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ABSTRACT

In this work, we investigate how a model’s tendency to broadly integrate its parametric
knowledge evolves throughout pretraining and how this behavior affects overall perfor-
mance, particularly in terms of knowledge acquisition and forgetting. We introduce the
concept of knowledge entropy, which quantifies the range of memory sources the model
engages with; high knowledge entropy indicates that the model utilizes a wide range of
memory sources, while low knowledge entropy suggests reliance on specific sources with
greater certainty. Our analysis reveals a consistent decline in knowledge entropy as pre-
training advances. We also find that the decline is closely associated with a reduction
in the model’s ability to acquire and retain knowledge, leading us to conclude that di-
minishing knowledge entropy (smaller number of active memory sources) impairs the
model’s knowledge acquisition and retention capabilities. We find further support for this
by demonstrating that increasing the activity of inactive memory sources enhances the
model’s capacity for knowledge acquisition and retention

1 INTRODUCTION

Recent studies have analyzed how language models store world knowledge in their parameters and utilize
this knowledge to generate responses during inference time (Geva et al.| 2021 Dai et al., 2022aib; Meng
et al., 2022} [Yao et al.| |2024). However, little is known about how their behavior of integrating various
factual knowledge embedded in their parameters changes throughout the pretraining stage. In this work, we
perform a deep analysis of how a model’s property of broadly integrating diverse parametric knowledge
evolves throughout pretraining and how these shifts affect overall performance, particularly in terms of
knowledge acquisition and forgetting in a continual learning setup. We hypothesize that this varying level of
integration may explain why models in the later stages of pretraining encounter challenges in acquiring new
knowledge (Dohare et al., 2024} Jang et al.,|2022} |(Chang et al., 2024)).

We introduce knowledge entropy, which reflects how a language model integrates various knowledge sources,
to investigate how this behavior evolves throughout pretraining. Recent studies have shown that feed-forward
layers (FFNs) serve as a key-value memory (Geva et al., 2022 2021} |Dai et al.,|2022a). Building on this
research, as shown in Figure[I] we view the second projection matrix V' as a memory, composed of memory
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Figure 1: Illustration of our findings: distribution of memory coefficients C' in feed-forward layers become
sparser throughout pretraining, as indicated by a decrease in knowledge entropy H.(6). This sparsity deteri-
orates the model’s knowledge acquisition .4(f) and increases forgetting F(6) when conducting continual
knowledge learning with models from different pretraining stages. Thereby, as denoted by the star, when we
artificially increase the knowledge entropy of the final stage model, both knowledge acquisition and retention
increase.

vectors, which store the model’s parametric knowledge, and view the first projection matrix K as generating
coefficients C that determine how these memory vectors are combined. Knowledge entropy measures how
sparsely these memory coefficients are distributed; high knowledge entropy indicates that the model tends to
integrate a broad range of memory vectors whereas the model with low knowledge entropy relies on specific
memory vectors with high certainty. We analyze models at different stages of pretraining to investigate how
knowledge entropy changes throughout pretraining. Our findings show that models in the later stages of
pretraining tend to exhibit lower knowledge entropy, suggesting a shift from utilizing a larger set of active
memory vectors to a smaller, more focused set as pretraining progresses.

We hypothesize that changes in knowledge entropy would influence the model’s behavior when encountering
new knowledge. To test this, we conduct a thorough analysis of the model’s ability to acquire new knowledge
and retain existing knowledge in a continual knowledge learningE] scenario on a target corpus (Jang et al., 2022;
Wu et al.| [2023)), starting from different stages of pretraining. This involves further training the pretrained
model on new-domain corpora using a language modeling objective to integrate new knowledge. Our
results reveal a strong correlation between knowledge entropy and the model’s ability to acquire and retain
knowledge: both knowledge entropy and knowledge acquisition and retention decrease as the pretraining
progresses.

We assume that this correlation arises because lower knowledge entropy indicates a smaller set of active
memory vectors, leading to frequent overwriting of these memory vectors to store new knowledge. To test
this assumption, we conduct experiments where we artificially increase the activity of previously inactive
memory vectors, allowing the model to store new knowledge across a broader range of memory vectors.
Surprisingly, we observe that these modified models demonstrate improved knowledge acquisition and
reduced forgetting compared to the original models when undergoing continual knowledge learning; though
not to the same extent as the original pretrained model with equivalent knowledge entropy. Such a result
bolsters our hypothesis that having a limited number of active memory vectors (low knowledge entropy)
plays a critical role in explaining the degradation of the model’s ability to acquire and retain knowledge as
pretraining advances.

%In this work, we use the term “continual knowledge learning” and “continual learning” interchangeably.
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Overall, our findings reveal that as pretraining progresses, models exhibit a narrower integration of
memory vectors, reflected by decreasing knowledge entropy, which hinders both knowledge acquisition
and retention. Models in the later stages of pretraininﬂ show low knowledge entropy, leading to poor
knowledge acquisition and higher forgetting rates despite being trained on larger datasets. In contrast, early-
stage models display high knowledge entropy, enabling better knowledge acquisition and retention; however,
their performance is often limited by weaker language modeling capabilities. Thus, mid-stage models strike a
balance, showing strong knowledge acquisition and retention along with overall performance, making them
a practical choice for further training to incorporate new knowledge. To the best of our knowledge, this
is the first work to analyze how a model’s behavior in integrating various memory vectors changes across
pretraining stages and the subsequent effects on performance when acquiring new knowledge in a continual
knowledge learning setup.

