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ABSTRACT

The availability of vast protein sequence information and rich functional annota-
tions thereof has a large potential for protein design applications in biomedicine
and synthetic biology. To this date, there exists no method for the general-purpose
design of proteins without any prior knowledge about the protein of interest, such
as costly and rare structure information or seed sequence fragments. However,
the Gene Ontology (GO) database provides information about the hierarchical or-
ganisation of protein functions, and thus could inform generative models about
the underlying complex sequence-function relationships, replacing the need for
structural data. We therefore propose to use conditional generative adversarial
networks (cGANs) on the task of fast de novo hierarchical multi-label protein de-
sign. We generate protein sequences exhibiting properties of a large set of molec-
ular functions extracted from the GO database, using a single model and without
any prior information. We shed light on efficient conditioning mechanisms and
adapted network architectures thanks to a thorough hyperparameter selection pro-
cess and analysis. We further provide statistically- and biologically-driven eval-
uation measures for generative models in the context of protein design to assess
the quality of the generated sequences and facilitate progress in the field. We
show that our proposed model, ProteoGAN, outperforms several baselines when
designing proteins given a functional label and generates well-formed sequences.

1 INTRODUCTION

Designing proteins with a target biological function is an important task in biotechnology with high-
impact implications in pharmaceutical research, such as in drug design or synthetic biology (Huang
et al., 2016). However, the task is challenging since the sequence-structure-function relationship
of proteins is extremely complex and not yet understood (Dill & MacCallum, 2012). Functional
protein design is currently done by traditional methods such as directed evolution (Arnold, 1998),
which rely on a few random mutations of known proteins and selective pressure to explore a space
of related proteins. However, this process can be time-consuming and cost-intensive, and most of-
ten only explores a small part of the sequence space. In parallel, data characterizing proteins and
their functions is readily available and constitutes a promising opportunity for machine learning ap-
plications in protein sequence design. Moreover, the hierarchical organisation of protein functions
in a complex ontology of labels could help machine learning models capture sequence-information
relationships adequately. Recently, generative models have attempted to design proteins for dif-
ferent tasks, such as developing new therapies (Muller et al., 2018; Davidsen et al., 2019) or en-
zymes (Repecka et al., 2019). Nonetheless, most of the de novo protein sequence design methods,
which generate sequences from scratch, focus on a specific function or on families of short proteins.
Instead, we would like to focus on modeling several different biological functions at the same time
to eventually be able to freely combine them. To this end, one first requires a model that is able to
deal with and to understand the inherent label structure. We concern ourselves with the development
of such a generative model.

In this work, we introduce the general-purpose generative model ProteoGAN, a conditional gen-
erative adversarial network (cGAN) that is able to generate protein sequences given a large set of
functions in the Gene Ontology (GO) Molecular Function directed acyclic graph (DAG) (Gene On-
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tology Consortium, 2019). To the extent of our knowledge, we are the first to propose a hierarchical
multi-label de novo protein design framework, which does not require prior knowledge about the
protein, such as seed sequence fragments or structure.

Our contributions can be summarized as follows: (i) we propose a data-driven approach to de novo
functional protein generation that leverages a large set of annotated sequences, (ii) we present a
new extensive evaluation scheme to assess validity, conditional consistency, diversity, and biolog-
ical relevance of the generated sequences, and (iii) we conduct an in-depth model optimization to
derive actionable insights on architectural choices and efficient conditioning mechanisms while out-
performing existing state-of-the-art protein generators.

We focus on generative adversarial networks, due to their promising performance on specific se-
quence design tasks (Repecka et al., 2019). We choose a conditional setting not to rely on oracles
nor on multiple rounds of training-generation-measurement, since to this date a well performing
general-purpose predictor of protein function remains elusive (Zhou et al., 2019). As opposed to
most existing methods (see Section 2), we aim to generate a comprehensive variety of proteins ex-
hibiting a wide range of functions, rather than focusing on optimising a single function within a
unique protein family. As this is a different task from the ones found in the literature, we need to
define an adequate evaluation pipeline.

Therefore, we establish a multiclass protein generation evaluation scheme centered around validity
and conditional consistency. The model should generate protein sequences whose distribution re-
sembles that of natural proteins and hence have similar chemo-physical properties, and it should do
so conditionally, namely generating proteins of a given functional class without off-target functions.

