as to be different for i, v. O

Proof of Lemma 3.4. By convex-concavity of £ and the first-order condition (5),
NI(M? V) > E)\(,U,, V*) - ﬁA(,u‘*v V)
5[: * * * * v
> | S )= ) () + AKLal") = AKLG )
_ [0k
hY% (SV

_ /X Mog 2 (11— ) () + XKLl ) = AKL(" )

(n*,v") (v = v*)(dy) — AKL(p"[|p") + AKL(v|[p")

V* * * v
- /y Mog 22 (1 = v*)(dy) = AKL( ) + AKL(v]")

= AKL(ullp") + AKL(v[[v7).
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B Convergence Analysis of MFL-AG

B.1 Proof of Proposition 3.1

Some definitions are in order. Denote by Cx r = C([0, T, X) the space of continuous sample paths
on X and by M(Cy ) the space of probability measures on Cx 7. We define two versions of the
lifted 1-Wasserstein distance on M (Cy 1) as

W, ) = in / sup [l (t) — ' (B)] dry(w, ') A L,
v t<T

Wir(u ) = nf [ sup Jlo(®) - /()] A 1y (0,)
v J o<T

where the infimum runs over all couplings v € M(Cx 1 X Cx ) with marginal laws p, /. The
inner truncated metric Wy r is complete, nondecreasing in 7" and metrizes the weak topology on

M(Cx r) (Dobrushin, 1970); the outer truncation W 7 serves to upper bound W1 7. We repeat the
construction for ) and extend W1 1, W1 ¢ to the product space M (Cx 1) x M(Cy. 1) as

WLT((:UW V)v (/J'/’ VI)) = Wl,T(:u» /1'/) + Wl,T(Va V/)’

etc. Now define @ : M(Cx 1) x M(Cy 1) = M(Cx 1) x M(Cy 1) as the map which associates
to the pair (u, ) the laws of the stochastic processes (X )i<7, (Yi)i<r,

t1 s iy
Xt:XO—/O E/0 BTVZE(MT,VT)(XS)dr—&—)\VwU“(Xs)ds—k\/Q)\Wt”,

t1 s 5
Y, =Yy + / = mvyg(ur, ) (Ya) dr — AV, U (Y,) ds + VZAWY
0 s JO

for 0 <t < T, where i, v; denote the marginal distributions of i, v at time ¢ and in particular pg, vy
are the prescribed initial distributions. A solution to (3) then corresponds precisely to a fixed point of
.

Lemma B.1. There exists a constant C > 0 so that forany 0 < t < T,
t
Wit (®(p,v), @(1', V) < CT/ Wi s((,v), (', V")) ds.
0
Proof. Firstnote that forany 0 < s <t < T,

Wi, 1) > inf/ lao(s) = w'(s)]l dy(w, ') A1 = Wi (ps, i) AL
ol

Let (X[)i<T, (Y/)i<r denote the synchronous processes
b1 6L
X, =Xo— / B—/ ﬁrvza(u;,,yﬁ)(X;) dr + AV, U (X)) ds + V2AW/',
0o PsJo
b1 oL
Y/ =Yy + / = / 5,9, S ) () dr — XV, U¥ (V) ds 4 VIRV
0o PsJo

corresponding to another pair of distributions (¢’, ). Then by Assumption 2,

sup || X — X{||
s<t

t
[
0 r<s

t
< [0+ AR X, = XS0 4500 L (Wil ) + W) £ 20, ds
0 r<s

6L oL
Vzi(ﬂra Vr)(XS) - vii(ﬂlm V;)(X;)

X)) — 0'd
o 5 + AV UH(X) = Vo UH(XY) | ds

t ¢
< (Ku+)‘Ru)/ HXS—X;||ds+(LH\/2M#)/ sup Wi (pr, i) A1+ Wi (v, 1)) A lds.
0 0

r<s
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Thus by Gronwall’s lemma we obtain

t
sup || X, — X.|| < (L, V QM#)e(K““‘R“)T/ sup Wi (try i) A1+ Wi (v, 1)) A lds.
s<t

0 r<s
Then defining the constant O = (L, V 2M,,)eEnt )T (L, v 20, )e B tARIT by taking
the joint distribution coupling of (X;);<7 and (X])¢<r we have
t
Wi 4(®(p,v), @1, v")) < C’T/ sup Wi (g pin.) A1+ Wi (v, 1)) A 1ds,
0 r<s
which proves the lemma. O

We now use the contraction property to prove Proposition 3.1. Starting at any (u, ~) and recursively
applying Lemma B.1, we have

N T rt1 te—1 __
Wor (@0 8 e)) < O [ [T [T @00, () i iy
0

Ckrk —
< k! Wi T( (:U’7V)a(uvl/))7

so that W1 7(®*+1(p, v), ®% (1, v)) — 0 as k — oo. Since Wi 1 upper bounds W 7, the sequence
(®* (11, ) k>0 is Cauchy and therefore converges to a fixed point of ® due to the completeness of
M(Cx 1) x M(Cy ) with respect to W1 . Similarly, recursively applying Lemma B.1 to two
fixed points (u, v), (1, V') yields

ka __

WI,T((:UH V)’ (,u/a Vl)) -0,

Wiz (), (1, 0) < Wir((p,v), (1,0) <

hence the fixed point is unique. Finally, truncating the obtained flows ((1¢)i<T, (V4)e<7) at time
T' < T must again yield the fixed point in M(Cx 1) x M(Cy 1) so that we may consistently
extend the flows to all time ¢ € [0, c0).

B.2 Proof of Proposition 3.2

The Fokker-Planck equations corresponding to the system (3) can be formulated as

8t‘lj,t = ( / ﬂg /,Lg, ljg) ds + )\/Ltv Uﬂ> + AAQC'U,IL = )\Vx . (,utvﬁ IOg Z\t) y
t

6tl/t = —Vy . (;tt/o styg(,us)ys) ds — )‘VtVyUU) + AAth = )‘V!/ ’ <VtVy log Z\ff) ’

where we recall that

1 [t &L
- ,u f 1%
fy o p eXp( ABt/ Bs /’6571/3 ) Vs o< p¥ exp ()\Bt/o Bséy(us,vs)ds> (6)

which are well-defined due to the strong convexity of U#, U" and Assumption 2.

Write the normalization factor for i, as

1 [t sc
Z":/ ex (—/ o — (s, Vs ds) H(dx).
t N p \B: Jo B (Mm ) P (dx)

We first compute the time derivative of the proximal distribution,

R oL
O¢log i, = —0; log Z1' — )\Bé 5 — (e, vt) )\BQ/ ﬂs MmVs)d

Br 0L
:/ (ABt(Su(“*’ i) - /\BQ/ﬂg ”%”s)dS)ut(dw)

_ﬁiﬁ(
AB, op HtY ) )\32

/“Lévys
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Roughly speaking, the proximal evolution speed is O(S;/B;) which converges to zero as new
information is continually downscaled. However, the maximum total displacement is O(log B;) —
00, ensuring that the algorithm does not prematurely stop before reaching equilibrium.

The time derivative of the KL gap can then be controlled by translating back into KL distance as
okl ) = [ (1082 ) ountan) - [ @1ox7i) (e
x Hog x

2
V. log 4| py(de)
Mt llo

X
b [ (e = [ 855 ) ds) = (e

N Bt
< —2aX - KL (| 1) + Wi (e i)

M
AB;
by Proposition A.7. The Wasserstein term is further bounded via Talagrand’s inequality as

~ ~ 2 ~
Wl(,uta ,U’t) S W2(,Ut7,ut) S Cki KL(,uta :ut)
m

Hence

— — M, B |2
KL (]| 1) < = A/ KL (e || 1) + )\LBtV an

and using an integrating factor, we conclude (starting from an arbitrary small but positive time ¢, to
avoid potential singularities at ¢ = 0)

M PN
exp(a, M) /KL (e || ) \/ / — exp(a, As) ds + exp(ay, o)\ / KL (e, || sy, )-

In particular, for the weight scheme 5, = t" with > —1, by employing the asymptotic expansion of
the exponential integral (Wong, 1989, Section 1.4)

Ei(z) = /Z eXIZ(t) at = &PG) (i k—; - O(|z_("+1))>
z P z

—00

we conclude that

2
1) M, 2
KL (g || 1) < exp(—2a,At) ((7‘—1—)\)“ | — Ei(a,At) + const.)
Qy

2(r+1)2M;

R

+0(t73).

We also show a boundedness result which guarantees that the flow is in a sense well-behaved.
Lemma B.2. The MFL-AG flow (4, 1) satisfies for all t > 0,

M? M2
KL 1y < KL By b d KL(v||p") < KL YV Y
(ellp*) < KL(pollp") oz (vellp”) < KL(wo|lp”) B2

Proof. The density p" satisfies the LSI with constant r, by Proposition A.3 so that we may derive

0 KLl ) = [ (1og p) Dupn(dz)

—)\/ Va log— Ve logﬁ pe(dx)

ut(dx —|—)\/ Va 1ogp -V logp—ut(dx)

14



2

A pe ||? A / Ay
< —— T 1 - d > T 1 L d
<=5 [ [7erom | petamy+ 5 [ I9eto ] pugan
2
< = KL (|l 0") + T;
The assertion is then proved by Gronwall’s inequality. [

B.3 Proof of Theorem 3.3

We first introduce two conjugate-type auxiliary functionals and state some properties.

Lemma B.3. Given Lipschitz functions ¢, : X — R, (, : YV — R, for the pair of probability
measures i € Pa(X), v € Po()) define the time-dependent functional

T\t ¢) = — /X ¢4 — o) () + /y (v — p¥)(dy) — ABL(KL(ul|p") + KL(v]}p")).

Then the maximum

J, B ¢Y)= max max Ji(u,v|C", Y
HEn ) = max max irichcY)

exists for all t > 0 and is uniquely attained by the pair of probability distributions defined as
iy (C*) o< exp(—(ABy) " '¢H — U*) and U4(C”) o< exp((ABy) ~'¢" = UY).