2 RELATED WORK

Dynamics of Knowledge in Language Models Recent studies have shown that language models embed
world knowledge within their parameters and integrate this knowledge to generate responses (Yang}, [2024;
Petroni et al. 2019 [Wang et al.| 2021)). Thereby, various research efforts aim to understand these dynamics
of knowledge in language models (how they learn, store, and engage their parametric knowledge) during
inference and training phases. Several studies have focused on investigating the inference process: |Geva
et al.| (2023) analyzes the role of different layers in language models. |Allen-Zhu & Li|(2024b)) demonstrates
that model parameters have a limited knowledge capacity. Some studies suggest key-value memory (Geva
et al.|[2021; Meng et al.| [2022; Dai et al.|[2022a). Other research focuses on the pretraining phase. [Liu et al.
(2021)) studies the sequence that language models learn various types of knowledge. |Allen-Zhu & Li| (20244a)
examines strategies to enhance knowledge storage and extraction. [Teehan et al.| analyzes internal structural
changes. [Sun & Dredze|(2024) investigates the interaction between pretraining and finetuning. |Chang et al.
(2024) analyzes patterns of knowledge acquisition specifically during the pretraining process, addressing the
question of how language models acquire knowledge during pretraining. While their study shares similarities
with ours in investigating knowledge acquisition behavior during LLM training, our work takes a different
focus. We aim to understand why LLMs encounter increasing difficulty in acquiring new knowledge as
pretraining progresses, exploring the underlying reasons behind the challenges faced by later-stage models
in learning new knowledge. To the best of our knowledge, our work is the first to explore how the behavior
of language models in integrating their knowledge evolves throughout the pretraining phase, and to analyze
how these changes affect model performance in terms of knowledge acquisition and forgetting in continual
knowledge learning.

Entropy in Natural Language Processing In information theory, entropy quantifies the value of infor-
mation, where predictable (certain) events have low entropy and unpredictable (uncertain) events have high
entropy (Lairez, 2022; [Majenz, |2018)). In natural language processing (NLP), entropy is used in various
ways to measure the certainty of language models. [Yang|(2024) analyzes the entropy of model outputs based
on input prompts. |Araujo et al.| (2022)) calculates the entropy of outputs at each layer to determine weight
adjustments in a continual learning setup. Other papers focus on token probability entropy to understand the
information required to predict the next word in a sequence (Vazhentsev et al.; |(Geng et al.l 2024; Malinin
& Gales, [2021). Lower entropy in a model’s predictions may indicate that the model has become more
certain about its predictions based on training data. Additionally, Kumar & Sarawagi|(2019) measures entropy
over the cross-attention layer to assess the uncertainty in the attention layer of encoder-decoder models.
The entropy proposed in our paper, knowledge entropy, differs from previous work in that it focuses on the

3We define the final stage as the last stage of the pre-determined learning rate schedule, with the most decayed learning
rate. The mid-stage refers to around 50% of the schedule, while the initial stage refers to around 20%.
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entropy of a model’s parametric knowledge, assessing the uncertainty or variability in utilizing the knowledge
encoded within the language model.

3 KNOWLEDGE ENTROPY

In this section, we introduce knowledge entropy (Section to examine how broadly the model integrates
its parametric knowledge and describe the experimental setup used to measure it (Section [3.2)). Next,
in Section [3.3] we measure knowledge entropy at various pretraining stages to analyze how the model’s
knowledge integration behavior evolves over pretraining. In Section we extend our investigation by
exploring alternative definitions of entropy.

3.1 DEFINITION

In this work, we introduce a new concept, knowledge entropy, to analyze the scope of a model’s access
patterns to its parametric knowledge. Low knowledge entropy suggests that the model relies on a narrower set
of specific knowledge sources with high certainty whereas high knowledge entropy indicates that the model
integrates with a diverse range of knowledge sources. Inspired by prior research that considers feed-forward
layers (FFNs) as key-value memory containing a model’s parametric memory (Geva et al., [2021; Dai et al.}
2022a;|Meng et al., 2022} |Dong et al., 2022), we consider the knowledge source to be the memory vectors,
which is the second projection matrix of FFN. We measure how broadly the model integrates these memory
vectors with memory coefficients, which are calculated by the first projection matrix and the activation
function.

Geva et al.|(2021) propose the concept of key-value memory, demonstrating that FFNs function similarly to
the key-value neural memories (Sukhbaatar et al.l 2015)). The feed-forward layer consists of two projection
layers and activation in the middle:

FFN(x) = f(x-K%).V 1)

where x € RY. The first projection matrix (K € R™*%) corresponds to the keys, and the second projection
matrix (V' € R™*9) represents the values, or the memories comprised of memory vectors. The output,
FFN(x), is a linear combination of the memory vectors v;— ... ,, € R? which are the rows of V, where
the coeﬁ?cientﬂ C are determined by f(x - K1), with f being a non-linear activation function such as ReLU.
Previous studies have shown that various types of factual and linguistic knowledge are encoded within these
memories (Dai et al.| [2022a}; |Geva et al.| 2022; Meng et al.,[2022} Dong et al.| |2022). Thus, the final output is
generated by combining the contributions of these memory vectors, where the memory coefficients determine
the combination.

Thereby knowledge entropy, H(6), is calculated by the sum of layer-wise entropy #(6'), which is based on
the average coefficient C' € R™ averaged across all tokens in dataset D, as described in Equation

|D| T, _
— 1 1 l) _ C; .
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“We use the terms “coefficient” and “memory coefficient” interchangeably.
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Figure 2: Entropy (y-axis) across different model  Figure 3: Entropy (y-axis) defined with Attention
states (x-axis) for OLMo 1B and 7B. The x-axis weight and across
represents the rate of the current step relative to the  different model states (x-axis) for OLMo 1B.

last step (738k for 1B and 557k for 7B).

Cﬁf_)j represents the coefficient of the j-th token position of the n-th instance at layer [, ¢ indicates the i-th

element from C?, T}, is the sequence length of the n-th instance in the dataset D, m is the inner dimension of
feed-forward layer, and L denotes the number of layers in the model.

3.2 EXPERIMENT SETUP

To conduct the experiment, we use the OLMo (Groeneveld et al.l [2024) models (1B and 7B), which are
open-source large language models with intermediate pretraining checkpoints released, trained on the Dolma
dataset (Soldaini et al., 2024ﬂ To measure knowledge entropy, we use a subset of Dolma, 2k instances
that appear in the first batch within the official pretraining data order to ensure that all models we are using
have seen the corpus during pretraining step. Please note that the trend persists across other corpora as
well (Figure[7in Appendix [A.2); however, since we are analyzing the model’s behavior throughout training,
we define knowledge entropy based on calculations using the training dataset.

