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Abstract

In this paper, we extend mean-field Langevin dynamics to minimax optimization
over probability distributions for the first time with symmetric and provably con-
vergent updates. We propose mean-field Langevin averaged gradient (MFL-AG), a
single-loop algorithm that implements gradient descent ascent in the distribution
spaces with a novel weighted averaging, and establish average-iterate convergence
to the mixed Nash equilibrium. We also study both time and particle discretiza-
tion regimes and prove a new uniform-in-time propagation of chaos result which
accounts for the dependency of the particle interactions on all previous distri-
butions. Furthermore, we propose mean-field Langevin anchored best response
(MFL-ABR), a symmetric double-loop algorithm based on best response dynamics
with linear last-iterate convergence. Finally, we study applications to zero-sum
Markov games and conduct simulations demonstrating long-term optimality.

1 Introduction

The mean-field Langevin dynamics (MFLD) provides powerful theoretical tools to analyze optimiza-
tion on the space of probability measures such as the training of two-layer neural networks (Mei et al.,
2018; Chizat and Bach, 2018). Langevin-based methods are especially attractive as they capture
nonlinear aspects of learning as well as admit efficient particle discretizations. However, it remains
unclear how to extend beyond single-objective problems in a principled manner.

In this work, we study the MFLD for distributional minimax optimization problems. Denote by
P2(X ),P2(Y) the spaces of probability measures with finite variance on X ,Y with fixed base
measures ρµ, ρν . We consider the entropy-regularized saddle point problem for a convex-concave
functional L : P2(X )× P2(Y)→ R with regularization strength or temperature λ > 0,1

min
µ∈P2(X )

max
ν∈P2(Y)

Lλ(µ, ν), Lλ(µ, ν) := L(µ, ν) + λKL(µ∥ρµ)− λKL(ν∥ρν). (1)

This formulation encompasses all objectives of the form L(µ, ν) =
∫∫

Q(x, y)µ(dx)ν(dy) for
generic nonconvex-nonconcave potentials Q. Such problems naturally arise for example in training
generative adversarial networks (Goodfellow et al., 2020; Arjovsky et al., 2017; Hsieh et al., 2019),
robust learning (Madry et al., 2018; Sinha et al., 2018) or solving zero-sum games in reinforcement
learning (Daskalakis and Panageas, 2019; Domingo-Enrich et al., 2020; Zeng et al., 2022).

One is immediately led to consider mean-field Langevin descent ascent (MFL-DA) dynamics, the
coupled distribution-dependent stochastic processes which seek to simultaneously minimize L over

1Throughout the paper, sub/superscripts such as ρµ, ρν differentiate quantities related to the min and max
variables, and do not indicate dependency on the distributions µ, ν. Our results are easily extended to different
temperatures for each variable. We will also present many results for µ and omit the analogous statement for ν.
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µ and maximize over ν (see Appendix A.2 for definitions of functional derivative and convexity):

dXt =
(
−∇x δLδµ (µt, νt)(Xt) + λ∇x log ρµ(Xt)

)
dt+

√
2λ dWµ

t , µt = Law(Xt),

dYt =
(
∇y δLδν (µt, νt)(Yt) + λ∇y log ρν(Yt)

)
dt+

√
2λ dW ν

t , νt = Law(Yt),

where Wµ
t ,W

ν
t are independent Brownian motions. Descent ascent methods are more challenging to

analyze compared to their single optimization counterparts; it is known that simultaneous updates may
display cyclic or divergent behavior even for the simplest matrix games (Daskalakis and Panageas,
2019). For finite strategy spaces, a vigorous line of research has established convergence guarantees
by employing optimistic or extragradient update rules (Cen et al., 2023; Zeng et al., 2022).

Unfortunately, the convergence of MFL-DA is to the best of our knowledge still an open problem,
and mean-field minimax dynamics remains largely unexplored. Existing results fail to establish
convergence guarantees (Domingo-Enrich et al., 2020) or only give proofs for near-static flows
where one strategy updates extremely or even infinitely quickly compared to the other (Ma and Ying,
2021; Lu, 2022). These works also impose the unrealistic assumption that X ,Y are both compact
Riemannian manifolds without boundary. In contrast, we allow X ,Y to be Euclidean spaces.

Another fundamental consideration when implementing mean-field dynamics is to account for the
errors arising from time discretization and particle approximation in a non-asymptotic manner, the
latter referred to as propagation of chaos (Sznitman, 1991). Prior works generally give error bounds
that blow up exponentially as training progresses (Mei et al., 2018; De Bortoli et al., 2020); uniform-
in-time results were proven in the single optimization case only recently by Chen et al. (2022); Suzuki
et al. (2023). Hence we are faced with the following research question:

Can we develop symmetric MFLD algorithms for distributional minimax problems with global
convergence guarantees, and further provide uniform-in-time control over discretization errors?

Our Contributions. We address the above problem by proposing mean-field Langevin averaged
gradient, a symmetric single-loop algorithm inspired by dual averaging, and prove average-iterate
convergence to the mixed Nash equilibrium. We also study both time and particle discretization and
establish a new propagation of chaos result. The analysis is greatly complicated by the dependence of
the interactions on all previous distributions and the techniques are of independent interest.

In addition, we propose a symmetric double-loop algorithm, mean-field Langevin anchored best
response, which realizes the best-response flow Lascu et al. (2023) via an inner loop running Langevin
dynamics in Appendix D. We show that the outer loop updates enjoy last-iterate linear convergence
to the mixed Nash equilibrium. Furthermore, we apply our theory to zero-sum Markov games and
propose an iterative scheme that finds the regularized Markov perfect equilibrium in Appendix E.
Finally, we numerically demonstrate the superior optimality of both algorithms compared to MFL-DA
in Appendix F.

2 Problem Setting and Assumptions

Denote by P2(Rd) the space of probability measures on Rd equipped with the Borel σ-algebra
with finite second moment. Let X = RdX ,Y = RdY and L : P2(X ) × P2(Y) → R be a weakly
convex-concave functional. Our objective is to find the mixed Nash equilibrium (MNE) solving (1).

We proceed to state our assumptions which are standard in the MFLD literature (Suzuki et al., 2023).
Assumption 1 (Regularity of ρµ, ρν). We assume that ρµ = exp(−Uµ) and ρν = exp(−Uν) for
rµ- and rν-strongly convex potentials Uµ : X → R and Uν : Y → R, respectively. Furthermore,
∇xUµ and∇yUν are Rµ- and Rν-Lipschitz, repsectively, and∇xUµ(0) = ∇yUν(0) = 0.

Assumption 2 (Regularity of L for MFL-AG). We assume L is convex-concave and admits C1

functional derivatives δL
δµ ,

δL
δν at any (µ, ν), whose gradients are uniformly bounded, and Lipschitz

continuous with respect to the input and µ, ν. That is, there exist constants Kµ, Lµ,Mµ > 0 such
that ∥∇x δLδµ (µ, ν)(x)∥ ≤Mµ and∥∥∥∇x δLδµ (µ, ν)(x)−∇x δLδµ (µ′, ν′)(x′)

∥∥∥ ≤ Kµ ∥x− x′∥+ Lµ(W1(µ, µ
′) +W1(ν, ν

′)) (2)

for all x, x′, µ, and ν. The same properties hold for ∇y δLδν with Kν , Lν ,Mν > 0.
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This implies in particular that δLδµ is Mµ-Lipschitz and µ 7→ L(µ, ν) is Mµ-Lipschitz in W1. The
KL regularization then assures existence and uniqueness of the MNE (µ∗, ν∗) via the Kakutani
fixed-point theorem even though X ,Y are noncompact; see Appendix A.2 for the proof.

The suboptimality of any given pair (µ, ν) is quantified via the Nikaidô-Isoda (NI) error (Nikaidô
and Isoda, 1955),

NI(µ, ν) := max
ν′∈P2(Y)

Lλ(µ, ν′)− min
µ′∈P2(X )

Lλ(µ′, ν).

From the discussion in the proof of Proposition A.9, it follows that NI(µ, ν) ≥ 0 and NI(µ, ν) = 0
if and only if µ = µ∗, ν = ν∗. A pair (µ, ν) satisfying NI(µ, ν) ≤ ϵ is called an ϵ-MNE. As is
usual in both discrete (Cen et al., 2021; Wei et al., 2021) and continuous (Lu, 2022; Lascu et al.,
2023) minimax settings, our main goal is to prove convergence of the NI error along the proposed
algorithms, which also implies convergence to the MNE in relative entropy (Lemma 3.4).

3 Mean-field Langevin Averaged Gradient

3.1 Proposed Method

We propose the mean-field Langevin averaged gradient (MFL-AG) flow with a weighting scheme
(βt)t≥0 and temperature λ > 0 as the coupled pair of history-dependent McKean–Vlasov processes

dXt = −
(

1

Bt

∫ t

0

βs∇x
δL
δµ

(µs, νs)(Xt) ds+ λ∇xUµ(Xt)

)
dt+

√
2λ dWµ

t ,

dYt =

(
1

Bt

∫ t

0

βs∇y
δL
δν

(µs, νs)(Yt) ds− λ∇yUν(Yt)
)
dt+

√
2λ dW ν

t ,

(3)

where µt = Law(Xt), νt = Law(Yt) and Wµ
t , W ν

t are independent Brownian motions on X and
Y , respectively.By weighting scheme we mean any integrable function β = (βt) : R≥0 → R>0

where the normalizing weight Bt =
∫ t
0
βs ds satisfies Bt →∞ and βt/Bt → 0 as t→∞. These

conditions ensure that the most recent update continues to influence the rolling average, but at an
ever-decreasing rate. We will often substitute βt = tr for a fixed exponent r to obtain explicit rates.

The dependence on previous distributions (µs, νs)s≤t serves as a major point of departure from most
existing works on mean-field dynamics. Nevertheless, existence and uniqueness of the flow (3) is
verified in Appendix B.1 by extending the classical contraction argument of Sznitman (1991).
Proposition 3.1. Under Assumptions 1 and 2, the MFL-AG flow (Xt, Yt) (3) with continuous sample
paths uniquely exists for all t ∈ [0,∞) for any initial distribution µ0 ∈ P2(X ), ν0 ∈ P2(Y).

To study the evolution of MFL-AG, we define the history-dependent Gibbs proximal distributions
µ̂t ∝ ρµ exp

(
− 1
λBt

∫ t
0
βs

δL
δµ (µs, νs) ds

)
and ν̂t ∝ ρν exp

(
1
λBt

∫ t
0
βs

δL
δν (µs, νs) ds

)
. As usual,

µ̂t, ν̂t satisfy log-Sobolev inequalities with constants αµ, αν which are crucial to controlling the
mean-field flows. The mild dependency αµ = Ω(1/dX ) is the only potential manifestation of
dimensional dependence in our results. See Definition A.2 and Proposition A.7 for details.

MFL-AG is similar in spirit to fictitious play methods (Brown, 1951) in the two-player zero-sum
game setting with βt ≡ 1, where each player assumes their opponent has a stationary strategy and
optimizes based on the average behavior of the opponent; the ideal fictitious play algorithm would
perform the update µt+1 = µ̂t. However, such methods require exact computation of the optimal
response at every step which is generally unfeasible.

3.2 Continuous-Time Convergence

We first study the properties of the flow (3). At each time t the policies evolve towards the proximal
distributions. The key observation is that unlike MFL-DA, the deceleration of the rolling average
allows the flow to catch up.
Proposition 3.2 (Proximal convergence of MFL-AG flow). Under Assumptions 1 and 2, for the
weighting scheme βt = tr with a fixed exponent r > −1 the proximal KL gap is bounded as

KL(µt∥ µ̂t) ≤
2(r + 1)2M2

µ

α3
µλ

4t2
+O(t−3).
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Algorithm 1 Mean-field Langevin Averaged Gradient
Require: temperature λ, max epochs K, learning rate η, number of particles N , exponent r
Initialization: X K ,Y K ← ∅, X1, Y1

for k = 1, · · · ,K − 1 do
For all particles i = 1, · · · , N sample ξµ,ik ∼ N (0, IdX ), ξ

ν,i
k ∼ N (0, IdY ) and update

Xi
k+1 ← Xi

k −
η
Bk

∑k
j=1 βj∇x

δL
δµ (µXj

, νYj
)(Xi

k)− λη∇xUµ(Xi
k) +

√
2ληξµ,ik

Y ik+1 ← Y ik + η
Bk

∑k
j=1 βj∇y

δL
δν (µXj

, νYj
)(Y ik )− λη∇yUν(Y ik ) +

√
2ληξν,ik

end for
for k = 1, · · · ,K do

Sample ⌊βkN/BK⌋ particles from Xk,Yk and concatenate with X K ,Y K , resp.
end for
return X K , Y K

See Appendix B.2 for the proof. It is then clear that if MFL-AG converges, it must converge to the
MNE (5) by setting µ∞ = µ̂∞, ν∞ = ν̂∞.

For ordinary MFLD, KL gap convergence of the above type is generally enough to show absolute
convergence (Nitanda et al., 2022; Lu, 2022). In our case, however, the relative entropy no longer
quantifies the optimality gap at (µt, νt) since the proximal distributions are no longer ‘state functions’
and depend on the entire history. Nevertheless, we are able to obtain our first main result, average-
iterate convergence of MFL-AG. Our approach, detailed in Appendix B.3, extends conjugate function
arguments from dual averaging to the minimax setting.
Theorem 3.3 (Average-iterate convergence of MFL-AG flow). Denote the weighted average of
the MFL-AG distributions up to time t as µ̄t = 1

Bt

∫ t
0
βsµs ds, ν̄t = 1

Bt

∫ t
0
βsνs ds. Then under

Assumptions 1 and 2, for the weighting scheme βt = tr with fixed exponent r > 0, the NI error of the
averaged pair µ̄t, ν̄t converges with rate

NI(µ̄t, ν̄t) ≤
(
M2
µ

α2
µ

+
M2
ν

α2
ν

)
4(r + 1)2

rλ2t
+O(t−2),

and the leading term is optimized when βt = t. For the unweighted averaging scheme βt ≡ 1, the

rate is NI(µ̄t, ν̄t) ≤
(
M2

µ

α2
µ
+

M2
ν

α2
ν

)
4 log t
λ2t +O(t−1).

We note that the dependency on weighting exponent r is in agreement with works such as Tao et al.
(2021) on dual averaging and Guo et al. (2020) on which incorporate averaging with increasing
weights βt ∝ t to obtain improved rates. In light of Lemma 3.4 (proved in Appendix A.2), Theorem
3.3 immediately implies O(1/t) convergence of (µ̄t, ν̄t) in relative entropy to the MNE.
Lemma 3.4 (Entropy sandwich lower bound). For any µ ∈ P2(X ) and ν ∈ P2(Y) it holds that

KL(µ∥µ∗) + KL(ν∥ν∗) ≤ λ−1 NI(µ, ν).

3.3 Time and Space Discretization

We now summarize our discretization analysis of MFL-AG developed throughout Appendix C. Our
study incorporates both a discrete time step η for the Langevin flow and particle approximations for
the laws µ, ν. Denote ordered sets of N particles by X = (Xi)Ni=1 ∈ X

N , Y = (Y i)Ni=1 ∈ Y
N and

the corresponding empirical distributions by µX = 1
N

∑N
i=1 δXi , νY = 1

N

∑N
i=1 δY i . The update

Xk+1,Yk+1 will depend on the full history (X1:k,Y1:k), where X1 and Y1 are sampled i.i.d. from
initial laws µ◦ ∈ P2(X ) and ν◦ ∈ P2(Y).
In order to implement gradient averaging, the integral in (3) must be replaced by the discrete-time
average with respect to a sequence of weights (βk)k∈N; the cumulative weights are denoted as
Bk =

∑k
j=1 βj . Moreover, the final average of µX1 , · · · , µXK

may be computed by randomly
sampling βkN/BK particles from each set Xk and concatenating. See Algorithm 1 for details.

The propagation of chaos framework recently developed in Chen et al. (2022); Suzuki et al. (2023)
relies on a lifted proximal distribution µ̂(N) on the configuration space XN . By integrating out the
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conditioning on the previous step in the continuity equation, this is used to elegantly control the
evolution of the joint distribution µ(N) of the N particles. In our case, however, the dependency on
the full history (X1:k,Y1:k) cannot be integrated out consistently and must be retained:

µ̂
(N)
k (X ) ∝ ρµ⊗N (X ) exp

(
− N

λBk

∫
X

k∑
j=1

βj
δL
δµ

(µXj
, νYj

)µX (dx)

)
.

This renders the KL gap argument with µ(N) inaccessible and we must work step-by-step with the
atomic measures µXk

, νYk
, which further complicates matters as we cannot directly utilize metrics

involving µXk
in order to avoid the curse of dimensionality. Instead, we prove and exploit the

following uniform law of large numbers (Appendix C.3).
Proposition 3.5. Let F : P2(X )×P2(Y)×X → R, (µ, ν, x) 7→ F (µ, ν)(x) be a functional such
that F (µ, ν) is Mµ-Lipschitz on X and further satisfies

∥F (µ, ν)− F (µ′, ν′)∥Lip ≤ Lµ(W1(µ, µ
′) +W1(ν, ν

′)).

If η ≤ η̄ :=
rµλ

2(Lµ+λRµ)2
∧ rµ

4λR2
µ
∧ rνλ

2(Lν+λRν)2
∧ rν

4λR2
ν

and the weight sequence βk = kr for r ≥ 0,
then for all integers k,N it holds that

EX1:k,Y1:k

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−1)(dx)

]
≤ r + 1

k
C1(η) + C2

√
η +

C3√
N
. (4)

The same bound also holds for the max policy ν. The constants C2, C3 only depend on problem
quantities (including the LSI constants) with at most polynomial order, while the function C1 depends
on problem quantities and η.

Here, Π denotes the average of the N pushforward operators along the coordinate projection maps
X 7→ Xi. The main idea of the proof is to look backwards in time: close enough so that the dynamics
is nearly particle-independent due to the slowdown of the averaged gradient, but far enough to assure
exponential convergence to the approximate stationary distribution. Furthermore, the W1-Lipschitz
leave-one-out argument in Step 3 shows that the O(1/

√
N) rate is optimal.