We are hence confronted with the problem of assessing i) the performance of the generative model
in a general sense, which is defined by how well the generated distribution fits the training data
distribution, and ii) the conditional performance of the model which we define as a special case
of the general performance, where we compare sequence feature distributions between labels. We
therefore require distribution-based evaluations. A natural choice to evaluate the performance of a
generative model is a two-sample test, which allows to answer whether a generated and a real set
of samples (i.e. the dataset) could originate from the same distribution. The difficulty here is to
define a measure that can handle the structured data, in our case protein sequences. To this end,
we design Maximum Mean Discrepancy (MMD)-based evaluation criteria (Gretton et al., 2012),
which ensure good model performance and a functioning conditioning mechanism by measuring
differences in empirical distribution between sets of generated and real protein sequences. To ensure
diversity, we monitor the duality gap (Grnarova et al., 2019), a domain-agnostic indicator for GAN
training. Lastly, we use a series of biologically-driven criteria in the evaluation phase that confirms
the biological validity of the generated protein by relying on the standard protein feature software
ProFET (Ofer & Linial, 2015).

With this arsenal of measures, and given the low computational complexity of our MMD-based
criteria, we compare different architectural choices and hyperparameters in an extensive and efficient
Bayesian Optimization and HyperBand (BOHB) (Falkner et al., 2018) search. In particular, we
develop improved variants of two existing conditional mechanisms on GANs (Odena et al., 2017;
Miyato & Koyama, 2018) and show for the first time that the previously unexplored combination of
both is beneficial to conditional generation. Moreover, the selected model outperforms (i) de novo
conditional model CVAE (Greener et al., 2018), repurposed and trained towards functional protein
generation, other introduced baselines (HMM, n-gram model), and (ii) models specifically built to
challenge the necessity of a conditional mechanism.

The remainder of the document is organized as follows. First, the background and related work
section gives a concise overview of the biological mechanisms underlying the function of proteins,
summarises the state-of-the-art generative models applied to protein design, details some condi-
tional mechanisms in GANs and identifies existing evaluation criteria for GANs and cGANs. Sub-
sequently, the method section describes ProteoGAN and its components and explains our protein
generation evaluation framework. Finally, the results obtained by conditioning the generation of
new sequences on 50 GO classes are presented and discussed before concluding with some final
remarks.
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2 BACKGROUND AND RELATED WORK

Biological mechanisms underlying protein functions. Proteins are biological structures that serve
a wide variety of purposes in organisms. They are composed of chains of amino acids and can
therefore be represented as simple sequences. However, the relationship between physico-chemical
properties of amino-acids, three dimensional structure and resulting biological activity of the macro-
molecule is highly complex (see supplementary Section A.1). Nevertheless, since the advent of
modern sequencing techniques, millions of proteins have been registered in databases, along with
curated descriptions of their function. For example, the GO is a species-agnostic ontology that aims
at classifying genes (and the resulting proteins) according to their functions, locations, and govern-
ing biological processes using a hierarchical structure of functional labels. As such, it represents an
ideal interface between scientists who wish to design proteins with descriptive and modular labels,
and a generative model that captures the complex relationships of sequence, structure and function.

Guided and conditional generative models. Machine learning models and more recently deep
generative models (Eddy, 2004; Goodfellow et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Vaswani et al., 2017; Li et al., 2017a) have been used to design in silico biological sequences,
such as RNA, DNA or protein sequences (R. Durbin & Mitchinson, 1998; Davidsen et al., 2019;
Brookes et al., 2019; Hawkins-Hooker et al., 2020; Costello & Martin, 2019; Anand & Huang,
2018). Among them, several approaches have been developed in order to control sequence genera-
tion. They can be sorted in three categories, guided, conditional or combinations thereof. Guided
approaches use a predictor oracle in order to guide the design towards target properties, through iter-
ative training, generation and prediction steps (Brookes et al., 2019; Gane et al., 2019; Angermueller
et al., 2019; Gupta & Zou, 2019; Killoran et al., 2017; Repecka et al., 2019). While these guided
methods have the theoretical advantage to produce proteins with specific characteristics, for exam-
ple brightness (Brookes et al., 2019), they require an independent oracle. This oracle can be itself
hard to train and remains imperfect, even for highly specialized prediction tasks. Moreover, the lack
of well-functioning predictors for large numbers of labels impairs the usage of guided-generation
techniques to multiclass applications such as functional protein generation (Zhou et al., 2019). On
the contrary, conditional approaches integrate the desired properties in the generation mechanism,
eliminating the need for an oracle. Karimi et al. (2019) provided a guided conditional Wasserstein-
GAN to generate proteins with novel folds. Interestingly, Madani et al. (2020) developed ProGen,
a conditional transformer that enables a controlled generation of a large range of functional pro-
teins. However, the method’s need for sequence context can be experimentally constraining and
is not compatible with de novo design. Ingraham et al. (2019) present a graph-based conditional
generative model that unfortunately needs only sparsely available structural information. Das et al.
(2018) and Greener et al. (2018) train conditional VAEs in order to generate specific proteins, such
as metalloproteins.