In the case of OLMo, the memory coefficient 07(11”)7‘ is calculated as C’ff)j = abs(SwiGLU(x;)) where x; is
the j-th token of input x and SwiGLU (Shazeer, 2020) is the activation function. We apply the absolute
value since the SwiGLU allows negative values and the magnitude determines the contribution of the
corresponding memory vector in the linear combination. Then, the absolute values are converted into
a probability distribution. We also show experimentally that the trend persists with different choices of
activation functions. Further details regarding knowledge entropy can be found in Appendix [A.2]

3.3 FINAL MODELS TEND TO EXHIBIT LOWER KNOWLEDGE ENTROPY

Figure [2]illustrates how knowledge entropy (y-axis) changes across different stages of pretraining (x-axis).
The results show a consistent decrease in knowledge entropy as pretraining progresses in both 1B and
7B models. This trend suggests that models in the later stages of pretraining tend to engage with a narrower
range of memories, relying more heavily on specific memory vectors rather than accessing and integrating
knowledge from a broader range of memories. A consistent reduction in knowledge entropy is observed
across all layers, with the most significant reduction occurring in the last layer, which closely resembles the
output distribution right before the token prediction (Figure [§in Appendix).

SWe used OLMo and Dolma from the official repository


https://github.com/allenai/OLMo/tree/main
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3.4 SIMILAR TRENDS ARE OBSERVED BY DIFFERENT DEFINITIONS OF ENTROPY

While our work defines knowledge entropy focusing on the feed-forward layer, previous studies have exam-
ined entropy in different contexts, such as the entropy of attention (Kumar & Sarawagi, 2019) and the entropy
of next-token prediction over the vocabulary space (Vazhentsev et al.; Malinin & Gales| |2021). To gain a
more comprehensive understanding of the model’s overall behavior, we extend our analysis by exploring the
entropy trends in both attention mechanisms and next-token prediction. The formula and details are provided

in Appendix [A.3)

Entropy of Attention Layers Following |Kumar & Sarawagi| (2019), we measure attention entropy to
capture the degree of uncertainty in attention weights. It is calculated as the sum of layer-wise entropy, where
the layer-wise entropy measures the sparsity of the attention weights in each attention head. Thus, attention
entropy reflects how much weight the model assigns to specific tokens with confidence when generating the
next token given the input based on token relationships. Figure 3| shows that attention entropy consistently
decreases during pretraining, with a sharp decline in the early stages followed by a more gradual reduction.
This trend suggests that the model learns to focus on contextually important tokens within the attention layer.

Entropy of Next Token Prediction Entropy can also be measured based on the probability distribution
of next-token predictions over the vocabulary space (Vazhentsev et al.; |Geng et al.,|[2024; Malinin & Gales),
2021). Figure 3|shows that the entropy of the next token prediction also consistently decreases throughout
pretraining, reflecting the model’s increasing certainty in its next token prediction.

4 KNOWLEDGE ACQUISITION AND FORGETTING

We hypothesize that the reduction of knowledge entropy as pretraining progresses impacts the model’s
knowledge acquisition and forgetting as low knowledge entropy indicates sparse activation of memory
vectors, thus the vectors are likely to be consistently overwritten when new knowledge is introduced. To test
this hypothesis, we measure knowledge acquisition and forgetting using checkpoints from different stages
of pretraining in a continual knowledge learning setup (Jang et al., [2022; Wu et al., 2023)), where further
training is performed on new-domain corpora by next token prediction to inject new knowledge into the
pretrained models. Section[4.1] details the experimental setup and the metrics used. In Section[4.2] we present
the results of knowledge acquisition and forgetting across various pretraining stages. Finally, Section[d.3|
further explores whether a relationship exists between the two behaviors: activating the inactive memory
vectors increases the knowledge acquisition ability.

4.1 EXPERIMENT SETUP

Model & Hyperparameters We experiment using intermediate checkpoints from OLMdﬂ Hyperparame-
ters are chosen following previous research on continual knowledge learning (Jang et al., 2022} |[Kim et al.}
2023)) and we test various combinations to assess their generalizability. For batch size, we test 128 and 2048;
for learning rate, we experiment with le-4, 4e-4, and le-3. We also investigate the effect of training duration
by comparing a single epoch to three epochs. Among these configurations, we focus primarily on a batch
size of 128, a learning rate of 4e-4, and single-epoch training as this setup most closely aligns with continual
knowledge learning.

We select these intermediate checkpoints following|Sun & Dredze|(2024), which explores language model (OLMo)
throughout pretraining. Available checkpoints can be found here,


https://github.com/allenai/OLMo/blob/main/checkpoints/official/OLMo-1B.csv

Published as a conference paper at ICLR 2025

Dataset We experiment on a subset of two datasety’} PubMed[]] a corpus of bio-medical and life science
topics with abstracts, and C4 (Raffel et al., 2020), a large-scale corpus comprising diverse text data gathered
from web pages. We use PubMed as the primary dataset as it contains more new knowledge, making it a
better fit for our continual knowledge learning setup (Appendix [B.). In addition to the dataset, we inject
synthetic knowledge during training to assess the model’s ability to acquire new information. Specifically, we
utilize FICTIONAL KNOWLEDGE dataset (Chang et al.,[2024), which is designed to assess how well language
models acquire factual knowledge during pretrainin This dataset includes 130 paragraphs about fictional
yet realistic entities and 1,950 probes where each paragraph contains 15 different probes. The passages
are incorporated into the training batch 10 times during the continual knowledge learning. After training,
we evaluate the models on evaluation probes of the Fictional Knowledge dataset to measure knowledge
acquisition, and evaluate on six downstream tasks in zero-shot manner (Sun & Dredze| [2024; |Groeneveld
et al.| [2024) to measure knowledge forgetting (SciQ (Welbl et al., [2017), Winogrande (Sakaguchi et al.|
2021)), PIQA (Bisk et al.,[2020), OBQA (Mihaylov et al.,|2018), HellaSwag (Zellers et al.,[2019), and ARC
Easy (Clark et al.| [2018)). Detailed explanation is included in Appendix

Metric Knowledge acquisition of a language model 6 is measured with the probing performance on
evaluation probes following (Chang et al.[(2024). When given the injected knowledge W, each instance w; in
a corpus has a corresponding set of probes P,,, containing 15 different probes. To measure how well the
model recalls the injected knowledge, we compute the probe performance C(0), the average log probability
{(p;;0) of the target span for each probe p; € P, across all instances in w; € W and calculate average;
K(0) = w7 Xwiew IPiil >picp,, Upi;0). The knowledge acquisition metric A(0) is defined as the
improvement rate of /C(0) from fpr to fcr, where fpr represents the model checkpoint from a pretraining

step, which serves as the starting point and ¢y represents the model after continual knowledge learning. High
A(0) indicates the model has learned new knowledge well.