We finally present our main discretization error bound; the proof is presented in Appendix C.5.
Theorem 3.6 (Convergence of discretized MFL-AG). Denote the averaged empirical distributions as
µX k

= 1
Bk

∑k
j=1 βjµXj

, νY k
= 1

Bk

∑k
j=1 βjνYj

. If η ≤ η̄ and βk = kr with r > 0, the MFL-AG
discrete update satisfies for all K,N ,

W 2
1 (E[µX K

], µ∗) +W 2
1 (E[νY K

], ν∗) ≤ (r + 1)2

rK
C̃1(η) + C̃2

√
η +

C̃3√
N

with similar constants as in Proposition 3.5. If r = 0, the first term is replaced by O(logK/K).

Hence the errors arising from time and particle discretization are separately bounded as O(
√
η)

and O(1/
√
N). An unfortunate byproduct of the perturbation analysis is a roughly η−1/αµ order

dependency in the constant C1(η); nonetheless, the convergence in time is O(1/K) for any fixed
η. In particular, for any specified error ϵ > 0 we can take η = O(ϵ2) and N = O(ϵ−2) as well as
K = O(ϵ−1/αµ∧αν ) so that W 2

1 (E[µX K
], µ∗) +W 2

1 (E[νY K
], ν∗) < ϵ.

We remark that the squared Wasserstein distance is a natural measure of optimality consistent with
the continuous-time rate obtained in Theorem 3.3 in view of Lemma 3.4. Note that Theorem 3.6
quantifies the bias of the MFL-AG outputs, but does not tell us anything about the variance. In
Appendix C.6, we give a bound for the expected distance E[W1(µX k

, µ∗) +W1(νY k
, ν∗)] and also

discuss why the curse of dimensionality is unavoidable in this setting.

4 Conclusion

In this paper, we developed the first symmetric mean-field Langevin dynamics for regularized minimax
problems with global convergence guarantees. We proposed the single-loop MFL-AG algorithm
and proved average-iterate convergence to the MNE. We also established a new uniform-in-time
analysis of propagation of chaos that accounts for dependence on history using novel perturbative
techniques. Furthermore, we proposed the double-loop MFL-ABR algorithm with time-discretized
linear last-iterate convergence and studied applications to zero-sum Markov games.
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Appendix

A Preliminaries

A.1 Optimal Transport

We begin by introducing basic concepts and inequalities from optimal transport theory that will be
useful in analyzing the behavior of Langevin dynamics.

Definition A.1 (p-Wasserstein metric). For p ∈ [1,∞), let Pp(Rd) be the space of probability
measures on Rd with finite pth moment. The p-Wasserstein distance between µ, ν ∈ Pp(Rd) is
defined as

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Rd

∥x− y∥p dγ(x, y)
) 1

p

where Π(µ, ν) denotes the set of joint distributions on Rd×Rd with marginal laws µ and ν on the
first and second factors, respectively. By Kantorovich-Rubinstein duality, the metric W1 can also be
written as

W1(µ, ν) = sup
∥f∥Lip≤1

∫
Rd

f dµ−
∫
Rd

f dν.

Definition A.2 (Log-Sobolev inequality). A probability measure ν ∈ P2(Rd) is said to satisfy the
logarithmic Sobolev inequality (LSI) with constant α > 0 if for any smooth function f : Rd → R,

Entν(f
2) := Eν [f2 log f2]− Eν [f2] logEν [f2] ≤

2

α
Eν [∥∇f∥22].

For any measure µ ∈ P2(Rd) absolutely continuous with respect to ν, the LSI implies that KL
divergence is upper bounded by the relative Fisher information,

KL(µ∥ν) ≤ 1

2α
Eµ

[∥∥∥∥∇ log
dµ

dν

∥∥∥∥2
2

]
.

Proposition A.3 (Bakry and Émery, 1985). If f : Rd → R is a function such that ∇2f ⪰ αId, the
probability density p ∝ exp(−f) satisfies the LSI with constant α.

Proposition A.4 (Holley and Stroock, 1987). Let p be a density on Rd satisfying the LSI with constant
α. For a bounded function B : Rd → R, the perturbed distribution

pB(x)dx =
exp(B(x))p(x)

Ep[exp(B(x))]
dx

also satisfies the LSI with constant α/ exp(4 ∥B∥∞).

Definition A.5 (Poincaré and Talagrand’s inequalities). A probability measure ν ∈ P2(Rd) is said to
satisfy the Poincaré inequality with constant α > 0 if for any smooth function f : Rd → R,

Varν(f) := Eν [f2]− (Eν [f ])2 ≤
1

α
Eν [∥∇f∥22].

Moreover, ν is said to satisfy Talagrand’s inequality with constant α > 0 if for any measure
µ ∈ P2(Rd) absolutely continuous with respect to ν, the 2-Wasserstein distance is upper bounded as

α

2
W 2

2 (µ, ν) ≤ KL(µ∥ν).

If ν satisfies the LSI with constant α, then it satisfies the Poincaré inequality with the same constant.
We also have the following implication.

Theorem A.6 (Otto and Villani, 2000). If a probability measure ν ∈ P2(Rd) satisfies the LSI with
constant α, then it satisfies Talagrand’s inequality with the same constant.

The MFL-AG proximal distributions can be seen as Lipschitz perturbations of ρµ, ρν and hence
satisfies the following LSI. The adverse exponential dependence on λ seems to be a general drawback
of Langevin diffusion methods in the low temperature regime (Menz and Schlichting, 2014).
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Proposition A.7. Let the probability measure µ ∝ ρµ exp(−λ−1h) ∈ P2(X ) with ∥h∥Lip ≤ Mµ.
Then under Assumption 1, µ satisfies the log-Sobolev and Talagrand’s inequalities with constant

αµ ≥
rµ
2
e
−

4M2
µ

rµλ2

√
2dX
π ∨

(
4

rµ
+

(
Mµ

rµλ
+

√
2

rµ

)2(
2 +

dX
2

log
e2Rµ
rµ

+
4M2

µ

rµλ2

)
e

M2
µ

2rµλ2

)−1

.

Proof. We take the stronger of the two bounds in Lemma 2.1 of Bardet et al. (2018) and Theorem 2.7
of Cattiaux and Guillin (2022); the latter removes the exponential dependency on dX in exchange for
more complicated polynomial terms. See Lemma 6 of Suzuki et al. (2023) for more details.

A.2 Mixed Nash Equilibrium

Definition A.8 (functional derivative). Let F be a functional on P2(Rd). The functional derivative
δF
δµ at µ ∈ P2(Rd) is defined as a functional P2(Rd)× Rd → R satisfying for all ν ∈ P2(Rd),

d

dϵ
F (µ+ ϵ(ν − µ))

∣∣∣∣
ϵ=0

=

∫
Rd

δF

δµ
(µ)(x)(ν − µ)(dx).

As the functional derivative is defined up to additive constants, we impose the additional condition∫
Rd

δF
δµ (µ) dµ = 0. Furthermore, F is defined to be convex if its satisfies the convexity condition for

all ν ∈ P2(Rd):

F (ν) ≥ F (µ) +
∫
Rd

δF

δµ
(µ)(x)(ν − µ)(dx).

Finally, F is defined to be concave if −F is convex.
Proposition A.9 (Existence and uniqueness of MNE). Under Assumptions 1 and 2, the solution
(µ∗, ν∗) to (1) uniquely exists and satisfies the first-order equations

µ∗ ∝ ρµ exp
(
− 1

λ
δL
δµ (µ

∗, ν∗)
)
, ν∗ ∝ ρν exp

(
1
λ
δL
δν (µ

∗, ν∗)
)
. (5)

Proof. Recall that the 2-Wasserstein distance is finite and metrizes weak convergence on P2(Rd)
(Villani, 2009, Theorem 6.9). Also, the divergence µ 7→ KL(µ∥ρµ) is proper and lower semi-
continuous with respect to the weak topology (Lanzetti et al., 2022). Furthermore, ρµ satisfies
Talagrand’s inequality with constant rµ by Theorem A.6 so that the map µ 7→ Lλ(µ, ν) is strongly
convex. Hence the minimizer of µ 7→ Lλ(µ, ν) is unique, and similarly the maximizer of ν 7→
Lλ(µ, ν) is unique. Existence of the MNE is now guaranteed by Theorem 3.6 in Conforti et al. (2020)
by verifying Assumption 2.1 and conditions (i)-(iii).

For uniqueness, suppose to the contrary that (µ∗, ν∗), (µ̃∗, ν̃∗) are two distinct solutions of (1). The
optimality conditions yield the chain of strict inequalities

Lλ(µ∗, ν∗) > Lλ(µ∗, ν̃∗) > Lλ(µ̃∗, ν̃∗) > Lλ(µ̃∗, ν∗) > Lλ(µ∗, ν∗),

a contradiction. Finally, the first-order conditions follow from Corollary 3.3 in Conforti et al. (2020),
adjusting the base measures as to be different for µ, ν.

Proof of Lemma 3.4. By convex-concavity of L and the first-order condition (5),
NI(µ, ν) ≥ Lλ(µ, ν∗)− Lλ(µ∗, ν)

≥
∫
X

δL
δµ

(µ∗, ν∗)(µ− µ∗)(dx) + λKL(µ∥ρµ)− λKL(ν∗∥ρν)

−
∫
Y

δL
δν

(µ∗, ν∗)(ν − ν∗)(dy)− λKL(µ∗∥ρµ) + λKL(ν∥ρν)

= −
∫
X
λ log

µ∗

ρµ
(µ− µ∗)(dx) + λKL(µ∥ρµ)− λKL(ν∗∥ρν)

−
∫
Y
λ log

ν∗

ρν
(ν − ν∗)(dy)− λKL(µ∗∥ρµ) + λKL(ν∥ρν)

= λKL(µ∥µ∗) + λKL(ν∥ν∗).
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B Convergence Analysis of MFL-AG

B.1 Proof of Proposition 3.1

Some definitions are in order. Denote by CX ,T = C([0, T ],X ) the space of continuous sample paths
on X and byM(CX ,T ) the space of probability measures on CX ,T . We define two versions of the
lifted 1-Wasserstein distance onM(CX ,T ) as

W̃1,T (µ, µ
′) = inf

γ

∫
sup
t≤T
∥ω(t)− ω′(t)∥ dγ(ω, ω′) ∧ 1,

W1,T (µ, µ
′) = inf

γ

∫
sup
t≤T
∥ω(t)− ω′(t)∥ ∧ 1 dγ(ω, ω′)

where the infimum runs over all couplings γ ∈ M(CX ,T × CX ,T ) with marginal laws µ, µ′. The
inner truncated metric W1,T is complete, nondecreasing in T and metrizes the weak topology on
M(CX ,T ) (Dobrushin, 1970); the outer truncation W̃1,T serves to upper bound W1,T . We repeat the
construction for Y and extend W1,T , W̃1,T to the product spaceM(CX ,T )×M(CY,T ) as

W1,T ((µ, ν), (µ
′, ν′)) =W1,T (µ, µ

′) +W1,T (ν, ν
′),

etc. Now define Φ :M(CX ,T )×M(CY,T )→M(CX ,T )×M(CY,T ) as the map which associates
to the pair (µ, ν) the laws of the stochastic processes (Xt)t≤T , (Yt)t≤T ,

Xt = X0 −
∫ t

0

1

Bs

∫ s

0

βr∇x
δL
δµ

(µr, νr)(Xs) dr + λ∇xUµ(Xs) ds+
√
2λWµ

t ,

Yt = Y0 +

∫ t

0

1

Bs

∫ s

0

βr∇y
δL
δν

(µr, νr)(Ys) dr − λ∇yUν(Ys) ds+
√
2λW ν

t

for 0 ≤ t ≤ T , where µt, νt denote the marginal distributions of µ, ν at time t and in particular µ0, ν0
are the prescribed initial distributions. A solution to (3) then corresponds precisely to a fixed point of
Φ.
Lemma B.1. There exists a constant CT > 0 so that for any 0 ≤ t ≤ T ,

W̃1,t(Φ(µ, ν),Φ(µ
′, ν′)) ≤ CT

∫ t

0

W̃1,s((µ, ν), (µ
′, ν′)) ds.

Proof. First note that for any 0 ≤ s ≤ t ≤ T ,

W̃1,t(µ, µ
′) ≥ inf

γ

∫
∥ω(s)− ω′(s)∥ dγ(ω, ω′) ∧ 1 ≥W1(µs, µ

′
s) ∧ 1.

Let (X ′
t)t≤T , (Y

′
t )t≤T denote the synchronous processes

X ′
t = X0 −

∫ t

0

1

Bs

∫ s

0

βr∇x
δL
δµ

(µ′
r, ν

′
r)(X

′
s) dr + λ∇xUµ(X ′

s) ds+
√
2λWµ

t ,

Y ′
t = Y0 +

∫ t

0

1

Bs

∫ s

0

βr∇y
δL
δν

(µ′
r, ν

′
r)(Y

′
s ) dr − λ∇yUν(Y ′

s ) ds+
√
2λW ν

t

corresponding to another pair of distributions (µ′, ν′). Then by Assumption 2,

sup
s≤t
∥Xs −X ′

s∥

≤
∫ t

0

sup
r≤s

∥∥∥∥∇x δLδµ (µr, νr)(Xs)−∇x
δL
δµ

(µ′
r, ν

′
r)(X

′
s)

∥∥∥∥+ λ ∥∇xUµ(Xs)−∇xUµ(X ′
s)∥ ds

≤
∫ t

0

(Kµ + λRµ) ∥Xs −X ′
s∥+ sup

r≤s
Lµ(W1(µr, µ

′
r) +W1(νr, ν

′
r)) ∧ 2Mµ ds

≤ (Kµ + λRµ)

∫ t

0

∥Xs −X ′
s∥ ds+ (Lµ ∨ 2Mµ)

∫ t

0

sup
r≤s

W1(µr, µ
′
r) ∧ 1 +W1(νr, ν

′
r) ∧ 1 ds.
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Thus by Gronwall’s lemma we obtain

sup
s≤t
∥Xs −X ′

s∥ ≤ (Lµ ∨ 2Mµ)e
(Kµ+λRµ)T

∫ t

0

sup
r≤s

W1(µr, µ
′
r) ∧ 1 +W1(νr, ν

′
r) ∧ 1 ds.

Then defining the constant CT = (Lµ ∨ 2Mµ)e
(Kµ+λRµ)T + (Lν ∨ 2Mν)e

(Kν+λRν)T , by taking
the joint distribution coupling of (Xt)t≤T and (X ′

t)t≤T we have

W̃1,t(Φ(µ, ν),Φ(µ
′, ν′)) ≤ CT

∫ t

0

sup
r≤s

W1(µr, µ
′
r) ∧ 1 +W1(νr, ν

′
r) ∧ 1 ds,

which proves the lemma.

We now use the contraction property to prove Proposition 3.1. Starting at any (µ, ν) and recursively
applying Lemma B.1, we have

W̃1,T (Φ
k+1(µ, ν),Φk(µ, ν)) ≤ CkT

∫ T

0

∫ t1

0

· · ·
∫ tk−1

0

W̃1,tk(Φ(µ, ν), (µ, ν)) dtk · · · dt2 dt1

≤ CkTT
k

k!
W̃1,T (Φ(µ, ν), (µ, ν)),

so that W̃1,T (Φ
k+1(µ, ν),Φk(µ, ν))→ 0 as k →∞. Since W̃1,T upper bounds W1,T , the sequence

(Φk(µ, ν))k≥0 is Cauchy and therefore converges to a fixed point of Φ due to the completeness of
M(CX ,T ) ×M(CY,T ) with respect to W1,T . Similarly, recursively applying Lemma B.1 to two
fixed points (µ, ν), (µ′, ν′) yields

W1,T ((µ, ν), (µ
′, ν′)) ≤ W̃1,T ((µ, ν), (µ

′, ν′)) ≤ CkTT
k

k!
W̃1,T ((µ, ν), (µ

′, ν′))→ 0,

hence the fixed point is unique. Finally, truncating the obtained flows ((µt)t≤T , (νt)t≤T ) at time
T ′ < T must again yield the fixed point inM(CX ,T ′) ×M(CY,T ′) so that we may consistently
extend the flows to all time t ∈ [0,∞).

B.2 Proof of Proposition 3.2

The Fokker-Planck equations corresponding to the system (3) can be formulated as

∂tµt = ∇x ·
(
µt
Bt

∫ t

0

βs∇x
δL
δµ

(µs, νs) ds+ λµt∇xUµ
)
+ λ∆xµt = λ∇x ·

(
µt∇x log

µt
µ̂t

)
,

∂tνt = −∇y ·
(
νt
Bt

∫ t

0

βs∇y
δL
δν

(µs, νs) ds− λνt∇yUν
)
+ λ∆yνt = λ∇y ·

(
νt∇y log

νt
ν̂t

)
,

where we recall that

µ̂t ∝ ρµ exp
(
− 1

λBt

∫ t

0

βs
δL
δµ

(µs, νs) ds

)
, ν̂t ∝ ρν exp

(
1

λBt

∫ t

0

βs
δL
δν

(µs, νs) ds

)
(6)

which are well-defined due to the strong convexity of Uµ, Uν and Assumption 2.

Write the normalization factor for µ̂t as

Zµt =

∫
X
exp

(
− 1

λBt

∫ t

0

βs
δL
δµ

(µs, νs) ds

)
ρµ(dx).

We first compute the time derivative of the proximal distribution,

∂t log µ̂t = −∂t logZ
µ
t −

βt
λBt

δL
δµ

(µt, νt) +
βt
λB2

t

∫ t

0

βs
δL
δµ

(µs, νs) ds

=

∫
X

(
βt
λBt

δL
δµ

(µt, νt)−
βt
λB2

t

∫ t

0

βs
δL
δµ

(µs, νs) ds

)
µ̂t(dx̃)

− βt
λBt

δL
δµ

(µt, νt) +
βt
λB2

t

∫ t

0

βs
δL
δµ

(µs, νs) ds.
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Roughly speaking, the proximal evolution speed is O(βt/Bt) which converges to zero as new
information is continually downscaled. However, the maximum total displacement is O(logBt)→
∞, ensuring that the algorithm does not prematurely stop before reaching equilibrium.

