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ABSTRACT

We revisit the well-studied problem of approximating a matrix product, ATB,
based on small space sketches S(A) and S(B) of A ∈ Rn×d and B ∈ Rn×m. We
are interested in the setting where the sketches must be computed independently
of each other, except for the use of a shared random seed. We prove that, when A
and B are sparse, methods based on coordinated random sampling can outperform
classical linear sketching approaches, like Johnson-Lindenstrauss Projection or
CountSketch. For example, to obtain Frobenius norm error ϵ∥A∥F ∥B∥F , coor-
dinated sampling requires sketches of size O(s/ϵ2) when A and B have at most
s ≤ d,m non-zeros per row. In contrast, linear sketching leads to sketches of size
O(d/ϵ2) and O(m/ϵ2) for A and B. We empirically evaluate our approach on
two applications: 1) distributed linear regression in databases, a problem motivated
by tasks like dataset discovery and augmentation, and 2) approximating atten-
tion matrices in transformer-based language models. In both cases, our sampling
algorithms yield an order of magnitude improvement over linear sketching.

1 INTRODUCTION

Over the past 20 years, sketching and sampling methods have emerged as powerful tools for solv-
ing massive linear algebraic problems that arise in machine learning, data science, and scientific
computing (Woodruff, 2014; Drineas & Mahoney, 2016; Martinsson & Tropp, 2020). Matrix and
vector sketching has also been widely applied in federated learning (Rothchild et al., 2020; Konečný
et al., 2020), distributed learning (Jiang et al., 2018), and beyond (Cohen et al., 2015a). One of the
most fundamental problems where randomization has found success is matrix-matrix multiplication:
we are given A ∈ Rn×d and B ∈ Rn×m and hope to compute an approximation to the product
ATB ∈ Rd×m. Naively, it takes O(dnm) time to compute ATB exactly, or a bit less if fast (rectan-
gular) matrix multiplication methods are used (Le Gall, 2012). We are also interested in minimizing
communication costs: when A and B are stored in separate machines, computing ATB requires
communicating at least O(d · min(n,m)) numbers (either all of A or all of B). We explore the
question of whether this bound can be improved.

In particular, we consider solving matrix-matrix multiplication in the widely studied sketching setting
(Nelson & Nguyen, 2013). The goal is to compute small space sketches S(A) and S(B), from which
the matrix product can be approximated using some routine F(S(A),S(B)) ≈ ATB. Ideally, S(A)
and S(B) should be much smaller than the space required to store A and B – i.e. smaller than O(dn)
and O(nm) space for dense matrices, or smaller than O(nnz(A)) and O(nnz(B)) space when the
matrices are sparse with nnz denoting the number of non-zeros. This reduction in size allows the
sketches to be processed, stored, and communicated with less cost than the original matrices.

We emphasize that, in the sketching setting, while S(A) and S(B) can be computed using a shared
source of random bits (e.g., for constructing hash functions), no additional communication is allowed
between the processes computing S(A) and S(B). This restriction is crucial in settings where
communication between processes is expensive, slow, or impossible, as is often the case in distributed
systems, or in applications where A and B are processed at different times. Moreover, the restriction
is critical in applications that require repeated matrix multiplications. For example, if we want to
approximate A1TB, . . . ,AqTB for a set of matrices A1, . . . ,Aq using the same sketch S(B), that
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sketch cannot be tailored to any one particular Ai. We further discuss applications of matrix-product
sketching to central problems like dataset discovery and multi-vector retrieval in Section 1.4.

1.1 PRIOR WORK

The best existing sketching methods for matrix product approximation are based on linear sketches
that compress A and B via multiplication by a random matrix generated with a shared random seed.
In particular, below we state a seminal result of Sarlós that was later refined and generalized (see
Cohen et al. (2016) or Woodruff (2014) for more detailed discussions).

Fact 1 ((Sarlós, 2006; Kane & Nelson, 2014; Cohen et al., 2016)). Let Π ∈ Rk×n be a scaled
random Gaussian matrix, random sign matrix, CountSketch matrix (Charikar et al., 2002), or any
of a variety of other randomized linear embeddings. If k = O

(
1

ϵ2δ

)
, then with probability at least

1− δ,

∥(ΠA)T (ΠB)−ATB∥F ≤ ϵ∥A∥F ∥B∥F .

ΠA ∈ Rk×d and ΠB ∈ Rk×m are sketches of size O(d/ϵ2δ) and O(m/ϵ2δ) respectively. For
dense matrices, these sketches are smaller than A and B, respectively, whenever 1

ϵ2δ < n.

The above result can be strengthened if additional assumptions are made on A and B. For example,
a tighter bound is possible if the matrices are low-rank or nearly low rank (Cohen et al., 2016).
However, if no additional assumptions are made on the matrices’ spectra, then Fact 1 is the best result
known.

1.2 SAMPLING BASED MATRIX PRODUCT APPROXIMATION

Our goal is to devise an alternative approach to matrix product sketching that improves on Fact 1 in
the important setting where A and B are sparse, providing better sketches even for dense matrices.
To do so, we build on another classical approach for using randomization to speed up matrix-matrix
multiplication: subsampling. A seminal paper by Drineas, Kannan, and Mahoney (Drineas & Kannan,
2001; Drineas et al., 2006a) proves that it is possible to sample and reweight O(1/ϵ2δ) rows of
A and B so that the product of the subsampled matrices Ã and B̃ satisfies ∥ÃT B̃ − ATB∥F ≤
ϵ∥A∥F ∥B∥F , with probability at least 1− δ.

Notably, this approximation guarantee exactly matches Fact 1. However, since Ã and B̃ consist of a
subsample of rows from A and B, they can be much more compact to store than ΠA and ΠB. For
example, if A and B have at most s non-zeros per row, Ã and B̃ take O(s/ϵ2) space to store, instead
of O(d/ϵ2) and O(m/ϵ2), respectively.

Importantly, however, the row subsamples Ã and B̃ guaranteed by Drineas et al. (2006a) cannot
be computed in the sketching setting. The challenge is that, to obtain a theoretical accuracy bound,
rows must be sampled with non-uniform probabilities. Intuitively, if A’s ith row Ai ∈ Rd and B’s
ith row Bi ∈ Rm have large magnitude, they contribute more to the matrix product ATB, which
can be written as a sum of rank-one outerproducts: ATB =

∑n
i=1 AiB

T
i . So, high-magnitude rows

must be sampled with higher probability. The original analysis from Drineas et al. (2006a) suggests
sampling with probabilities proportional to ∼ ∥Ai∥2∥Bi∥2, where ∥x∥2 denotes the Euclidean norm
of a vector x. While these probabilities were shown to satisfy an optimal variance property, they
cannot be computed without access to both A and B, which is impossible in the sketching setting,
since the sketches S(A) and S(B) must be computed independently of each other. It can be shown
that it also suffices to use probabilities proportional to either ∼ ∥Ai∥22 or ∼ ∥Bi∥22 (so, only taking
one matrix into account), but the choice must be consistent, so the issue remains that either the
machine sketching A or the machine sketching B does not know the right probabilities.