To measure knowledge forgetting of a language model, we measure average performance over six down-
stream tasks P(0). Knowledge forgetting 7 (0) is calculated by the reduction rate from fpr to 6. Low
JF(0) indicates that the models have retained their existing knowledge. The equation and a detailed explanation
are presented in Appendix

4.2 KNOWLEDGE ACQUISITION AND RETENTION DECREASES ACROSS PRETRAINING STAGE

Figure shows the performance of OLMo 1B and 7B models [Eflfrom various stages of pretraining as an
initial state. We observe that models in the final stages of pretraining struggle more with acquiring
new knowledge A(6) and exhibit greater forgetting 7 (6). As shown in Figure 4b] continually training
the models at the mid-point of the pretraining as the initial checkpoint tends to yield the best performance
in knowledge probing and downstream tasks compared to both models from the initial and final stages of
pretraining. While early-stage models demonstrate high knowledge acquisition with minimal forgetting, their
overall performance is limited by weaker language modeling capabilities. Conversely, later-stage models,
despite being trained on larger datasets, exhibit lower knowledge acquisition and higher rates of forgetting,
resulting in lower overall performance compared to the mid-stage models. This aligns with previous research
suggesting that a model in the final stage of pretraining tends to struggle when learning new knowledge,
showing a trade-off between plasticity and stability (Dohare et al.| 2024} Biesialska et al.| 2020; Jang et al.|

"We randomly sample 205k instances for each dataset.

8Datasets in huggingface

*We slightly modified the dataset to our setting of which details are in Appendix

"%For this experiment, we used PubMed as a training corpus, but we also experiment with C4 as a training corpus,
which presumably exhibits more similar distribution to the pretraining corpus, Dolma. The comparison of the two corpora
and the results can be found in Appendix[B.T|and[B.4.2]


https://huggingface.co/datasets/ncbi/pubmed
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Figure 4: (a) Rates of knowledge acquisition .A(6) and forgetting 7 (6) (b) End performance of

and downstream task P () for OLMo 1B (solid line) and 7B (dotted line) across different model
states. The x-axis represents the ratio of the pretraining step of the initial model used in continual learning to
the final step. (738k for 1B and 557k for 7B)

2022). Therefore, we suggest that using a mid-stage checkpoint strikes a good balance, making it a practical
choice as an initial starting point for further training to inject new knowledge.

We consistently observe this pattern of later-stage models underperforming compared to earlier-stage models
across various hyperparameter settings, including batch size, learning rate, training corpus, and the number of
epochs. A detailed analysis of these results is provided in Appendix [B.4]

4.3 RESUSCITATING INACTIVE MEMORY VECTORS INCREASES KNOWLEDGE ACQUISITION

We observe a strong correlatiorﬂ between the trend of knowledge entropy (Figure [2) and the model’s ability
to acquire and retain knowledge (Figure fa). We assume that the model’s increasing reliance on a limited
set of memory vectors (as indicated by a decrease in knowledge entropy) leads to more frequent updates
to these vectors, making it difficult to acquire new knowledge and resulting in a higher rate of forgetting.
(The intuition behind this hypothesis can be found in Appendix [A.T) To test this assumption, we conduct
experiments where we artificially increase the activity or resuscitate previously inactive memory vectors.

To resuscitate inactive memory vectors, we modify the up-projection matrix K which engages with producing
memory coefficients C' (notations from Equation . Specifically, as shown in Algorithm |1} we identify the
lowest p% (resuscitation ratio) of memory coefficients and apply a multiplier v to parameters in K that are
associated with these p%. Multiplier « can take any value; in this experiment, we divide the mean coefficient
value of each layer by the respective coefficient value ¢ at each identified position i at layer I, and then
multiply the result by an amplifying factor ¢q. By varying the value of ¢, we control the degree of resuscitation
applied to the p% low-activation coefficients, thereby influencing the magnitude of the average coefficient
and the corresponding size of the parameter updates.

Figure[5a]shows the knowledge acquisition and forgetting rates and Figure[5b] presents the knowledge probe
and downstream task performance after continual learning with various resuscitation configurations. For the
experiment, we fix p to 50 with varying ¢ and use the OLMo checkpoint at the last step of pretraining. Results
show that when g is set to 1 or greater, it generally yields better performance in both knowledge acquisition
and retention compared to the original model. In contrast, when ¢ is set to 0.5, which further reduces already

"The Pearson correlation between knowledge entropy and knowledge acquisition is 0.94, and with forgetting, it is
-0.96. Both correlations are statistically significant, with p-values of 6e-5 and le-5, respectively.
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Figure 5: (a) Rates of knowledge acquisition .A(6) and forgetting 7 () (b) End performance of
and downstream task P(#) after training with varying the amplifying factor ¢ (x-axis) while p is
fixed as 50.

inactive memory coefficients, both acquisition and retention decline suggesting that concentrating parameter
updates more heavily on already active locations leads to sparser updates, ultimately impairing overall
performance. These results suggest that having a narrower active memory vector (low knowledge entropy)
tends to reduce the model’s capacity to acquire new knowledge and increases knowledge forgetting.

Further experiments with fixed ¢ and varying p show that increasing p to activate a larger portion of inactive
parameters generally leads to improved performance. Detailed result of this configuration is in Appendix
We also analyze how the result changes when using models from different stages of pretraining as the original
model. The trend holds consistently across different checkpoints of pretraining. However, the effect of
the resuscitation becomes more pronounced as the original model progresses to later stages of pretraining.
Detailed results are included in Appendix

Our result indicates that resuscitating inactive memory vectors of final-stage models tends to enhance
knowledge acquisition and overall performance compared to the unmodified final-stage model. However,
we observe that the performance remains lower compared to models from the pretraining step with similar
knowledge entropy, such as the mid-stage model. This suggests that applying linear scaling to a subset of
specific layers alone is insufficient to induce fundamental behavioral changes in the model. In other words,
to restore a model that has lost its plasticity (Dohare et al.l [2024) to its previous state, more fundamental
and alternative approaches are required. Further exploring methods for effectively modifying the parameters
would be an interesting direction for future work.