Conditional mechanisms in GANs. Several conditional mechanisms have been proposed to con-
ditionally generate samples with GANs. Among the most successful ones in conditional image
generation tasks, Odena et al. (2017) introduced the auxiliary classifier GAN (AC-GAN), which
uses a third integrated network, in addition to the generator and the discriminator, to predict labels
of both real and generated inputs to the discriminator. Miyato & Koyama (2018) proposed an al-
ternative conditioning mechanism, where the label information is introduced to the network as the
inner product of the embedded label vector and an intermediate layer of the network, a mechanism
they refer to as projection. Projections can be seen as an alternative to simple concatenations of label
information to the network input (Mirza & Osindero, 2014), in a way that respects the underlying
probabilistic model.

Generative models evaluation. To this date, there is no definitive consensus on the best evalua-
tion measures for the evaluation of quality, diversity and conditional consistency of the output of
a (conditional) generative model (Papineni et al., 2002; Salimans et al., 2016; Heusel et al., 2017;
Shmelkov et al., 2018; Kynkäänniemi et al., 2019; DeVries et al., 2019). Most measures that stand
out in computer vision such as the Inception Score (IS) (Salimans et al., 2016), the Frechet Incep-
tion Distance (FID) (Heusel et al., 2017), GAN-train and GAN-test (Shmelkov et al., 2018) depend
on an external, domain-specific predictor. On the contrary, the domain-agnostic duality gap can be
computed during training and at test time, and has been shown to correlate well with FID (Grnarova
et al., 2019). In functional protein prediction, results obtained by state-of-the-art classification mod-
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Figure 1: A schematic overview of the general model structure that we screened during hyperpa-
rameter search. Architectural features such as layer number and skip connections can vary. We note
that the architecture of our final model differs from the one depicted here.

els are encouraging but still not good nor fast enough to entirely rely on them when evaluating and
training GANs (Fmax = 0.631 (Radivojac et al., 2013; Zhou et al., 2019; You et al., 2019).

3 METHODS

3.1 MODEL ARCHITECTURE

We chose the framework of Generative Adversarial Networks for our model, specifically the
Wasserstein-GAN with Gradient Penalty (Arjovsky et al., 2017; Gulrajani et al., 2017). Our con-
volutional architecture resembles the funnel-like structure of DCGAN (Radford et al., 2015). We
propose variants of existing models in order to adapt the framework to sequence generation and to
guide future model development in the field. An extensive parameter search is performed on a vali-
dation set to select the best variants and hyperparameters (see Section 4) while a schematic view of
the model can be found in Figure 1.

Conditioning mechanism. We allow for the insertion of three types of conditioning mechanisms:
projections, auxiliary classifiers, or a combination of both. While projection or auxiliary classifiers
are not exclusive, we did not encounter any work that used both in one model. The conditioning
mechanisms are further explained in the supplementary Section A.3.1. We also allow for more than
one projection from different layers of the discriminator, with the rationale that in this way we could
utilize protein sequence information of the different abstraction levels of the convolutional layers.
Finally, the embedded label is always concatenated to the latent noise vector input of the generator.

Hierarchical label encoding. Given the hierarchical structure of the functional labels, we allow
for three types of label embeddings: a) one-hot encoding, as a common encoding for labels, b)
Poincaré encoding (O’neill, 2014), as the hyperbolic space is well-suited for hierarchical data and
c) node2vec encoding (Grover & Leskovec, 2016), which preserves neighbourhood relationships
by encoding the nodes of the GO DAG based on random walks. One protein can present several
GO labels, and these embeddings aim to capture the relations between the labels in the DAG and
to incorporate this information into the generative process. We compare against a baseline model
without this hierarchical information (named Non-Hierarchical), where sequences are fed to the
model for each label independently.

We further allow to concatenate chemophysical properties of the respective amino-acids to the one-
hot encoding of the sequences. Other architectural and optimizer hyperparameters are subject to
optimization, whose descriptions and value ranges are detailed in the supplementary Section A.2.3.

3.2 MODEL EVALUATION

3.2.1 MMD TO MEASURE SEQUENCE VALIDITY AND CONDITIONAL CONSISTENCY

Computation of MMD. We propose to use the kernel two-sample test Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012; Sutherland et al., 2016) to build evaluation criteria for conditional
sequence design. The test has been shown to be suited for distinguishing distributions of structured
data such as protein sequences (Borgwardt et al., 2006). MMD has also been explored in the context
of GANs, where it was shown to be able to function as a discriminator (Li et al., 2015; Dziugaite
et al., 2015). Here we use it to assess model quality based on samples. Let X = {xi}ni=1 and
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Y = {yj}mj=1 be samples from the distributions of generated and real proteins sequences, respec-
tively Pg and Pr. When using MMD, we compute the empirical squared MMD statistic between
these two distributions using equation (2) of Gretton et al. (2012):

MMD2[F , X, Y ] =

∥∥∥∥∥ 1n
n∑
i=1

φ(xi)