We emphasize that this issue cannot simply be resolved by communicating probabilities between
the processes computing the matrix sketches (which would be relatively inexpensive). In partic-
ular, the applications we consider in Section 1.4 require computing all pairwise matrix products
between two sets of matrices A1, . . . ,Aq and B1, . . . ,Bp. Using a single collection of sketches
S(A1), . . . ,S(Aq),S(B1), . . . ,S(Bp). Even if probabilites could be communicated, it is not clear
what choice of probabilities should be used to make all pairs of sketches compatible.
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1.3 OUR RESULTS

Our main contribution is to show that, despite the limitations above, sampling can in fact be applied
effectively in the sketching setting by drawing on coordinated random sampling methods. Such
methods include MinHash (Broder et al., 1998; Manasse et al., 2010; Ioffe, 2010), the k-minimum
values (KMV) sketch (Beyer et al., 2007), conditional random sampling (Li et al., 2006), and
coordinated variants of PPSWOR sampling (Cohen & Kaplan, 2007; 2013). We refer the reader to
the recent survey of Cohen (2023) for a more complete review of prior work.

The idea behind coordinated sampling is to use a shared random seed to draw samples on two different
machines that are likely to contain a significant number of shared indices, even if the exact same
sampling probabilities are not used. In our setting, A’s rows will be sampled using probabilities
proportional to ∥Ai∥22 and B’s rows with probabilities proportional to ∥Bi∥22. Our samples S(A) and
S(B) are only likely to contain Ai and Bi for a shared index i (which can then be used to estimate
ATB via the sum ATB =

∑n
i=1 AiB

T
i ) if both ∥Ai∥22 and ∥Bi∥22 are large. Fortunately, it turns

out that this suffices to prove a bound equivalent to Fact 1.

Formally, we use a method for coordinated sampling without replacement called Priority Sampling
(Ohlsson, 1998; Duffield et al., 2004; 2007) to prove the following main theoretical result:
Theorem 2 (Main Result). Consider A ∈ Rn×d, B ∈ Rn×m, and any ϵ, δ ∈ (0, 1). There is a
sketching procedure (Algorithm 1) that constructs sketches S(A) and S(B) consisting of at most
k = 2/δ

ϵ2 + 1 rows from A and B, and there is a corresponding estimation procedure (Algorithm 2)
that, using the information in these sketches, returns an estimate W such that, with probability 1− δ,

∥W −ATB∥F ≤ ϵ∥A∥F ∥B∥F .

Theorem 2 matches the guarantee of the sampling method from Drineas et al. (2006a) up to a constant,
albeit our method computes S(A) and S(B) completely independently from each other. As such, we
match the state-of-the-art Fact 1 guarantee for linear sketching in the worst case, and improve on
it whenever A and B are sparse. For example, in our experiments in Section 4, we consider some
applications involving matrices with only 2% of entries in each row non-zero. For these applications,
storing a subsample of size k = O(1/δϵ2) vs. a linear sketch ΠA with height k = O(1/δϵ2)
translates to a 50x savings in space.

Priority Sampling and related methods have recently been leveraged to give new sketching procedures
for estimating inner products, which improve on linear sketching methods like Johnson-Lindenstrauss
projection for that problem (Bessa et al., 2023; Daliri et al., 2024a;b). Inner products represent a
special case of matrix products when d = m = 1. Our work significantly extends these results by
addressing general matrix multiplication. In doing so, we encounter several technical challenges, in-
cluding the fact that Priority Sampling—being a without-replacement sampling procedure—generates
non-i.i.d. row samples from A and B. We address these challenges in Section 2.

1.4 EXAMPLE APPLICATIONS

As mentioned, sketching methods are most useful in distributed computing environments, or in
settings where we wish to compute many pairs of matrix-matrix products from a fixed collection of
sketches.

Multi-vector Retrieval. One such setting arise in the “vector set search” or “multi-vector retrieval”
problem, which has received recent attention (Engels et al., 2023; Dhulipala et al., 2024). This
problem generalizes standard vector similarity search to matrices: we have a database of matrices
A1, . . . ,Aq (each representing a document or media item) and another matrix B that represents
a query. These matrices can be viewed as collections of column vectors, hence the name “vector
set search”. The goal is to find mini d(A

iTB), where d is some distance function that depends on
the matrix-matrix product AiTB. Approximate matrix-multiplication can be used to speed up the
computation of AiTB and thus, the distance computation. For example, a Johnson-Lindenstrauss
sketch is used in (Dhulipala et al., 2024). Here, the sketching setting is key: A1, . . . ,Aq are
preprocessed into sketches that are computed before the query B is issued and S(B) cannot be
chosen to depend on any particular Ai or S(Ai), as it will be used to estimate B’s matrix product
with all q matrices A1, . . . ,Aq .
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Regression-based Dataset Search. Another motivation of our work is to develop efficient methods
for dataset search and discovery, a problem that has received significant interest in recent years
Chepurko et al. (2020); Castelo et al. (2021); Liu et al. (2022); Ionescu et al. (2022).

In particular, suppose we have a data lake consisting of many datasets A1, . . . ,Aq and we want to
support queries where a user provides a data vector b and the system returns all candidate datasets
Ai that are predictive of b . I.e., for which minx ∥Aix − b∥2 is small. The sketching setting can
be used to support such queries efficiently: b is sketched by the user and is sent to the dataset
search system. It is then compared to precomputed sketches for each of A1, . . . ,Aq to approximate
minx ∥Aix− b∥2.

It turns out that this problem can be solved with a modified version of our matrix-product sketching
method. Concretely, restricting our attention to a single A ∈ Rn×d and vector b ∈ Rn, our goal is
to find x̃ which is a near minimizer of the standard least squares problem: minx ∥Ax− b∥22. The
optimal x has the form x∗ = (ATA)−1ATb, where ATA is a relatively small, d× d matrix. So,
the challenge is approximating the matrix-vector product ATb using compact sketches.