The time derivative of the KL gap can then be controlled by translating back into KL distance as

∂tKL(µt∥ µ̂t) =
∫
X

(
log

µt
µ̂t

)
∂tµt(dx)−

∫
X
(∂t log µ̂t)µt(dx)

= −λ
∫
X

∥∥∥∥∇x log µtµ̂t
∥∥∥∥2
2

µt(dx)

+
βt
λBt

∫
X

(
δL
δµ

(µt, νt)−
1

Bt

∫ t

0

βs
δL
δµ

(µs, νs) ds

)
(µt − µ̂t)(dx)

≤ −2αλ ·KL(µt∥ µ̂t) +
2Mµβt
λBt

W1(µt, µ̂t)

by Proposition A.7. The Wasserstein term is further bounded via Talagrand’s inequality as

W1(µt, µ̂t) ≤W2(µt, µ̂t) ≤
√

2

αµ
KL(µt, µ̂t).

Hence

∂t
√
KL(µt∥ µ̂t) ≤ −αµλ

√
KL(µt∥ µ̂t) +

Mµβt
λBt

√
2

αµ
and using an integrating factor, we conclude (starting from an arbitrary small but positive time t0 to
avoid potential singularities at t = 0)

exp(αµλt)
√

KL(µt∥ µ̂t) ≤
Mµ

λ

√
2

αµ

∫ t

t0

βs
Bs

exp(αµλs) ds+ exp(αµλt0)
√

KL(µt0∥ µ̂t0).

In particular, for the weight scheme βt = tr with r > −1, by employing the asymptotic expansion of
the exponential integral (Wong, 1989, Section I.4)

Ei(z) =

∫ z

−∞

exp(t)

t
dt =

exp(z)

z

(
n∑
k=0

k!

zk
+O(|z|−(n+1))

)
we conclude that

KL(µt∥ µ̂t) ≤ exp(−2αµλt)

(
(r + 1)Mµ

λ

√
2

αµ
Ei(αµλt) + const.

)2

≤
2(r + 1)2M2

µ

α3
µλ

4t2
+O(t−3).

We also show a boundedness result which guarantees that the flow is in a sense well-behaved.
Lemma B.2. The MFL-AG flow (µt, νt) satisfies for all t ≥ 0,

KL(µt∥ρµ) ≤ KL(µ0∥ρµ) ∨
M2
µ

2rµλ2
and KL(νt∥ρν) ≤ KL(ν0∥ρν) ∨

M2
ν

2rνλ2
.

Proof. The density ρµ satisfies the LSI with constant rµ by Proposition A.3 so that we may derive

∂tKL(µt∥ρµ) =
∫
X

(
log

µt
ρµ

)
∂tµt(dx)

= −λ
∫
X
∇x log

µt
ρµ
· ∇x log

µt
µ̂t
µt(dx)

= −λ
∫
X

∥∥∥∥∇x log µtρµ
∥∥∥∥2
2

µt(dx) + λ

∫
X
∇x log

µt
ρµ
· ∇x log

µ̂t
ρµ
µt(dx)

14



≤ −λ
2

∫
X

∥∥∥∥∇x log µtρµ
∥∥∥∥2
2

µt(dx) +
λ

2

∫
X

∥∥∥∥∇x log µ̂tρµ
∥∥∥∥2
2

µt(dx)

≤ −rµλ ·KL(µt∥ρµ) +
M2
µ

2λ
.

The assertion is then proved by Gronwall’s inequality.

B.3 Proof of Theorem 3.3

We first introduce two conjugate-type auxiliary functionals and state some properties.
Lemma B.3. Given Lipschitz functions ζµ : X → R, ζν : Y → R, for the pair of probability
measures µ ∈ P2(X ), ν ∈ P2(Y) define the time-dependent functional

Jt(µ, ν|ζµ, ζν) = −
∫
X
ζµ(µ− ρµ)(dx) +

∫
Y
ζν(ν − ρν)(dy)− λBt(KL(µ∥ρµ) + KL(ν∥ρν)).

Then the maximum
Ĵt(ζ

µ, ζν) = max
µ∈P2(X )

max
ν∈P2(Y)

Jt(µ, ν|ζµ, ζν)

exists for all t > 0 and is uniquely attained by the pair of probability distributions defined as
µ̂t(ζ

µ) ∝ exp(−(λBt)−1ζµ − Uµ) and ν̂t(ζν) ∝ exp((λBt)
−1ζν − Uν).

Proof. Since Jt(µ, ν|ζµ, ζν) decomposes into terms depending only on µ and ν, respectively, the
proof is similar to that of Proposition A.9. That is, µ 7→ KL(µ∥ρµ) is lower semi-continuous and
strongly convex with respect to the 2-Wasserstein metric by Talagrand’s inequality for ρµ so that
combined with any linear functional,

argmax
µ∈P2(X )

ζµ(µ− ρµ)(dx)− λBt ·KL(µ∥ρµ)

has a unique maximizer µ̂t(ζ
µ) which moreover is given by the stated first-order condition.

The following properties are direct extensions of standard conjugacy results in convex analysis, see
e.g. Hiriart-Urruty and Lemaréchal (2004), Section E.

Lemma B.4. The functional Ĵt(ζµ, ζν) satisfies the following properties.

(i) Ĵt is nonnegative and convex in both arguments.

(ii) Ĵt admits functional derivatives at any (ζµ, ζν) which are given as

δĴt
δζµ

(ζµ, ζν) = − µ̂t(ζµ) + ρµ,
δĴt
δζν

(ζµ, ζν) = ν̂t(ζ
ν)− ρν .

(iii) The derivative with respect to time is bounded as

∂tĴt(ζ
µ, ζν) ≤ −λβt(KL(µ̂t(ζ

µ)∥ρµ) + KL(ν̂t(ζ
ν)∥ρν)).

Proof. (i) Note that Ĵt ≥ 0 by taking µ = ρµ, ν = ρν , and Ĵt is convex in both ζµ, ζν as it is a
pointwise maximum of affine functionals.

(ii) Due to the explicit dependency of µ̂t(ζ
µ) on ζµ, Ĵt(ζµ, ζν) = Jt(µ̂t(ζ

µ), µ̂t(ζ
ν)|ζµ, ζν) admits

a functional derivative with respect to ζµ and

δĴt
δζµ

(ζµ, ζν) = − µ̂t(ζµ) + ρµ −
∫
X

(
ζµ + λBt log

µ̂(ζµ)

ρµ

)
δ

δζµ
µ̂t(ζ

µ)(dx) = − µ̂t(ζµ) + ρµ.

(iii) The time derivative of Ĵt exists due to the differentiability of (Bt)t≥0. For any t′ > t,

Ĵt′(ζ
µ, ζν) = Jt′(µ̂t′(ζ

µ), ν̂t′(ζ
ν)|ζµ, ζν)

= Jt(µ̂t′(ζ
µ), ν̂t′(ζ

ν)|ζµ, ζν)− λ(Bt′ −Bt)(KL(µ̂t′(ζ
µ)∥ρµ) + KL(ν̂t′(ζ

ν)∥ρν))
≤ Ĵt(ζµ, ζν)− λ(Bt′ −Bt)(KL(µ̂t′(ζ

µ)∥ρµ) + KL(ν̂t′(ζ
ν)∥ρν))

by the maximality of Ĵt, thus taking the limit t′ ↓ t yields the stated inequality.
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We proceed to the proof of Theorem 3.3. Denote the unnormalized aggregate derivatives as

δµt =

∫ t

0

βs
δL
δµ

(µs, νs) ds, δνt =

∫ t

0

βs
δL
δν

(µs, νs) ds

which are Lipschitz due to Assumption 2. Then by Lemma B.4,

d

dt
Ĵt(δ

µ
t , δ

ν
t )

=

∫
X
∂tδ

µ
t

δĴt
δζµ

(δµt , δ
ν
t )(dx) +

∫
Y
∂tδ

ν
t

δĴt
δζν

(δµt , δ
ν
t )(dy) + (∂tĴt)(δ

µ
t , δ

ν
t )

≤ βt
∫
X

δL
δµ

(µt, νt)(− µ̂t(δ
µ
t ) + ρµ)(dx) + βt

∫
Y

δL
δν

(µt, νt)(ν̂t(δ
ν
t )− ρν)(dy)

− λβt(KL(µ̂t(δ
µ
t )∥ρµ) + KL(ν̂t(δ

ν
t )∥ρν)).

The NI error of the averaged distributions can now be bounded,

NI(µ̄t, ν̄t)

= max
µ,ν
Lλ(µ̄t, ν)− Lλ(µ, ν̄t)

≤ max
µ,ν

1

Bt

∫ t

0

βs(Lλ(µs, ν)− Lλ(µ, νs)) ds

≤ max
µ,ν

1

Bt

∫ t

0

βs

(∫
Y

δL
δν

(µs, νs)(ν − νs)(dy)−
∫
X

δL
δµ

(µs, νs)(µ− µs)(dx)

+ λ(KL(µs∥ρµ)−KL(ν∥ρν)−KL(µ∥ρµ) + KL(νs∥ρν))
)
ds

=
1

Bt
max
µ,ν

(∫
Y
δνt (ν − ρν)(dy)−

∫
X
δµt (µ− ρµ)(dx)− λBt(KL(µ∥ρµ) + KL(ν∥ρν))

)
+

1

Bt

∫ t

0

βs

(∫
Y

δL
δν

(µs, νs)(ρ
ν − νs)(dy)−

∫
X

δL
δµ

(µs, νs)(ρ
µ − µs)(dx)

+ λ(KL(µs∥ρµ) + KL(νs∥ρν))
)
ds,

where we have used the convex-concavity of Lλ and L in succession. By extracting the terms
corresponding to the auxiliary functional Ĵt, we are able to apply Lemma B.4(iii) and obtain that

1

Bt

[
Ĵt(δ

µ
t , δ

ν
t ) +

∫ t

0

βs

(∫
Y

δL
δν

(µs, νs)(ρ
ν − νs)(dy)−

∫
X

δL
δµ

(µs, νs)(ρ
µ − µs)(dx)

+ λ(KL(µs∥ρµ) + KL(νs∥ρν))
)
ds

]
≤ 1

Bt

[ ∫ t

0

(
− λβs(KL(µ̂s(δ

µ
t )∥ρµ) + KL(ν̂s(δ

ν
t )∥ρν))

+ βs

∫
X

δL
δµ

(µs, νs)(− µ̂s(δµs ) + ρµ)(dx) + βs

∫
Y

δL
δν

(µs, νs)(ν̂s(δ
ν
s )− ρν)(dy)

)
ds

+

∫ t

0

βs

(∫
Y

δL
δν

(µs, νs)(ρ
ν − νs)(dy)−

∫
X

δL
δµ

(µs, νs)(ρ
µ − µs)(dx)

+ λ(KL(µs∥ρµ) + KL(νs∥ρν))
)
ds

]
=

1

Bt

∫ t

0

βs

(
λ(KL(µs∥ρµ)−KL(µ̂s∥ρµ) + KL(νs∥ρµ)−KL(ν̂s∥ρν))

+

∫
X

δL
δµ

(µs, νs)(µs − µ̂s)(dx)−
∫
Y

δL
δν

(µs, νs)(νs − ν̂s)(dy)
)
ds
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=
1

Bt

∫ t

0

βs

(
λ

∫
X
log

µ̂s
ρµ

(µs − µ̂s)(dx) + λ

∫
X
log

µs
µ̂s
µs(dx)

+ λ

∫
Y
log

ν̂s
ρν

(νs − ν̂s)(dy) + λ

∫
Y
log

νs
ν̂s
νs(dy)

+

∫
X

δL
δµ

(µs, νs)(µs − µ̂s)(dx)−
∫
Y

δL
δν

(µs, νs)(νs − ν̂s)(dy)
)
ds

=
1

Bt

∫ t

0

βs

[ ∫
X

(
δL
δµ

(µs, νs)−
1

Bs

∫ s

0

βr
δL
δµ

(µr, νr) dr

)
(µs − µ̂s)(dx)

−
∫
Y

(
δL
δν

(µs, νs)−
1

Bs

∫ s

0

βr
δL
δµ

(µr, νr) dr

)
(νs − ν̂s)(dy)

+ λ

∫
X
log

µs
µ̂s
µs(dx) + λ

∫
Y
log

νs
ν̂s
νs(dy)

]
ds.

By Proposition 3.2 and Talagrand’s inequality, we can therefore bound

NI(µ̄t, ν̄t)

≤ 1

Bt

∫ t

0

βs(2MµW1(µs, µ̂s) + 2MνW1(νs, ν̂s) + λKL(µs∥ µ̂s) + λKL(νs∥ ν̂s)) ds

≤ 2

Bt

∫ t

0

βs

(
Mµ

√
2

αµ
KL(µs∥ µ̂s) +Mν

√
2

αµ
KL(νs∥ ν̂s)

)
ds

+
λ

Bt

∫ t

0

βs(KL(µs∥ µ̂s) + KL(νs∥ ν̂s)) ds

≤
(
M2
µ

α2
µ

+
M2
ν

α2
ν

)
4(r + 1)

λ2Bt

∫ t

t0

βs
s

(
1 +O(s−1)

)
ds.

In particular, for βt = tr with r > 0, we obtain the convergence rate

NI(µ̄t, ν̄t) ≤
(
M2
µ

α2
µ

+
M2
ν

α2
ν

)
4(r + 1)2

rλ2t
+O(t−2)

whose leading term is optimized when r = 1. For βt = 1, we obtain the slightly slower rate

NI(µ̄t, ν̄t) ≤
(
M2
µ

α2
µ

+
M2
ν

α2
ν

)
4 log t

λ2t
+O(t−1).

We remark that for decreasing βt, the integral tends to converge so that the normalizing B−1
t term

dominates, leading to significantly slower convergence. For example, if βt ∼ tr for −1 < r < 0 the
rate is O(t−1−r); if βt ∼ t−1, the rate is O( 1

log t ).

C Time and Space Discretization

C.1 Gradient Stopped Process

Denote Xk = (Xi
k)
N
i=1,Yk = (Y ik )

N
i=1 and µXk

= 1
N

∑N
i=1 δXi

k
, νYk

= 1
N

∑N
i=1 δY i

k
. That is, the

subscript k denotes the number of steps while superscript i denotes the ith particle. We also write
(X ,Y )1:k := (X1:k,Y1:k) for notational simplicity.

We analyze the following MFL-AG N -particle update for all i = 1, · · · , N ,

Xi
k+1 = Xi

k −
η

Bk

k∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)(Xi
k)− λη∇xUµ(Xi

k) +
√
2ληξµ,ik ,

Y ik+1 = Y ik +
η

Bk

k∑
j=1

βj∇y
δL
δν

(µXj
, νYj

)(Y ik )− λη∇yUν(Y ik ) +
√
2ληξν,ik ,

(7)
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where ξµ,ik , ξν,ik are i.i.d. standard Gaussian and the initial values X1, Y1 are sampled from initial
distributions µ0 ∈ P2(X ), ν0 ∈ P2(Y). We write the history-dependent averaged drift function as

bµk = bµk(·|(X ,Y )1:k) = −
1

Bk

k∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)− λ∇xUµ

and similarly for bνk. The history-dependent N -particle proximal distributions are defined on the
configuration spaces XN ,YN as the product distributions

µ̂
(N)
k (X ) ∝ ρµ⊗N (X ) exp

(
− N

λBk

∫
X

k∑
j=1

βj
δL
δµ

(µXj , νYj )µX (dx)

)
,

ν̂
(N)
k (Y ) ∝ ρν⊗N (Y ) exp

(
N

λBk

∫
Y

k∑
j=1

βj
δL
δν

(µXj
, νYj

)νY (dy)

)
.

We substitute βk = kr with r ∈ R≥0 whenever necessary to simplify the calculations, although
similar results may be derived for any well-behaved sequence of weights.

The following lemma quantifies the sequential evolution of the averaged drift.

Lemma C.1. For any pair of integers k > ℓ we have ∥bµk − bµℓ ∥∞ ≤ 2
(
1− Bℓ

Bk

)
Mµ.

Proof. For any x ∈ X ,

∥bµk(x)− bµℓ (x)∥ =
∥∥∥∥− 1

Bk

k∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)(x) +
1

Bℓ

ℓ∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)(x)

∥∥∥∥
=

∥∥∥∥Bk −BℓBℓBk

ℓ∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)(x)− 1

Bk

k∑
j=ℓ+1

βj∇x
δL
δµ

(µXj
, νYj

)(x)

∥∥∥∥
≤ 2

(
1− Bℓ

Bk

)
Mµ,

yielding the assertion.

The gradient-stopped process. For given integers k > ℓ, consider the following synchronous
modification of the MFL-AG update with the drift stopped at time k − ℓ,

X̃i
j+1 = X̃i

j + η bµj∧(k−ℓ)(X̃
i
j) +

√
2ληξµ,ij , Ỹ ij+1 = Ỹ ij + η bνj∧(k−ℓ)(Ỹ

i
j ) +

√
2ληξν,ij .

The initializations X̃1, Ỹ1 and the random vectors ξµ,ij , ξν,ij are to be shared with the original process

so that (X̃ , Ỹ )1:k−ℓ+1 = (X ,Y )1:k−ℓ+1. We will study this process alongside the original in
order to facilitate short-term perturbation analyses.

Lemma C.2. If η ≤ rµ
4λR2

µ
, the second moments of the particles Xi

k and X̃i
k are uniformly bounded

for all k ≥ 1 as

E[∥Xi
k∥2], E[∥X̃i

k∥2] ≤ E[∥Xi
1∥2] + sµ, sµ :=

2

rµ

(
M2
µ

rµλ2
+ ληM2

µ + dX

)
.