Proof. Since Ji(p, v|¢C*, (") decomposes into terms depending only on u and v, respectively, the
proof is similar to that of Proposition A.9. That is, pu — KL(u||p*) is lower semi-continuous and
strongly convex with respect to the 2-Wasserstein metric by Talagrand’s inequality for p* so that
combined with any linear functional,

arg max ¢ (pu — p*)(dz) — AB; - KL(ul[p")
pEP2(X)

has a unique maximizer fi, (¢*) which moreover is given by the stated first-order condition. O

The following properties are direct extensions of standard conjugacy results in convex analysis, see
e.g. Hiriart-Urruty and Lemaréchal (2004), Section E.

Lemma B.4. The functional :ft(C”, ¢¥) satisfies the following properties.
(i) jt is nonnegative and convex in both arguments.
(ii) jt admits functional derivatives at any (C*, C¥) which are given as

5.J; 57
5&75 (¢4 ¢") = = (¢ + 9", S2L(CH,¢Y) = BalC?) — .

(iii) The derivative with respect to time is bounded as
QT(CH,C") < =ABUKL(E(C") 1) + KL(@(C)[lp")).

Proof. (i) Note that JAt > 0 by taking p = p*,v = p”, and jt is convex in both (#, (¥ as itis a
pointwise maximum of affine functionals.

(ii) Due to the explicit dependency of i, (¢*) on ¢H, ft(C”, ¢Y) = Je (i, (CH), 11, (¢¥)[¢H, ¢¥) admits
a functional derivative with respect to ¢* and

67, BoFVY — 5 n
(STM(C () == (¢H) +p */

X

5
3Cr

(C“ + AB; log ﬁ((“))
pN

p(¢H)(d) = =, (¢") + p*.

(iii) The time derivative of ft exists due to the differentiability of (B;);>o. For any t' > ¢,
T (¢#,¢") = Ju (i (¢"), P (CV)[CF, ¢Y)
= Ji(1 (C*), v (€¥)ICH, ¢%) = A(By — By) (KL (72, (¢*) o) + KL(e (¢) )
< (¢, ¢Y) = A(By — Be)(KL(5y: (¢7)[1p") + KL(we (¢")[107))
by the maximality of jt, thus taking the limit ¢ | ¢ yields the stated inequality. O
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We proceed to the proof of Theorem 3.3. Denote the unnormalized aggregate derivatives as

(Su_/ﬁs Msays /58 MS’VS

which are Lipschitz due to Assumption 2. Then by Lemma B.4,
d ~
7‘]1‘/ (6f7 61’)
6Jt o u VN T nosv
at t 5< (6¢,0¢) 8t t 5<,, 5t ;07 )(dy) + (¢ Je) (61, 6F)

<4 / ﬁmt,w)(—ﬁtwé‘)+pﬂ><dx>+ﬂt |, 5 @) = )
~ NSKL( 52 1) + KL@(5F) "))

The NI error of the averaged distributions can now be bounded,
NI(ﬁtv Dt)
= max L3 (jir, v) = La(p, )

< max F/ Bo(La(pts, ¥) — La (1, v5)) ds

< max 2 / 8, ( ‘ffms,us)( — ) = [ S - ) ()
AL ) = KLW") = KLGo#) + KLl ) ds

— 5 max [ == [ 3 (= 0#)(de) = AB(KLGulo*) + KLW])) )

I oL . 5L }
+§t/0 &(/y&/(ﬂs,us)(p _VS)(dy)_/XE(MS,VS)(p — p)(dz)
AL ) + KL(w ) )

where we have used the convex-concavity of £, and £ in succession. By extracting the terms
corresponding to the auxiliary functional J;, we are able to apply Lemma B.4(iii) and obtain that

52 [aser+ [0 [ S G v~ [ S0~ )@

+ AKL( 1) + KL(usnpv») ds]
<z [ / (— M, (KL, (57 10) + KL (57) 1)

0 [ S R + ) 5, [ ) B8 — () ) s

+/Otﬁs(/y(jsf(us,vs)(p”—vs)(dy)—/xgi(ﬂs%)@“—ﬂs)(dm)

S AKLcl) + K021 ) |
= [ (ML)~ KLE) + KL ) — LG 1)
oL N oL ~
" /X ot = 70) = [ S5 )= ) )
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m ~ Hs
s 1o—ss—gdx—|—/\/1075dx
=5 [ (5 [ ros e - e 2 [ tog ey (ar)
+/\/ log V—j(z/s —ﬁs)(dy)+)\/ log ?us(dy)
y s

/ o (s, vs)( ﬁs)(dx)—/y(;S(NS7VS)(VS—ﬁS)(dy)) ds
Bt 0 ﬁk {/X <§i(ug’ys) ; ]_'% Sﬁ’"M(W’W)dT> (s — i) (d)

_/y (fsﬁ :usaVs / ﬁr MraVr d’l“) (Vs_l//\S)(dy)

—1—)\/ log ,\—Sps(dx) —1—)\/ log ,\Sl/s(dy)] ds.
X e y

By Proposition 3.2 and Talagrand’s inequality, we can therefore bound

NI(f, )

I ~ ~ _ ~
< g [ BCMWL ) + 2 Wa(v2,92) + AKLGu | ) + AKL( [ 9.) ds
t Jo

2 [ 2 _ 2 _
< — s | M/ — KL(us|| s) + M/ — KL(vs|| Vs) | ds
5| ( o\ o KLl ) + M| 5 KL | >>

A (! _ -
o [ AUKLGu R + KL 7)) ds
t Jo

M? M2 1) ;
(S YD [ o

2
a o?

In particular, for 8; = t" with r > 0, we obtain the convergence rate

o M2 M2\ 4(r 4+ 1)2
NI(f, 72) < (a; + a? > rA2t

m v

+0(t™%)

whose leading term is optimized when r = 1. For 8; = 1, we obtain the slightly slower rate

M2 M2\ 4logt
NI(jig, i) < | —2 v
(e, 72) < <ai + aﬁ) A2t

+0@t™).

We remark that for decreasing /3;, the integral tends to converge so that the normalizing B; ! term
dominates, leading to significantly slower convergence. For example, if 5, ~ t" for —1 < r < 0 the

rate is O(t~17"); if B; ~ t 71, the rate is O(logt) -

C Time and Space Discretization

C.1 Gradient Stopped Process

Denote 2, = (X})N.\, % = (V)N  and pg, = + S0, Ox Vo = Y dyi. That is, the
subscript k denotes the number of steps while superscript ¢ denotes the ith particle. We also write
(2,9 )11 = (Z1.k, ?1.1) for notational simplicity.

We analyze the following MFL-AG N-particle update forall: =1,--- | N,

k
i n oL i i
Xir = Xk = 5= D BiVagr (i van) (X) = MVaUM () + /2
- %)
% i n a 5£ V v,
Yk+1:Yk+§kZﬂ Vy(; (s v ) (V) = MV, U (Vi) + v/ 22n€",
=1
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where 5 k * are i.i.d. standard Gaussian and the initial values 2 1, %4 are sampled from initial
distributlons o € P2(X), vy € P2()). We write the history-dependent averaged drift function as

o = bl (|2, D )1r) = Z,Bj M,y@,)—www

and similarly for by. The history-dependent N —partlcle proximal distributions are defined on the
configuration spaces X’ N YN as the product distributions

uéN)(e%)o(pU®N(%)exp< )\Bk/ Zﬁja ;1,5571/@),u%(d$)>

N ~ , 0L
7 (@) o< p N (@ ) exp (w /y Zﬁj(w(u%,mu@(ay)).
j=1

We substitute 8, = k" with r € R>( whenever necessary to simplify the calculations, although
similar results may be derived for any well-behaved sequence of weights.

The following lemma quantifies the sequential evolution of the averaged drift.
Lemma C.1. For any pair of integers k > { we have ||b}; —b}/|| <2 (1 - %) M,.

Proof. Forany xz € X,

b} (z) — b} (x) H Zﬁj ux,u@ Zﬂj mw)( )
|| Br — Be oL
_HMZBJV (m(,uﬁtﬁl/@ =n Z 5] M%W@/)( )
j=1 j ={+1
By
<2(1—-— )M,
- ( Bk) "
yielding the assertion. O

The gradient-stopped process. For given integers k > /¢, consider the following synchronous
modification of the MFL-AG update with the drift stopped at time k — ¢,

X = Xj bl o (XD + V228, Y =Y + b (Y)) + V28]

The initializations 27, %1 and the random vectors £/ *, 55’1 are to be shared with the original process

so that (%7, @v)l:k,gﬂ = (2,9 )1.5—e+1. We will study this process alongside the original in
order to facilitate short-term perturbation analyses.

Lemma C.2. Ifn < 43 R2 , the second moments of the particles X}, and Xi + are uniformly bounded
forallk > 1 as

i i i 2 M2
BIXEIP), NP < BT +, o o= 2 (22 4+ ahaE+ d ).