Approximating ATb directly using Theorem 2 does not suffice, as to ensure an accurate x̃, we need
small error with respect to a different norm than the standard Frobenius norm. Instead, we introduce
a variant of Algorithm 1 that collects row samples from A based on the matrix’s statistical leverage
scores. Entries from b are sampled based on their squared magnitude. Our main result is as follows:

Theorem 3 (Sketched Regression). There is a procedure that constructs sketches S(A) and S(b)
consisting of O(d/ϵ) row samples from A ∈ Rn×d and b ∈ Rn such that, using only the information
in those sketches, we can compute x̃ ∈ Rd satisfying, with probability at least 99/100,

∥Ax̃− b∥22 ≤ ∥Ax∗ − b∥22 + ϵ∥b∥22.

Sketching algorithms for regression have been studied in prior work. For the problem above, the best
existing result is based on linear sketching (e.g., Johnson-Lindenstrauss projection). Linear sketching
methods achieve the same guarantee as Theorem 3 with a sketch of size O(d2/ϵ) for A and a sketch
of size O(d/ϵ) for b (specifically, the d × O(d/ϵ) matrix ΠA and the vector Πb) Sarlós (2006);
Woodruff (2014). Theorem 3 improves on these bounds when A is sparse. In particular, if A has
s ≤ d non-zeros per row, we require a sketch of size O(sd/ϵ) for A and of size O(d/ϵ) for b.1

Theorem 3 is proven in Section 3. We remark that leverage score sampling has already been widely
applied to regression problems outside of the distributed sketching setting (Drineas et al., 2006b;
Cohen et al., 2015b; Chen & Price, 2019). It is well known that, if the rows of A and b are sampled
with probability proportional to the leverage scores of A, then a guarantee matching Theorem 3
holds as long as O(d/ϵ) samples are taken Sarlós (2006). However, standard leverage score sampling
cannot be applied in our sketching setting since A’s leverage scores cannot be used when subsampling
b. Again, this is not an issue with simply needing to communicate the scores. We want a sketch of
b that is compatible with each matrix in a collection A1, . . . ,Aq, which might have very different
leverage score distributions. This challenge necessitates both a new algorithm and a new analysis.

Our work builds on a recent line of work that uses sketching methods for efficient dataset search in
general. For example, sketching methods for estimating inner products have been applied to finding
individual columns in a datalake that are highly correlated with a given query vector b (Santos et al.,
2021; 2022; Daliri et al., 2024b). Our sketching methods for regression allow for more advanced
search queries that go beyond pairwise correlation.

1.5 NOTATION AND PRELIMINARIES

Before proceeding, we briefly review notation used throughout the paper.

Linear Algebra Notation. The ith row of a matrix A is denoted by Ai. The entry in the ith row and
jth column of A is denoted by Ai,j . For a vector x, xi denotes the ith entry. We use ∥x∥2 to denote

1Linear sketching methods actually ensure a stronger guarantee: the additive error ϵ∥b∥2 can be replaced
with the residual ϵ∥Ax∗ − b∥2, which is always smaller. In some applications, the difference is not significant.
For example, in dataset search, most matrices A will be unrelated to b, so we expect ∥Ax∗ − b∥2 ≈ ∥b∥2.
Additive error ϵ∥b∥22 should suffice to at least rule out bad candidates. However a nice question for future work
is to understand if more compact sketches can be obtained when targeting the stronger residual error guarantee.
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the standard Euclidean norm of a vector x and ∥A∥F to denote the Frobenius norm of of matrix A.
The transpose of a matrix A is denoted by AT , and the inverse of A is denoted by A−1, provided it
exists. The zero vector is denoted by 0, with dimension clear from context.

Other Notation. The expected value of a random variable X is denoted by E[X], and its variance is
denoted by Var(X). We use the notation [n] to represent the set {1, . . . , n}.

2 MATRIX PRODUCT SKETCHING WITH PRIORITY SAMPLING

Our main approach to matrix product sketching is based on subsampling. We can write any matrix
product ATB as a sum of outer-products ATB =

∑n
i=1 AiB

T
i . We will estimate this sum as∑

i∈T wiAiB
T
i where T is a small subset of {1, . . . , n} and wi is an appropriately chosen weight.

Typically T is selected via importance sampling: indices i that correspond to larger norm rows in
A or B are sampled with higher probability (Drineas et al., 2006a). The challenge in the sketching
setting is that A and B must be sampled independently from each other, without knowledge of the
other matrices row norms.

We address this issue by using a coordinated sampling technique known as Priority Sampling, which
has been widely used for subsampling data streams Duffield et al. (2007), and more recently for
subsampling vectors for inner product estimation (Daliri et al., 2024b). Pseudocode for the method
is included in Algorithm 1. To give better intuition for the method, we informally describe another
closely related algorithm called Threshold Sampling, which gives the same guarantees as Priority
Sampling for our problem, but has the disadvantage of producing a sketch whose size can only be
bounded in expectation.

Threshold Sampling works as follows: 1) using shared random bits, we select a random hash function
h : {1, . . . , n} → [0, 1] that assigns a uniformly random number between [0, 1] to any index i.2, 2)
we collect in the sketch S(A) any row Ai for which h(i) ≤ k · ∥Ai∥22/∥A∥2F , and in the sketch
S(B) any row bi for which h(i) ≤ k · ∥Bi∥22/∥B∥2F . Equivalently, Ai is sampled if the reweighted
hash value h(i)/∥Ai∥22 falls below a fixed threshold k/∥A∥2F (and likewise for Bi).

It is easy to see that each sketch contains k rows in expectation. Moreover, since we use a shared
hash function, it can be checked that, for any index i, we have that both Ai ∈ S(A) and Bi ∈ S(B)
with probability:

pi = min
(
1, k · ∥Ai∥22/∥A∥2F , k · ∥Bi∥22/∥B∥2F

)
.

Let T denote the set of indices that appear in both sketches. We return the unbiased estimate
W =

∑
i∈T

1
pi
AiB

T
i . To show that this estimate is accurate, we can follow an analysis similar

to the original paper on subsampled randomized matrix multiplication, which bounds the expected
squared error E∥W −ATB∥2F before applying Markov’s inequality (Drineas et al., 2006a). The
only difference is that we must show that it suffices to sample indices with probability proportional to
the minimum of ∥Ai∥22/∥A∥2F and ∥Bi∥22/∥B∥2F instead of the product of these numbers. Perhaps
the fact that this suffices is intuitive: for the outerproduct AiB

T
i to make a significant contribution to

ATB, neither Ai nor Bi can have small magnitude. A full analysis of Threshold Sampling is given
in Appendix B.

The method we propose, Priority Sampling, is almost identical to Threshold Sampling. However,
instead of fixing the threshold k/∥A∥2F , which leads to a random number of indices being sampled,
we dynamically set the threshold to collect exactly k samples. Doing so does not change the method
in spirit, but complicates the analysis since samples are no longer independent.