‖φ(xi)‖2
− 1

m

m∑
j=1

φ(yj)

‖φ(yj)‖2

∥∥∥∥∥
2

2

(1)

where φ(·) ∈ F is the variant of the mapping function of the spectrum kernel proposed by Leslie
et al. (2001), which accounts for the presence or absence of k-mers in the sequences of interest.
The size of the k-mers was set to 3, as suggested for protein sequences by Leslie et al. (2001). This
expression is fast to compute as it scales linearly with the number of sequences and can consequently
be used as an early stopping criterion during the training process and for model selection. We also
report the result of a more powerful Gaussian kernel on top of the 3-mer embeddings. We used the
statistic itself rather than the resulting p-values because these latter are too sensitive as soon as more
than 3% of random noise is added to the sequences (Table A6 in the Supplementary Material).

Generation of in-silico validated sequences with MMD. In order to assess to which extent our
model captures the unconditional distribution of our sequences, we use MMD as described above.
We therefore first ensure that the proteins generated by the model resemble existing ones. We
could show that a 3-mer embedding is sufficient for our context, as the functional classes we are
concerned with (see Section 4 for description of functional classes) can be linearly separated in
feature space. The functional annotations can be classified with 94% accuracy based on hyperplanes
in our embedding space in a one-vs-all scheme.

Generation of functional sequences with MRR on conditional MMD. We compute the condi-
tional performance by measuring, for each set of generated proteins for a given target label, how
many sets of real proteins with an off-target label are closer than the set of real proteins of the
targeted label. The distances between sets are estimated using MMD as defined above. Let R be
a set of real sequences, which is composed of the sets {Ri}di=1 of sequences with annotated la-
bels {Li}di=1, where d is the number of labels. Let G = {Gi}di=1 be an equally structured set of
generated sequences. We want to maximise the following mean reciprocal rank (MRR):

MRR(R,G) =
1

d

d∑
i=1

1

rank(MMD(Ri, Gi))
(2)

where rank(MMD(Ri, Gi)) is the rank of MMD(Ri, Gi) among sorted elements of the list
[MMD(Ri, G1),MMD(Ri, G2), . . . ,MMD(Ri, Gd)]. MRR(G) is maximal and of value 1 when
the generated sets of proteins for a given label are the closest to the set of real proteins with the
same label. Variants of MRR that give more insight on conditional performance for closely-related
functions in the label hierarchy are described in the supplementary Sections A.3.2 and A.3.3.

3.2.2 MEASURES TO ASSESS QUALITY AND DIVERSITY OF GENERATED SEQUENCES

We monitor the duality gap (Grnarova et al., 2019) of our GAN model. A small duality gap indi-
cates good convergence and common failure modes, such as mode collapse, can be detected. We
follow the authors’ suggestion to approximate the latter with past snapshots of the training. Ad-
ditionally, to provide a protein-centric evaluation we also report Kolmogorov-Smirnoff (KS) two
sample tests (Massey, 1951) between generated and real samples from the ∼ 500 (not k-mer re-
lated) sequence-based features from the feature extractor library ProFET (Ofer & Linial, 2015).

4 EXPERIMENTAL SETUP

Data. Sequence data was acquired from the UniProt Knowledgebase (UniProtKB, Consortium
(2019)). Out of the 180 million entries, we selected sequences with experimental evidence and
at least one annotated GO label. Then we restricted to the standard amino acids and a sequence-
length of 2,048, which covers ca. 98.5% of the remaining data points. The resulting dataset contains
149,390 sequences. The ontology is structured as a DAG and labels have a hierarchical relationship,
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i.e. proteins with a given functional label inherit automatically the labels of their parents in the DAG.
We restricted the number of labels to the 50 most common molecular functions, imposing a threshold
of at least 5,375 sequences per functional label. This is sufficient for a proof-of-principle and would
even enable the design of experimental assays for validation. Figure 4 illustrates the selected subset
of labels and their hierarchical relationships. We randomly split the dataset in training, validation
and test sets keeping ca. 15,000 (10%) sequences each in the validation and test sets. During model
optimization, we use smaller splits with ca. 3.000 sequences each. We ensure that all labels have a
minimum amount of samples in the test and validation sets, and use the same number of sequences
per class for our MRR measure (1.300 and 300 sequences, respectively). Further details about the
dataset and splits are available in the supplementary Section A.2.1 and Figure A1.

Comparison partners. We compare ProteoGAN to several baselines to put its performance into
perspective. We first use CVAE (Greener et al., 2018). We performed a bayesian optimization
hyperparameter search over 1,000 models. The model was adjusted to incorporate the 50 labels of
our problem setting. We could not compare fairly to PepCVAE (Das et al., 2018) as the model does
not scale to sequence lengths of 2048 amino-acids. We refer the reader to the respective papers and
to Section A.2.2, Tables A2-A3 and Figure A2 for further information and results on both baselines.