Proof. From the update rule (7),

E[∥Xi
k+1∥2]

= E[∥Xi
k∥2]− 2η

〈
Xi
k,

1

Bk

k∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)(Xi
k) + λ∇xUµ(Xi

k)

〉

+ η2
∥∥∥∥ 1

Bk

k∑
j=1

βj∇x
δL
δµ

(µXj
, νYj

)(Xi
k) + λ∇xUµ(Xi

k)

∥∥∥∥2 + 2ληdX
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≤ E[∥Xi
k∥2] + 2ηMµE[∥Xi

k∥]− 2ληrµE[∥Xi
k∥2]

+ 2λ2η2M2
µ + 2λ2η2R2

µE[∥Xi
k∥2] + 2ληdX

≤ (1− ληrµ)E[∥Xi
k∥2] +

2ηM2
µ

rµλ
+ 2λ2η2M2

µ + 2ληdX ,

where we have used E[∥Xi
k∥] ≤

rµλ
4Mµ

E[∥Xi
k∥2] +

Mµ

rµλ
and η ≤ rµ

4λR2
µ

. The statement now follows

from induction. The same logic can be applied to E[∥X̃i
k∥2].

Lemma C.3. If η ≤ rµλ
2(Lµ+λRµ)2

, the Wasserstein error between the original and gradient-stopped
process at time k > ℓ is bounded as

W2(µXk
, µ

X̃k
) ≤ r + 1

k − ℓ+ 1
wµℓ ,

where

(wµℓ )
2 :=

(
2η +

1

rµλ
∨ 1

2Lµ

)
M2
µ(1 + 2ηLµ)

2((1 + 2ηLµ)
ℓ − 1)

η2L3
µ

.

Proof. Decomposing the difference at each step j > k − ℓ as

Xi
j+1 − X̃i

j+1 = Xi
j − X̃i

j + η(bµj (X
i
j)− bµj (X̃

i
j)) + η(bµj (X̃

i
j)− bµk−ℓ(X̃

i
j)),

we expand to obtain

∥Xi
j+1 − X̃i

j+1∥2

≤ ∥Xi
j − X̃i

j∥2 + 2η⟨Xi
j − X̃i

j , b
µ
j (X

i
j)− bµj (X̃

i
j)⟩+ 2η∥Xi

j − X̃i
j∥ · ∥b

µ
j − bµk−ℓ∥∞

+ 2η2∥bµj (X
i
j)− bµj (X̃

i
j)∥2 + 2η2∥bµj − bµk−ℓ∥

2
∞

≤ ∥Xi
j − X̃i

j∥2 + 2η(Lµ − λrµ)∥Xi
j − X̃i

j∥2 + 4η

(
1− Bk−ℓ

Bj

)
Mµ∥Xi

j − X̃i
j∥

+ 2η2(Lµ + λRµ)
2∥Xi

j − X̃i
j∥2 + 8η2

(
1− Bk−ℓ

Bj

)2

M2
µ

≤ (1 + 2ηLµ)∥Xi
j − X̃i

j∥2 +
(
4ηM2

µ

rµλ
+ 8η2M2

µ

)(
1− Bk−ℓ

Bj

)2

.

Starting from Xi
k−ℓ − X̃i

k−ℓ = 0 and iterating,

∥Xi
k− X̃i

k∥2 ≤
(
4ηM2

µ

rµλ
+8η2M2

µ

) k−1∑
j=k−ℓ+1

(1+2ηLµ)
k−j−1

(
1− Bk−ℓ

Bj

)2

, k ≥ ℓ+2. (8)

Now noting that with βj = jr

1− Bk−ℓ
Bj

≤ (j − k + ℓ)jr∫ j
0
zr dz

= (r + 1)

(
1− k − ℓ

j

)
≤ (r + 1)(j − k + ℓ)

k − ℓ+ 1
,

setting θ = (1 + 2ηLµ)
−1 we can explicitly compute

k−1∑
j=k−ℓ+1

(j − k + ℓ)2(1 + 2ηLµ)
k−j−1 = θ1−ℓ

ℓ−1∑
j=1

j2θj

=
θ2−ℓ

(1− θ)3
(−(ℓ− 1)2θℓ+1 + (2ℓ2 − 2ℓ− 1)θℓ − ℓ2θℓ−1 + 3− θ)

≤ θ

(1− θ)3

(
3− θ
θℓ−1

− 2

)
≤ 2θ

(1− θ)3
(θ−ℓ − 1).
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Plugging back into (8) gives

∥Xi
k − X̃i

k∥2 ≤
(
4M2

µ

rµλ
+ 8ηM2

µ

)
(r + 1)2(1 + 2ηLµ)

2

4η2L3
µ

(1 + 2ηLµ)
ℓ − 1

(k − ℓ+ 1)2

≤ (r + 1)2M2
µ

(
2η +

1

rµλ
∨ 1

2Lµ

)
(1 + 2ηLµ)

2

η2L3
µ

(1 + 2ηLµ)
ℓ − 1

(k − ℓ+ 1)2

uniformly for all i ∈ [N ]. Note that the (2Lµ)
−1 term is added to simplify later analyses and is

generally vacuous. Finally, taking W 2
2 (µXk

, µ
X̃k

) ≤ 1
N ∥Xk − X̃k∥2 yields the desired bound.

The calculations for the two above two results are similar but the bounds are fundamentally different.
In Lemma C.2 we rely on the long-distance dissipative nature of bµk to prove a uniform-in-time
guarantee, while in Lemma C.3 we forego the contraction to isolate the 1 − Bℓ

Bk
factor and obtain

tight short-term error bounds.

The leave-one-out error of the modified process can also be characterized as follows. We remark that
the arguments in Lemmas C.2 and C.4 are identical to that in Suzuki et al. (2023).

Lemma C.4. Denote the set of N − 1 particles (X̃1
k , · · · , X̃

i−1
k , X̃i+1

k , · · · , X̃N
k ) as X −i

k . If
η ≤ rµ

4λR2
µ

, the W2 distance between µ
X̃k

and µ
X̃ −i

k
at time k > ℓ can be bounded on average as

E
X̃k|(X ,Y )1:k−ℓ

[
W 2

2 (µX̃k
, µ

X̃ −i
k

)
]
≤ 4sµ

N
+

2

N(N − 1)

∑
j ̸=i

∥Xj
k−ℓ∥

2 +
2

N
∥Xj

k−ℓ∥
2.

Proof. Similarly to Lemma C.2 but starting from time k − ℓ, it can be shown that

E
X̃k|(X ,Y )1:k−ℓ

[∥X̃j
k∥

2] ≤ ∥Xj
k−ℓ∥

2 ∨ sµ, j ∈ [N ],

which will be useful in the sequel. Then taking the coupling
∑
j ̸=i

1
N δ(X̃j

k,X̃
j
k)

+ 1
N(N−1)δ(X̃i

k,X̃
j
k)

for µ
X̃k

, µ
X̃ −i

k
gives

E
X̃k|(X ,Y )1:k−ℓ

[
W 2

2 (µX̃k
, µ

X̃ −i
k

)
]
≤ E

X̃k|(X ,Y )1:k−ℓ

 1

N(N − 1)

∑
j ̸=i

∥X̃j
k − X̃

i
k∥2


≤ E
X̃k|(X ,Y )1:k−ℓ

 2

N(N − 1)

∑
j ̸=i

∥X̃j
k∥

2 +
2

N
∥X̃i

k∥2


≤ 4sµ

N
+

2

N(N − 1)

∑
j ̸=i

∥Xj
k−ℓ∥

2 +
2

N
∥Xj

k−ℓ∥
2.

The same bound holds for the original process.

C.2 Proximal Pushforward Bounds

For a measure µ(N) on X (N), denote by Π the average of the pushforward operators Πi♯ along the
projections X 7→ Xi with the defining property∫

X
f(x)Πµ(N)(dx) =

∫
XN

Π∗f(X )µ(N)(dX ) =

∫
XN

1

N

N∑
i=1

f(Xi)µ(N)(dX )

for any integrable function f : X → R. We immediately see that

Π µ̂
(N)
k = ρµ exp

(
− 1

λBk

∫
X

k∑
j=1

βj
δL
δµ

(µXj
, νYj

)

)

is the stationary distribution of the continuous-time Itô diffusion dZt = bµk(Zt) dt +
√
2λ dWµ

t ,
which entails the following uniform moment bound.
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Lemma C.5. The unnormalized second moment
∫
X ∥x∥

2
Π µ̂

(N)
k (dx) is bounded above for any

integer k by qµ := r−2
µ λ−2M2

µ + 2r−1
µ dX .

We also denote pµ := 1
N

∑N
i=1 E[∥Xi

1∥2] <∞.

Proof. We may compute for the initialization Z0 = 0,

d

dt
E[∥Zt∥2] = 2E [⟨Zt, bµk(Zt)⟩] + 2λdX

≤ 2MµE[∥Zt∥]− 2rµλE[∥Zt∥2] + 2λdX

≤ −rµλE[∥Zt∥2] +
M2
µ

rµλ
+ 2λdX ,

which yields the bound in the infinite-time limit by Gronwall’s lemma.

In particular, Π µ̂(N)
k−ℓ is the approximate stationary distribution of each independent particle of the

gradient stopped process after time k − ℓ and enjoys an exponential convergence guarantee up to an
O(η) discretization error term.

Proposition C.6. Assuming η ≤ rµ
4λR2

µ
, the KL gap from µ̃ik = Law(X̃i

k|(X ,Y )1:k−ℓ) to Π µ̂
(N)
k−ℓ

of the gradient stopped process satisfies

KL(µ̃ik∥Π µ̂
(N)
k−ℓ) ≤

(
1 +

3 exp(−(ℓ− 1)αµλη)

2η2(Lµ + λRµ)2

)
(Kµ∥Xi

k−ℓ∥2 + Lµ),

where

Kµ :=
η2R2

µ(Lµ + λRµ)
2

αµ
, Lµ :=

η(Lµ + λRµ)
2

αµλ2
(
ηM2

µ + λ2ηR2
µs
µ + λdX

)
are both of order O(η).

Hence, choosing

ℓ = ℓµ :=
1

αµλη

⌈
log

3

2η2(Lµ + λRµ)2

⌉
+ 1 (9)

guarantees that

W2(µ̃
i
k∥Π µ̂

(N)
k−ℓ) ≤

√
4

αµ
(Kµ∥Xi

k−ℓ∥2 + Lµ)

for any integer k > ℓ.

Proof. We emulate the one-step analysis in Nitanda et al. (2022) whilst keeping the history
(X ,Y )1:k−ℓ fixed; this dependence is omitted here for notational clarity. For j ≥ k − ℓ, denote by
µ†
t the law of the process

dX†
t = bµk−ℓ(X̃

i
j) dt+

√
2λ dW †

t , 0 ≤ t ≤ η

with X†
0 = X̃i

j so that X†
η
d
= X̃i

j+1. We overload notation and denote both conditional and joint
distributions involving X†

t by µ†
t . The evolution of µ†

t is governed by the conditional Fokker-Planck
equation

∂tµ
†
t(X

†
t |X̃i

j) = −∇x ·
(
µ†
t(X

†
t |X̃i

j) b
µ
k−ℓ(X̃

i
j)
)
+ λ∆xµ

†
t(X

†
t |X̃i

j).

Integrating out X̃i
j ,

∂tµ
†
t(X

†
t ) =

∫
X
−∇x ·

(
µ†
t(X

†
t , X̃

i
j) b

µ
k−ℓ(X̃

i
j)
)
(dX̃i

j) + λ∆xµ
†
t(X

†
t )

= ∇x ·
(
µ†
t(X

†
t )
(
−EX̃i

j |X
†
t

[
bµk−ℓ(X̃

i
j)
]
+ λ∇x logµ†

t(X
†
t )
))
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= λ∇x ·
(
µ†
t(X

†
t )∇x log

µ†
t

Π µ̂
(N)
k−ℓ

(X†
t )

)
+∇x ·

(
µ†
t(X

†
t )
(
bµk−ℓ(X

†
t )− EX̃i

j |X
†
t

[
bµk−ℓ(X̃

i
j)
]))

.

Hence the proximal KL gap from µ†
t to Π µ̂

(N)
k−ℓ satisfies

∂tKL(µ†
t∥Π µ̂

(N)
k−ℓ) =

∫
X
log

µ†
t

Π µ̂
(N)
k−ℓ

(∂tµ
†
t)(dX

†
t )

= −λ
∫
X

∥∥∥∥∇x log µ†
t

Π µ̂
(N)
k−ℓ

∥∥∥∥2µ†
t(dX

†
t )

−
∫∫

X ×X
log

µ†
t

Π µ̂
(N)
k−ℓ

·
(
bµk−ℓ(X

†
t )− bµk−ℓ(X̃

i
j)
)
µ†
t(dX

†
t dX̃

i
j)

≤ −λ
2

∫
X

∥∥∥∥∇x log µ†
t

Π µ̂
(N)
k−ℓ

∥∥∥∥2µ†
t(dX

†
t ) +

(Lµ + λRµ)
2

2λ

∫∫
X ×X

∥X†
t − X̃i

j∥2µ
†
t(dX

†
t dX̃

i
j)

≤ −αµλ ·KL(µ†
t∥Π µ̂

(N)
k−ℓ) +

(Lµ + λRµ)
2

2λ

∫
X
Eξ†

[∥∥∥bµk−ℓ(X̃i
j)t+

√
2λtξ†

∥∥∥2] µ̃ij(dX̃i
j)

where ξ† ∼ N (0, IdX ) and we have used the LSI for Π µ̂(N)
k−ℓ. The second term is further bounded as

Eξ†
[∥∥∥bµk−ℓ(X̃i

j)t+
√
2λtξ†

∥∥∥2] ≤ η2 EX̃i
j |X1:k−ℓ

[∥∥∥bµk−ℓ(X̃i
j)
∥∥∥2]+ 2ληdX

≤ 2η2M2
µ + 2λ2η2R2

µ E[∥X̃i
j∥2] + 2ληdX

≤ 2η2M2
µ + 2λ2η2R2

µ

(
∥Xi

k−ℓ∥2 ∨ sµ
)
+ 2ληdX

by the proof of Lemma C.4. Gronwall’s lemma now leads to

KL(µ̃ij+1∥Π µ̂
(N)
k−ℓ)− (Kµ∥Xi

k−ℓ∥2 + Lµ) ≤ e−αµλη
(
KL(µ̃ij∥Π µ̂

(N)
k−ℓ)− (Kµ∥Xi

k−ℓ∥2 + Lµ)
)
.

Thus, iterating the bound for k − ℓ < j < k gives

KL(µ̃ik∥Π µ̂
(N)
k−ℓ) ≤ exp(−(ℓ− 1)αµλη)KL(µ̃ik−ℓ+1∥Π µ̂

(N)
k−ℓ) + Kµ∥Xi

k−ℓ∥2 + Lµ,

where we have stopped at time k − ℓ + 1 because the initial distribution µ̃ik−ℓ = δXi
k−ℓ

is atomic.

Instead, the relative entropy after the first step can be directly bounded; since X†
t is a rescaled

Brownian motion with constant drift, the first iteration of δXi
k−ℓ

is distributed as

µ̃ik−ℓ+1
d
= N (Xi

k−ℓ + η bµk−ℓ(X
i
k−ℓ), 2λη IdX ).

The LSI then gives that

KL(µ̃ik−ℓ+1∥Π µ̂
(N)
k−ℓ) ≤

1

2αµ
Eµ̃i

k−ℓ+1

[∥∥∥∥∇x log µ̃ik−ℓ+1

Π µ̂
(N)
k−ℓ

∥∥∥∥2
]

≤ 3

2αµ

(
dX
2λη

+
M2
µ

λ2
+R2

µ EXi
k−ℓ+1|(X ,Y )1:k−ℓ

[∥Xi
k−ℓ+1∥2]

)

≤ 3

2αµ

(
dX
2λη

+
M2
µ

λ2
+R2

µ

(
∥Xi

k−ℓ∥2 ∨ sµ
))

<
3

2η2(Lµ + λRµ)2
(Kµ∥Xi

k−ℓ∥2 + Lµ).

Hence we arrive at the desired statement,

KL(µ̃ik∥Π µ̂
(N)
k−ℓ) ≤

(
1 +

3 exp(−(ℓ− 1)αµλη)

2η2(Lµ + λRµ)2

)
(Kµ∥Xi

k−ℓ∥2 + Lµ).
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The subsequent lemmas provide control over the Wasserstein distance between pushforward disti-
butions. In particular, Lemma C.8 is the discrete analogue of the O(βt/Bt) time derivative bound
obtained in the proof of Proposition 3.2.

Lemma C.7. For any two measures µ(N), µ̃(N) ∈ P2(XN ) it holds that

W2(Πµ
(N),Πµ̃(N)) ≤ 1√

N
W2(µ

(N), µ̃(N)).

Proof. Recall the dual formulation of W2,

W 2
2 (µ, µ̃) = sup

ϕ,ψ

{∫
ϕ dµ−

∫
ψ dµ̃

∣∣∣∣ ϕ, ψ : X → R, ϕ(x)− ψ(y) ≤ ∥x− y∥2
}
.

Then for any pair of functions ϕ, ψ such that ϕ(x) − ψ(y) ≤ ∥x− y∥2, the pullback functions
Π∗ϕ,Π∗ψ on XN satisfy

Π∗ϕ(X )−Π∗ψ(Y ) =
1

N

N∑
i=1

ϕ(Xi)− ψ(Y i) ≤ 1

N

N∑
i=1

∥Xi − Y i∥2 =
1

N
∥X − Y ∥2L2(XN ) .

Therefore,∫
X
ϕ(x)Πµ(N)(dx)−

∫
X
ψ(x)Πµ̃(N)(dx)

=

∫
XN

Π∗ϕ(X )µ(N)(dX )−
∫
XN

Π∗ψ(X )µ̃(N)(dX ) ≤ 1

N
W 2

2 (µ
(N), µ̃(N)),

which yields the assertion by taking the supremum over all permissible ϕ, ψ.