Nevertheless, drawing inspiration from a new, simple analysis of Priority Sampling for sampling
numbers from a stream (Daliri et al., 2024a), we are able to prove the following bound:

Theorem 4. Let A ∈ Rn×d, B ∈ Rn×m, and let S(A) = {IA, VA, τA} and S(B) = {IB, VB, τB}
be sketches produced by Algorithm 1 with input k and a shared seed s. Suppose W is the approximate

2In practice, h can be substituted with a pseudorandom function mapping to a large discrete subset of [0, 1].
For simplicity, we assume access to a real-valued, perfect hash function, as is standard in the literature (Cormode
et al., 2011)
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Algorithm 1 Priority Sampling

Input: Matrix A of size n× d, random seed s, number of row samples, k.
Output: Sketch S(A) = {IA, VA, τA}, where IA is a subset of row indices from {1, . . . , n} and

VA contains Ai for all i ∈ IA, τA is the threshold used to determine whether a row in IA is
selected

1: Use random seed s to select a uniformly random hash function h : {1, ..., n} → [0, 1].
2: Initialize IA and VA to be empty lists.
3: Compute rank Ri =

h(i)
∥Ai∥2

2
for all i such that Ai ̸= 0.

4: Set τA equal to the (k + 1)st smallest value Ri, or set τA = ∞ if A has < k + 1 non-zero rows.
5: for i such that Ai ̸= 0 do
6: if Ri < τA then
7: Append i to IA, append Ai to VA.
8: return S(A) = {IA, VA, τA}

Algorithm 2 Approximate Matrix Multiplication

Input: Sketches S(A) = {IA, VA, τA}, S(B) = {IB, VB, τB} constructed by Algorithm 1.
Output: Estimate W for ATB.

1: Compute T = IA ∩ IB. Note that for all i ∈ T , VA and VB contain Ai and Bi.
2: return

W =
∑
i∈T

AiB
T
i

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
.

matrix of ATB calculated using Algorithm 2 on these sketches. Then, E [W] = ATB and

E
[
∥W −ATB∥2F

]
≤ 2

k − 1
∥A∥2F ∥B∥2F .

Additionally, |IA| ≤ k and |IB| ≤ k. I.e., each sketch contains no more than k rows from A and B,
respectively. If each matrix has at least k non-zero rows, we have that |IA| = |IB| = k.

We prove Theorem 4 via Lemma 5, which is proven in Appendix A due to space limitations.

Lemma 5. Let A,B, and W be as in Theorem 4. For any x, y ∈ [d]× [m] we have:

E [Wx,y] = [ATB]x,y and E
[
(Wx,y − [ATB]x,y)

2
]
≤

n∑
i=1

A2
i,xB

2
i,y

k − 1

( ∥A∥2F
∥Ai∥22

+
∥B∥2F
∥Bi∥22

)
.

Lemma 5 gives an entrywise guarantee on the error of the approximation W, which we can then use
to give an overall bound on the Frobenius norm error. That analysis is given below.

Proof of Theorem 4. The entrywise expectation guarantee of Lemma 5 immediately gives E[W] =
ATB. We are left to bound the expected Frobenius error, which can be written as a sum over entries:

E
[
∥W −ATB∥2F

]
=

∑
x,y

E
[(
Wx,y − [ATB]x,y

)2] ≤
∑
x,y

n∑
i=1

A2
i,xB

2
i,x

k − 1

( ∥A∥2F
∥Ai∥22

+
∥B∥2F
∥Bi∥22

)

=
1

k − 1

n∑
i=1

( ∥A∥2F
∥Ai∥22

+
∥B∥2F
∥Bi∥22

) d∑
x=1

A2
i,x

m∑
y=1

B2
i,y

=
1

k − 1

n∑
i=1

( ∥A∥2F
∥Ai∥22

+
∥B∥2F
∥Bi∥22

)
∥Ai∥22∥Bi∥22

=
1

k − 1

n∑
i=1

∥A∥2F ∥Bi∥22 + ∥B∥2F ∥Ai∥22 =
2

k − 1
∥A∥2F ∥B∥2F .

With Theorem 4 in place, our main result, Theorem 2 follows as an immediate corollary:
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Proof of Theorem 2. Our main result, Theorem 2, follows as an immediate corollary of Theorem 4.
In particular, if we set k = 2/δ

ϵ2 + 1, then we have that E
[
∥W −ATB∥2F

]
≤ ϵ2δ∥A∥2F ∥B∥2F .

Applying Markov’s inequality proves the theorem.

3 SKETCHED REGRESSION

In this section, we focus on proving Theorem 3. To do so, we first prove a simpler version of the
result that, instead of just storing a subsample of rows from A in S(A), also explicitly stores the
d× d covariance matrix ATA. The pseudocode for this method is included as Algorithm 3. It leads
to a sketch of size O(d2 + ds/ϵ) when A has s non-zeros per row. We later show that the sketch can
be modified to have size O(ds/ϵ) by replacing ATA with another subsample of rows from A.

Proof of Theorem 3. Our goal is to compute a vector x̃ that approximates x∗ = (ATA)−1ATb. In
particular, we wish to obtain an upper bound on ∥Ax̃− b∥22. Observing that Ax∗ − b is orthogonal
to any vector in the column span of A, we can apply Pythagorean theorem to write:

∥Ax̃− b∥22 = ∥Ax∗ − b∥22 + ∥Ax̃−Ax∗∥22,
or equivalently:

∥Ax̃− b∥22 − ∥Ax∗ − b∥22 = ∥Ax̃−A(ATA)−1ATb∥22. (1)

We claim that the sketching and regression procedure in Algorithm 3 returns x̃ such that Ax̃ is exactly
equal to F(S(A(ATA)−1AT ),S(b)), where S(·) denotes the sketching procedure of Algorithm 1
and F(·) denotes the estimation procedure of Algorithm 2. However, it does so in an implicit way,
without every explicitly forming the large n × n and possibly dense matrix A(ATA)−1AT . If
this claim holds, then the main guarantee of Theorem 3 immediately follows. In particular, by the
guarantee of Theorem 2, as long as we choose sketch size k = O(d/ϵ), we would have:

∥Ax̃−A(ATA)−1ATb∥22 ≤ ϵ

d
∥A(ATA)−1AT ∥2F ∥b∥22 =

ϵ

d
· d∥b∥22 = ϵ∥b∥22.

Above we have used that ∥A(ATA)−1AT ∥2F = tr(A(ATA)−1ATA(ATA)−1AT ) = tr(Id) =
d. Plugging into equation 1 would then prove the theorem.