Additionally, we constructed several baselines with the goal to assess the usefulness of the condi-
tional generation mechanism. The first baseline, referred to as Unconditional, consists of as many
unconditional GANs as there are labels. To do so, we remove the conditioning mechanism from our
model and train multiple instances on the fifty subsets of data that are annotated with a particular
label. We generate sequences for a target label by sampling them from the GAN trained on the se-
quences annotated with the same label. Our second alternative to conditioning replaces a conditional
model with the combination of an unconditional model trained on the full data and an established
predictor of protein function, NetGO (You et al., 2019), used to predict the labels of generated se-
quences which replaces the need for conditioning. We refer to this baseline as Predictor-Guided.
Further, we assess whether the model utilizes the hierarchical label structure by training a Non-
Hierarchical baseline which only sees the labels independently for each sequence. This is done
by replicating and annotating a sequence for each associated label, while keeping the number of
gradient updates the same across all models.

Lastly, we compare two traditional generative models for sequences, a (profile) HMM and an n-
gram model (n=3). Since they are without conditioning mechanism, we train one model for each
label combination in our testset (called ’on label set’ in Table 1, in this case a protein’s GO labels
can contain several GO terms and their parent terms), as well as one model for each of the 50 labels
we are dealing with (called ’on single label’ in Table 1, in this case we discard the hierarchy of
labels). Further description of most of the baselines are available in the Supplementary Material
Section A.2.2.

Hyperparameter optimization. We conducted two Bayesian Optimization and HyperBand
(BOHB) searches (Falkner et al., 2018) on six Nvidia GeForce GTX 1080, first a broad search
among 23 hyperparamaters and a second, smaller and more selective, among 9 selected hyperpa-
rameters. The optimization objective was set to maximize the ratio of the evaluation measures
MRR/MMD, which are detailed in Section 3.2.1, to balance the validity and the conditional con-
sistency of the generated sequences. Both searches were complemented by a functional analysis
of variance (fANOVA) (Hutter et al., 2014). The results of the second optimization, for which we
evaluated 1, 000 models for a maximum duration of 27 epochs in our experiments, are shown Fig-
ure 2. The 27 best selected models of the second hyperparameter search were then trained for a
prolonged duration of 100 epochs, where the conditioning mechanism and an associated weighing
factor became most important. Further details about hyperparameter optimization are available in
the supplementary Section A.2.3 and Table A4.

5 RESULTS AND DISCUSSION

5.1 MODELS SELECTED BY THE BOHB OPTIMIZATION

Insights on cGANs architecture. The results of the fANOVA and of a prediction of hyperparameter
marginals on the second automatic hyperparameter optimization led to the following observations.
We could show that adding chemophysical features did generally decrease model performance, and
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Figure 2: Hyperparameter impor-
tance. The bars show individual im-
portance of each hyperparameter in
terms of the variance they explain.
We conducted the analysis for all tri-
als of the optimization (left) and for
the selected models that were trained
for prolonged time (right). The total
variance explained by the main effects
was 36% and 88%, respectively.

(a) Use biochemical features (b) Label embedding (c) Conditioning mechanism

Figure 3: Marginal predictions of biochemical features and the label embedding based on optimiza-
tion data and of the conditional mechanism based on data of the 27 best selected models. Predictions
were obtained training on MMD and MRR. Lower is better for blue and higher is better for red.

that the most suitable label embedding is a simple one-hot encoding (Figure 3a-b). More interest-
ingly, the conditioning mechanism showed different impacts when analysing with respect to either
MMD and MRR (Figure 3c). Performance increased when changing from projection, to auxiliary
classifier, to both when evaluating with respect to MRR, but the opposite occurred for MMD. This
indicates that there is a trade-off between conditional generation and general sequence quality. A
combination of both conditioning mechanisms is the best option when aiming at conditional perfor-
mance, although others might prefer an emphasis towards better sequence quality over conditional
generation. We further conclude that small and simple model architectures show best results from
an analysis of our first optimization, and that many of the various proposed extensions to the GAN
framework did not show significant impact on performance in our context (see supplementary Fig-
ures A3, A4, A5, A6).

Selection of the final model. We selected the best model checkpoint over a training phase of 300
epochs based on the validation set. The final hyperparameter configuration of our model (Pro-
teoGAN), as well as loss plots and real-time evaluations during training can be found in supplemen-
tary Section A.3.4, Table A5, and Figure A7. Most notably, the final model had both conditioning
mechanisms, multiple projections, and one-hot encoding of label information. Additionally, the
duality gap evaluations during training (Figure A7) showed no signs of mode collapse.