5 CONCLUSION

In this work, we examine how large language models’ ability to broadly integrate their parametric knowledge
(measured by knowledge entropy) changes throughout pretraining and how these changes affect knowledge
acquisition and forgetting in a continual learning setup. Our findings reveal a strong correlation between
knowledge entropy and the model’s capacity to acquire and retain knowledge. Models in the final stages
of pretraining tend to exhibit narrower integration of memory vectors, leading to lower knowledge entropy,
which negatively impacts both knowledge acquisition and retention. Interestingly, artificially increasing
knowledge entropy by modifying the parameters of final-stage models tends to improve these capabilities.
Based on our analysis, we suggest that models from the mid-stage of pretraining offer a good balance between
knowledge acquisition, retention, and overall performance, making them a good choice for further training to
introduce new knowledge.
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Algorithm 1 Resuscitating Low Memory Coefficients

Require: C (average coefficients), p (resuscitation ratio), ¢ (amplifying factor), K (up-projection matrix)
Ensure: Scaled up-projection matrix K using computed multiplier u

1: for each layer [ in K do

2: Extract average activations for layer (:

C =[]
3: Compute the threshold ¢ for the lowest p% activations:
t = percentile(C, p)
4 Identify positions of values below the threshold ¢:

idx = (C < t).nonzero( )

5: Compute the multiplier u for coefficients in layer (:
mean(C') "
U=——7-—=
C q

6: Apply scaling to the up-projection weights K at the identified positions:
Ki[idx,:] x= wu[idx]

7: end for

6 LIMITATION & FUTURE WORK

Due to computational constraints, our study measures knowledge acquisition and forgetting in a continual
learning setup. Future work could explore whether these behaviors also manifest during the pretraining
phase. We focused on OLMo 1B and 7B models, as they are the only models that publicly provide inter-
mediate pretraining checkpoints and demonstrate strong performance (Sun & Dredzel [2024; |Chang et al.|
2024). Extending this investigation to other models would be a valuable direction for further research. Our
resuscitation method, which arbitrarily modifies model parameters to test our hypothesis, showed promising
results in improving knowledge acquisition and retention. However, performance tended to decline when
resuscitating models at their initial or mid-stages. This suggests that more refined methods for resuscitating
model parameters—ones that avoid random modification and preserve language modeling capabilities—could
yield better outcomes. Additionally, while we observed that models in the mid-stage of pretraining strike
a good balance for further training on tasks that involve acquiring new knowledge, defining the mid-point
precisely remains an open question. In this study, we approximated the mid-point as 50% of the learning rate
schedule.
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A  KNOWLEDGE ENTROPY

A.1 INTUITION BEHIND THE DEFINITION OF KNOWLEDGE ENTROPY

The mechanism behind the relationship between decreasing knowledge entropy and the ability to acquire
and retain knowledge during pretraining is that the coefficients in the linear combination of memory vectors
determine how the corresponding memory vectors are updated. As defined in Equation [I] the output
of the feed-forward layers (FFNs) is a linear combination of memory vectors vi—i ... ,, € R, the row
vectors of V' € R™*9, where the coefficients ¢; are given by f(x - KT). In other words, FFN(z) =
C1V1 + coVa + - - - + ¢, Vim. Within a given layer, since the operations beyond the FFNs and the input to the
FFNs remain consistent across all memory vectors, the coefficients act as scaling factors for the gradient by
the chain rule. During training, the gradient adTLJ fori =1,2,...,mand j =1,2,...,d can be decomposed
as:
oL oL OFFN(x)
Ovy; OFFN(z) 0v;

Here, ﬁf\,(w) is the same for all v;, meaning that the relative magnitude of the gradient depends on
%ﬁ?m) = ¢;. Thus, larger coefficients result in proportionally larger gradients being applied to the

corresponding memory vectors, amplifying their updates during backpropagation.

As pretraining progresses, a spikier coefficient distribution—captured by decreasing knowledge en-
tropy—implies that gradient updates become increasingly concentrated on specific positions where the
average coefficients are larger. This centralization can affect the model’s ability to evenly utilize its memory
capacity, thereby impacting knowledge acquisition and retention.

A.2 KNOWLEDGE ENTROPY

Does the choice of model change the trend? To assess the generalizability of the trend observed in
Figure|2| we conducted experiments on the knowledge entropy trend using Pythia 1.4B model (Biderman
et al.,[2023). As shown in Figure[6] knowledge entropy measured with the Pythia model also tends to decrease
as pretraining progresses.

Does the choice of dataset change the trend? As expressed in Equation[2] knowledge entropy is dependent
on the dataset D. We define D as the dataset used during pretraining, as knowledge entropy reflects how the
model integrates the knowledge stored in its memory vectors, learned during pretraining. However, to further
explore whether the choice of dataset influences the trend of knowledge entropy, we measure it using PubMed
and C4. Figure [7]shows that the trend remains consistent regardless of the dataset used when calculating
knowledge entropy.
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Does the choice of activation function change the trend?