So, it is left to establish that Algorithm 3 returns x̃ such that Ax̃ is exactly equal to
F(S(A(ATA)−1AT ),S(b)). For this to be the case, it can be checked that it suffices to sim-
ply sample from A with probabilities proportional to the squared row norms in A(ATA)−1AT .
Then, multiplying the sampled rows by (ATA)−1 to produce x̃, and again by A to produce Ax̃
exactly reproduces F(S(A(ATA)−1AT ),S(b)).
The ith squared row norm of A(ATA)−1AT can be written as ∥A(ATA)−1ATei∥22, where ei
denotes the ith standard basis vector. We then have:

∥A(ATA)−1ATei∥22 = eTi A(ATA)−1ATA(ATA)−1ATei = AT
i (A

TA)−1Ai.

The quantity above is exactly equal to the ith statistical leverage score of A, which is the quantity
that Theorem 3 uses when Priority Sampling, so the claim holds. We note that, besides the naive
approach, efficient algorithms are known for more quickly computing the statistical leverage scores
of a matrix A, although our focus here is on sketch size as opposed to construction time (Mahoney
et al., 2012; Clarkson & Woodruff, 2013)

Optimized Method. The approach above immediatly gives an O(d2 + ds/ϵ) space sketch for least
squares regression when A has s-sparse rows. This already improves on the space complexity of
O(d2/ϵ) achieved by linear sketching methods. However, in settings where d is large, it would be
better to avoid a quadratic dependence on d entirely. To do so, instead of explicitly storing the d× d
matrix ATA in our sketch, we can store SA, where S ∈ Rz×d is a matrix that selects and reweights
z rows from A. Instead of returning x̃ = (ATA)−1W as in Line 6 of Algorithm 3, we would return:

x̃′ = (ATSTSA)−1W.
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Algorithm 3 Sketching for Regression (not optimized)

Input: Matrix An×d, matrix bn×1, randomness seed s, and target error ϵ.
1: Compute ℓi as the leverage score of A: ℓi = Ai(A

TA)−1AT
i .

2: Construct sketches S(A) with a target sampling size of O
(
d
ϵ

)
(rows) using Algorithm 1 with a

shared seed s. However, compute the rank (line 2 of Algorithm 1) as Ri =
h(i)
ℓi

.
3: Construct sketches S(b) with a target sampling size of O

(
d
ϵ

)
(rows) using Algorithm 1 with a

shared seed s.
Output:

(
S(A),ATA

)
, S(b)

Procedure REGRESSION
((
ATA,S(A

)
,S(b)

)
.

4: Compute Compute ℓi as the leverage score of A: ℓi = Ai(A
TA)−1AT

i for any Ai in S(A).
5: Compute T = IA ∩ Ib.
6: Compute W =

∑
i∈T

Aibi

min(1,ℓi·τA,b2
i ·τb)

.

Output: x̃ = (ATA)−1W

It is well known that there exist choices of S with m = O(d/ϵ) rows such that ATSTSA is a√
ϵ-relative error spectral approximation to ATA (Batson et al., 2012). I.e.,

(1−√
ϵ)ATA ⪯ ATSTSA ⪯ (1 +

√
ϵ)ATA and

(1−√
ϵ)(ATA)−1 ⪯ (ATSTSA)−1 ⪯ (1 +

√
ϵ)(ATA)−1,

where ⪯ denotes the Loewner order. Given the second guarantee, we can check that
∥A(ATA)−1AT −A(ATSTSA)−1AT ∥2 ≤ √

ϵ, where ∥ · ∥2 denotes the operator norm.

Now, observe that Ax̃′ = A(ATSTSA)−1ATAx̃, and thus:

∥Ax̃′ −Ax̃∥2 = ∥A(ATSTSA)−1ATAx̃−A(ATA)−1ATAx̃∥2 ≤ √
ϵ∥Ax̃∥2 ≤ 2

√
ϵ∥b∥2.

In the last step, we used that ∥Ax̃− b∥2 ≤ ϵ∥b∥2 to loosely upper bound ∥Ax̃∥2. Finally, we put
everything together. As proven earlier, ∥Ax̃−Ax∗∥2 ≤ √

ϵ∥b∥2. Applying triangle inequality, we
thus that that ∥Ax̃′ −Ax∗∥2 ≤ 3

√
ϵ∥b∥2. Applying Pythagorean theorem as before, we conclude

that ∥Ax̃′ − b∥22 ≤ ∥Ax∗ − b∥22 + 9ϵ∥b∥22. Adjusting ϵ by a constant gives the desired result.

We remark that one way of producing a matrix S satisfying the spectral approximation guarantee
above is to subsample and reweight m = O(d log d/ϵ) rows from A by leverage scores. While worse
by a log d factor than the deterministic methods given e.g. in Batson et al. (2012), the advantage of
such an approach is that we can reuse the samples used to approximate ATA when approximating
ATb, for which we also sample via leverage scores. This “single sketch” procedure is what we
implement in our experimental section.
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Figure 1: Performance of matrix product sketching over synthetic data with varying sparsity levels
(10%, 40%, and 80%). Priority sampling and threshold sampling are depicted on top of each other
and both methods outperform the JL sketch as the level of sparsity increases.

4 EXPERIMENTS

We experimentally evaluate our sampling-based matrix product sketches in a variety of settings. First,
we use synthetic data to directly compare the method to the standard linear sketching approach:
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Johnson-Lindenstrauss random project (which we denote as JL Sketch in our plots). As predicted
by our theory, the methods perform similarly for dense matrices, but our Priority Sampling method
obtains more compact sketches for sparse matrices. We also apply our method to a number of
real-world problems, including to regression tasks, as outlined in Section 3. We show that for two
popular datasets, our method can outperform over the best existing linear sketch.