Proof. From the update rule (7),
E[[| X 41 1I°]

i oL ) )
— BIIXEIP] - 20 X} 5 Z@J S ;v (XE) 4 AV, (X)) )

k

1 5L Z. )
B Zﬂjvxa(ﬂﬁjaV%)(Xk) + AV, U*(Xy)
j=1

2

2 + 2xndy

+n
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< E[|XEI1P] + 2nMLE[|| XE ] — 22nr E[[| X5 1]
+ 20202 M}, 4+ 20 REE[| XL |1°] + 2Andx
27]M3

< (1= Mgy B[ X517 +
H k T’u,>\

+2X°0° M} + 22 nd,

where we have used E[|| X /][] <

E[|[X; %] + 7% and <

I )\ R2 The statement now follows

from induction. The same logic can be applied to IE[HX 12 O
Lemma C.3. Ifn < T’\R)Q, the Wasserstein error between the original and gradient-stopped
process at time k > { is bounded as

r+1 M

W (H%aﬂgk) > m

where

M2 L 2 L L
b= (214 v o) 2L+ 20L,)*(1+ 2L, 1)

2n+ —V
n2L3

Proof. Decomposing the difference at each step j > k — { as
X1 — Xj = X5 = X5 + (0} (X]) — 0J(X7)) + (b} (X5) — bl_, (X)),
we expand to obtain
1X5 41 = X5 all?
< |I1X5 = XGII* + 2n(X; — Xj,bé‘( 3) = (X)) + 20| X5 — X3 - 1165 — B lloc
+ 27|05 (X7) — B (X7)|I* + 27 [0 — b, 15

i i i i B¢ i =i
< 15 = RiIP + 2000 ~ A - P+ 4 (1= Z24) a1} - )

— Bi_¢\’
+ 202 (Ly + AR,)?|1 X} — X5||* + 8° (1— ;?) M

m
J

. ~. 47’]M2 B 2
® Jj

Starting from X/ , — X; , = 0 and iterating,

L~ 477M k-t ) B 2
X5 — Xi|? < ( A“ +8 2M2> > (t42mL,) (1_ g‘*) , k>+2.(8)
T j=k—f+1 J

Now noting that with 3; = 5"

1_Bk_g < (]—'k—‘rf)j :(7“—1-1) (1_kj—£> < (7‘+1)(]—k‘+5)’
B, 7 2rdz J k—t0+41

setting @ = (1 + 2nL, )~ ! we can explicitly compute

k—1 =
> G —k+0A+2pL,)F T =010y 20
j=k—0+1 j=1

0272
= (—(£—1)%0 1 (202 — 20— 1)0" — ?0*1 +3-0)




Plugging back into (8) gives
(r+1)2(1+2nL,)% (1 +2nL,)" —
dn?L3 (k—£+1)2

1 1 (1+2nL )2 (1+2nL )ei
< 1)2M?( 2 —V — ® H
<(r+1) u<77+ ) 772Lf¢ (k_g+1)2

2
1xi - K2 < (M) gy
“\ A ®

uA 2L

uniformly for all i € [N]. Note that the (2L,,)~! term is added to simplify later analyses and is
generally vacuous. Finally, taking W3 (u a7, , 7)< + | 25 — Z||? yields the desired bound. [

The calculations for the two above two results are similar but the bounds are fundamentally different.
In Lemma C.2 we rely on the long-distance dissipative nature of b/, to prove a uniform-in-time

guarantee, while in Lemma C.3 we forego the contraction to isolate the 1 — %‘2 factor and obtain
tight short-term error bounds.

The leave-one-out error of the modified process can also be characterized as follows. We remark that
the arguments in Lemmas C.2 and C.4 are identical to that in Suzuki et al. (2023).

Lemma C.4. Denote the set of N — 1 particles (~ . ,)?,i_l,)},iH, e ,)?,iv) as ,%”k_i. If
n< o RQ , the Wy, distance between [ 5~ 7 and | 5= 7 at time k > { can be bounded on average as
Z Z Z

45“ 2 :
2 2 2
Eﬁ\(%,@)hk% [W2 ('uﬁ"u@;*i)} <+ N N ZHX Z” + NHXJJC,(” .

Proof. Similarly to Lemma C.2 but starting from time k — £, it can be shown that

E: oo, JXPT < XD 2 Vs, jelN],

which will be useful in the sequel. Then taking the coupling }° %5(@' %9y + 7]\,(]\%71)6@@ %)
k' k k> k
for T Bg—i gives
T M

2 2
Eﬁcl(%;@)l:k—lf W2 (Mﬁv/‘j@i—’)} SE%'(%y@)l:k—K ZHXJ Xk”
Jsﬁz
2, i 2
S Eﬁc\(%,@)l;k—e ZHX]” 7||XIILCH
J#L ]
45“ 2 ;
SN N ZHX 5H2+NHXIJC—Z||2-
J;ﬁz
The same bound holds for the original process. [

C.2 Proximal Pushforward Bounds

For a measure ™) on X (V) denote by II the average of the pushforward operators Hﬁ along the
projections 2"+ X? with the defining property

[t = [ e - | NZf WM (a2

for any integrable function f : X — R. We immediately see that

Hﬁ;(gN)p“eXp< )\Bk/ZﬂJ(S M%W@))

is the stationary distribution of the continuous-time It6 diffusion dZ; = b/ (Z;) dt + vV2XdW{',
which entails the following uniform moment bound.
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Lemma C.5. The unnormalized second moment |, ||| 11 u( )(d:c) is bounded above for any
integer k by q* := 7‘”2>\ 2M3 +2r, Ldy.

We also denote p* := SN E[XT?) < oo

Proof. We may compute for the initialization Zy = 0,

d
—E[||Z:]|*] = 2E [(Z;, b} (Z:))] + 2Adx
< 2M,E[| Zt]] — 20, E[| Z2]%] + 2Ade
M2
< —rXE[IZ0]P) + T + 27d,
Tu

which yields the bound in the infinite-time limit by Gronwall’s lemma. O

In particular, II /7,(;2 is the approximate stationary distribution of each independent particle of the

gradient stopped process after time & — ¢ and enjoys an exponential convergence guarantee up to an
O(n) discretization error term.

Proposition C.6. Assuming n < 4/\R2 , the KL gap from [}, = LaW(X (2, %)1.—¢) to HM(N)

of the gradient stopped process satlsﬁes

i e ~(N) 3exp(—(¢ — 1)y, An)
KLy, ||IT <[1
(:u’k” :uk é) < 2772(Lu +)\RM)2

) (X2 + 29,

where
°R}(L, + AR,)* L, + AR,)?
G ::77 u( / i) , g :W(UM,?*‘-)\QTIR,ZJEM‘*‘)@X)
ay, OZMA
are both of order O(n).
Hence, choosing
1 3
=0 = 1 1 9
auAn {og 2n%(L, + )\RM)Q—‘ * ©

guarantees that

~q ~(N 4 .
Wa(ig 1 7)) < J (WXl + o)
17

for any integer k > /.

Proof. We emulate the one-step analysis in Nitanda et al. (2022) whilst keeping the history
(Z°,%)1.x—¢ fixed; this dependence is omitted here for notational clarity. For j > k — ¢, denote by

MI the law of the process
dX, = b} (XD dt +V2AdW), 0<t<ny

with X, g = )A(:; so that X = X ‘. 1. We overload notatlon and denote both conditional and joint
distributions involving X ;r by ut. The evolution of ,ut is governed by the conditional Fokker-Planck

equation
Ouid (XT1X}) = =V - (1l (XTIX]) B (X)) + Adasdd (XX,
Integrating out X,

o)) = [ =9 (XL R V(R (@) + Aol (X))

= Vo (Wh(XD) (< s [0 (XD)] + AV log ] (X)) )
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i
o
— AV, - (uI (X)) V2 log — {5 (X] )>
M,y
1V, - <MI(X2L) (bg_e(Xf) —Ezix; {bg—é()?;)}) >

Hence the proximal KL gap from MI to IT ﬂg)z satisfies

:
~ p
O KL(ufIma™) = /XlogHAfN) (Orpf)(dx])

Hi—e
uo |
==X [ | Valog = || d(dx])
X )
T
M ~
= [ o (v, (XD - W () (X aX))
xxx Iy,
A wlo )P L, +AR,)? =i =i
<=5 [ |¥aton L | udaxy + Bt [ - ippudaxd a)
x I, "y X xX
N L,+AR,)?
s—aM~KL(uIl\Hm§2>+%/ng [Hfm )twm*\” (dX?)

where ¢ ~ N(0,1,4,) and we have used the LSI for IT ,u,g . The second term is further bounded as

o [T Va0

2
] + 2\ndx

< 29° M2 + 2\ ? R2 E[| X}]%] + 2\nd.x

<2° M7+ 200 R, ([| XG0 |” v 8") 4 2Xndx
by the proof of Lemma C.4. Gronwall’s lemma now leads to

~i ~(N i —a ~i i (Y i

LGl ITEY) = (R4 + £4) < e (KL ITALY)) — (81 X2 + £) -
Thus, iterating the bound for k — ¢/ < j < k gives

~ ~(N ~(N) i

KL(A7LY)) < exp(—(€ = Loy ) KL(E, 1 [TTAY) + 8XG | + £,

where we have stopped at time k — ¢ + 1 because the initial distribution i _, = § xi_, is atomic.
Instead, the relative entropy after the first step can be directly bounded; since X;r is a rescaled
Brownian motion with constant drift, the first iteration of & Xi_ is distributed as

[l 41 = N(Xk o bl (XE ), 2Mn1a,).

The LSI then gives that
~i 2
m 1 Fr—e41
KL(f 1 [T ) < 5By v, log
k—0+1 k—¢ 20[# Ph—og1 Hﬁgj)l
3 dy M? ) . ,
= %, <2)\77 o PR Ex e 1K ]

3 dx M? )
< e RQ X 2\/ m
= %, <2>\77 + 2 + (|| p—ell" Vs )

3
< -
2n2(Ly + AR,,)?
Hence we arrive at the desired statement,

i 7 ~(N 3exp(—(£ — 1)a,An ;
KL 7Y < (1+ 25RO ) (e P + o)

(R Xkl + £#).
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The subsequent lemmas provide control over the Wasserstein distance between pushforward disti-
butions. In particular, Lemma C.8 is the discrete analogue of the O(/3;/B;) time derivative bound
obtained in the proof of Proposition 3.2.

Lemma C.7. For any two measures ™) i) € Py(X™N) it holds that

W (™, TNy < —= Wy (u™), 5).