We also explored an alternative where we do

not take the absolute value of the SwiGLU output. Instead, following the ReLU function (Agarap, [2018)),
another widely used activation function, we replaced all negative values with 0. Figure [0 shows that the trend

remains consistent even under this modification.

l
Cll) = ReLU(gate(x;)) ® up(x;),

Layer-wise Knowledge Entropy Figure[§]shows how knowledge entropy changes by layer during pretrain-
ing. Knowledge entropy consistently decreases in every layer, with the most significant reduction occurring
in the last layer, which closely resembles the output distribution right before the token prediction. OLMo-7B

model also shows a similar trend to 1B model.
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A.3 ENTROPY OF ATTENTION LAYERS

Inspired by previous research that emphasizes the attention layer’s role of attribute extraction (Geva et al.
2023), we also measure attention entropy H(0,) similarly to Kumar & Sarawagi (2019@ Attention weights,
which are the output of softmax normalization after the key-query-value operation, can be interpreted as
weight assigned to the previous tokens. As the attention weight for each token position in each attention head
forms a probability distribution(summing to 1), calculating entropy follows the normal entropy formula. Then,
layer-wise entropy H(6,) is averaged over token position and attention heads and attention entropy H.(fu)
is the sum of layer-wise entropy #(6.,). Following the notations from Geva et al.| (2023), attention entropy is
calculated as:

J
W (Og') = = > AP log(Al") fori=1,2,... . Tyandj=1,2,....T,
i=1
|D| T, _ 1N L
H(O') = o] 2 Z ZH"»J(@%) D) = DO H(Ow) =D H (0

h=1 =1

3)

where AMbn ¢ RT»xTn represents the attention weights of the h-th attention head in layer [ for the n-th
instance, 7, is the sequence length of the n-th instance in the training dataset D, N denotes the number of
attention heads, and L denotes the number of layers in the model.

A.4 ENTROPY OF NEXT TOKEN PREDICTION

The entropy of next token prediction (Vazhentsev et al.; Geng et al., 2024} Malinin & Gales|, [2021)) is defined

as H(foti)] )=— Zml p; - log(p;), where p; represents the probability of the -th token. This value is then

averaged over the sequence length (7,) and the dataset size (|D|).

Kumar & Sarawagil (2019) measures entropy using attention weights from cross-attention in an encoder-decoder
architecture. However, as we employ a decoder-only model, we modify the equation to use attention weights from
self-attention.
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B KNOWLEDGE ACQUISITION AND FORGETTING

B.1 DATASETS

Training Dataset for Continual Knowledge Learning In this section, we share a brief description of the
datasets we used. For continual knowledge learning, we experiment with PubMed and C4. The PubMed
dataset consists of biomedical literature abstracts from the PubMed database, containing articles across a
wide range of topics in medicine and biology. The C4 (Colossal Clean Crawled Corpus) dataset (Raffel
et al.,|2020) is a large-scale, preprocessed collection of text scraped from the web, designed to be a clean and
diverse representation of natural language.

To compare the distribution of C4, PubMed, and Dolma, we evaluate the average perplexity of entities for C4
and PubMed, as shown in Figure[I0] On the x-axis, we plot the range of an average perplexity of instances,
while the y-axis represents the number of instances. We randomly sample 10,000 instances from each corpus,
extract entities using GPT-40, and calculate perplexity with the last checkpoint of OLMo. The perplexity
values from the last checkpoint of OLMo indicate how likely these entities are to appear in the pretraining
corpus, Dolma. The results reveal that PubMed exhibits a broad distribution of perplexity, with a higher
number of instances having high perplexity values. In contrast, C4 shows a tendency towards lower perplexity,
suggesting that the distribution of entities in PubMed differs from that in Dolma, while the distribution in C4
tends to be more similar to Dolma.

Evaluation Dataset to measure Knowledge Acquisition To measure knowledge acquisition of language
model, we use the fictional knowledge dataset (Chang et al.| [2024), which is designed to assess how well
LLMs acquire factual knowledge during pretraining. This dataset includes 130 paragraphs []E] presented in a
Wikipedia-style format with fictional yet realistic entities (injected knowledge) and 1,950 probes which are
cloze-task-style sentences to query the information within the corpus. The final span of each probe, referred
to as the target span, is used to evaluate the model’s prediction probability, which serves as a measure of
knowledge acquisition performance.

In|Chang et al.| (2024), the probes are divided into three levels of difficulty, with five sentences created for
each level. This results in 15 probes per corpus. The difficulty levels are as follows: 1) Memorization
probes directly ask about sentences explicitly present in the fictional corpus. 2) Semantic generalization
probes are paraphrased versions of the memorization probes to test the model’s understanding of meaning
beyond surface forms. 3) Compositional generalization probes are designed to assess whether the model
can integrate multiple pieces of knowledge from the fictional corpus. The injected knowledge is incorporated
into the training corpus during continual learning, with updates occurring every 160 steps.

Following [Chang et al.| (2024), we divide the 130 corpora into two settings: paraphrase and once. In the
paraphrase setting, 70 instances are each paraphrased 10 times. For every 160 steps, one paraphrased version
of an instance is added to the training corpus, repeating this process 10 time In the once setting, each
instance is presented only once throughout the entire continual learning process. The 60 instances are divided
into 10 groups, with 6 instances added every 160 steps.

Evaluation Dataset to measure Knowledge Forgetting To measure the forgetting rate, we evaluate on 6
downstream datasets.

3While Chang et al|(2024) utilizes 120 paragraphs, comprising 40 for paraphrase setup, 40 for duplicate, and 40 for
once, we utilized 130 paragraphs, the whole original data. We scaled up the number of paragraphs with paraphrases to 70,
utilizing GPT-4 following |Chang et al.| (2024)

14We maintain updates every 160 steps(10 steps when batch size is 2048) because our total training duration is 1,600
steps(100 steps), and we repeat the dataset injection process 10 times.
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* Sc1Q: multiple-choice question-answering dataset consisting of over 13,000 science exam-style
questions, covering subjects such as physics, chemistry, biology, and earth science

* WINOGRANDE: large-scale benchmark designed to test commonsense reasoning in natural language
understanding

* PIQA: commonsense reasoning about everyday physical interactions such as how to perform tasks
involving physical actions

* OBQA: multiple-choice question-answering benchmark designed to assess a model’s ability to
answer elementary-level science questions.

* HELLASWAG: a large-scale benchmark for commonsense reasoning, focusing on selecting the most
plausible continuation of a given narrative or scene.

¢ ARC EAsY: multiple-choice science questions typically answered by students in elementary and
middle school.

B.2 METRIC

In this section, we share a detailed description of how we evaluate knowledge acquisition and knowledge
forgetting.