Additionally, we apply our Priority Sampling method to approximating matrix multiplications that
arise in transformer-based large language models. Deploying auto regressive language models
involves performing attention decoding in an online setting, where key and value embeddings from
each transformer layer are cached to eliminate redundant computations. More precisely, during
each token generation phase, the stream of tokens is encapsulated by three matrices known as the
query (Q), key (K), and value (V) embeddings. At the heart of this process, each iteration involves
calculating the attention matrix as Att = Softmax(QKT /

√
d)V where d is the embedding

dimension. Recent studies (Hooper et al., 2024; Zirui Liu et al., 2023) have introduced methods
that apply vector quantization to the key and value embeddings, replacing the full matrices with a
quantized matrix. In this study, we employ Priority Sampling to sketch Q and K. We assess the
performance of our approach in approximating QKT compared to linear sketching techniques (see
appendix C for detailed results). Moreover, recent work Zandieh et al. (2024) introduced a quantized
JL-based method for KV cache compression, outperforming previous baselines. However, our results
show that Priority Sampling achieves even greater accuracy and efficiency, highlighting its potential
for matrix product sketching in KV cache sketching.
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Figure 2: Comparison of Regression Sketching Methods on the IMDB Dataset: The plots illustrate
the approximation error of different sketching methods across various sketch sizes. The matrix A
is generated using TF-IDF on 10,000 random reviews, keeping the top 256, 512, and 1024 features.
As the dimensionality increases, the matrices become more sparse. The matrix b represents the
sentiment scores (positivity or negativity) of the reviews.
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Figure 3: Sketched Regression Methods on the Android Review Dataset: The plots illustrate the
approximation error of different sketching methods across various sketch sizes. The matrix A is
generated using sparse transformer SPLADE (Formal et al., 2022) over 10,000 random reviews,
retaining the top 128, 256, and 512 important features. The matrix b represents the review scores.

Datasets For the task of sketched regression, we use two primary datasets. The first dataset includes
Android application reviews with user ratings, which reflect the quality of the applications (Grano
et al., 2017). The second dataset contains IMDB movie reviews, labeled as positive or negative (Maas
et al., 2011).

9



Published as a conference paper at ICLR 2025

We transform the reviews into sparse vector embeddings using TF-IDF and SPLADE (Formal et al.,
2022). Regression analysis is then performed to explore the relationship between the vectorized
reviews and their ratings (Figure 3) or sentiment labels (Figure 2).

Additionally, we evaluate our model on synthetic datasets (Figure 1) for the task of approximate
matrix multiplication ATB. The entries of the matrices A and B are generated from a Gaussian
distribution N(0, 1). However, 10% of the dataset includes outliers, with values that are 10 times
higher. The choice of 10% outliers reflects a moderate level of noise typically observed in real-world
datasets, where outliers, while not dominating the data, can still have a substantial impact on the
outcome. Testing with outliers allows us to assess the robustness of our model under such conditions.
To examine how varying the sparsity of the matrices A and B affects approximation, we modify the
number of non-zero entries. Both matrices are flattened, and we keep only a designated percentage of
entries non-zero.

Alongside these datasets, we use the (Bai et al., 2023) dataset to produce a long text prompt from
its MultiFieldQA dataset for the task of KV cache in transformers. We compare our sketch as a
quantization method for the Key to reduce cache usage (Figure 4).

Sketching Size For sampling-based sketches, it is necessary to store the indices of the sampled
rows. We account for both the size of each index and the need to store selected items in full precision.
In contrast, for linear sketches, only the output of the projected matrix ΠA needs to be stored. We
report the total number of bits required for storage across all approaches and present the relative
size of the sketches compared to the original matrices in bits, referred to as the compression ratio.
Additionally, for threshold sampling, the sketch size is not fixed due to the nature of the algorithm.
Therefore, instead of reporting the expected value, we provide the average compression ratio.

Estimation Error For the plots of matrix multiplication A and B, we report the absolute difference
between the estimated product and the true product, divided by ∥A∥F ∥B∥F . As stated in theorem 2,
this term appears on the right-hand side of the accuracy guarantee for approximate matrix multipli-
cation. For all plots regarding the regression between A and b, we report the absolute difference
between the estimated value and the true value, divided by ∥b∥2.

Interpretation of Experimental Results As we can see, for both the tasks of matrix multiplication
(Figure 1, Figure 4) and sketched regression (Figure 2, Figure 3), we have observed that as the
matrices become sparser, our method improves over the best-known linear sketching methods. Even
though our method needs to allocate some of its budget to store indices, it still outperforms JL
methods.
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Figure 4: Comparison of KV Cache Sketching Methods on the LongBench for MultiFieldQA:
The plots show the accuracy of different sketching methods approximating QKT across various
sketch sizes. The matrices Q and K are generated from prompt tokens, and the approximation errors
are displayed. Layers refer to the individual layers (hidden layers) of the Transformer architecture in
the LLaMA 2 model (meta-llama/Llama-2-7b-chat-hf).
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A SUPPORTING PROOFS

We begin by proving Lemma 5, which was the key result used in proving our main matrix product
sketching result.

Proof of Lemma 5. For any x, y ∈ [d]× [m] we can write the x, y entry of our estimate W as:

Wx,y =
∑
i∈T

Ai,xBi,y

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
.

Recall that we aim to prove the following:

E [Wx,y] =
[
ATB

]
x,y

and E[(Wx,y −
[
ATB

]
x,y

)2] ≤
n∑

i=1

A2
i,xB

2
i,y

k − 1

( ∥A∥2F
∥Ai∥22

+
∥B∥2F
∥Bi∥22

)
.

For any i, let 1 be a 0-1 indicator random variable for the event that index i is selected for both S(A)
and S(B). I.e., for the event that i ∈ T .

For any i ∈ [n], let τ iA denote the kth smallest value of h(j)/∥Aj∥22 over all j ∈ [n] \ {i}. If [n] \ {i}
has fewer than k values, define τ ia = ∞. Define τ iB analogously. The probability that i ∈ T =
IA ∩ IB conditioned on τ i(A) and τ i(B) is equal to the probability that both h(i)/∥Ai∥22 ≤ τ iA
and h(i)/∥Bi∥22 ≤ τ iB. I.e., the conditional probability is equal to min(1, ∥Ai∥22 · τ iA, ∥Bi∥22 · τ iB).
Additionally, observe that, for all sampled i ∈ T = IA ∩ IB, τ iA = τA and τ iB = τB. So, we have:

E
[

Ai,xBi,y

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
1i

]
= Eτ i

A,τ i
B

[
Ai,xBi,y

min(1, ∥Ai∥22 · τ iA, ∥Bi∥22 · τ iB)
· Pr

[
i ∈ T | τ iA, τ iB

]]
= Ai,xBi,y.

By linearity of expectation, it follows that E [Wx,y] =
∑n

i=1 E
[

Ai,xBi,y

min(1,∥Ai∥2
2·τ i

A,∥Bi∥2
2·τ i

B)
1i

]
=∑n

i=1 Ai,xBi,y =
[
ATB

]
x,y

, as desired.

The next step is to bound the expected squared error. As mentioned earlier, this is made difficult by
the fact that 1i and 1j are not independent random variables. Fortunately, however, we can show
that appropriate (random) scalings of these random variables are uncorrelated, a technique that is
standard in prior analyses of priority sampling for other problems.