2

Proof. Recall the dual formulation of W5,
W2 (1 i) = iug{/wu— [ v ‘ G161 X - R, 9(x) — () < |l — yl? }

Then for any pair of functions ¢, such that ¢(z) — ¥(y) < || — y||?, the pullback functions
1%, IT*1) on X7 satisfy

* * 1 al i 1 1 al 7 % 1
Ig(2) ~ (%) = N;qxx') —(Y) < N;HX' —Y'P = 5 12 = e
Therefore,
[ o o) - [ w@ma™ )
X X

= [ o™ - [ wu@)ias) < SR, i)

which yields the assertion by taking the supremum over all permissible ¢, 1. O

Lemma C.8. The projected 2-Wasserstein distance between [ A( ), ,u,(f 1 is bounded as

uﬁk
#ABk

W (7 (N) B ( )1) <

Proof. The proof is deferred to Section C.4. O

C.3 Proof of Proposition 3.5

We take £ = ¢* = O(n~'logn~1) as defined in (9) throughout the proof and only consider the case
k > 2{ in Steps 1 through 4.

Step 1. We first look £ — 1 steps back to the past and control the displacement of the proximal IT M(N)

from the stationary state 11 ué_)e of the modified process via Lemma C.8, conditioning on the earlier

history (2", % )1.x—s.
E o) Fpa,, var) iz, — ALY (de)
) k—er1:: (29 ) 10— . K2, Vor )\ 2, Hr—1

~(N
< Bz )75 e [ [ Pl - Hﬂ;_’»(dx)]

/—1
~(N) ~(N
MY B )iy (21 [Wl(H#k i 1»Hﬂk_})}

j=1

205 2M; S B
SE@2)ul(29)1—0 /){F(umwm)(um — I ) (dw) | + -.

It is simple to further verify that

?
2M3§5k i M2 (r41)(£ —1)
a#)\lekj_au)\ E—/0+1
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Step 2. Next, we look back to the future and convert the expectation with respect to 4, to the
corresponding expectation for the modified process. The incurred error can be bounded by utilizing
Lemmas C.2, C.3 and C.4 as

B2 2)(2 )14 UX Flpa, va)(pa, — Hﬁ;ﬁme)(dx)}
B F o) [/X Flp g vg,) g, HM(N))(dw)}
=B o 7 )| (29 )1k /X Fpa,va)(nay, — g )(dz)
[ (Flumavm) = Fugzvs) (g~ 00 (o)

SE o 7o a2 o). | MWilba ng,)

N
1
+ NZ HF(N%MV%C) - F(M%:”gﬁ,ﬁ)
1=1

(r+1)M,
~ k—(+1

N 1
(r+1)L, 2 / ~. o o ~(N) 2
o 07) E (%1 (2.2 S IXE - Py
et ™ PO E @ 9 | | 7 2 X = @l Ty (dw)

N 1
(r+1)M, ,  (r+1)L,, , 2 .o 2
< o o wy) [ — X B4 9gh
~— k—(l+1 €+k‘—€—|—1( ¢t Z) N;H k—é” +q"+ 25

~(N)
’Lip Wl(égi’nuk—f)]

m

Step 3. For the modified process, we apply a leave-one-out ut argument and consider the expectation

with respect to each particle X i which is independent of 2 P % when conditioned on the stopped
history (£, % )1.k—¢. That is,

(N)
E & @2 9 UX Fp g vy ) g, — M- e)(dx)}

~(V)
NZ DR AT ST IS [/X Fp g v )05 — i) (dz)

N .
! ~(N)

= NZEﬁ;"%(%,@n:k_zEﬁz\(%7@)1%4 [/X Flpgisvg )0g; — iy, _y)(dx)

=1 i

1 ~(N) |

+ NZE%(%,%LH [HF(N%W@) —F(Nfgiw@) ’Lip Wi (0, 1y, y)

=1 J

N .

<% ZE Ex F(pg—i,v5) (0%, — Y (d2)
= Z7 N INE D )1kt XNE D )12k N Ko —i:Vay, )

<.
I

L (N)

E gy o Wiz na W Gx, T

=
'MZ

s
Il
_

i (Y ~(N
Al {/X Fp gy v ) (i (XE) —Hﬂ;(g_iz)(dl")}

[
=z~
.Mz

«
Il
-

(V)
E g an |Wi(hs n Wi (B, 1))

_|_
z|&
M=
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M,

M, ~(N)
N )

Wi (g, U7,

M=

<

s
Il
-

N 1
2 2 ~(N) 2
Z( Fl( 2 D) s | V2 (”.ﬁw.ﬂ*")} A [Wz (555,@71_[/%_4)])

i=1

_|_
2\1“

[\

N
M“Z\/a (B X7 + )

N
=1
Z =T LI 12+ Sxi)2
- —¢ N k—¢

=

. 1
(1Kl + q" +5+) 2
J#Z
by applying Lemma C.2, Lemma C.4 and Proposition C.6.
Step 4. Putting things together, we obtain the conditional bound

A~ N
E(2 9010l (2.2 )10 [/X Fluz,va)(pa, — A 1)(dx)]

2M2 (r - 1)(¢ ~ 1)

Toagh k=l +1
N 1
(T+1)M# 2 (r+]‘)L# 7 v 2 [ 2 i m 2
T Nt Ty (e ) N;IIXMH +q" +2s

2Mu - -1 i 2
+ S (R X 2+ 2
i=1

1
N 2
2L, < (25" - 1. ;
N - ( N TNON-1) Z”X 5”2+N||Xk_42> (Xl + a4+ 57) % .

Recalling E[|| X! _,||?] < E[||X}]|?] + s* from Lemma C.2, taking the expectation with respect to

the history (2", #)1.,—¢ finally gives

¢
)
]E(%,@/)lzk |:/X F(M%kvyg’k)(,u'%k - Hﬁl(cN1>(dx):|

_r+l 2M2(671)+Mm Y+ L, (w) +1wj) (2p" + gt + 4 “)%
S0+ 1\ aph ‘ RS

1
N 2

1 i L
+ 2MuE (2 @), la i S (®HXE )+ 2

HET =1

l 2N

3
ZI\X P S Gl 0+ 387

r+1 2M? ) L ;
Sk—l+1 (a 3 (0= 1) + Mg + Ly, (1w + wp) (2p% + g + 4s')?
o

RKhph + L 2L,
@ + —= 3 123 + 12 + 65”
o ) N (3p" +4q )
r+1 Cs
< —C C. —_—,
< 1(n) + Cay/m + Vi
where the last bound holds if £ > 2/#. To be explicit,

+2M#(

2M2 1
Ci(n) =2 (a )‘\‘(6—1)+Mum5+L# (w0l + wy) (2p“+q“+45“)2> ,
mn
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1
2

IR2(L,, + AR,,)%p" 2
MRy (L w)P + (B + ARy (M2 + N2R%s" + Mdx) |

2 212
ag, aﬂ)\

C3 =2L, (3p" + q" + 65").

¢ = o, (

The constants C, C3 can be taken to be polynomial and independent of 7 by substituting in the upper

bound 7 = Q(LM:_;\\RM)Q A 4)\}‘%2 in the expressions for 5+, &% /n, £+ /n, while /# = O(n~'logn~1).

However, C1(n) contains the dependency

u _ B 1 3 X
O(w}) =0 (n 1 exp(ZLHn)) =0 (77 (W) >7

which is a consequence of uniformly bounding the perturbation from the gradient stopped process
over a time period of /.

Step 5. For k < 2/, proceeding similarly without converting to the modified process gives

E(k%’,@/)hk |:/X F(Mﬁﬁv”%)(ﬂﬁﬁ - Hﬁch)l)(daj)]

v XN
< WH ZE(%,@/)M [Wl(éxi’nﬂi(fv)l)}

i=1

1
2

~
=

ZN:( 21 [Wzg(ﬂggc,#@—i)} Eo.2).., {Wz (Og;, 11 AI(CJX)QD

i=1

Mz 2\

M i 1
< D (EIIX + o + )
i=1
2LHN 26H 1 BIlXk(12 IEXiQ%EXiQ M u\ 3
+T; W*‘mg [l 1”]+N X3P ) (EUX)7] + g +s*)
2L,,(3p* 4 g + 3s*)
< My /PP T qF T o +
< Mpvp q VN
C C
< 1(77)+ 37
20 VN
where the final bound follows by noting 1 < 4L R < 4L , hence by expanding (1+277L,L)
1 M? M?2e?
wh)? > —  —L (2L, 0+ 20°L20(¢ — 1 L
(€)>2LM nQLi(nM—i_n ;4( ))> Lﬁ

and so )
Ci(n) > 2L, (2p“+q“+45“) > 2M, L (p" 4+ gH +s7)2 .

Thus the bound holds for all integers k. We conclude the proof by taking the maximum with the
corresponding quantities for v. O

C.4 Properties of Conjugate Functionals

We proceed to develop the N-particle lifted analogues J IEN), j,(CN) of the conjugate functionals in
the proof of Theorem 3.3. In order to deal with time and particle discretization, we will need a more
precise characterization of their perturbative properties. Many of the subsequent results do not follow
from standard methods and requires a careful synthesis of the discussion thus far.

Lemma C.9. Given Lipschitz functions ¢, : X — R, ¢, : ¥V — R and a pair of N-particle

probability measures y™N) € Po(XN), vIN) € Py(VN) define the functional
T (™, Mg, )
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_ / / g — p)(da) ™ (d2) + / / ¢ (v — p") (™) (42
XN yN

_ AB ,
S (KL 9™ + KL )pe))

Then the maximum
TNk ¢y = max max_ JV (N, M¢k ¢

pN)ePy(XN) v(N) ePy (YN)

exists for all k € N and is uniquely attained by the pair of distributions

A (M) o 2N exp ( / P g (da) ) M (¢) o p"®N exp (%AC”V@(@)) :

Proof. The proof is similar to Lemma B.3; we only check the first-order condition by setting

G (L)) ——/XC (o = p)(d) — = log BN (Z) — Comst

O

The N-particle proximal distributions ﬁ;cN) (¢H), ﬁ,(CN) ("), despite being defined over the configura-

tion spaces X', Y™V also satisfy the log-Sobolev inequality with the same constant as before due to
the tensorization property of entropy.