5.2 PERFORMANCE EVALUATION OF PROTEOGAN

We report measures on the test set of the best model in Table A8. We additionally report the model
performance per individual GO label in Figure 4. ProteoGAN can reliably generate sequences con-
ditioned on various GO labels, where many of the labels can be very well generated without major
off-target effects (23 (resp. 32) of 50 labels were on average ranked first or second (resp. or third)
compared to all other labels). The overall conditional performance (MRR=0.545) is reasonably

Figure 4: Reciprocal rank for each individual la-
bel. The structure represents the relations in the
GO DAG. Nodes are colored by how well the
model can target them. Blue to light orange in-
dicates that the model ranks the target function
in the first three positions in average. Values are
averaged over n = 5 different data splits.

7



Under review as a conference paper at ICLR 2021

close to a reference set of natural protein sequences (MRR=0.889). With respect to general se-
quence quality, ProteoGAN reaches MMD values of 0.040, which corresponds to roughly 20% of
random mutations in a set of natural sequences (compare supplementary Table A6). While this num-
ber is high compared to traditional protein engineering approaches, we note that systematic studies
showed that proteins can tolerate a high mutation rate (up to 59% (Markiewicz et al., 1994; Ng
& Henikoff, 2001)) as long as critical residues are not affected, and notably Repecka et al. (2019)
could experimentally validate GAN-generated sequences with up to 34% difference to its closest
homolog. Additionally, we show that the sequences generated by the model are not closer to the
training set than the test set is, as measured by squared euclidean distance in kernel feature space
(Supplementary Figure A8). This implies that our model is not overfitting on the training set and is
able to generate novel sequences.

Table 1 shows the performance under MMD, Gaussian MMD and MRR for ProteoGAN and various
baselines. In general, MMD and Gaussian MMD give similar rankings for the different models. We
first note that ProteoGAN outperforms all multi-label conditional baselines by a significant margin
in both overall model performance and conditional generation. We could also show that the (condi-
tional) ProteoGAN is comparable to the Unconditional model, which implies that the conditioning
mechanism can substitute the training of many models per individual label. It shows that the con-
ditioning mechanism is working well. ProteoGAN scores are also better than the Non-Hierarchical
model, which shows that it could incorporate the hierarchical multi-label structure into the genera-
tion and that it is beneficial. It remains to be shown that this is sufficient to enable out of distribution
functional label generation.

The weak conditional performance of the Predictor-Guided model (MRR = 0.109) suggests that
the state-of-the-art predictor used (NetGO) is not able to predict the right label for the generated
sequences, and therefore fails at guiding conditional generation, possibly because the generated
sequences do not have close homologs in the protein databases.

As an outlook, we provide some results of ProteoGAN trained on more specific labels (lower panel
in Table 1). We kept the same architecture as the one optimised for 50 labels and retrained the model
in three different situations. We observe that the performance is still reasonable when the number
of labels is doubled (100 labels). With 200 labels the performance starts to drop. It may be that the
model capacity is too low in this case, which could be alleviated by tuning the hyperparameters we
have identified to be critical. When training the model on the more specific labels of the depth-first
sampling of labels the performance stays good, however we note that with increasing specificity the
classes get very small.

ProteoGAN further outperformed CVAE and the HMM and n-gram baselines. This becomes evident
especially in conditional generation (MRR). Figure 5 confirms these results. It can generally be
seen that ProteoGAN shows good agreement with the real protein sequences of the testset in several
important biological sequence features. We show exemplary feature distributions for some of the ca.
500 features analyzed by ProFET. For a summary statistic of all features, we report the distribution
of KS-statistics between generated and real data across all features. Also here, the ProteoGAN
variants outperformed the other models.

6 CONCLUSION

In this work, we develop a conditional generative adversarial model, ProteoGAN, which generates
sequences validated in-silico according to statistically- and biologically-driven measures. We iden-
tify useful architectures and extensions of cGANs for proteins. The measures we propose are fast
to compute and therefore can be used during optimization and training, as well as for model assess-
ment. We show that the conditioning on hierarchical Gene Ontology labels was successful, as we
could show that a number of labels can be well targeted. Generally, it remains to be shown that the
class of multi-label generative models can not only generate the correct feature distributions, but
also experimentally valid proteins with the specified functions. This requires further development of
evaluation measures, which we hope to have set a basis for. Future improvements to the model might
also come from a larger number of labels, more specific targeting for small classes and a proof that
such conditional models are able to combine the modular GO labels into new and unseen functions,
which would be tremendously useful for biotechnological applications.
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(a) Molecular Weight (b) Isoelectric Point (c) Total Entropy

(d) GRAVY (e) Flexibility (f) KS Statistics

Figure 5: (a-e) Distributions of some selected features of ProFET, dark blue is the reference. f) KS
statistics over ∼ 500 ProFET features, lower is better.