Lemma C.8. The projected 2-Wasserstein distance between µ̂(N)
k , µ̂(N)

k−1 is bounded as

W2(Π µ̂
(N)
k ,Π µ̂

(N)
k−1) ≤

2Mµβk
αµλBk

.

Proof. The proof is deferred to Section C.4.

C.3 Proof of Proposition 3.5

We take ℓ = ℓµ = O(η−1 log η−1) as defined in (9) throughout the proof and only consider the case
k ≥ 2ℓ in Steps 1 through 4.

Step 1. We first look ℓ− 1 steps back to the past and control the displacement of the proximal Π µ̂(N)
k−1

from the stationary state Π µ̂
(N)
k−ℓ of the modified process via Lemma C.8, conditioning on the earlier

history (X ,Y )1:k−ℓ.

E(X ,Y )k−ℓ+1:k|(X ,Y )1:k−ℓ

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−1)(dx)

]
≤ E(X ,Y )k|(X ,Y )1:k−ℓ

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−ℓ)(dx)

]
+Mµ

ℓ−1∑
j=1

E(X ,Y )k−ℓ+1:k−j |(X ,Y )1:k−ℓ

[
W1(Π µ̂

(N)
k−j−1,Π µ̂

(N)
k−j)

]

≤ E(X ,Y )k|(X ,Y )1:k−ℓ

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−ℓ)(dx)

]
+

2M2
µ

αµλ

ℓ−1∑
j=1

βk−j
Bk−j

.

It is simple to further verify that

2M2
µ

αµλ

ℓ−1∑
j=1

βk−j
Bk−j

≤
2M2

µ

αµλ

(r + 1)(ℓ− 1)

k − ℓ+ 1
.
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Step 2. Next, we look back to the future and convert the expectation with respect to µXk
to the

corresponding expectation for the modified process. The incurred error can be bounded by utilizing
Lemmas C.2, C.3 and C.4 as

E(X ,Y )k|(X ,Y )1:k−ℓ

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−ℓ)(dx)

]
− E

(X̃ ,Ỹ )k|(X ,Y )1:k−ℓ

[∫
X
F (µ

X̃k
, νỸk

)(µ
X̃k
−Π µ̂

(N)
k−ℓ)(dx)

]
= E

(X ,X̃ ,Y ,Ỹ )k|(X ,Y )1:k−ℓ

[ ∫
X
F (µXk

, νYk
)(µXk

− µ
X̃k

)(dx)

+

∫
X

(
F (µXk

, νYk
)− F (µ

X̃k
, νỸk

)
)
(µ

X̃k
−Π µ̂

(N)
k−ℓ)(dx)

]
≤ E

(X ,X̃ ,Y ,Ỹ )k|(X ,Y )1:k−ℓ

[
MµW1(µXk

, µ
X̃k

)

+
1

N

N∑
i=1

∥∥∥F (µXk
, νYk

)− F (µ
X̃k
, νỸk

)
∥∥∥
Lip

W1(δX̃i
k
,Π µ̂

(N)
k−ℓ)

]

≤ (r + 1)Mµ

k − ℓ+ 1
wµℓ

+
(r + 1)Lµ
k − ℓ+ 1

(wµℓ +wνℓ )E(X̃i
k|(X ,Y )1:k−ℓ

[(
2

N

N∑
i=1

∫
X
∥X̃i

k − x∥2 Π µ̂
(N)
k−ℓ(dx)

) 1
2

]

≤ (r + 1)Mµ

k − ℓ+ 1
wµℓ +

(r + 1)Lµ
k − ℓ+ 1

(wµℓ +wνℓ )

(
2

N

N∑
i=1

∥Xi
k−ℓ∥2 + qµ + 2sµ

) 1
2

.

Step 3. For the modified process, we apply a leave-one-out argument and consider the expectation
with respect to each particle X̃i

k which is independent of X̃ −i
k , Ỹk when conditioned on the stopped

history (X ,Y )1:k−ℓ. That is,

E
(X̃ ,Ỹ )k|(X ,Y )1:k−ℓ

[∫
X
F (µ

X̃k
, νỸk

)(µ
X̃k
−Π µ̂

(N)
k−ℓ)(dx)

]
=

1

N

N∑
i=1

E
X̃ −i

k ,Ỹk|(X ,Y )1:k−ℓ
EX̃i

k|(X ,Y )1:k−ℓ

[∫
X
F (µ

X̃k
, νỸk

)(δX̃i
k
−Π µ̂

(N)
k−ℓ)(dx)

]

≤ 1

N

N∑
i=1

E
X̃ −i

k ,Ỹk|(X ,Y )1:k−ℓ
EX̃i

k|(X ,Y )1:k−ℓ

[∫
X
F (µ

X̃ −i
k
, νỸk

)(δX̃i
k
−Π µ̂

(N)
k−ℓ)(dx)

]

+
1

N

N∑
i=1

E
X̃k|(X ,Y )1:k−ℓ

[∥∥∥F (µX̃k
, νỸk

)− F (µ
X̃ −i

k
, νỸk

)
∥∥∥
Lip

W1(δX̃i
k
,Π µ̂

(N)
k−ℓ)

]

≤ 1

N

N∑
i=1

E
X̃ −i

k ,Ỹk|(X ,Y )1:k−ℓ
EX̃i

k|(X ,Y )1:k−ℓ

[∫
X
F (µ

X̃ −i
k
, νỸk

)(δX̃i
k
−Π µ̂

(N)
k−ℓ)(dx)

]

+
Lµ
N

N∑
i=1

E
X̃k|(X ,Y )1:k−ℓ

[
W1(µX̃k

, µ
X̃ −i

k
)W1(δX̃i

k
,Π µ̂

(N)
k−ℓ)

]
=

1

N

N∑
i=1

E
X̃ −i

k ,Ỹk|(X ,Y )1:k−ℓ

[∫
X
F (µ

X̃ −i
k
, νỸk

)(µik(X̃
i
k)−Π µ̂

(N)
k−ℓ)(dx)

]

+
Lµ
N

N∑
i=1

E
X̃k|(X ,Y )1:k−ℓ

[
W1(µX̃k

, µ
X̃ −i

k
)W1(δX̃i

k
,Π µ̂

(N)
k−ℓ)

]
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≤ Mµ

N

N∑
i=1

W1(µ
i
k,Π µ̂

(N)
k−ℓ)

+
Lµ
N

N∑
i=1

(
E

X̃k|(X ,Y )1:k−ℓ

[
W 2

2 (µX̃k
, µ

X̃ −i
k

)
]
E

X̃k|(X ,Y )1:k−ℓ

[
W 2

2 (δX̃i
k
,Π µ̂

(N)
k−ℓ)

]) 1
2

≤ 2Mµ

N

N∑
i=1

√
α−1
µ (Kµ∥Xi

k−ℓ∥2 + Lµ)

+
2Lµ
N

N∑
i=1

(
2sµ

N
+

1

N(N − 1)

∑
j ̸=i

∥Xj
k−ℓ∥

2 +
1

N
∥Xi

k−ℓ∥2
) 1

2 (
∥Xi

k−ℓ∥2 + qµ + sµ
) 1

2

by applying Lemma C.2, Lemma C.4 and Proposition C.6.

Step 4. Putting things together, we obtain the conditional bound

E(X ,Y )k−ℓ+1:k|(X ,Y )1:k−ℓ

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−1)(dx)

]
≤

2M2
µ

αµλ

(r + 1)(ℓ− 1)

k − ℓ+ 1

+
(r + 1)Mµ

k − ℓ+ 1
wµℓ +

(r + 1)Lµ
k − ℓ+ 1

(wµℓ +wνℓ )

(
2

N

N∑
i=1

∥Xi
k−ℓ∥2 + qµ + 2sµ

) 1
2

+
2Mµ

N

N∑
i=1

√
α−1
µ (Kµ∥Xi

k−ℓ∥2 + Lµ)

+
2Lµ
N

N∑
i=1

(
2sµ

N
+

1

N(N − 1)

∑
j ̸=i

∥Xj
k−ℓ∥

2 +
1

N
∥Xi

k−ℓ∥2
) 1

2 (
∥Xi

k−ℓ∥2 + qµ + sµ
) 1

2 .

Recalling E[∥Xi
k−ℓ∥2] ≤ E[∥Xi

1∥2] + sµ from Lemma C.2, taking the expectation with respect to
the history (X ,Y )1:k−ℓ finally gives

E(X ,Y )1:k

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−1)(dx)

]
≤ r + 1

k − ℓ+ 1

(
2M2

µ

αµλ
(ℓ− 1) +Mµw

µ
ℓ + Lµ (w

µ
ℓ +wνℓ ) (2p

µ + qµ + 4sµ)
1
2

)

+ 2MµE(X ,Y )1:k

[
1

αµN

N∑
i=1

(Kµ∥Xi
k−ℓ∥2 + Lµ)

] 1
2

+
Lµ

N
3
2

N∑
i=1

E(X ,Y )1:k

[
1

N − 1

N∑
j=1

∥Xj
k−ℓ∥

2 +
2N − 3

N − 1
∥Xi

k−ℓ∥2 + qµ + 3sµ

]

≤ r + 1

k − ℓ+ 1

(
2M2

µ

αµλ
(ℓ− 1) +Mµw

µ
ℓ + Lµ (w

µ
ℓ +wνℓ ) (2p

µ + qµ + 4sµ)
1
2

)

+ 2Mµ

(
Kµpµ + Lµ

αµ

) 1
2

+
2Lµ√
N

(3pµ + qµ + 6sµ)

≤ r + 1

k
C1(η) + C2

√
η +

C3√
N
,

where the last bound holds if k ≥ 2ℓµ. To be explicit,

C1(η) = 2

(
2M2

µ

αµλ
(ℓ− 1) +Mµw

µ
ℓ + Lµ (w

µ
ℓ +wνℓ ) (2p

µ + qµ + 4sµ)
1
2

)
,
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C2 = 2Mµ

(
η̄R2

µ(Lµ + λRµ)
2pµ

α2
µ

+
(Lµ + λRµ)

2

α2
µλ

2

(
η̄M2

µ + λ2η̄R2
µs
µ + λdX

)) 1
2

,

C3 = 2Lµ (3p
µ + qµ + 6sµ) .

The constants C2, C3 can be taken to be polynomial and independent of η by substituting in the upper
bound η̄ =

rµλ
2(Lµ+λRµ)2

∧ rµ
4λR2

µ
in the expressions for sµ,Kµ/η,Lµ/η, while ℓµ = O(η−1 log η−1).

However, C1(η) contains the dependency

O(wµℓ ) = O
(
η−1 exp(ℓLµη)

)
= O

(
1

η

(
3

2η2(L2
µ + λR2

µ)
2

) Lµ
αµλ

)
,

which is a consequence of uniformly bounding the perturbation from the gradient stopped process
over a time period of ℓ.

Step 5. For k < 2ℓ, proceeding similarly without converting to the modified process gives

E(X ,Y )1:k

[∫
X
F (µXk

, νYk
)(µXk

−Π µ̂
(N)
k−1)(dx)

]
≤ Mµ

N

N∑
i=1

E(X ,Y )1:k

[
W1(δXi

k
,Π µ̂

(N)
k−1)

]
+
Lµ
N

N∑
i=1

(
E(X ,Y )1:k

[
W 2

2 (µX̃k
, µ

X̃ −i
k

)
]
E(X ,Y )1:k

[
W 2

2 (δX̃i
k
,Π µ̂

(N)
k−1)

]) 1
2

≤ Mµ

N

N∑
i=1

(
E[∥Xi

1∥2] + qµ + sµ
) 1

2

+
2Lµ
N

N∑
i=1

(
2sµ

N
+

1

N(N − 1)

∑
k ̸=i

E[∥Xk
1 ∥2] +

1

N
E[∥Xi

1∥2]

) 1
2 (
E[∥Xi

1∥2] + qµ + sµ
) 1

2

≤Mµ

√
pµ + qµ + sµ +

2Lµ(3p
µ + qµ + 3sµ)√

N

<
C1(η)

2ℓ
+

C3√
N
,

where the final bound follows by noting η < rµ
4LµRµ

≤ 1
4Lµ

, hence by expanding (1 + 2ηLµ)
ℓ

(wµℓ )
2 >

1

2Lµ
·
M2
µ

η2L3
µ

(
2ηLµℓ+ 2η2L2

µℓ(ℓ− 1)
)
>
M2
µℓ

2

L2
µ

and so
C1(η) > 2Lµw

µ
ℓ (2p

µ + qµ + 4sµ)
1
2 > 2Mµℓ (p

µ + qµ + sµ)
1
2 .

Thus the bound holds for all integers k. We conclude the proof by taking the maximum with the
corresponding quantities for ν.

C.4 Properties of Conjugate Functionals

We proceed to develop the N -particle lifted analogues J (N)
k , Ĵ

(N)
k of the conjugate functionals in

the proof of Theorem 3.3. In order to deal with time and particle discretization, we will need a more
precise characterization of their perturbative properties. Many of the subsequent results do not follow
from standard methods and requires a careful synthesis of the discussion thus far.
Lemma C.9. Given Lipschitz functions ζµ : X → R, ζν : Y → R and a pair of N -particle
probability measures µ(N) ∈ P2(XN ), ν(N) ∈ P2(YN ) define the functional

J
(N)
k (µ(N), ν(N)|ζµ, ζν)
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= −
∫
XN

∫
X
ζµ(µX − ρµ)(dx)µ(N)(dX ) +

∫
YN

∫
Y
ζν(νY − ρν)(dy)ν(N)(dY )

− λBk
N

(
KL(µ(N)∥ρµ⊗N ) + KL(ν(N)∥ρν⊗N )

)
.

Then the maximum

Ĵ
(N)
k (ζµ, ζν) = max

µ(N)∈P2(XN )
max

ν(N)∈P2(YN )
J
(N)
k (µ(N), ν(N)|ζµ, ζν)

exists for all k ∈ N and is uniquely attained by the pair of distributions

µ̂
(N)
k (ζµ) ∝ ρµ⊗N exp

(
− N

λBk

∫
X
ζµµX (dx)

)
, ν̂

(N)
k (ζν) ∝ ρν⊗N exp

(
N

λBk

∫
Y
ζννY (dy)

)
.

Proof. The proof is similar to Lemma B.3; we only check the first-order condition by setting

δJ
(N)
k

δµ(N)
(µ(N))(X ) = −

∫
X
ζµ(µX − ρµ)(dx)−

λBk
N

log
µ(N)(X )

ρµ⊗N (X )
= const.

The N -particle proximal distributions µ̂(N)
k (ζµ), ν̂

(N)
k (ζν), despite being defined over the configura-

tion spaces XN ,YN also satisfy the log-Sobolev inequality with the same constant as before due to
the tensorization property of entropy.
Lemma C.10 (product log-Sobolev inequality). Suppose that ζµ/Bk, ζν/Bk are Mµ,Mν-Lipschitz,
respectively. Then µ̂(N)

k (ζµ), ν̂
(N)
k (ζν) satisfy the LSI on XN ,YN , with the same constants αµ, αν

as in Proposition A.7.

Proof. We can write µ(N) = µ̂
(N)
k (ζµ) as the symmetric product distribution

µ(N)(X ) =

N∏
i=1

µi(Xi), µi(Xi) = ρµ(Xi) exp

(
−ζ

µ(Xi)

λBk

)
, 1 ≤ i ≤ N,

where the marginals µi(Xi) each satisfy the LSI with constant αµ by Proposition A.7. Also write
µ−i(X−i) =

∏
j ̸=i µ

i(Xi). For an appropriately integrable function f on XN , denote by f i for the
functions f i(Xi) = f(X1, · · · , Xi, · · · , XN ). Then by Proposition 2.2 of Ledoux (1999),

Entµ(N)(f2) ≤
N∑
i=1

Eµ−i [Entµi((f i)2)] ≤
N∑
i=1

2

αµ
Eµ−iEµi [∥∇f i∥2] = 2

αµ
Eµ(N) [∥∇f∥2].

Lemma C.11. The functional Ĵ (N)
k is convex in both arguments, and admits functional derivatives

at any (ζµ, ζν) which are given as

δĴ
(N)
k

δζµ
(ζµ, ζν) = −Π µ̂(N)

k (ζµ) + ρµ,
δĴ

(N)
k

δζν
(ζµ, ζν) = Π ν̂

(N)
k (ζν)− ρν .

Proof. Substituting Ĵ (N)
k (ζµ, ζν) = J

(N)
k (µ̂

(N)
k (ζµ), µ̂

(N)
k (ζν)|ζµ, ζν),

δĴ
(N)
k

δζµ
(ζµ, ζν) = − δ

δζµ

∫
XN

∫
X
ζµ(µX − ρµ)(dx)µ(N)(dX )

∣∣∣∣
µ(N)=µ̂

(N)
k (ζµ)

−
∫
XN

∫
X
ζµ(µX − ρµ)(dx)

δ µ̂
(N)
k

δζµ
(ζµ)(dX )− λBk

N

∫
XN

(
log

µ̂
(N)
k (ζµ)

ρµ⊗N

)
δ µ̂

(N)
k

δζµ
(ζµ)(dX )

=
δ

δζµ

(
−
∫
XN

1

N

N∑
i=1

ζµ(Xi)µ(N)(dX ) +

∫
X
ζµρµ(dx)

)∣∣∣∣∣
µ(N)=µ̂

(N)
k (ζµ)
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= −Π µ̂(N)
k (ζµ) + ρµ.

The integral over the configuration space measure µ̂(N)
k therefore lifts the expectation with respect to

the discrete measure µX to a differentiable functional of ζµ, which in turn pushes forward µ̂(N)
k onto

the space X .

The following proposition is crucial to controlling the evolution of the conjugate functional as well as
the proximal distributions over time.

Proposition C.12. Suppose ζµ/Bk, ζ̃µ/Bk are Mµ-Lipschitz functions such that the difference
ζµ − ζ̃µ is mµ-Lipschitz for some mµ > 0. Then the projected proximal distributions satisfy

W2(Π µ̂
(N)
k (ζµ),Π µ̂

(N)
k (ζ̃µ)) ≤ mµ

αµλBk
.