Knowledge Acquisition Given a language model 6, fpt represents the model extracted from a pretraining
step and serves as the initial point for continual learning, and Oy represents the model after it. The acquisition
metric A(6) for the model 6 is defined as Equation E} When given a corpus set of once setting W, each
instance in a corpus w; has a corresponding set of probes P,,, which contains 15 different probes. To
calculate the performance of the once setting, Konce (f), we compute the average log probability ¢(p;;6) of the
target span for each probe p; € P,,, across all instances in w; € Wopee and sum these averages. The same
calculation is performed for the paraphrase setting. The total performance () is calculated by the weighted
average of Konce () and Kpara (). Finally, the acquisition metric A(#) is defined as the improvement rate in
performance K(6) from the initial model state fpy to final model state Ocy .

1 1 1 1
’Conce(e)—m Z m Z U(pi; 0); ’Cpara(g)—m Z W Z U(pi; 0)

w; € Wonce pi€Pu, Wi €Wy | VP pi€Py,
_ |Wonce| X ’Conce(o) + |Wpara| X ICpara(e) . K:(GCL) - K:(HPT)

K(6 :
( ) |Wonce| + |Wpara| ,C(GPT)

A(0) =
)

Knowledge Forgetting The forgetting metric F () is calculated as the average performance degradation
from the initial model fpr to the final model fcr, across six downstream tasks 7: SciQ (Welbl et al.,
2017), Winograde (Sakaguchi et al., 2021}, PIQA (Bisk et al.l [2020), OBQA (Mihaylov et al.| |2018),
HellaSwag (Zellers et al.,[2019), and ARC Easy (Clark et al., 2018).

o 1 - . _ _P(GCL) — P(GPT)
PO) = 7 Zﬂ T FO) == (5)
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Figure 13: (a) Rates of knowledge acquisition .A(6) and forgetting 7 (6) (b) End performance of
and downstream task P () of Pubmed(solid line) and C4(dotted line) corpus across different
model states. The x-axis represents the initial model state used for continual training.

B.3 FREQUENCY OF KNOWLEDGE INJECTIONS

We divide the experiment into two settings: the once setting, where knowledge is injected a single time, and
the paraphrase setting, where knowledge is injected ten times using ten paraphrased paragraphs. Figure|[TT]
presents knowledge acquisition results based on the frequency of injections. Knowledge acquisition and final
performance generally follow similar trends in both settings, with models in the later stages of pretraining
showing the lowest performance. However, the performance and acquisition rate of once setting lag behind
those of paraphrase setting. Also, notably, for models in the final stage of pretraining, the acquisition rate in
the once setting was negative. This indicates that the log probability of the injected knowledge decreased,
preventing successful incorporation of the new knowledge. In other words, even the knowledge injected
during continual learning is subject to forgetting throughout the continual learning process.
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B.4 KNOWLEDGE ACQUISITION & FORGETTING
B.4.1 BASELINE SETUP

Our base experiments are conducted using a hyperparameter configuration most closely aligned with continual
knowledge learning studies, specifically with a batch size of 128, a learning rate of 4e-4, while training
single-epoch of PubMed corpus. We use adamW optimizer (5 = 0.9, 0.95, weight decay= 0.1), cosine LR
scheduler with warmup=0.05, and set maximum sequence length as 1024. We randomly selected 204,800
instances from the PubMed and C4 datasets and matched the sequence length to 1,024 tokens by concatenating
instances. This resulted in a training dataset consisting of approximately 210 million tokens.

As analyzed in Section[4.2] final performance generally deteriorates as later-stage models are utilized as the
initial model. Figure[I2]illustrates the model’s initial performance before continual learning, as well as its
performance afterward. Models in the later stages of pretraining exhibit superior language modeling abilities
before continual learning, as evidenced by the lower log probability for the newly injected knowledge (dotted
line). However, after continual learning, their performance deteriorates compared to models from the earlier
stages of pretraining (solid line). Similarly, the downstream task performance of the later-stage models was
better initially, but after continual learning, their performance declined more than that of the earlier-stage
models.

B.4.2 VARIOUS SETTINGS

We observed consistently, even with altered hyperparameter settings, that models in the later stages of
pretraining struggle to learn new knowledge and retain existing knowledge.

Training Dataset for Continual Knowledge Learning To investigate how the type of new knowledge
affects performance, we further conducted experiments using the C4 corpus, which has a distribution more
similar to the pretraining corpus, Dolma, compared to PubMed. Figure[[3a]indicates that the gap in acquisition
rate between later-stage models and initial-stage models is larger when the new knowledge distribution differs
significantly from the pretraining corpus: models trained with PubMed (-6.4%p) exhibit a more pronounced
gap compared to those trained with C4 (-3.4%p).

All models, regardless of their pretraining stage, tend to perform better when continually pretrained with
PubMed compared to C4. We hypothesize that this is because PubMed’s different distribution from the
pretraining corpus encourages the model to learn more new knowledge, enhancing its ability to acquire new
information. However, the rate of improvement varies by model state. Later-stage models tend to show
similar performance regardless of the type of new knowledge, suggesting a limit in their learning capacity. In
contrast, initial-stage models exhibit a stronger ability to acquire knowledge when trained on a corpus with a
different distribution, such as PubMed, demonstrating their greater adaptability in learning new and diverse
information.

Model Size To test the universal deterioration of knowledge acquisition and retention capabilities, we also
experimented with the OLMo 7B model (Groeneveld et al.[(2024). In Figure@ the 7B model exhibits a
clear trend of diminishing knowledge acquisition .A(6) capabilities as pretraining progresses. This decline
is accompanied by an increase in forgetting F(6), indicating that the model struggles to retain previously
learned information as new data is introduced.