In particular, define pi = min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB) and define τ i,jA to be the (k − 1)st

smallest value among h(k)
∥Ak∥2

for all k ∈ [n] \ {i, j}. Define τ i,jB analogously. We can see that

Pr[i, j ∈ T | τ i,jA , τ i,jB ] = min(1, ∥Ai∥22 · τ i,jA , ∥Bi∥22 · τ i,jB ) · min(1, ∥Aj∥22 · τ i,jA , ∥Bj∥22 · τ i,jB ).
Moreover, conditioned on i, j ∈ T , we have that τ i,j(A) = τ(A) and τ i,j(B) = τ(B). So, in
particular, conditioned on i, j ∈ T , pi = min(1, ∥Ai∥22 · τ i,jA , ∥Bi∥22 · τ i,jB ).

E
[
1i

pi

1j

pj

]
= Eτ i,j

A ,τ i,j
B

[
1

min(1, ∥Ai∥22 · τ i,jA , ∥Bi∥22 · τ i,jB )

1

min(1, ∥Aj∥22 · τ i,jA , ∥Bj∥22 · τ i,jB )

· Pr
[
i, j ∈ T | τ i,jA , τ i,jB

] ]

= 1 = E
[
1i

pi

]
E
[
1j

pj

]
.
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Since the random variables 1i

pi
and 1j

pj
are pairwise uncorrelated for all i, j, we have that Ai,xBi,y · 1i

pi

and Aj,xBj,y · 1j

pj
are pairwise uncorrelated as well. So, we can apply the linearity of variance to

conclude:

E[(Wx,y −
[
ATB

]
x,y

)2] = Var[Wx,y] = Var

[
n∑

i=1

Ai,xBi,y

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
· 1i

]

=

n∑
i=1

Var

[
Ai,xBi,y

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
· 1i

]
.

So, it suffices to establish individual bounds on Var
[

Ai,xBi,y

min(1,∥Ai∥2
2·τA,∥Bi∥2

2·τB)
· 1i

]
. In order to do

so, first observe that, conditioned on τ iA, τ iB,

E

[(
Ai,xBi,y

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
· 1i

)2

| τ iA, τ iB

]

=

(
Ai,xBi,y

min(1, ∥Ai∥22 · τ iA, ∥Bi∥22 · τ iB)

)2

·min(1, ∥Ai∥22 · τ iA, ∥Bi∥22 · τ iB)

=
A2

i,xB
2
i,y

min(1, ∥Ai∥22 · τ iA, ∥Bi∥22 · τ iB)
= A2

i,xB
2
i,y ·max

(
1,

1

∥Ai∥22 · τ iA
,

1

∥Bi∥22 · τ iB

)
.

We can thus write:

Var

[
Ai,xBi,y

min(1, ∥Ai∥22 · τA, ∥Bi∥22 · τB)
· 1i

]
= A2

i,xB
2
i,y · E

[
max

(
1,

1

∥Ai∥22 · τ iA
,

1

∥Bi∥22 · τ iB

)]
−A2

i,xB
2
i,y

= A2
i,xB

2
i,y · E

[
max

(
0,

1

∥Ai∥22 · τ iA
− 1,

1

∥Bi∥22 · τ iB
− 1

)]
≤ A2

i,xB
2
i,y · E

[
max

(
1

∥Ai∥22 · τ iA
,

1

∥Bi∥22 · τ iB

)]
≤ A2

i,xB
2
i,y · E

[
1

∥Ai∥22 · τ iA

]
+A2

i,xB
2
i,y · E

[
1

∥Bi∥22 · τ iB

]
=

A2
i,xB

2
i,y

∥Ai∥22
· E

[
1

τ iA

]
+

A2
i,xB

2
i,y

∥Bi∥22
· E

[
1

τ iB

]
.

We can apply Claim 5 from Daliri et al. (2024a) to bound E
[

1
τ i
A

]
≤ ∥A∥2

F

k−1 and E
[

1
τ i
B

]
≤ ∥B∥2

F

k−1 . So
we have:

E[(Wx,y −
[
ATB

]
x,y

)2] ≤
n∑

i=1

A2
i,xB

2
i,y

∥Ai∥22
· E

[
1

τ iA

]
+

A2
i,xB

2
i,y

∥Bi∥22
· E

[
1

τ iB
)

]

≤
n∑

i=1

A2
i,xB

2
i,y

∥Ai∥22
· ∥A∥2F
k − 1

+
A2

i,xB
2
i,y

∥Bi∥22
· ∥B∥2F
k − 1

=

n∑
i=1

A2
i,xB

2
i,y

k − 1
·
( ∥A∥2F
∥Ai∥22

+
∥B∥2F
∥Bi∥22

)
,

as desired.

B MATRIX PRODUCT SKETCHING WITH THRESHOLD SAMPLING

We motivated our Priority Sampling method from Section 2 via a simpler matrix sketching method
based on Threshold Sampling. We include a full analysis of this method here for pedagogical purposes,
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since the method is much easier to analysis. However, in general, we believe that Priority Sampling
is preferable since it offers a fixed size sketch. In terms of accuracy, recent work on inner product
sketching finds that both methods perform nearly identically to each other (Daliri et al., 2024b).
Experiments suggest the same is true for general matrix-matrix product sketching.

Sketching. As discussed, Threshold Sampling uses a shared hash function h : [n] → [0, 1], which
is assumed to be uniformly random. As shown in the pseudocode in Algorithm 4, the method selects
all rows from A for which h(i)/∥Ai∥22 falls below a fixed “global threshold”, τA = k/∥A∥2F . Here,
k is a parameter that determines the size of the sketch S(A) produced by Algorithm 4. There will be
at most k rows selected in expectation, but the exact number depends on the random choice of h.

Algorithm 4 Threshold Sampling

Input: Matrix A of size n× d, random seed s, target number of row samples, k.
Output: Sketch S(A) = {IA, VA, τA}, where IA is a subset of row indices from {1, . . . , n} and

VA contains Ai for all i ∈ IA.
1: Use random seed s to select a uniformly random hash function h : {1, ..., n} → [0, 1].
2: Initialize IA and VA to be empty lists.
3: for i ∈ 1, . . . , n do
4: Set threshold τi = k · ∥Ai∥2

2

∥A∥2
F

.
5: if h(i) ≤ τi then
6: Append i to IA, append Ai to VA.
7: return S(A) = {IA, VA, τA} where τA = k/∥A∥2F .

Estimation. Similar to Priority Sampling, after constructing our sketches S(A) and S(B), we
approximate the matrix product of A and B by computing a weighted sum of outerproducts of
rows included in both S(A) and S(B). In fact, we can use the exact same procedure defined in
Algorithm 2 from Section 2.