Proof. Taking the first-order conditions

−
∫
X
ζµ(µX − ρµ)(dx)−

λBk
N

log
µ̂
(N)
k (ζµ)

ρµ⊗N
= const.,

−
∫
X
ζ̃µ(µX − ρµ)(dx)−

λBk
N

log
µ̂
(N)
k (ζ̃µ)

ρµ⊗N
= const.

Subtracting both sides and integrating over the difference µ̂(N)
k (ζµ)− µ̂(N)

k (ζ̃µ), we obtain

−
∫
XN

∫
X
(ζµ − ζ̃µ)µX (dx)(µ̂

(N)
k (ζµ)− µ̂(N)

k (ζ̃µ))(dX )

=
λBk
N

∫
XN

log
µ̂
(N)
k (ζµ)

µ̂
(N)
k (ζ̃µ)

(µ̂
(N)
k (ζµ)− µ̂(N)

k (ζ̃µ))(dX ).

(10)

Now the left-hand side of (10) can be bounded from above by

−
∫
XN

∫
X
(ζµ − ζ̃µ)µX (dx)(µ̂

(N)
k (ζµ)− µ̂(N)

k (ζ̃µ))(dX )

= −
∫
X
(ζµ − ζ̃µ)(Π µ̂(N)

k (ζµ)−Π µ̂
(N)
k (ζ̃µ))(dx)

≤ mµW1(Π µ̂
(N)
k (ζµ),Π µ̂

(N)
k (ζ̃µ)) ≤ mµW2(Π µ̂

(N)
k (ζµ),Π µ̂

(N)
k (ζ̃µ)),

while the right-hand side of (10) is bounded from below by

λBk
N

(
KL(µ̂

(N)
k (ζµ)∥ µ̂(N)

k (ζ̃µ)) + KL(µ̂
(N)
k (ζ̃µ)∥ µ̂(N)

k (ζµ))
)

≥ αµλBk
N

W 2
2 (µ̂

(N)
k (ζµ), µ̂

(N)
k (ζ̃µ))

≥ αµλBkW 2
2 (Π µ̂

(N)
k (ζµ),Π µ̂

(N)
k (ζ̃µ)),

where we have used Talagrand’s inequality from Lemma C.10 and the W2 pushforward bound from
Lemma C.7. Combining the two results yields the desired statement.

Denote the unnormalized aggregate derivatives as

δµk =

k∑
j=1

βj
δL
δµ

(µXj
, νYj

), δνk =

k∑
j=1

βj
δL
δν

(µXj
, νYj

)

so that µ̂(N)
k = µ̂

(N)
k (δµk ), ν̂

(N)
k = ν̂

(N)
k (δνk). The functions δµk/Bk and δνk/Bk are Mµ- and Mν-

Lipschitz, respectively, due to Assumption 2. Lemma C.11 and Proposition C.12 then allow us to
quantify the change in Ĵ (N)

k (δµk , δ
ν
k) as time progresses.
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Lemma C.13. We have the following one-step relation for Ĵ (N)
k , k ≥ 2:

Ĵ
(N)
k (δµk , δ

ν
k)− Ĵ

(N)
k−1(δ

µ
k−1, δ

ν
k−1)

≤ βk
∫
X

δL
δµ

(µXk
, νYk

)(−Π µ̂(N)
k−1 +ρ

µ)(dx) + βk

∫
Y

δL
δν

(µXk
, νYk

)(Π ν̂
(N)
k−1−ρ

ν)(dy)

− λβk
N

(
KL(µ̂

(N)
k ∥ρµ⊗N ) + KL(ν̂

(N)
k ∥ρν⊗N )

)
+

(
M2
µ

αµ
+
M2
ν

αν

)
β2
k

2λBk−1
.

Proof. By the maximality of Ĵ (N)
k ,

Ĵ
(N)
k (δµk , δ

ν
k) = J

(N)
k (µ̂

(N)
k (δµk ), µ̂

(N)
k (δνk)|δ

µ
k , δ

ν
k)

= J
(N)
k−1(µ̂

(N)
k (δµk ), µ̂

(N)
k (δνk)|δ

µ
k , δ

ν
k)−

λβk
N

(
KL(µ̂

(N)
k (δµk )∥ρ

µ⊗N ) + KL(ν̂
(N)
k (δνk)∥ρν⊗N )

)
≤ Ĵ (N)

k−1(δ
µ
k , δ

ν
k)−

λβk
N

(
KL(µ̂

(N)
k ∥ρµ⊗N ) + KL(ν̂

(N)
k ∥ρν⊗N )

)
.

Further defining the interpolations

δµk (s) = δµk−1 + s(δµk − δ
µ
k−1) =

k−1∑
j=1

βj
δL
δµ

(µXj
, νYj

) + sβk
δL
δµ

(µXk
, νYk

), 0 ≤ s ≤ 1

and similarly for δνk(s), we have

Ĵ
(N)
k−1(δ

µ
k , δ

ν
k)− Ĵ

(N)
k−1(δ

µ
k−1, δ

ν
k−1) =

∫ 1

0

d

ds
Ĵ
(N)
k−1(δ

µ
k (s), δ

ν
k(s)) ds

=

∫ 1

0

∫
X
(δµk − δ

µ
k−1)

δĴ
(N)
k−1

δζµ
(δµk (s), δ

ν
k(s))(dx) +

∫
Y
(δνk − δνk−1)

δĴ
(N)
k−1

δζν
(δµk (s), δ

ν
k(s))(dy) ds

=

∫ 1

0

∫
X
−(δµk − δ

µ
k−1)Π µ̂

(N)
k−1(δ

µ
k (s))(dx) +

∫
Y
(δνk − δνk−1)Π ν̂

(N)
k−1(δ

ν
k(s))(dy) ds

+

∫
X
(δµk − δ

µ
k−1)ρ

µ(dx)−
∫
Y
(δνk − δνk−1)ρ

ν(dy)

≤
∫ 1

0

∫
X
−(δµk − δ

µ
k−1)Π µ̂

(N)
k−1(δ

µ
k−1)(dx) +

∫
Y
(δνk − δνk−1)Π ν̂

(N)
k−1(δ

ν
k−1)(dy) ds

+

∫
X
(δµk − δ

µ
k−1)ρ

µ(dx)−
∫
Y
(δνk − δνk−1)ρ

ν(dy)

+

∫ 1

0

MµβkW1(Π µ̂
(N)
k−1(δ

µ
k (s)),Π µ̂

(N)
k−1(δ

µ
k−1)) ds

+

∫ 1

0

MνβkW1(Π ν̂
(N)
k−1(δ

ν
k(s)),Π ν̂

(N)
k−1(δ

ν
k−1)) ds

≤ βk
∫
X
−δL
δµ

(µXk
, νYk

)Π µ̂
(N)
k−1(dx) + βk

∫
Y

δL
δν

(µXk
, νYk

)Π ν̂
(N)
k−1(dy)

+ βk

∫
X

δL
δµ

(µXk
, νYk

)ρµ(dx)− βk
∫
Y

δL
δν

(µXk
, νYk

)ρν(dy) +

(
M2
µ

αµ
+
M2
ν

αν

)
β2
k

2λBk−1
,

where for the first inequality we used the fact that δµk − δ
µ
k−1 is Mµβk-Lipschitz, and for the second

we applied Proposition C.12 with mµ = sMµβk.

We now give the promised proof of the pushforward evolution bound.

Proof of Lemma C.8. Note that µ̂(N)
k−1 = µ̂

(N)
k−1(δ

µ
k−1) may also be written as

µ̂
(N)
k−1 = µ̂

(N)
k

(
Bk
Bk−1

k∑
j=1

βj
δL
δµ

(µXj
, νYj

)

)
= µ̂

(N)
k

(
Bk
Bk−1

δµk−1

)
.
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Since δµk−1/Bk−1 is Mµ-Lipschitz and

δµk −
Bk
Bk−1

δµk−1 = − βk
Bk−1

k−1∑
j=1

βj
δL
δµ

(µXj
, νYj

) + βk
δL
δµ

(µXk
, νYk

)

is 2Mµβk-Lipschitz, by Proposition C.12 we obtain the bound

W2(Π µ̂
(N)
k ,Π µ̂

(N)
k−1) ≤

2Mµβk
αµλBk

.

C.5 Proof of Theorem 3.6

Step 1. We first prove a convergent upper bound of the following surrogate N(µX k
, νY k

) for the
NI error of the average distributions. Note that the defining maximum is lifted to the configuration
space and the discrete empirical distributions have been replaced with their proximal counterparts for
measuring relative entropy. While N is not exactly the desired quantity, it arises naturally from the
discrete conjugate argument and helps to bound the expected error.

N(µX k
, νY k

)

:= max
µ(N),ν(N)

− 1

Bk

k∑
j=1

βjL(Πµ(N), νYj
)− λ

N
KL(µ(N)∥ρµ⊗N ) +

λ

NBk

k∑
j=1

βj KL(ν̂
(N)
j ∥ρν⊗N )

+
1

Bk

k∑
j=1

βjL(µXj ,Πν
(N))− λ

N
KL(ν(N)∥ρν⊗N ) +

λ

NBk

k∑
j=1

βj KL(µ̂
(N)
j ∥ρµ⊗N )

≤ max
µ(N),ν(N)

−
∫
XN

∫
X

1

Bk

k∑
j=1

βj
δL
δµ

(µXj
, νYj

)(µX − µXj
)(dx)µ(N)(dX )

+

∫
YN

∫
Y

1

Bk

k∑
j=1

βj
δL
δν

(µXj
, νYj

)(νY − νYj
)(dy)ν(N)(dY )

− λ

N

(
KL(µ(N)∥ρµ⊗N ) + KL(ν(N)∥ρν⊗N )

)
+

λ

NBk

k∑
j=1

βj

(
KL(µ̂

(N)
j ∥ρµ⊗N ) + KL(ν̂

(N)
j ∥ρν⊗N )

)

=
1

Bk

[
Ĵ
(N)
k (δνk , δ

ν
k) +

λ

N

k∑
j=1

βj

(
KL(µ̂

(N)
j ∥ρµ⊗N ) + KL(ν̂

(N)
j ∥ρν⊗N )

)

+

∫
X

k∑
j=1

βj
δL
δµ

(µXj
, νYj

)(µXj
− ρµ)(dx)−

∫
Y

k∑
j=1

βj
δL
δν

(µXj
, νYj

)(νYj
− ρν)(dy)

]
,

due to the convex-concavity of L. Recursively applying Lemma C.13 then yields

N(µX k
, νY k

)

≤ 1

Bk

[
k∑
j=2

(
Ĵ
(N)
j (δνj , δ

ν
j )− Ĵ

(N)
j−1(δ

ν
j−1, δ

ν
j−1)

)
+

1

Bk
Ĵ
(N)
1 (δν1 , δ

ν
1 )

+

∫
X

k∑
j=1

βj
δL
δµ

(µXj
, νYj

)(µXj
− ρµ)(dx)−

∫
Y

k∑
j=1

βj
δL
δν

(µXj
, νYj

)(νYj
− ρν)(dy)

+
λ

N

k∑
j=1

βj

(
KL(µ̂

(N)
j ∥ρµ⊗N ) + KL(ν̂

(N)
j ∥ρν⊗N )

)]
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≤ 1

Bk

[
k∑
j=1

βj

∫
X

δL
δµ

(µXj , νYj )(µXj −Π µ̂
(N)
j−1)(dx)

−
k∑
j=1

βj

∫
Y

δL
δν

(µXj
, νYj

)(νYj
−Π ν̂

(N)
j−1)(dy) +

1

2λ

(
M2
µ

αµ
+
M2
ν

αν

) k∑
j=2

β2
j

Bj−1

]
,

where the initial term is substituted as Ĵ (N)
1 (δν1 , δ

ν
1 ) = J

(N)
1 (µ̂

(N)
1 , ν̂

(N)
1 |δν1 , δν1 ) with the convention

that µ̂(N)
0 = µ̂

(N)
1 , ν̂

(N)
0 = ν̂

(N)
1 . Now taking the expectation over the full history and applying

Proposition 3.5, we arrive at

E(X ,Y )1:k

[
N(µX k

, νY k
)
]

≤ 1

Bk
E(X ,Y )1:k

[
k∑
j=1

βj

∫
X

δL
δµ

(µXj , νYj )(µXj −Π µ̂
(N)
j−1)(dx)

−
k∑
j=1

βj

∫
Y

δL
δν

(µXj
, νYj

)(νYj
−Π ν̂

(N)
j−1)(dy) +

1

2λ

(
M2
µ

αµ
+
M2
ν

αν

) k∑
j=2

β2
j

Bj−1

]

≤ 1

Bk

[
2

k∑
j=1

βj

(
r + 1

j
C1(η) + C2

√
η +

C3√
N

)
+

1

2λ

(
M2
µ

αµ
+
M2
ν

αν

) k∑
j=2

β2
j

Bj−1

]

≤
(
(r + 1)2

rk
+O(k−2)

)(
2C1(η) +

1

2λ

(
M2
µ

αµ
+
M2
ν

αν

))
+ 2C2

√
η +

2C3√
N

≤
(
(r + 1)2

rk
+O(k−2)

)
· 9
4
C1(η) + 2C2

√
η +

2C3√
N

by simply using ℓ > 1. For r = 0, the last expression is replaced by the exact bound
1 + log k

k
· 9
4
C1(η) + 2C2

√
η +

2C3√
N
.

Step 2. We now control the NI error of the averaged pushforward proximal distributions using
N. In the defining maximum over µ(N) ∈ P2(XN ), ν(N) ∈ P2(YN ), we may restrict to product
distributions µ(N) = µ⊗N , ν(N) = ν⊗N so that

E(X ,Y )1:k

[
N(µX k

, νY k
)
]

≥ E(X ,Y )1:k

[
max
µ,ν
− 1

Bk

k∑
j=1

βjL(µ, νYj
)− λKL(µ∥ρµ) + λ

Bk

k∑
j=1

βj KL(Π ν̂
(N)
j ∥ρν)

+
1

Bk

k∑
j=1

βjL(µXj , ν)− λKL(ν∥ρν) + λ

Bk

k∑
j=1

βj KL(Π µ̂
(N)
j ∥ρµ)

]

≥ max
µ,ν

E(X ,Y )1:k

[
− 1

Bk

k∑
j=1

βjL(µ, νYj
)− λKL(µ∥ρµ) + λ

Bk

k∑
j=1

βj KL(Π ν̂
(N)
j ∥ρν)

+
1

Bk

k∑
j=1

βjL(µXj
, ν)− λKL(ν∥ρν) + λ

Bk

k∑
j=1

βj KL(Π µ̂
(N)
j ∥ρµ)

]
≥ max

µ,ν
−L(µ,E[νY k

])− λKL(µ∥ρµ) + λKL(E[Π ν̂k]∥ρν)

+ L(E[µX k
], ν)− λKL(ν∥ρν) + λKL(E[Π µ̂k]∥ρµ)

by convex-concavity of L as well as convexity of KL divergence, where we have written

Π µ̂k :=
1

Bk

k∑
j=1

βjΠ µ̂
(N)
j , Π ν̂k :=

1

Bk

k∑
j=1

βjΠ ν̂
(N)
j .
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Again by Proposition 3.5, this is further bounded as

E(X ,Y )1:k

[
N(µX k

, νY k
)
]

≥ max
µ,ν
−Lλ(µ,E[Π ν̂k])− E(X ,Y )1:k

[
1

Bk

∫
Y

k∑
j=1

βj
δL
δν

(µ,E[Π ν̂k])(νYj
−Π ν̂

(N)
j )(dy)

]

+ Lλ(E[Π µ̂k], ν) + E(X ,Y )1:k

[
1

Bk

∫
X

k∑
j=1

βj
δL
δµ

(E[Π µ̂k], ν)(µXj
−Π µ̂

(N)
j )(dx)

]

≥ NI(E[Π µ̂k],E[Π ν̂k])−
(
(r + 1)2

rk
+O(k−2)

)
· 2C1(η)− 2C2

√
η − 2C3√

N
,

with the appropriate modification for r = 0.

Step 3. Finally, we convert the above pushforward proximal bounds back to a Wasserstein distance
bound for the expected empirical measures. By Lemma 3.4 and Talagrand’s inequality for the MNE
(µ∗, ν∗),

W 2
2 (E[Π µ̂k], µ∗) +W 2

2 (E[Π ν̂k], ν∗)

≤ 2

αµ
∨ 2

αν

(
KL(E[Π µ̂k]∥µ∗) + KL(E[Π ν̂k]∥ν∗)

)
≤ 2

αµλ
∨ 2

ανλ
NI(E[Π µ̂k],E[Π ν̂k])

≤ 2

αµλ
∨ 2

ανλ

[(
(r + 1)2

rk
+O(k−2)

)
· 17
4
C1(η) + 4C2

√
η +

4C3√
N

]
.

Note also by Proposition 3.5 and Lemma C.8 that

MµW1(E[µX k
],E[Π µ̂k])

= sup
∥F∥Lip≤Mµ

E(X ,Y )1:k

 1

Bk

k∑
j=1

βj

∫
X
F (µXj −Π µ̂

(N)
j )(dx)


≤ 1

Bk

k∑
j=1

βj

(
r + 1

j
C1(η) + C2

√
η +

C3√
N

)
+

1

Bk

k∑
j=2

βjW1(Π µ̂
(N)
j ,Π µ̂

(N)
j−1)

≤ 1

Bk

k∑
j=1

βj

(
r + 1

j
C1(η) + C2

√
η +

C3√
N

)
+

2Mµ

αµλBk

k∑
j=2

β2
j

Bj

≤
(
(r + 1)2

rk
+O(k−2)

)
· 3
2
C1(η) + C2

√
η +

C3√
N
,

so the square of this term can be ignored. Hence we can conclude that

W 2
1 (E[µX k

], µ∗) +W 2
1 (E[νY k

], ν∗) ≤ (r + 1)2

rk
C̃1(η) + C̃2

√
η +

C̃3√
N
,

again with the 1 + log k modification when r = 0.