Lemma C.10 (product log Sobolev inequality). Suppose that (" /By, (" | By, are M,,, M, -Lipschitz,

respectively. Then [i ,uk (C“) ﬁgﬁN) (¢¥) satisfy the LSI on X YN, with the same constants 0
as in Proposition A.7.

Proof. We can write (V) = ﬁ,gN) (¢*) as the symmetric product distribution

N i %
pO) = [T W00, WX = (X exp (CA(;Z )) L 1<i<h,

where the marginals I ') each satisfy the LSI with constant a, by Proposmon A7. Also write

“(
Xt ) For an approprlately integrable function f on XN, denote by f? for the

P (XT) = T
functions f4(X%) = f(X , X)), Then by Proposition 2.2 of Ledoux (1999),
N N 9
i ; 2
Ent,, v (f Z (Ent, ((f)%)] < 3 @E#,iﬂzm[ 12 = Q—HEM(N)[HVJCH ].
i=1 i=1

O

Lemma C.11. The functional f,(cN) is convex in both arguments, and admits functional derivatives
at any (¢C*, V) which are given as

5T 7N

S (€6 = I ot ST ¢ =TT () =

Proof. Substltutlng ((j“ V) = (N)( (C“) A(N (€)[¢H,¢Y),

ST
52# (" ¢") = - 5@/ /C“ (na — p)(da)u™ (d27)

pO=a (¢r)
S(N) 5o

" d 1y, m ABy, A(N)(CN) k B
- [ = pan Ry - 25 [ <log v | S (@@)

_ O ([ LN puxiy ) b (e
_5@( /XNN;C(X)M (d%)?L/XCP(d))
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= I (¢") + o

The integral over the configuration space measure u,(c ) therefore lifts the expectation with respect to

)

the discrete measure p o to a differentiable functional of (#, which in turn pushes forward i ( onto

the space X.

The following proposition is crucial to controlling the evolution of the conjugate functional as well as
the proximal distributions over time.

Proposition C.12. Suppose ("' /By, 5“ /By, are M,,-Lipschitz functions such that the difference
¢H* — ¢# is my,-Lipschitz for some m,, > 0. Then the projected proximal distributions satisfy
my

~(N) ~(N) =
WL (), LA (CH)) < — 2

Proof. Taking the first-order conditions

~(N)
MBe V()
_ n _on _ _
/XC (na — p")(dx) N log P = const.,
A(N)
z ABy, (@)
- /XC”(/M{ — p")(dx) — ~ log p#®N = const.

Subtracting both sides and integrating over the difference /i /1, . (C my — A(N) (C*), we obtain

/XN/ = (Mg () (@7 (¢ — A ()2

ABy, Nk (C“)
L B P S\
N Jaw 7 M (Em)

(10)
@™ ¢y - (¢ ae).

Now the left-hand side of (10) can be bounded from above by
- [ @ = @@ e - e
XN
= [ (er = A (¢ - A @) )

< m WL I (). T () < my Wa (T (), T (),
while the right-hand side of (10) is bounded from below by

A% (KL (@) A (@) + KLED @) 3 @)
S ORI

=N
> 0, ABWE (AN (¢), LAY (E7),

where we have used Talagrand’s inequality from Lemma C.10 and the W pushforward bound from
Lemma C.7. Combining the two results yields the desired statement. O

Denote the unnormalized aggregate derivatives as

5#—25]6 'ugg,l/g Zﬂ](s n;,V )

so that ,u(N) = A(N)(é“) A(N) (5") The functions 6}, /By, and 0} /By, are M,,- and M, -
Lipschitz, respectively, due to Assumptlon 2. Lemma C.11 and Proposition C.12 then allow us to
quantify the change in f,EN) (64,67 as time progresses.
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Lemma C.13. We have the following one-step relation for ij), k> 2
‘l]\l(cN) (65? 6Z> - ‘/]\lgjji (6571’ 6}571)

oL - oL ~ y
< [ G v CTAY, 1))+ B [ 57 G v) 9% ) ()
_ ﬁ ~(N) || u®N ~(N)|| ,v®N Mﬁ M; Bi
- (KL 10o%) + KL@ oY) ) 4+ (T + T ) i

Proof. By the maximality of j(N)
T @00y = 7 @ @6, g o)1k, 67)
= I AN @, B 51l 67) — o (KL G 102) + KLEE 6 07=Y) )
< T 60) — 20 (KLEN =) + KLY o))

Further defining the interpolations

) o 1 1 5L
6';:(8) = 6271 + S((S}LC — 5271) = Zﬁja(p{,ggj,yﬁyj) + S,Bkm(/.l/:%'k,l/gk)v 0 S S S 1
j=1

and similarly for ¢ (s), we have

TN ot a0y — TV (6, o7 _) /ff,iN (), 6(s)) ds

57V 57
- [ [or-a g S s stenan + [ 6 -0 SE 6. st ds

= [ [ kA ot + [ 6 s o6 e s
0o Jx Y
+ [ =)o) - /y (8 — 5%_)p" (dy)
< [ [ - pnaerpen + [ 6 - oo e )a)as
+ [ =) - /y (6 = 3¢_)p" (dy)
+ [ W A ). A ) ds
+ / M, 5 W (DY) (5% (5)), 119, (87_)) dis
2 (o v L) )

oL M?  M? 32
_ 12 _ = v k
+/6k/X 5 (ko vay, ) p!(dx) ﬁk/y 5 (B, v, )p (dy)+( + >2>\Bk .

where for the first inequality we used the fact that 65 — (5,’:71 is M,, B-Lipschitz, and for the second
we applied Proposition C.12 with m,, = sM,, ;. O

oL ~
< B [~ uava A de) + i
x OH y

Qyp

We now give the promised proof of the pushforward evolution bound.

A(N) (

Proof of Lemma C.8. Note that [ | = i, 1(5,‘: ,) may also be written as

(N) _ ~N) [ Bk oL ~(~) { Bk
A = i (Bk ) > :53'5M(H£3’V%)> = i <Bk O )
= -
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Since 8}, /By—1 is M,,-Lipschitz and

By,
Bj_1

’ " B ~— , 0L 5L
52 - 5271 = —ﬂ;@@(ﬂ%jﬁ/@ﬂ +5ka(l$%€w%)

is 2M,, By-Lipschitz, by Proposition C.12 we obtain the bound
~(N)

(N 2M,, By,
W2(H,uk aH,U](c,)l) < WMB%‘
pADk

C.5 Proof of Theorem 3.6

Step 1. We first prove a convergent upper bound of the following surrogate D( -~ 7 VT, v ) for the
NI error of the average distributions. Note that the defining maximum is lifted to the conﬁguratlon
space and the discrete empirical distributions have been replaced with their proximal counterparts for
measuring relative entropy. While 91 is not exactly the desired quantity, it arises naturally from the
discrete conjugate argument and helps to bound the expected error.

Nz, vz,)

k
A A

= _ - (N)|| 1@N ) S(N) | v@N
= e - Zﬁﬁ 2) = S KLY p >+N&§yw¢m l0"®N)

k

A v o~
+*Zﬁa (2, ™)) = KL p ®N)+—Zﬁ] KL oY)

Jj=1
= a3 _/ / iiﬂ'%(ﬂw v, )(pz — pz;)(dz)p™(d2)
> V) (V) XN Jx Bk = J 6M 2 VY A G

k
1 5L
2B - (V)
# fon Sy B D v o v 0
A (N)|| 1®N (N)|| w®N
_N<KL(/~L 10"N) + KL ™| p ))
k
A ~ e
tNB, > 5 (KL(M§N)IIp”®N) + KL |p ®N))
Jj=1

1
_Bk

_] 1
/ Zﬁj g/_: (ha;.vey)(pa; — p)(dz) — /Zﬂyiﬁ (ha; vey)(va, —p )(dy)]

due to the convex-concavity of L. Recursively applying Lemma C.13 then yields
1 [

<
g
N

1
(J @65,87) = TG 070 + 5T 01 )

Jr7J J Jj—1"j-1 B

= B,

/JQ,”7 )(,U/Qf —p“ dl‘ /Zﬁj(;c /’Lﬁfﬂyg)(yg/ —pP )(dy)

=2

k
|55
k

zj (K1 nw@W+Ku“mw%WD]
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k
Z ux,w)(u% — A (da)

j=1

M? 2\ &
. /(;ﬁ(uy,u@)(u@fnuw))(dm ral(ar )5 ]

j=1 y j=2 j—1
where the initial term is substituted as J\" h (611’ ,00)=J 1( (ﬁgN)7 AgN) |0Y, 67) with the convention
that M(N) = ,AN), 1/)(()N) = 3§N). Now taking the expectation over the full history and applying

Proposition 3.5, we arrive at

E(2 @)1 [m(uyw@ﬂ]

I A
o
8

—E ), lZB/ (12, v, )11, — TS ()

2 2 k 2
_ _ (N) 1 MH My Bj
Z@ g o, =19 + 5 (52 + Q)ZB
k 2 k 2
1 ’I“—|—1 03 1 M M2 Bj
<—|2 ; =) 4+ =
<& ;BJ( ; Cl(n)+02\/ﬁ+\/ﬁ>+%( + 5 25
(r+1)2 L M7 M2 203
< | ——— 2 — 2
_< - +O(k™*) Ci(n) + 2)\ + o, + C’gf-i-\/ﬁ
(T‘+1)2 _9 9 2C5
< k L2 9 3
( T O ) O + Cg\/ﬁ+\/ﬁ
by simply using ¢ > 1. For r = 0, the last expression is replaced by the exact bound
1+loghk 9 2C5
it = 2 =
k Cl( )+ C'zf—ﬁ-\/ﬁ

Step 2. We now control the NI error of the averaged pushforward proximal distributions using
9. In the defining maximum over u(N) € Py(XN), (V) € Py(YY), we may restrict to product
distributions (M) = p®N (V) = p®N o that

B> ) [Nz, Ve, )]

k

>E<gy@>ulmax—2@ (1, vay;) — AKL (") +7Z&KL 7™M1p")
v j=1 j=1

k
1
+B—kZBjﬁ(uzyj7 — AKL(v[|p") +7Zﬁg KL S o)
j=1

Jj=1

> max KBy o),

k
1 N
ne B, Zﬁjcmm ~ AKL(ullp") + %- Zﬁg KL %)

] 1

k k
z (1, v) = AKL(v]p") Z Ltz o)
]= j=1
> max — £(1, Elvg,]) = AKL(u]p") + AKL(E[T24]] ")
+ L(Eluz, ], v) = AKL(||p") + AKLET A ")

by convex-concavity of £ as well as convexity of KL divergence, where we have written
1 & 1<
Th — ~(N) 75, . ()
j=1 j=1
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Again by Proposition 3.5, this is further bounded as

B o Rz, var,)]

> max — La(w, EMIDL]) — E(or @),

BL/ Zﬁj(;f (1, B[ 94)) (vay, — 11D )(dy)]

/Z ;5 BlTA. V) (0, ~ 1A ><dx>]

> NIETA B2 - (© 54 0w ) 20i0n - 200 - 222,

+ LA(E[ fig],v) + E(%,@)M

with the appropriate modification for r = 0.