Table 1: Evaluation of ProteoGAN and various baselines with our proposed measures (MMD, MRR
and the more powerful gaussian kernel variant of MMD) on the testset. An arrow indicates that lower
(↓) or higher (↑) is better. Best results in bold, second best underlined. Given are mean values and
standard deviation over five different data splits. Due to the computational effort, the Unconditional
model was only trained on one split. The positive control is a sample of real sequences and simulates
a perfect model, the negative control is a sample that simulates the worst possible model for each
metric (constant sequence for MMD, randomized labels for MRR). The second panel shows models
without multi-label conditioning, which were conditioned on simplified label sets. Also shown are
variants of ProteoGAN that were trained on different datasets with more specific labels.

Model MMD↓ Gaussian MMD↓ MRR↑
Positive Control 0.011 ± 0.000 0.009 ± 0.000 0.889 ± 0.019
Negative Control 1.024 ± 0.000 0.807 ± 0.000 0.092 ± 0.003

ProteoGAN 0.040 ± 0.001 0.026 ± 0.001 0.545 ± 0.017
Predictor Guided 0.025 ± 0.001 0.017 ± 0.001 0.109 ± 0.005
Nonhierarchical 0.228 ± 0.056 0.155 ± 0.039 0.271 ± 0.086
CVAE (Greener et al.) 0.166 ± 0.033 0.108 ± 0.022 0.356 ± 0.027
HMM (on label set) 0.166 ± 0.003 0.112 ± 0.002 0.107 ± 0.006
n-gram (on label set) 0.064 ± 0.004 0.042 ± 0.002 0.261 ± 0.029

Unconditional 0.032 0.021 0.543
HMM (on single label) 0.192 ± 0.003 0.130 ± 0.002 0.105 ± 0.003
n-gram (on single label) 0.094 ± 0.004 0.067 ± 0.002 0.090 ± 0.000

ProteoGAN (100 Labels) 0.034 0.023 0.470
ProteoGAN (200 Labels) 0.161 0.111 0.116
ProteoGAN (depth-first) 0.091 0.070 0.270

Code Availability. We make source code for ProteoGAN and the evaluations available at https:
//github.com/proteogan/proteogan.
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A APPENDIX

A.1 BACKGROUND: BIOLOGICAL MECHANISMS UNDERLYING PROTEIN FUNCTIONS

Proteins are complex biological structures but can be simply represented as chains of amino-acids, a
20-character alphabet. While this is useful for modeling approaches, it hides the functional complex-
ity of proteins. In fact, amino acids, with their diverse physico-chemical properties, fold and assem-
ble into complex three dimensional constructs at a local and global level, giving rise to the overall
protein structure. In turn, the structure of the protein is responsible for its function, where shape
and electrochemical properties dictate the behavior and biological activity of the macromolecule.
The link between sequence and function is therefore highly complex and still not understood by the
research community. The design of proteins has consequently been so far mainly based on rela-
tively uninformed trial-and-error processes with slight random alterations of the protein sequence
and a subsequent assay of functionality (Arnold, 1998) or entail computationally heavy simulations
of molecular dynamics (Samish, 2017). However, advances in machine learning have enabled the
development of novel in silico design methods.

A.2 EXPERIMENTAL SETUP

In this section, we describe in detail the dataset and preprocessing steps, the baselines and the hy-
perparameter searches performed.

A.2.1 DATA

Sequence data is acquired from the UniProt Knowledgebase (UniProtKB, Consortium (2019)). The
database contains more than 180 million protein sequences with rich annotations such as structure
and function. Nonetheless, most of these entries are only automatically annotated. To ensure high
quality data for our model, we filter for sequences that are manually curated and have experimental
evidence of some form. There are also some specialized proteins that have very long sequences, we
only keep the sequences whose length is not exceeding 2048 amino acids, which covers ca. 98.5% of
the data points. The resulting dataset contains 149, 390 sequences. The cut-off at 2048 amino-acids
is multiple times longer than other approaches in this field, which is between 30- to 500-long (Das
et al., 2018; Davidsen et al., 2019; Greener et al., 2018; Repecka et al., 2019), and allows for a more
complete model of the known sequence space.

Functional labels are collected from the same database. The gene ontology (GO) resource is com-
posed of three branches, molecular function, cellular component and biological process. We focus
on the molecular function ontology, which contains thousands of terms ranging from description
like binding (GO:0005488) to very specific terms such as microtubule-severing ATPase activity
(GO:0008568). Each protein is annotated with a set of GO labels describing the molecular func-
tion of a protein in modular way. The ontology is structured as a directed acyclic graph with a single
root. Further, labels have a hierarchical relationship, i.e. protein with a given functional label in-
herits automatically the labels of its parents in the DAG (is-a relationship). The molecular function
ontology resource currently contains more than ten thousand labels, many of which have a highly
specific meaning and only few representatives. We therefore restrict the number of labels to the
50 largest classes, the smallest class containing 8659 proteins. We argue fifty labels is sufficient
for a proof-of-principle and would even enable the design of experimental assays for validation.
Figure A1 illustrates the selected subset of labels and their relationships.