C.6 Expected Wasserstein Distance

Theorem 3.6 gives error bounds for the expected distributions E[µX k
] and E[νY k

]. This quantifies a
sort of bias of the MFL-AG outputs, but does not tell us anything about the variance. Can we similarly
bound the expected distance E[W1(µX k

, µ∗) +W1(νY k
, ν∗)] of the empirical distributions to the

MNE? The following fundamental fact about Wasserstein distance tells us that this is impossible:
Theorem C.14 (Rate of convergence of the empirical measure, adapted from Fournier and Guillin
(2015), Theorem 1). Let Xi be independent samples drawn from µi ∈ P2(Rd) for each i ∈ [N ].
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If d ≥ 3, the 1-Wasserstein distance between the empirical measure µX = 1
N

∑N
i=1 δXi and the

underlying averaged measure µ = 1
N

∑N
i=1 µ

i is bounded in expectation as

E[W1(µX , µ)] ≤ CW
√
m2(µ) ·N−1/d,

where m2(µ) is the raw second moment of µ and CW is a universal constant. If d = 2, the rate is
O(N−1/2(logN)2); if d = 1, the rate is O(N−1/2). Furthermore, this rate is tight up to constants.

Proof. The original theorem only considers i.i.d. samples µ1 = · · · = µN = µ and omits the W1

case for simplicity, so we present the necessary modifications.

For a Borel subset A ⊂ Rd, the quantity NµX (A) is not distributed as Binomial(N,µ(A)) but as a
sum of independent Bernoulli(µi(A)) random variables. Nonetheless, we obtain the same bound

E[|µX (A)− µ(A)|] ≤ (E[µX (A)] + µ(A)) ∧
√

VarµX (A)

≤ 2µ(A) ∧
√
µ(A)/N.

We now repeat the same arguments and substitute p = 1, q = 2 to arrive at the following inequality,

E[W1(µX , µ)] ≤ C
√
m2(µ) ·

∞∑
n=0

∞∑
m=0

2−m(2−n ∧ (2dm/N)1/2)

from which point we give explicit computations. Defining

mN =

⌈
log2N

d

⌉
, nm =

⌈
log2N − dm

2

⌉
,

we have for d ≥ 3 that
∞∑
n=0

∞∑
m=0

2−m(2−n ∧ (2dm/N)1/2)

=

mN−1∑
m=0

2−mnm(2dm/N)1/2 +

mN−1∑
m=0

∞∑
n=nm

2−m−n +

∞∑
m=mN

∞∑
n=0

2−m−n

≤ 1

2
√
N

mN−1∑
m=0

(dmN − dm+ 2)2(d/2−1)m +

mN−1∑
m=0

21−m−nm + 22−mN

≤ (2 + d)2(d/2−1)(mN+1)

(2d/2 − 2)
√
N

+
22+(d/2−1)mN

(2d/2 − 2)
√
N

+ 22−mN

= O(N−1/d).

When d = 2, the rate is easily checked to be N−1/2(logN)2. The tight rate in one dimension is
derived using different techniques in Bobkov and Ledoux (2016), Section 3.

That is, even in the ideal case where chaos does not propagate and the particles are somehow i.i.d.
sampled directly from the true distribution, the expected Wasserstein distance will always be of order
N−1/dX∨dY , automatically incurring the curse of dimensionality. We emphasize that the uniform
law of large numbers and short-term perturbation methods developed throughout Section C as well as
the presentation of Theorem 3.6 have been carefully designed to bypass this technicality.

Nevertheless, it is still possible to bound the expected Wasserstein distance in a similar manner save
for the unavoidable N−1/dX∨dY dependency.2 We first present a more direct bound for the proximal
gap.
Proposition C.15. The following inequality holds for all k,

E
[
W1(µXk

,Π µ̂
(N)
k )

]
≤ r + 1

k
C ′

1(η) + C ′
2

√
η + C ′

3N
−1/dX .

2Of course, we may also simply run the algorithm multiple (M ) times and take the average of the outputs,
which would also bypass the issue and yield the standard 1/

√
M convergence.
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Proof. The derivations are similar and more straightforward compared to the proof of Proposition
3.5. We only look at k ≥ 2ℓ and directly compare µXk

to µ
X̃k

using Lemma C.3, µ
X̃k

to the
expected modified distribution using Theorem C.14 (recall that the modified particle trajectories
X̃i
k are independent when conditioned on (X ,Y )1:k−ℓ), the expected modified distribution to the

stationary distribution Π µ̂
(N)
k−ℓ using Proposition C.6, and Π µ̂

(N)
k−ℓ back to Π µ̂

(N)
k using Lemma C.8.

E[W1(µXk
,Π µ̂

(N)
k )]

≤ E[W2(µXk
, µ

X̃k
)] + E[W1(µX̃k

,E[µ
X̃k

])]

+
1

N

N∑
i=1

E[W2(µ
i
k,Π µ̂

(N)
k−ℓ)] +

ℓ−1∑
j=0

E[W2(Π µ̂
(N)
k−j−1,Π µ̂

(N)
k−j)]

≤ r + 1

k − ℓ+ 1
wµℓ + CW

√
E[m2(µX̃k−ℓ

)] ·N−1/dX

+
1

N

N∑
i=1

√
4

αµ
(Kµ∥Xi

k−ℓ∥2 + Lµ) +
2M2

µ

αµλ

ℓ−1∑
j=0

βk−j
Bk−j

≤ r + 1

k − ℓ+ 1
wµℓ + CW

√
pµ + sµ ·N−1/dX +

√
4

αµ
(Kµ(pµ + sµ) + Lµ) +

2Mµ

αµλ

(r + 1)ℓ

k − ℓ+ 1

=
r + 1

k
C ′

1(η) + C ′
2

√
η + C ′

3N
−1/dX .

We now give the desired bound for the expected Wasserstein distance to the MNE. Note the effect of
dimensionality compared to Theorem 3.6.
Theorem C.16 (Variance of discretized MFL-AG). If η ≤ η̄ and βk = kr with r > 0, the MFL-AG
discrete update satisfies for all K,N ,

E[W1(µX K
, µ∗)]2 + E[W1(νY K

, ν∗)]2 ≤ (r + 1)2

rK
C̃1(η) + C̃2

√
η + C̃3N

−1/dX∨dY

with similar constants as in Proposition 3.5. When r = 0, the first term is replaced by O(logK/K).
If dX ∨ dY = 2, the third term is replaced by O(N−1/2(logN)2); if dX = dY = 1, by O(N−1/2).

Proof. Note that by convexity,

L(µXk
, ν)− L(Π µ̂(N)

k , ν) ≥
∫
X

δL
δµ

(Π µ̂
(N)
k , ν)(µXk

−Π µ̂
(N)
k )(dx) ≥ −MµW1(µXk

,Π µ̂
(N)
k ).

We can modify Step 2 of Section C.5 using Proposition C.15 as follows.

E(X ,Y )1:k

[
N(µX k

, νY k
)
]

≥ E(X ,Y )1:k

[
max
µ,ν
− 1

Bk

k∑
j=1

βjL(µ, νYj )− λKL(µ∥ρµ) + λ

Bk

k∑
j=1

βj KL(Π ν̂
(N)
j ∥ρν)

+
1

Bk

k∑
j=1

βjL(µXj
, ν)− λKL(ν∥ρν) + λ

Bk

k∑
j=1

βj KL(Π µ̂
(N)
j ∥ρµ)

]

≥ E(X ,Y )1:k

[
max
µ,ν
− 1

Bk

k∑
j=1

βjL(µ,Π ν̂(N)
j )− λKL(µ∥ρµ) + λ

Bk

k∑
j=1

βj KL(Π ν̂
(N)
j ∥ρν)

+
1

Bk

k∑
j=1

βjL(Π µ̂(N)
j , ν)− λKL(ν∥ρν) + λ

Bk

k∑
j=1

βj KL(Π µ̂
(N)
j ∥ρµ)

− Mµ

Bk

k∑
j=1

βjW1(µXk
,Π µ̂

(N)
k )− Mν

Bk

k∑
j=1

βjW1(νYk
,Π ν̂

(N)
k )

]
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≥ E(X ,Y )1:k

[
max
µ,ν
−L(µ,Π µ̂k)− λKL(µ∥ρµ) + λKL(Π ν̂k∥ρν)

+ L(Π µ̂k, ν)− λKL(ν∥ρν) + λKL(Π µ̂k∥ρµ)
]

− Mµ

Bk

k∑
j=1

βjE(X ,Y )1:k [W1(µXk
,Π µ̂

(N)
k )]− Mν

Bk

k∑
j=1

βjE(X ,Y )1:k [W1(νYk
,Π ν̂

(N)
k )]

≥ E(X ,Y )1:k

[
NI(Π µ̂k,Π ν̂k)

]
− Mµ

Bk

k∑
j=1

βj

(
r + 1

j
C ′

1(η) + C ′
2

√
η + C ′

3N
−1/dX∨dY

)
.

Combining with Step 1 and Lemma 3.4 gives that

E
[
KL(Π µ̂k∥µ∗) + KL(Π ν̂k∥ν∗)

]
≤ (r + 1)2

rk
C ′′

1 (η) + C ′′
2

√
η + C ′′

3N
−1/dX∨dY .

Finally, we convert back to a Wasserstein distance bound by invoking Talagrand’s inequality and
Proposition C.15 again:

E[W1(µX k
, µ∗)]2 ≤ 2

(
1

Bk

k∑
j=1

βjE[W1(µXj
,Π µ̂

(N)
j )]

)2

+
4

αµ
E[KL(Π µ̂k∥µ∗)].

This concludes the proof.

Remark. If we assume a higher degree of regularity so that all relevant distributions have finite fourth
moments, say, then Theorem C.14 actually holds for the 2-Wasserstein metric. Theorem C.16 can
then be stated in terms of the 2-Wasserstein distance to the MNE, guaranteeing us slightly better
control over the error compared to Proposition 3.5 which only allows a W1 formulation.

D Mean-field Langevin Anchored Best Response

D.1 Proposed Method

Our second proposal builds upon the mean-field best response (MF-BR) flow recently proposed in
Lascu et al. (2023). There, the authors prove that the strategies (µt, νt)t≥0 given by the linear flow

dµt(x) = β(µ̂t(x)− µt(x)) dt, dνt(x) = β(ν̂t(x)− νt(x)) dt,

with speed β > 0 converge exponentially to the unique MNE, where µ̂t ∝ ρµ exp
(
− 1

λ
δL
δµ (µt, νt)

)
,

ν̂t ∝ ρν exp
(
1
λ
δL
δν (νt, νt)

)
are the best response proximal distributions, so called because they are

the optimal responses against the current policies of all players (rather than the historical average
in MFL-AG). However, a major weakness of MF-BR is that the flow is not directly realizable by a
particle algorithm.

We therefore propose the mean-field Langevin anchored best response (MFL-ABR) process by
incorporating an inner loop running Langevin dynamics, decoupled by anchoring the gradient at the
output (µk, νk) of the previous outer loop:

X†
0 ∼ ρµ, dX†

t = −
(
∇x

δL
δµ

(µk, νk)(X
†
t ) + λ∇xUµ(X†

t )

)
dt+

√
2λ dWµ

t , 0 ≤ t ≤ τ,

and similarly for Y †
t . The outputs at time τ , denoted by µ†

k,τ = Law(X†
τ ), ν

†
k,τ = Law(Y †

τ ) serve as
approximations of the best response proximal distributions (replacing time t with the discrete index
k). The outer loop then performs the discretized MF-BR update,

µk+1 = (1− β)µk + βµ†
k,τ , νk+1 = (1− β)νk + βν†k,τ ,

where µ0 = ρµ, ν0 = ρν . The flow can be immediately realized by a simple particle algorithm; see
Algorithm 2. A similar method for single convex optimization was also recently implemented in
Chen et al. (2023) but without any theoretical guarantees.

To analyze the convergence of MFL-ABR, we require the following alternative assumptions for L
which are taken from Lascu et al. (2023).
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Algorithm 2 Mean-field Langevin Anchored Best Response
Require: temperature λ, outer loop iteration K, inner loop iteration L, learning rate η, number of

particles N , exponent r
Initialization: X0 ∼ ρµ, Y0 ∼ ρν

for k = 0, · · · ,K − 1 do
Sample X †

0 ∼ ρµ, Y †
0 ∼ ρν

for ℓ = 0, · · · , L− 1 do
For all particles i = 1, · · · , N sample ξµ,iℓ ∼ N (0, IdX ), ξ

ν,i
ℓ ∼ N (0, IdY ) and update

X†i
ℓ+1 ← X†i

ℓ − η∇x
δL
δµ (µXk

, νYk
)(X†i

ℓ )− λη∇xUµ(X†i
ℓ ) +

√
2ληξµ,iℓ

Y †i
ℓ+1 ← Y †i

ℓ + η∇y δLδν (µXk
, νYk

)(Y †i
ℓ )− λη∇yUν(Y †i

ℓ ) +
√
2ληξν,iℓ

end for
Discard ⌊βN⌋ particles from Xk,Yk and replace with random samples from X †

L ,Y
†
L , resp.

end for
return XK ,YK

Assumption 3 (Regularity of L for MFL-ABR). We assume that L is convex-concave and admits
C1 functional derivatives which are uniformly bounded as ∥ δLδµ (µ, ν)∥∞ ≤ Cµ, ∥ δLδν (µ, ν)∥∞ ≤ Cν
for constants Cµ, Cν > 0. Furthermore, L admits second order functional derivatives which are
uniformly bounded as ∥ δ

2L
δµ2 ∥∞ ≤ Cµµ, ∥ δ

2L
δµδν ∥∞ ≤ Cµν , ∥ δ

2L
δν2 ∥∞ ≤ Cνν and symmetric in the

sense that δ2L
δµδν (µ, ν, x, y) =

δ2L
δνδµ (µ, ν, y, x) for all µ, ν and x ∈ X , y ∈ Y .

Existence and uniqueness of the MNE still hold under this assumption as proved in Lascu et al.
(2023). Also, µ̂t, ν̂t both satisfy the LSI with constant α = rµ exp

(
− 4Cµ

λ

)
∧ rν exp

(
− 4Cν

λ

)
by

the Holley-Stroock argument; we take the minimum since it dominates the overall convergence rate.

We now present the overall convergence result for MFL-ABR. The proof, given in Section D.3, is a
combination of a time-discretized version of the argument in Lascu et al. (2023) for the outer loop
and a TV distance perturbation analysis for the inner loop developed in Section D.2.
Theorem D.1 (Convergence of MFL-ABR). The NI error of the MFL-ABR outer loop output after k
steps is bounded for a constant C as

NI(µk, νk) ≤ 2(Cµ + Cν) exp(−βk) + 12λ−
1
2 (C

3
2
µ + C

3
2
ν ) exp(−αλτ) + Cβ.

Hence we achieve linear convergence in the outer loop iteration, with a uniform-in-time inner loop
error linearly converging in τ and time discretization error proportional to β. It follows that an ϵ-MNE
may be obtained in k = O( 1ϵ log

1
ϵ ) outer loop iterations with β = O(ϵ) and τ = O(log 1

ϵ ).

We do not give a discrete-particle analysis of MFL-ABR and instead remark that discretization of the
fixed-drift inner loop is trivial, while Theorem D.1 already covers the outer-loop error due to finite τ
and nonzero β. The remaining element is particle discretization analysis of the outer loop momentum
sampling which we feel strays from the scope of this work.

D.2 Inner Loop Convergence

The convergence of the decoupled inner loop is a simple consequence of the convex analysis for
single optimization (Nitanda et al., 2022); we reproduce the proof here for completeness.
Proposition D.2 (Convergence of MFL-ABR inner loop). Under Assumptions 1 and 3,

KL(µ†
k,τ∥ µ̂k) ≤

2Cµ
λ

exp(−2αλτ), KL(ν†k,τ∥ ν̂k) ≤
2Cν
λ

exp(−2αλτ).

Proof. For any 0 ≤ t ≤ τ , the KL gap converges as

d

dt
KL(µ†

k,t∥ µ̂k) =
∫
X
log

µ†
k,t

µ̂k
∂tµ

†
k,t(dx) = λ

∫
X
log

µ†
k,t

µ̂k
∇x ·

(
µ†
k,t∇x log

µ†
k,t

µ̂k

)
(dx)

= −λ
∫
X

∥∥∥∥∇x log µ†
k,t

µ̂k

∥∥∥∥2µ†
k,t(dx) ≤ −2αλ ·KL(µ†

k,t∥ µ̂k)
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by substituting the Fokker-Planck equation for µ†
k,t and applying the LSI for µ̂k via Theorem A.6.

Invoking Gronwall’s lemma and Lemma D.3 below for µ̂k concludes the proof.

The following result gives uniform bounds to control the magnitude of perturbations.
Lemma D.3. For any w > 0, define the class

Fµw :=

{
µ ∈ P2(X ) :

∥∥∥∥log µ

ρµ

∥∥∥∥
∞
≤ wCµ

λ

}
.

Then under Assumption 3, the distribution µ̂k ∈ F
µ
2 and µk, µ

†
k,τ ∈ F

µ
4 .

Proof. For µ̂k, the exponential term and the normalizing integral

exp

(
− 1

λ

δL
δµ

(µk, νk)

)
, Zµk =

∫
X
ρµ exp

(
− 1

λ

δL
δµ

(µk, νk)

)
dx

are both bounded by Tµ/λ, proving the assertion. For µ†
k,τ , define the density ratio ht = µ†

k,t/ µ̂k.
The Fokker-Planck equation for µ†

k,t reads

∂tµ
†
k,t = ∇x ·

(
µ†
k,t∇x

(
δL
δµ

(µk, νk) + λ∇xUµ
))

+ λ∆xµ
†
k,t = λ∇x ·

(
µ†
k,t∇x log

µ†
k,t

µ̂k

)
,

so that the parabolic partial differential equation satisfied by ht is derived as

∂tht = µ̂−1
k ∂tµ

†
k,t

= λ µ̂−1
k ∇x · (µ̂k ht∇x log ht)

= λ∇x log µ̂k ·∇xht + λ∆ht

= −∇x
(
δL
δµ

(µk, νk) + λ∇xUµ
)
· ∇xht + λ∆ht

= L†ht,

where L† is the infinitesimal generator for the stochastic process X†
t . Hence by the Feynman-Kac

formula, we may write for any t ∈ [0, τ ]

ht(x) = Ex[h0(X†
t )] = Ex

[
ρµ

µ̂k
(Xt)

]
.