Unlike Priority Sampling, Threshold Sampling ensures that the probability of sampling any given
row Ai is an independent random event. There is no dependence on the event that another row j
gets sampled. In particular, we can easily compute the probability of index i being included in both
sketches S(A) and S(B). It is exactly equal to pi = min

(
1, k · ∥Ai∥2

2

∥A∥2
F
, k · ∥Bi∥2

2

∥B∥2
F

)
.

Guarantees. Our primary theoretical guarantee for Threshold Sampling can be stated as follows:
Theorem 6. Let A ∈ Rn×d, B ∈ Rn×m, and let S(A) = {IA, VA, τA} and S(B) = {IB, VB, τB}
be sketches produced by Algorithm 4 with input k and a shared seed s. Suppose W is the approximate
matrix of ATB calculated using Algorithm 2 on these sketches. Then, E [W] = ATB and

E
[
∥W −ATB∥2F

]
≤ 2

k
∥A∥2F ∥B∥2F .

Additionally, E [|IA|] ≤ k and E [|IB|] ≤ k. I.e., each sketch contains no more than k row indices in
expectation.

Theorem 6 essentially matches Theorem 4, although is actually a bit tighter, as the 2/(k−1) prefactor
is replaced with 2/k. The only disadvantage of the theorem is that we do not have a fixed upper
bound on |IA| and |IB|, which are equal to the number of rows sampled from A and B, respectively.
We also remark that, as for Theorem 4, Theorem 6 an be combined with Markov’s inequality to give
a high probability bound: if we set k = 2/δ

ϵ2 then we achieve error ∥W −ATB∥F ≤ ϵ∥A∥F ∥B∥F
with probability 1− δ.

Proof of Theorem 6. Let 1i denote the indicator random variable for the event that i is included
in both IA and IB. 1i = 1 if this event occurs and 0 if it does not. Note that, for i ̸= j, 1i is
independent from 1j , since the hash values h(i) and h(j) are drawn uniformly and independently
from [0, 1]. Moreover, we claim that 1i is equal to 1 with probability:

pi = min

(
1,

k · ∥Ai∥22
∥A∥2F

,
k · ∥Bi∥22
∥B∥2F

)
= min(1, τA · ∥Ai∥22, τB · ∥Bi∥22). (2)
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This is because for index i to be included in both IA and IB, h(i) must be less than both
∥Ai∥22/∥A∥2F and ∥Bi∥22/∥B∥2F simultaneously (see line 3 of Algorithm 4). Given the probability
of sampling each item, we can find the expectation of the approximation W.

E[W] =

n∑
i=1

pi ·
AiB

T
i

pi
=

n∑
i=1

AiB
T
i = ATB. (3)

This proves the desired claim on the expection of W. It is left to bound the E
[
∥W −ATB∥2F

]
.

We do so by bounding the squared error of each entry in W separately. In particular, for the x, y
entry, we write:

E
[(
Wx,y − [ATB]x,y

)2]
= Var [Wx,y] = Var

[
n∑

i=1

1i
Ai,xBi,y

pi

]
=

n∑
i=1

Var

[
1i

Ai,xBi,y

pi

]
.

Above we use the fact that 11, . . . ,1n are independent to apply linearity of variance. Let H denote
the the set of all i for which pi ̸= 0 and pi ̸= 1. Using that Var[1i] = pi(1− pi), we have:

E
[(
Wx,y − [ATB]x,y

)2]
=

∑
i∈H

A2
i,xB

2
i,y

p2i
· pi(1− pi) ≤

∑
i∈H

A2
i,xB

2
i,y

pi
.

So we can bound E
[
∥W −ATB∥2F

]
by:

E
[
∥W −ATB∥2F

]
=

d∑
x=1

m∑
y=1

E
[(
Wx,y − [ATB]x,y

)2]

≤
d∑

x=1

m∑
y=1

∑
i∈H

A2
i,x ·B2

i,y

pi
=

∑
i∈H

1

pi

d∑
x=1

A2
i,x

m∑
y=1

B2
i,y

=
∑
i∈H

1

pi
∥Ai∥22∥Bi∥22 =

∑
i∈H

∥Bi∥22 · ∥Ai∥22
min

(
k·∥Ai∥2

2

∥A∥2
F

,
k·∥Bi∥2

2

∥B∥2
F

) .
Recall that we defined pi = min

(
1,

k·∥Ai∥2
2

∥A∥2
F

,
k·∥Bi∥2

2

∥B∥2
F

)
, so in the last step, we have used the fact that

pi ̸= 1 for i ∈ H. Continuing, we can bound:

E
[
∥W −ATB∥2F

]
≤

∑
i∈H

∥A∥2F ∥B∥2F
∥Bi∥2

2

∥B∥2
F
· ∥Ai∥2

2

∥A∥2
F

min
(

k·∥Ai∥2
2

∥A∥2
F

,
k·∥Bi∥2

2

∥B∥2
F

)
≤

∑
i∈H

∥A∥2F ∥B∥2F
max(∥Ai∥22/∥A∥2F , ∥Bi∥22/∥B∥2F )

k

≤ ∥A∥2F ∥B∥2F
k

∑
i∈H

∥Ai∥22
∥A∥2F

+
∥Bi∥22
∥B∥2F

≤ 2

k
∥B∥2F ∥A∥2F .

In the second to last step, we upper bounded the maximum but the sum.

C FURTHER EXPERIMENTS ON ATTENTION MODELS

One key reason for not sketching the Query matrix in this application is that it is not quantized, unlike
the Key and Value matrices. This means there is no need to apply sketching techniques to the Query
matrix, as it is recalculated for each input token and does not benefit from compression methods used
on more static, larger matrices. An important advantage of using the sampling method is that it allows
selective sketching of matrices that are both large and have a static or slow-changing nature, such as
the Key matrix. In contrast, linear sketching requires projecting both the Query and Key matrices,
regardless of their size or dynamism. In our experiments, we had access to the entire Queries matrix
while we applied Priority Sampling to sketch the considerably larger Key matrix. This approach
effectively demonstrates the efficiency of sampling in handling large-scale data while preserving the
dynamic properties of the Query matrix in real-time applications.
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Figure 5: Comparison of KV Cache Sketching Methods on the LongBench for MultiFieldQA:
The plots illustrate the accuracy of various sketching methods in approximating QKT across different
sketch sizes. The Query matrix remains untouched, and only the Key matrices K are sketched using
Priority Sampling and Threshold Sampling, whereas the JL sketch requires the projection of both
matrices Q,K. Layers refer to the individual layers (hidden layers) of the Transformer architecture
in the LLaMA 2 model.
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