Batch Size In Table|l|line (b), when the batch size is large, the influence of individual data points on the
model update decreases, resulting in a lower acquisition rate, while forgetting is less pronounced. In the later
stages of training, however, if sufficient learning rate warmup is not provided, the model appears to collapse.
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A0) 1 F(0) )

Pretraining Stepof 6 | 118k 369k 554k 738k | 118k 369k 554k 738k
(a) Baseline 252 248 214 188 | 105 129 170 195
(b) BS :128 — 2048 8.9 7.8 1.0 922 22 35 55 449
(©)Ir: 4e-4 — le-3 173 157 107 50| 167 203 23.0 235
(@) Ir: 4e-4 — le-4 21.6 230 237 226 2.4 32 4.6 7.3
(e)ep:1—=3 28.8 280 259 245 | 148 174 201 231

Table 1: Knowledge Acquisition A(0)[%] and Forgetting F(0)[%] across different Continual Learning
hyperparameters.

| K@) 1 PO) 1
Pretraining Step of 0 118k 369k 554k 738k | 118k 369k 554k 738k
(a) Baseline -0.281 -0.280 -0.293 -0.301 | 540 546 528 520

(b) BS :128 — 2048 | -0.342 -0.344 -0.368 -0.714 | 59.0 605 60.1 356
(c)Ir: 4e-4 — 1e-3 -0.310 -0.314 -0.332 -0353 | 503 499 49.0 494
(d)Ir: 4e-4 — le-4 | -0.294 -0.287 -0.284 -0.287 | 589 60.7 60.6 599
(e)ep:1—=3 -0.267 -0.268 -0.276 -0.280 | 514 51.7 508 49.7

Table 2: Probe Performance K(6) and average performance on six downstream task P (¢) across different
Continual Learning hyperparameters.

Learning Rate In Table[I|line (c), when the learning rate is increased, not only is the acquisition rate lower
but forgetting becomes more pronounced. Conversely, when the learning rate is very small (in line (d)), the
models in the late stage show improved acquisition performance with the least gap compared with initial
models, but still perform worse than the mid-stage model.

Epoch In Table|l|line (e), as the number of epochs increases, leading to more repetitions, acquisition
improves with the cost of more forgetting.

B.5 TRAINING DYNAMICS OF PYTHIA

Figure[14]shows the training dynamics of PythiaBiderman et al|(2023) 1.4B and OLMo 1B. We observe
that the overall training dynamics of Pythia and OLMo are similar. However, Pythia tends to conclude early
in training, using only 10% of training tokens compared to OLMo. As a result, Pythia struggles to capture
the full dynamics of the language model during pretraining. This is because models in the early stage of
training are still influenced by a large portion of randomly initialized parameters, which leads to different
behavior compared to models that have undergone more training steps and reached a stable state. For OLMo,
based on our analysis, we assume the model reaches a stable point around 118k steps (15% of the training
dataset). However, Pythia’s final step occurs before this stable point, causing its trend to resemble that of
OLMo but deviate from the trend observed in Section ] where knowledge acquisition improves until the
stable point and then decreases. We hypothesize that previous studies using intermediate checkpoints during
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Figure 14: Knowledge Entropy and Rates of knowledge acquisition .A(6) of OLMo 1B and Pythia 1.4B
model across different pretraining stages
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Figure 15: (a) Rates of knowledge acquisition .A(6) and forgetting 7 (6) (b) End performance of
and downstream task P(0) after training with varying p (x-axis) while ¢ is fixed as 1.

pretraining (Chang et al.l 2024} Sun & Dredze} 2024)) also only measured with OLMo without Pythia for the
same reason.

B.6 RESUSCITATION EXPERIMENT: VARYING p WHILE FIXING ¢

Figure [I5] shows the overall performance when ¢ was fixed at 1, meaning that the lowest p% of coefficients
were scaled to converge toward the layer’s mean. It is shown that increasing p to activate a larger portion of
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Figure 16: (a) Rates of knowledge acquisition .A(6) and forgetting 7 (6) (b) End performance of

and downstream task P (6) of original continual learning (dotted line) and resuscitation (solid
line) method where p is fixed as 50 and q as 2, across different model states. The x-axis represents the initial
model state used for continual training.
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Figure 17: (a) Rates of knowledge acquisition .A(6) and forgetting 7 (6) (b) End performance of
and downstream task P(6) of model from 369k steps (solid line) in pretraining schedule and
554k (dotted line) when varying the amplifying factor ¢ (x-axis) while p is fixed as 50.

inactive parameters generally led to improved performance. However, interestingly, setting p too high(e.g.,
at 90) negatively impacted performance, likely due to the unintended effect of reducing the parameters in
already active regions.

B.7 RESUSCITATION EXPERIMENT ACROSS PRETRAINING STEPS

Figure [I6a]illustrates the overall performance when ¢ was fixed to 2 and p to 50, across different pretraining
stages of the original model. The effect of the resuscitation method becomes more pronounced as the original
model progresses to later stages of pretraining, as indicated by the transition from the dotted line to the
solid line. We hypothesize that this is because late-stage models tend to rely on a smaller subset of memory
sources and thus benefit from a broader scope of activation enabled by the resuscitation method. As shown in
Figure[T6b] end performance deteriorates when the beginning model is initial (118k) and mid (369k) stage
model, indicating that resuscitation may impair performance when the model’s knowledge entropy is not
sufficiently low. This trend of the resuscitation showing a more positive effect for models in the later stage
of pretraining can also be seen in Figure[I7] which shows the results when varying ¢ while fixing p at 50:
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Figure 18: (a) Rates of knowledge acquisition .A(¢) and forgetting 7 () (b) End performance of

and downstream task P(6) when resuscitation is applied at attention layers, with the x-axis
representing temperature. The dotted line indicates performance when resuscitation is applied to the feed-
forward layer with p=50, g=2. The dashed line represents the original performance without any resuscitation.

performance deteriorates when running continual learning on the model from 369k, while improvement of
performance with larger ¢ is observed when the model is from 554k.

B.8 RESUSCITATION EXPERIMENT ACROSS ATTENTION LAYERS

In Figure[3] we observe that as pretraining progresses, not only knowledge entropy but also attention entropy
decreases. We explore whether extending the resuscitation method to the attention layers could similarly
improve knowledge acquisition and retention. For the feed-forward layer, we can adjust knowledge entropy
by tuning the parameters at positions with low activation values. However, since attention entropy reflects the
probability distribution over token positions, the same resuscitation method cannot be directly applied to the
attention layers. To artificially increase attention entropy, we employed temperature scaling on the softmax
function in the attention calculation, which reduces the sparsity of the probability distribution.

We experimented with temperature values ranging from 1.5 to 3.0. Figure[I8]shows that resuscitation in the
feed-forward layer consistently results in the highest knowledge acquisition rate and generally leads to the best
knowledge retention. This trend is observed in both knowledge probe results and downstream performance.
These findings suggest that knowledge entropy plays a critical role in influencing both knowledge acquisition
and forgetting, thereby driving the observed differences in performance.
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