Since ∥log(µ̂k /ρµ)∥∞ ≤ 2Cµ/λ as discussed above, we infer that ∥hτ∥ ≤ 2Cµ/λ and therefore∥∥∥∥ log µ†
k,τ

ρµ

∥∥∥∥
∞
≤
∥∥∥∥ log µ†

k,τ

µ̂k

∥∥∥∥
∞

+

∥∥∥∥ log µ̂kρµ
∥∥∥∥
∞
≤ 4Cµ

λ
,

i.e. µ†
k,τ ∈ Fµ∞ for all k. Finally, since Fµ∞ is closed under linear combinations in P2(X ) we

conclude that
µk = βµ†

k,τ + β(1− β)µ†
k−1,τ + · · ·β(1− β)

kµ†
0,τ ∈ Fµ∞.

D.3 Proof of Theorem D.1

We perform one-step analysis of the outer loop by setting for 0 ≤ s ≤ 1

µ(s) = (1− βs)µk + βsµ†
k,τ , ν(s) = (1− βs)νk + βsν†k,τ ,

so that µ(0) = µk, µ(1) = µk+1 and ν(0) = νk, ν(1) = νk+1. We track the KL divergence to the
interpolated proximal distributions defined as

µ̂(s) =
ρµ

Zµ(s)
exp

(
− 1

λ

δL
δµ

(µ(s), ν(s))

)
, ν̂(s) =

ρν

Zν(s)
exp

(
1

λ

δL
δν

(µ(s), ν(s))

)
.
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Note that the second order bounds in Assumption 3 immediately imply the following Lipschitz
property in TV distance,∥∥∥∥δLδµ (µ, ν)− δL

δµ
(µ′, ν′)

∥∥∥∥
∞
≤ 2Cµµ TV(µ, µ′) + 2Cµν TV(ν, ν′).

Similarly to Lascu et al. (2023), Lemma A.2 we can then prove that

TV(µ̂k, µ̂(s))

≤ 1

2λ

(
exp

(
Cµ
λ

)
+ exp

(
2Cµ
λ

))
(2Cµµ TV(µk, µ(s)) + 2Cµν TV(νk, ν(s)))

≤ βstµ,

where we have written

tµ :=
Cµµ + Cµν

λ

(
exp

(
Cµ
λ

)
+ exp

(
2Cµ
λ

))
.

Also, µ̂(s) ∈ Fµ2 and µ(s) ∈ Fµ4 by Lemma D.3 which implies ∥log(µ(s)/ µ̂(s))∥∞ ≤ 6Cµ/λ.

Now the derivative of the KL gap of the max policy for any 0 ≤ s ≤ 1 is

d

ds
KL(µ(s)∥ µ̂(s)) =

∫
X
log

µ(s)

µ̂(s)
∂sµ(s)(dx)−

∫
X
∂s log µ̂(s)µ(s)(dx).

The first term can be decomposed as∫
X
log

µ(s)

µ̂(s)
∂sµ(s)(dx)

= β

∫
X
log

µ(s)

µ̂(s)
(µ†
k,τ − µk)(dx)

= β

∫
X
log

µ(s)

µ̂(s)
(µ̂(s)− µ(s) + µ(s)− µk + µ†

k,τ − µ̂k + µ̂k − µ̂(s))(dx)

≤ −β (KL(µ(s)∥ µ̂(s)) + KL(µ(s)∥ µ̂(s))) + 2β2s

∥∥∥∥log µ(s)µ̂(s)

∥∥∥∥
∞

TV(µ†
k,τ , µk)

+ β

∥∥∥∥log µ(s)µ̂(s)

∥∥∥∥
∞

√
2KL(µ†

k,τ∥ µ̂k) + 2β

∥∥∥∥log µ(s)µ̂(s)

∥∥∥∥
∞

TV(µ̂k, µ̂(s))

≤ −βKL(µ(s)∥ µ̂(s)) + 12βCµ
λ

(
2βs(tµ + 1) +

√
Cµ
λ

exp(−αλτ)

)
.

by Proposition D.2. For the second term, we may follow the derivations presented in Section 3 of
Lascu et al. (2023) with minimal modifications to obtain

−
∫
X
∂s log µ̂(s)µ(s)(dx)

= −β
λ

∫∫
X ×X

δ2L
δµ2

(µ(s), ν(s), x, z)(µ̂(s)− µ(s))(dx)(µ̂k −µk)(dz)

+
β

λ

∫∫
X ×Y

δ2L
δµδν

(µ(s), ν(s), x, w)(µ̂(s)− µ(s))(dx)(ν̂k −νk)(dw).

When s = 0, the first integral is nonpositive due to convexity while the second integral cancels out
when adding with the corresponding term for the KL gap of the max policy, which completes the
argument in Lascu et al. (2023). Hence the remaining error we must control is

− β

λ

∫∫
X ×X

δ2L
δµ2

(µ(s), ν(s), x, z)(µ̂(s)− µ̂k +µk − µ(s))(dx)(µ̂k −µk)(dz)

+
β

λ

∫∫
X ×Y

δ2L
δµδν

(µ(s), ν(s), x, w)(µ̂(s)− µ̂k +µk − µ(s))(dx)(ν̂k −νk)(dw)
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≤ 4β

λ
(Cµµ + Cµν)(TV(µ̂(s), µ̂k) + TV(µk, µ(s)))

≤ 4β2s

λ
(Cµµ + Cµν)(t

µ + 1).

Adding everything up, we obtain

d

ds
(KL(µ(s)∥ µ̂(s)) + KL(ν(s)∥ ν̂(s)))

≤ −β (KL(µ(s)∥ µ̂(s)) + KL(ν(s)∥ ν̂(s)))

+
12βCµ
λ

(
2β(tµ + 1) +

√
Cµ
λ

exp(−αλτ)

)
+

4β2

λ
(Cµµ + Cµν)(t

µ + 1)

+
12βCν
λ

(
2β(tν + 1) +

√
Cν
λ

exp(−αλτ)

)
+

4β2

λ
(Cµν + Cνν)(t

ν + 1).

By applying Gronwall’s lemma over s ∈ [0, 1] and iterating over k, we conclude that

KL(µk∥ µ̂k) + KL(νk∥ ν̂k)

≤ 2(Cµ + Cν)

λ
exp(−βk) + 12

λ
3
2

(
C

3
2
µ + C

3
2
ν

)
exp(−αλτ)

+
4β

λ
((6Cµ + Cµµ + Cµν)(t

µ + 1) + (6Cν + Cµν + Cνν)(t
ν + 1)) .

Finally, applying Lemma 3.4 of Lascu et al. (2023) yields the suboptimality bound

NI(µk, νk) ≤ 2(Cµ + Cν) exp(−βk) +
12√
λ

(
C

3
2
µ + C

3
2
ν

)
exp(−αλτ) + Cβ.

Hence an ϵ-MNE may be obtained in k = O( 1ϵ log
1
ϵ ) outer loop iterations by taking β = O(ϵ) and

τ = O(log 1
ϵ ).

E Applications to Zero-Sum Markov Games

E.1 Bilinear Problems

We briefly discuss the case when L is bilinear, that is L(µ, ν) =
∫∫

Q(x, y)µ(dx)ν(dy) for a C1

reward Q : X ×Y → R. Assumption 2 is easily verified under the conditions ∥∇xQ∥∞ ≤ Qx and
∇xQ is Lix-Lipschitz in each coordinate i = 1, · · · , dX by taking Mµ = Qx, Kµ = Lµ = ∥Lx∥2,
while Assumption 3 holds if Q is uniformly bounded. The averaged gradient in (3) is then equal to

1
Bt

∫ t
0
βs∇x δLδµ (µs, νs)(Xt) ds+ λ∇xUµ(Xt) =

∫
Y ∇xQ(Xt, y)ν̄t(dy) + λ∇xUµ(Xt);

the drift only depends on the history through the average distributions µ̄t, ν̄t. Therefore, instead of
storing and iterating over all previous states which could be computationally prohibitive, we only
require the rolling averages to be stored and updated alongside the primary dynamics. In the discrete
case, this means that we store the length N arrays X ,Y alongside Xk,Yk and perform

Xi
k+1 ← Xi

k −
η
N

∑N
m=1∇xQ(Xi

k, Y
m
)− λη∇xUµ(Xi

k) +
√
2ληξµ,ik ,

Y ik+1 ← Y ik + η
N

∑N
m=1∇yQ(X

m
, Y ik )− λη∇yUν(Y ik ) +

√
2ληξν,ik .

We then discard ⌊βk+1N/Bk+1⌋ particles from X ,Y and replace with random samples drawn from
Xk+1,Yk+1, respectively. After K steps, the arrays X ,Y are returned.

Thus, both algorithms only require 4 arrays to be stored and updated (the inner and outer states for
MFL-ABR), incurring no significant computational cost compared to MFL-DA (2 arrays).
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E.2 Zero-Sum Markov Games

In this section we outline an application to policy optimization in Markov games. We consider the
two-player zero-sum discounted Markov game defined by the tuple M = (S,X ,Y, P, r, γ) with
continuous action spaces X = RdX ,Y = RdY , finite state space S, reward r : S × X ×Y → R,
transition kernel P : S × X ×Y → P(S) and discount factor γ ∈ [0, 1). The strategies of the min
and max players are represented by µ = µ(s) = µ(·|s) : S → P2(X ) and ν : S → P2(Y).
The regularized value and Q-functions are defined for all s ∈ S as

V µ,νλ (s) = E

[ ∞∑
t=0

γt
(
r(st, xt, yt) + λ log

µ(xt|st)
ρµ(xt)

− λ log ν(yt|st)
ρν(yt)

) ∣∣∣∣s0 = s

]
,

Qµ,νλ (x, y|s) = r(s, x, y) + γEs′∼P (·|s,x,y)[V
µ,ν
λ (s′)],

where the expectation is taken over all trajectories s0, x0, y0, s1, · · · generated by xk ∼ µ(·|sk),
yk ∼ ν(·|sk) and sk+1 ∼ P (·|sk, xk, yk). Our goal is to find the MNE which solves the distributional
minimax problem minµ:S→P2(X ) maxν:S→P2(Y) V

µ,ν
λ (s) for all states simultaneously; a detailed

introduction to the topic can be found in e.g. Sutton and Barto (2018); Cen et al. (2023). For zero-sum
Markov games, the MNE is also called the regularized Markov perfect equilibrium.

To this end, we propose the following two-step iterative scheme. For simplicity, we only consider the
continuous-time MFLD and assume full knowledge of game quantities as well as the existence and
uniqueness of the MNE (µ∗, ν∗) which is known for finite Markov games (Shapley, 1953).

Step 1 (Minimax dynamics). Given Q(k), run MFL-AG or MFL-ABR for each state s ∈ S for
sufficient time to obtain an ϵL-MNE (µ(k)(s), ν(k)(s)) for the regularized minimax problem

Lλ(µ, ν;Q(k)(s)) :=
∫∫

X ×Y Q
(k)(x, y|s)µ(dx)ν(dy) + λKL(µ∥ρµ)− λKL(ν∥ρν).

Step 2 (Approximate value iteration). For each s, set V (k+1)(s) = Lλ(µ(k)(s), ν(k)(s);Q(k)(s))
and update the Q-function by letting Q(k+1) = Q(·, ·|s) satisfying∣∣Q(x, y|s)− r(s, x, y)− γEs′∼P (·|s,x,y)[V

(k+1)(s′)]
∣∣ ≤ ϵQ,

where ϵQ > 0 quantifies a model error. In practice, Q(k+1) can be obtained by any offline RL
algorithm with function approximation, e.g. a deep neural network, as long as the sup norm of
Bellman error to the update is bounded. Moreover, we assume the gradients ∇xQ,∇yQ are bounded
and Lipschitz and can be queried freely.

With this scheme, we are guaranteed convergence to the MNE. The proof is identical to the discrete
strategy case (Cen et al., 2021, Theorem 3).

Proposition E.1. The above scheme linearly converges to the optimal value function as

∥V (k) − V ∗∥∞ ≤ γk∥V (0) − V ∗∥∞ +
ϵL + ϵQ
1− γ

.

This proposition shows that our two-step algorithm finds the Markov perfect equilibrium at a linear
rate of convergence up to a sum of the optimization error for learning the MNE of the inner problem,
and the Bellman error for estimating the Q-functions.

Proof. We use the bound | Lλ(µ, ν)−Lλ(µ∗, ν∗)| ≤ NI(µ, ν) which can be shown by the following
string of inequalities,

Lλ(µ, ν)− Lλ(µ∗, ν∗) ≤ max
ν′
Lλ(µ, ν′)− Lλ(µ∗, ν) ≤ max

ν′
Lλ(µ, ν′)−min

µ′
Lλ(µ′, ν),

Lλ(µ, ν)− Lλ(µ∗, ν∗) ≥ min
µ′
Lλ(µ′, ν)− Lλ(µ, ν∗) ≥ min

µ′
Lλ(µ′, ν)−max

ν′
Lλ(µ, ν′).

Denoting the ideal minimax update in Step 1 as

Ṽ (k+1)(s) = min
µ∈P2(X )

max
ν∈P2(Y)

Lλ(µ, ν;Q(k)(s)),
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Figure 1: Density evolution of (a) MFL-AG, (b) MFL-ABR, and (c) MFL-DA every 100 epochs. (d)
Convergence speed measured in W1 distance. (e) Optimality comparison via 3-point NI error.

this implies
|V (k+1)(s)− Ṽ (k+1)(s)| ≤ NI(µ(k)(s), ν(k)(s)) ≤ ϵL.

Now denote the ideal value iteration in Step 2 as

Q̃(k)(s) = r(s, x, y) + γEs′∼P (·|s,x,y)[V
(k)(s)]

and note that the optimal value and Q-functions V ∗ = V µ
∗,ν∗

λ , Q∗ = Qµ
∗,ν∗

λ satisfy the Bellman
equation

Q∗(x, y|s) = r(s, x, y) + γEs′∼P (·|s,x,y)[V
∗(s′)].

Hence we bound

∥V (k+1) − V ∗∥∞ ≤ ϵL + ∥Ṽ (k+1) − V ∗∥∞
≤ ϵL + sup

µ,ν,s

∣∣Lλ(µ, ν;Q(k)(s))− Lλ(µ, ν;Q∗(s))
∣∣

≤ ϵL + ∥Q(k) −Q∗∥∞
≤ ϵL + ∥Q(k) − Q̃(k)∥∞ + ∥Q̃(k) −Q∗∥∞
≤ ϵL + ϵQ + γ∥V (k) − V ∗∥∞.

Therefore by Gronwall’s lemma we conclude that

∥V (k) − V ∗∥∞ ≤ γk∥V (0) − V ∗∥∞ +
ϵL + ϵQ
1− γ

.

F Numerical Experiments

We test our proposed algorithms and compare against ordinary descent ascent dynamics in a simulated
setting. We consider dX = dY = 1 and optimize the bilinear objective

L(µ, ν) =
∫∫

Q(x, y)µ(dx)ν(dy), Q(x, y) = (1 + e−(x−y)2)−1.

The sigmoid nonlinearity introduces nontrivial interactions between the min and max policies. We
also take regularizers ρµ = ρν = N (0, 1) and λ = 0.01. Both MFL-AG with r = 1 and MFL-DA
are run with 1,000 particles for 1,000 epochs with learning rate η = 0.3. MFL-ABR is run with 1,000
particles for 50 outer loop iterations with 20 inner iterations per loop and η = 0.3, β = 0.15. We
implement the rolling average update for MFL-AG in Section E.1 and a ‘warm start’ scheme for
MFL-ABR where the inner loop is not re-initialized for stability. We report the results in Figure 1.
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Figure 1(a)-(c) show kernel density plots of the evolving min and max policies µXk
, νYk

for each
algorithm per every 100 epochs. MFL-AG and MFL-ABR converge to similar solutions while MFL-
DA converges to a different distribution much more rapidly. Figure 1(d) plots convergence speed by
computing the sum of the empirical Wasserstein distances W1(µXk

, µXk+1
) +W1(νYk

, νYk+1
).

To compare the optimality of the outputs (X i,Y i) (i = 0, 1, 2) of the three algorithms, we use
the 3-point NI error NIi := maxj Lλ(µX i , νY j ) −minj Lλ(µX j , νY i) which measures relative
optimality analogous to a 3 × 3 payoff matrix. The values are reported in Figure 1(e). While the
MFL-DA output is initially the desirable strategy due to its rapid convergence, MFL-AG gradually
optimizes and soon dominates MFL-DA with zero error, which is later followed by MFL-ABR. We
therefore conclude MFL-AG and MFL-ABR can substantially outperform ordinary descent ascent
despite the slower convergence rates.

42


	Introduction
	Problem Setting and Assumptions
	Mean-field Langevin Averaged Gradient
	Proposed Method
	Continuous-Time Convergence
	Time and Space Discretization

	Conclusion
	Preliminaries
	Optimal Transport
	Mixed Nash Equilibrium

	Convergence Analysis of MFL-AG
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.3

	Time and Space Discretization
	Gradient Stopped Process
	Proximal Pushforward Bounds
	Proof of Proposition 3.5
	Properties of Conjugate Functionals
	Proof of Theorem 3.6
	Expected Wasserstein Distance

	Mean-field Langevin Anchored Best Response
	Proposed Method
	Inner Loop Convergence
	Proof of Theorem D.1

	Applications to Zero-Sum Markov Games
	Bilinear Problems
	Zero-Sum Markov Games

	Numerical Experiments