Step 3. Finally, we convert the above pushforward proximal bounds back to a Wasserstein distance
bound for the expected empirical measures. By Lemma 3.4 and Talagrand’s inequality for the MNE

(w,v*),
W?(E[ﬁﬁk] ) + W3 (E[TI D], v*)

2 T * T 7 *
< —vVv— (KL( ML 7ig]llp") + KL(E[IT 2] [v7))

Qy (e

2 — _

NI(E[M fi,,], E[II 7,

< a3V oy NEM R, EM7)

2 2 (r+ 1) o) 17 4C;
< p— 4
= a ( o PO )G+ T

Note also by Proposition 3.5 and Lemma C.8 that
M, Wi (Eljigr, |, [T /ig))

= swp  Epa., Zﬂj/ u%—mgm)(dm)

1y <M,

1 o~
SB;CZBJ <T+ Cl( )+C2\/>+\/*>+26JW1 H,LL(N) o (N))

I /\

r+1 C
B Zﬁj( Ci(n) + Cay/n + \/%) a#ABkZB

< ((’“ e +0(k-2>) S+ Cavi+

so the square of this term can be ignored. Hence we can conclude that

WE(E[Hyk],M*) +W12(E[y@k],y*) < (7‘;1‘_71)51(77) + 52\/77_'_ \SSN’

again with the 1 4 log k£ modification when r = 0. O

C.6 Expected Wasserstein Distance

Theorem 3.6 gives error bounds for the expected distributions E[u- | and E[vz ]. This quantifies a
sort of bias of the MFL-AG outputs, but does not tell us anything about the variance. Can we similarly
bound the expected distance E[W1 (p7, , ") + Wi(vg, ,v*)] of the empirical distributions to the
MNE? The following fundamental fact about Wasserstein distance tells us that this is impossible:

Theorem C.14 (Rate of convergence of the empirical measure, adapted from Fournier and Guillin
(2015), Theorem 1). Let X' be independent samples drawn from it € Py(R) for each i € [N].
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If d > 3, the 1-Wasserstein distance between the empirical measure g = % Zfil dxi and the
underlying averaged measure |1 = % vazl " is bounded in expectation as

E[Wl(/ﬁ%nu)] <Cw V m2(/1') ’ N_l/dv
where ma (1) is the raw second moment of v and Cyy is a universal constant. If d = 2, the rate is
O(N~'2(log N)?); ifd = 1, the rate is O(N~'/2). Furthermore, this rate is tight up to constants.
Proof. The original theorem only considers i.i.d. samples p! = --- = u = 1 and omits the W,

case for simplicity, so we present the necessary modifications.

For a Borel subset A C R?, the quantity Ny g (A) is not distributed as Binomial(N, ;1(A)) but as a
sum of independent Bernoulli(x”(A)) random variables. Nonetheless, we obtain the same bound

Ellpa (A) = p(A)]] < (Bl (A)] + p(A)) A v/ Var pg (A)
< 2u(A) A /u(A)/N.
We now repeat the same arguments and substitute p = 1, ¢ = 2 to arrive at the following inequality,

E[Wi(par, 1)) < Cy/ma Z Zz— 27" A (27 /N)M?)

n=0m=0
from which point we give explicit computations. Defining

B FogQN—‘ B Pogszm—‘
my = P R e

we have for d > 3 that

i i 27m(27n A (Qdm/N)1/2)

n=0m=0

mel my— 1 0o
— —m dm 1/2 —m—n men
B S RN LTGUCEES Sl SIPS I ol b

m=0 m=0 n=nn,, m=mxy n=0
< dmN—dm+2) d/2=1)m 4 21Mnm+22 my
> 2\/»

m=0
(2+d)2(d/2 1)(mn+1) 92+(d/2—1)my L gpmn

- (292-2)VN - (24/2 — 2)\/N
=O(N~Y),

When d = 2, the rate is easily checked to be N~'/2(log N)2. The tight rate in one dimension is
derived using different techniques in Bobkov and Ledoux (2016), Section 3. O

That is, even in the ideal case where chaos does not propagate and the particles are somehow i.i.d.
sampled directly from the true distribution, the expected Wasserstein distance will always be of order
N~—1/dxVdy automatically incurring the curse of dimensionality. We emphasize that the uniform
law of large numbers and short-term perturbation methods developed throughout Section C as well as
the presentation of Theorem 3.6 have been carefully designed to bypass this technicality.

Nevertheless, it is still possible to bound the expected Wasserstein distance in a similar manner save
for the unavoidable N —1/4xVdy dependency.> We first present a more direct bound for the proximal
gap.

Proposition C.15. The following inequality holds for all k,

~ r+1 _
E[Wl(um,ﬂuém) < ——C1m) + Cavn + C3N 1/dx,

20f course, we may also simply run the algorithm multiple (M) times and take the average of the outputs,
which would also bypass the issue and yield the standard 1/+/ M convergence.
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Proof. The derivations are similar and more straightforward compared to the proof of Proposition
3.5. We only look at k > 2¢ and directly compare jt2;, to 4 z using Lemma C.3, p 7, to the
expected modified distribution using Theorem C.14 (recall that the modified particle trajectories

X k are independent when conditioned on (2", %')1.,—¢), the expected modified distribution to the

stationary distribution II #12 )Z using Proposition C.6, and I1 pfc )é back to II ,u( ) using Lemma C.8.

—1
NZE Wy MkaHM +ZE Wa( HMJ(CNi 1,H/7,(€]2-)]
=1 7=0

r+1 @ —1/d
S g Owy/Elmalug - N7

N 2 £—1
1 1 . oM? L g,
— Z(REXE 2 + o)+ J
+ NZZ:;\/OC“( || k*[” + )+ a#)\ Z Bk;—j

r+1 ., 174 4 2M,, (r+1)¢
R — " . N x — (RH(pH iz iz - 7
,k_€+1me+CW\/p +5 + %(ﬁ (pr+s )+£)+au/\k_£+1
1
= LSOl + Chf + CRN V.
O

We now give the desired bound for the expected Wasserstein distance to the MNE. Note the effect of
dimensionality compared to Theorem 3.6.

Theorem C.16 (Variance of discretized MFL-AG). Ifn < 7 and B, = k" withr > 0, the MFL-AG
discrete update satisfies for all K, N,

+1)% ~ ~
EWalr, 1) + EWa (v, ) < CED G ) 4 G Gy

with similar constants as in Proposition 3.5. When r = 0, the first term is replaced by O(log K/ K).
Ifdx V dy = 2, the third term is replaced by O(N~'/?(log N)?); ifdx = dy = 1, by O(N~1/2),

Proof. Note that by convexity,
(N oL (N N
Lpa,,v) — LOALY v) > / @(Hui L) (e, — TALY)(dw) > — MW (i TG,
x
We can modify Step 2 of Section C.5 using Proposition C.15 as follows.

]E(%‘woy)l:k {m(/i?k ) V@k)]
k

>E(%@>1klmaX—Zﬁg (4, va;) — AKL(pa ) +fZﬁJKL o\ ")
Jj=1 j=1

k
Z (na;,v) — AKL(v[|p") + fZBJ KL 7™ IIp“)]

Jj=1

=1
>E<M>Ml x——Zﬂg £(p, M) = AKL(pl| o) +f§jﬁjKLHﬁ(N’Hp>
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1 k k
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34



> B, | max = £0s, L) = AKL(ul|p") + AKL (T4 ")
+ L(T fi,v) — AKL(v]|p") + AKL(TI ﬁknp“)}

M, _
-5, ZBJ]EM @)1 Wi (s, L)) — ZBJE(% )0 W (v, 1Y)

Jl ]1
r+1
J

k
M,
>E(5{ )1k I:NI(H,U/k:aHVk;) 372 ( Cl( )+02\f—|-03N 1/d,yvdy>.

Combining with Step 1 and Lemma 3.4 gives that

(7"+1)

E [KL(IT iy |l0*) + KL Zk[|v")] < S—==CY (1) + C3 /i + Cg N~/ Vv,

Finally, we convert back to a Wasserstein distance bound by invoking Talagrand’s inequality and
Proposition C.15 again:

k 2
* 1 -~ 4 T *
E[W: (g, 1)) < 2 (B > ﬁjﬂz[wlm,nu;mﬂ) + —E[KL( iy 1"))-
j=1 B
This concludes the proof. O

Remark. If we assume a higher degree of regularity so that all relevant distributions have finite fourth
moments, say, then Theorem C.14 actually holds for the 2-Wasserstein metric. Theorem C.16 can
then be stated in terms of the 2-Wasserstein distance to the MNE, guaranteeing us slightly better
control over the error compared to Proposition 3.5 which only allows a WW; formulation.

D Mean-field Langevin Anchored Best Response

D.1 Proposed Method

Our second proposal builds upon the mean-field best response (MF-BR) flow recently proposed in
Lascu et al. (2023). There, the authors prove that the strategies (y, V¢)¢>0 given by the linear flow

dpi(2) = Blpy(2) — pu()) dt, - dvy(x) = B(@i(2) — vi(2)) dt,

with speed 8 > 0 converge exponentially to the unique MNE, where i, &< p* exp ( — %g—ﬁ( Lt ut)),
Uy X p¥ exp (}\ 55 (v, z/t)) are the best response proximal distributions, so called because they are
the optimal responses against the current policies of all players (rather than the historical average
in MFL-AG). However, a major weakness of MF-BR is that the flow is not directly realizable by a

particle algorithm.

We therefore propose the mean-field Langevin anchored best response (MFL-ABR) process by
incorporating an inner loop running Langevin dynamics, decoupled by anchoring the gradient at the
output (pug, vk ) of the previous outer loop:

X} ~pt, dX)=— (ngﬁ(uk, v (XT) + )\VZU“(XZ)> dt +V2Xdw}, 0<t<r,

and similarly for Y;'. The outputs at time 7, denoted by 1}, . = Law(X1), 1] _ = Law(Y) serve as
approximations of the best response proximal distributions (replacing time ¢ with the discrete index
k). The outer loop then performs the discretized MF-BR update,

prrr = (1= B)uk + 5#2,7, Vi1 = (1= B)vg + 51/;177,

where g = p#, vy = p”. The flow can be immediately realized by a simple particle algorithm; see
Algorithm 2. A similar method for single convex optimization was also recently implemented in
Chen et al. (2023) but without any theoretical guarantees.

To analyze the convergence of MFL-ABR, we require the following alternative assumptions for £
which are taken from Lascu et al. (2023).
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Algorithm 2 Mean-field Langevin Anchored Best Response

Require: temperature A, outer loop iteration K, inner loop iteration L, learning rate 7, number of
particles N, exponent r
Initialization: 2, ~ p*, %y ~ p”
fork=0,--- , K —1do
Sample 21 ~ pt, Zf ~ p¥
for/{=0,--- ,L—ldo
For all particles i = 1,--- , N sample &,"* ~ N (0,14, ), " ~ N (0,14,,) and update
DRS¢ nvx 5 (u 2, u%)(XT ) = AV UH(X]") 4+ 2aneh!

dlgil - Y“ + 0V 35 (e var ) (V) = MV, U7 (V) + /20me)
end for
Discard | BN | particles from 2}, %}, and replace with random samples from 2 LT , @LT , Tesp.
end for
return 2y, Vi

Assumption 3 (Regularity of £ for MFL-ABR). We assume that L is convex- concave and admits
C" functional derivatives which are uniformly bounded as || 5 £ ()|l < Cp, 5,/ £ (11, 1)]|leo < Cy
for constants C,,, C,, > O Furthermore, L admits second order functional derivatives which are

uniformly bounded as || Llloo < Cups ||M5VHOO < Cu |13 &/2 Llloe < O, and symmetric in the
sense that 5,U5V L (v, x y) 56u6u (v, y,2) forall p,vandx € X,y € ).
Existence and uniqueness of the MNE still hold under this assumption as proved in Lascu et al.

(2023). Also, fi,, U; both satisfy the LSI with constant a = 7, exp ( — 4?{“) Aryexp (— 45x) by
the Holley-Stroock argument; we take the minimum since it dominates the overall convergence rate.

We now present the overall convergence result for MFL-ABR. The proof, given in Section D.3, is a
combination of a time-discretized version of the argument in Lascu et al. (2023) for the outer loop
and a TV distance perturbation analysis for the inner loop developed in Section D.2.

Theorem D.1 (Convergence of MFL-ABR). The NI error of the MFL-ABR outer loop output after k
steps is bounded for a constant C' as

NI(p, vi) < 2(Cp + Cy) exp(—Bk) + 12)\_%(6’3 + C2) exp(—alt) + CB.

Hence we achieve linear convergence in the outer loop iteration, with a uniform-in-time inner loop
error linearly converging in 7 and time discretization error proportional to 3. It follows that an e-MNE
may be obtained in k = O(% log 1) outer loop iterations with 3 = O(e) and 7 = O(log 1).

We do not give a discrete-particle analysis of MFL-ABR and instead remark that discretization of the
fixed-drift inner loop is trivial, while Theorem D.1 already covers the outer-loop error due to finite 7
and nonzero (3. The remaining element is particle discretization analysis of the outer loop momentum
sampling which we feel strays from the scope of this work.

D.2 Inner Loop Convergence

The convergence of the decoupled inner loop is a simple consequence of the convex analysis for
single optimization (Nitanda et al., 2022); we reproduce the proof here for completeness.

Proposition D.2 (Convergence of MFL-ABR inner loop). Under Assumptions I and 3,

. 20, ~ 2C,
KL(uf, || fig) < =E exp(—20A7), KL} || 7%) < = exp(—20A7).
Proof. Forany 0 <t < 7, the KL gap converges as

d n T ,ULt + MLt
G ELOL 70 = [ 1ot atuk,x r) =) /X log 249, (1] V. tog 2 ) )

V. log z ’t(dx) < —2a)\~KL(ML,t||ﬁk)
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by substituting the Fokker-Planck equation for /‘L,t and applying the LSI for 1), via Theorem A.6.
Invoking Gronwall’s lemma and Lemma D.3 below for [i;, concludes the proof. O

The following result gives uniform bounds to control the magnitude of perturbations.

< wC,
— )\ -

Then under Assumption 3, the distribution [i), € F4' and iy, uLT € Fy.

Lemma D.3. For any w > 0, define the class

Fh = {p, € Pa(X):

I
log th

o0

Proof. For [i;,, the exponential term and the normalizing integral

14 ' 1oL
exp (—)\(su(u}ml/k)> 2= /Xp“ SED (_)\M(uk’yk)) d

are both bounded by T# /), proving the assertion. For uL’T, define the density ratio hy = ul’t / Tg-
The Fokker-Planck equation for /JL , reads

i
oL I
Ouptf,, = Vo (u;tvz <6u(“k’ w) + AVzU“>> + A pf = AV, - (,@vm log é”) :
k
so that the parabolic partial differential equation satisfied by h; is derived as
Ochi = iy, Oupt),
=M, " Vo - (fig bV log hy)
= AV, log i, -Vahe + AAhy

oL
=-V, ((M(uk, Vi) + WxU“) - Vihe + AAR,
=Lh,

where LT is the infinitesimal generator for the stochastic process X tT . Hence by the Feynman-Kac
formula, we may write for any ¢ € [0, 7]

3
(o) = o] =B | 2060
M
Since ||log(it;, /p*)|loo < 2C,./ X as discussed above, we infer that ||| < 2C), /A and therefore
i i _
T T 40
logML < Hloguf’ + 10g& <
P* oo Bk oo Pl ™ A

ie. NZ . € FL for all k. Finally, since F% is closed under linear combinations in Py (X’) we
conclude that

e = Buk 4+ B = By +- B Bl € FLL.

D.3 Proof of Theorem D.1
We perform one-step analysis of the outer loop by setting for 0 < s <1
p(s) = (1= Bs)un + Bspf, ., v(s) = (1— Bs)uy + Bsvf

so that 4(0) = pg, (1) = pig41 and v(0) = v, v(1) = v11. We track the KL divergence to the
interpolated proximal distributions defined as

) = g o (-3 3o ) 7(6) = oo (30 (e




Note that the second order bounds in Assumption 3 immediately imply the following Lipschitz
property in TV distance,

oL oL
|5~ )

Similarly to Lascu et al. (2023), Lemma A.2 we can then prove that
TV (i, 11(s))

! ex Ch + ex 2Cu
S o (=Pl PA7X

< Bsth,

< 2C,, TV (p, i) +2C,, TV (v,1/').

o0

)) (20, TV (15 1(5)) + 2C, TV (v (5)))

where we have written

Cou+C C 20
no.__ Hp Jod 123 M
e ) (eXp<A> eXp(A))'

Also, fi(s) € F4 and u(s) € Fy' by Lemma D.3 which implies |[log(u(s)/ [i(s))|leo < 6C,,/A.
Now the derivative of the KL gap of the max policy for any 0 < s < 11is

KL 7)) = | 1ogg§j§asu<s><dx> | otox(s)n(s) ).

The first term can be decomposed as

p(s)

/10g e )8 w(s)(dx)

=5 [ log %
a(s

[ E; ) (de)
(s)
(s) "
(s)

=58 | log 5 S (A(s)

N — pl(s) + pu(s) = p + ., — fi + iy — i(s)) (d)

< — 8 (KL(u(s) | (5)) + KL(u(s) | A(5))) + 26%
lg%H VKL i) + 28

< ~BKL(u(s)] fls)) + 0 (w (1) + C;exp<—am).

M(S)H i
log =—— TV (1 s bk
11(s) || o (i 114)

+5

log ZEQHM TV (i, i)

by Proposition D.2. For the second term, we may follow the derivations presented in Section 3 of
Lascu et al. (2023) with minimal modifications to obtain

/ s log i s)pu(s)(d)
//X x 5u (s),v(s), z, 2)(i(s) — p(s))(da) (Fy —p)(d2)

B o~
//Xxy 510y 18) 1(5), 2, w) (ils) = p(s))(d) (P —v) (dww).

When s = 0, the first integral is nonpositive due to convexity while the second integral cancels out
when adding with the corresponding term for the KL gap of the max policy, which completes the
argument in Lascu et al. (2023). Hence the remaining error we must control is

2
3 //X « x %(“(s)’ v(s), @, 2)(1i(s) — iy, +pw — p(s))(d) (g, —p) (dz)
B //X XY 5#51/ w(s),v(s), z,w)(1(s) — iy +pi — () (dz) (Vr —vg)(dw)
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B ot O TV, ) + TV e ()

462
A

Adding everything up, we obtain

IN

| /\

—~ (Cpup + C) (¥ +1).

%(KL(M(S)H?L(S))JFKL( ()l v(s)))

< —B (KL(u(s)|| ii(s)) + KL(v(s)[| 7(s)))
+ 12§CM <2ﬁ(t“ +1)+ % ex p(_a)‘T)> w S (Cup + Cr) (¥ + 1)
+ 12§CV <25(t” +1)+ % exp(—a”) 2 o+ Col( 1)

By applying Gronwall’s lemma over s € [0, 1] and iterating over k, we conclude that

KL (gl 11y,) + KL || )

< UGt G sry+ 2 (Cu +C; ) exp(—aA7)
A Az
4
+ TB ((6C, + Cpup +Cu) (¥ +1) + (6C, + Cpy + Cup)(t + 1))

Finally, applying Lemma 3.4 of Lascu et al. (2023) yields the suboptimality bound

NI(tg, i) < 2(C + C) exp(—Bk) + 7 (02 +C2 ) exp(—aXr) + CB.

Hence an e-MNE may be obtained in k = O(% log 1) outer loop iterations by taking 3 = O(e) and
=O(log 1). O

E Applications to Zero-Sum Markov Games

E.1 Bilinear Problems

We briefly discuss the case when £ is bilinear, that is £(u,v) = [[ Q(z,y)u(dz)v(dy) for a C*
reward ) : X x ) — R. Assumption 2 is easily verified under the conditions HVQLQHOO < @, and

V. Q is L -Lipschitz in each coordinate ¢ = 1, -+, dy by taking M,, = Q,, K, = L, = || Lz ||,
while Assumption 3 holds if @) is uniformly bounded. The averaged gradient in (3) is then equal to

Bf fo BsV *5u (1, vs)(Xp) ds + AV UH(Xy) = [}, VieQ( X, y) i (dy) + AV UM (Xy);

the drift only depends on the history through the average distributions fi, 7;. Therefore, instead of
storing and iterating over all previous states which could be computationally prohibitive, we only
require the rolling averages to be stored and updated alongside the primary dynamics. In the discrete

case, this means that we store the length N arrays 2", % alongside .2}, % and perform
i i N iy i /5%
Xk+1 — Xk: - % Zm,:l VmQ(Xk7 Y ) - )‘nvaUu(Xk) + 2)‘77 ;j
4 4 N Sl i v(vi v,i
Vi <Y+ &3 VyQX Y =V, U"(Y)) + V2 n&".
We then discard | 3y, 11N/ Bj11] particles from 27, % and replace with random samples drawn from
Z+1, @y1, respectively. After K steps, the arrays 27, % are returned.

Thus, both algorithms only require 4 arrays to be stored and updated (the inner and outer states for
MFL-ABR), incurring no significant computational cost compared to MFL-DA (2 arrays).
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E.2 Zero-Sum Markov Games

In this section we outline an application to policy optimization in Markov games. We consider the
two-player zero-sum discounted Markov game defined by the tuple 9t = (S, X, ), P,r,~) with

continuous action spaces X = R V= Rdy, finite state space S, rewardr : S x X x Y — R,
transition kernel P : S x X x ) — P(S) and discount factor -y € [0, 1). The strategies of the min
and max players are represented by u = p(s) = u(-|s) : S = Po(X)and v : S — Pa(Y).

The regularized value and (Q-functions are defined for all s € S as

Vi (s) =E [Z 7t <7’(St;$t7yt) + Mlog (e]s:) — Alog V(yt|8t)> ’50 = S] )
t=0

p () P (ye)
QI,(7V(1‘7 y‘S) = ’/‘(S, x, y) + VESINP(-‘S,IJ/) [V;LVV(S/)L
where the expectation is taken over all trajectories sg, o, Yo, S1, -+ generated by zx ~ u(+|sk),

yk ~ v(-|sg) and sg4+1 ~ P(:|Sk, Tk, yx ). Our goal is to find the MNE which solves the distributional
minimax problem min,,.s_,p,(x) Max,.s_p,(y) VA" "¥(s) for all states simultaneously; a detailed
introduction to the topic can be found in e.g. Sutton and Barto (2018); Cen et al. (2023). For zero-sum
Markov games, the MNE is also called the regularized Markov perfect equilibrium.

To this end, we propose the following two-step iterative scheme. For simplicity, we only consider the
continuous-time MFLD and assume full knowledge of game quantities as well as the existence and
uniqueness of the MNE (p*, v*) which is known for finite Markov games (Shapley, 1953).

Step 1 (Minimax dynamics). Given Q™ , run MFL-AG or MFL-ABR for each state s € S for
sufficient time to obtain an e.-MNE (u(¥) (s), »(*)(s)) for the regularized minimax problem

La(psv; QW (5)) = [y, QW (z,yls)u(dz)v(dy) + AKL(ul|p*) — AKL(v[|p").

Step 2 (Approximate value iteration). For each s, set V1 (s) = £, (uF)(s), v (s5); QW) (s))
and update the Q-function by letting Q¥+ = Q(-, -|s) satisfying

‘Q('ra y|8) - T(waay) - FVES’NP(-\S,:J:,:L/) [V(k+1)(3/)]’ < €Q>

where €g > 0 quantifies a model error. In practice, Q*+1) can be obtained by any offline RL
algorithm with function approximation, e.g. a deep neural network, as long as the sup norm of
Bellman error to the update is bounded. Moreover, we assume the gradients V@), V, () are bounded
and Lipschitz and can be queried freely.

With this scheme, we are guaranteed convergence to the MNE. The proof is identical to the discrete
strategy case (Cen et al., 2021, Theorem 3).

Proposition E.1. The above scheme linearly converges to the optimal value function as

VO = Vo < AHVO = V7 + EEC,

This proposition shows that our two-step algorithm finds the Markov perfect equilibrium at a linear
rate of convergence up to a sum of the optimization error for learning the MNE of the inner problem,
and the Bellman error for estimating the Q-functions.

Proof. We use the bound | £ (p, v) — Lx(p*, v*)| < NI(p, v) which can be shown by the following
string of inequalities,

Lx(p,v) — La(p*,v") <max Ly(p, V') — La(p*,v) <max Ly(p, V") — min Ly (y', v),
vl v w
ﬁk(uv V) - ﬁk(ﬂ*a V*) > minﬁ)\(:u/? V) - L)\(:U‘? V*) > minﬁ)\(ﬂlv V) - HlaXE)\(p,, V/)'
w w v!
Denoting the ideal minimax update in Step 1 as

VED(s) = min  max £ QW (),
()= doin = max La(pviQ@7(s))
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Figure 1: Density evolution of (a) MFL-AG, (b) MFL-ABR, and (c) MFL-DA every 100 epochs. (d)
Convergence speed measured in W distance. (e) Optimality comparison via 3-point NI error.

this implies ~
[V ED (5) — TEFD (5)] < NI(u®) (), v®) (5)) < e

Now denote the ideal value iteration in Step 2 as

é(k) (S) = 7"(8, z, y) + ’VES’NP(-|s,z,y) [V(k)(s)]

and note that the optimal value and Q-functions V* = V' Q= Q‘/\L*’”* satisfy the Bellman
equation
Q*(xa y|8) = T'(S, x, y) + ’YES’NPHS,x,y) [V*(sl)}
Hence we bound
VO Vg < g+ 744D~V

<ep+sup | La(pv; QM) (s)) — Lalp, v: Q*(s))]

TR
<ec + 110" - Qo
<er + Q" - QW oo + Q™ — Q7w
<ecteqt+AVE -V .

Therefore by Gronwall’s lemma we conclude that

IVE) = Voo < AH VO = Vo + 5 -

F Numerical Experiments

We test our proposed algorithms and compare against ordinary descent ascent dynamics in a simulated
setting. We consider dxy = dy = 1 and optimize the bilinear objective

L v) = [ Qa,y)p(dz)v(dy), Q(z,y) = (1+e E=07)~1,

The sigmoid nonlinearity introduces nontrivial interactions between the min and max policies. We
also take regularizers p* = p¥ = AM(0,1) and A = 0.01. Both MFL-AG with r = 1 and MFL-DA
are run with 1,000 particles for 1,000 epochs with learning rate = 0.3. MFL-ABR is run with 1,000
particles for 50 outer loop iterations with 20 inner iterations per loop and = 0.3, 5 = 0.15. We
implement the rolling average update for MFL-AG in Section E.1 and a ‘warm start’ scheme for
MFL-ABR where the inner loop is not re-initialized for stability. We report the results in Figure 1.
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Figure 1(a)-(c) show kernel density plots of the evolving min and max policies 2, , v#, for each
algorithm per every 100 epochs. MFL-AG and MFL-ABR converge to similar solutions while MFL-
DA converges to a different distribution much more rapidly. Figure 1(d) plots convergence speed by
computing the sum of the empirical Wasserstein distances W1 (p 2, pa ., ) + Wi(vay,, vay,,)-

To compare the optimality of the outputs (2%, Z'%) (i = 0,1,2) of the three algorithms, we use
the 3-point NI error NI" := max; Lx(p g, Vi) —min; Ly (pg i, Ve ) which measures relative
optimality analogous to a 3 x 3 payoff matrix. The values are reported in Figure 1(e). While the
MFL-DA output is initially the desirable strategy due to its rapid convergence, MFL-AG gradually
optimizes and soon dominates MFL-DA with zero error, which is later followed by MFL-ABR. We
therefore conclude MFL-AG and MFL-ABR can substantially outperform ordinary descent ascent
despite the slower convergence rates.
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