Train, validation and test splits were created to preferably represent all labels uniformly in the
test and evaluation sets. We use a 80-10-10 split for evaluation in the main body, and a 94-2-2
split for hyperparameter optimization and the results detailed in the supplement. For the validation
and test set, we randomly sample sequences until there is at least 1.300 (300 in the optimization)
sequences per class. The selections of hyperparameters by the BOHB hyperparameter optimizations
for ProteoGAN and by the hyperparameter searches for the baselines are done on the validation
set, while the results presented in the main text were acquired on the test set. For sequence sample
generation, the model was conditioned on the label combinations of the evaluation/test set and the
resulting sequences then compared with the respective set by MMD and MRR.
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Figure A1: GO DAG of the 50 labels selected for this project.

A.2.2 BASELINES

We implement four baselines to put the performance of our model into perspective. In this section,
we would like to give additional details concerning the two baselines that we gathered from the
literature.

PepCVAE (Das et al., 2018) uses a VAE framework with a single layer gated recurrent unit (GRU)
RNN for both the encoder and the decoder, in a semi-supervised setting. Conditioning is performed
by concatenating the encoded target labels to the latent code. In the paper, the sequences of interest
are antimicrobial peptides, with a maximum length of thirty amino-acids. The conditioned on label
was binary, i.e. antimicrobial activity or not. The RNN component of the model is highly resource-
consuming, therefore we had to trim protein sequences to the first 32 amino-acids to run the model
on our data. For a fair assessment, we also run our model ProteoGAN on sequences of 32 amino-
acids. We modify PepCVAE by introducing a multiplying factor in front the the KL term of the
ELBO loss as suggested by Higgins et al., to increase the stability of the model. We optimise the
model with a Bayesian Optimization hyperparameter search, for which we tried 1, 000 combinations
of hyperparameters. We do not use BOHB because the early stopping would interfere with the
different training phases of the model. The hyperparameters and their value ranges, as well as the
final model configuration can be found in Table A1. We refer the reader to Das et al. (2018), Hu
et al. (2017) and Bowman et al. (2016) for more information on the model.

CVAE (Greener et al., 2018) uses a conditional VAE (CVAE) in order to generate either metallo-
proteins with desired metallo-binding sites or fold properties. In the case of fold properties, the
authors introduce iterative sampling and guidance steps in the latent space. The decoder and en-
coder are both MLPs and the number of layers is chosen with hyperparameter search. Here also,
we introduced a KL-balancing term to stabilize training. As for PepCVAE, the model presents a
loss scheduling scheme and therefore we could not use the BOHB optimization. However, we per-
formed a Bayesian Optimization hyperparameter search, for which we tried 1, 000 combinations of
hyperparameters. Notably, we allowed for an optimization of network architecture by optimizing
over the layer numbers for both encoder and decoder, and by optimizing the number of units in the
first layer of the encoder and the last layer of the decoder. The unit number then halved towards
the latent space with each layer. The hyperparameters and their value ranges, as well as the final
model configuration can be found in Table A2. We refer the reader to Greener et al. (2018) for more
information on the model.
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Table A1: PepCVAE hyperparameters subject to BO optimization.

Name Values Final Value

Learning rate [1e-5,1e-2] 4e-3
Pretrain iterations [1,5000] 3181
Latent dimension [10,1000]† 101
Word dropout keep rate [0,1] 0.43
Classifier loss balancing λC [1e-3,100]† 9.9e-3
Latent loss balancing λZ [1e-3,100]† 1.9e-1
KL balancing β [1e-3,100]† 1.5e-2

† Values were sampled on a logarithmic scale.

Table A2: CVAE of Greener et al. hyperparameters subject to BO optimization.

Name Values Final Value

Learning rate [1e-5,1e-2] 7.8e-4
Pretrain start [1,5000] 2598
Pretrain end [1,5000] 1251
Latent dimension [10,1000]† 761
KL balancing β [1e-3,100]† 1.1e-3
Encoder layer number [1,5] 3
Decoder layer number [1,5] 1
Log2(Encoder first layer units) [4,10] 7
Log2(Decoder last layer units) [4,10] 9

† Values were sampled on a logarithmic scale.

The HMM baselines were implemented based on HMMER. For HMM (on label set), all sequences
in the training dataset containing a specific label combination were aggregated, for each label set
of the test set. For HMM (on single label), all sequences in the training dataset containing a spe-
cific label were aggregated, for each of the 50 labels. The resulting sequence sets were aligned
with MAFFT (with parameters --retree 1 --maxiterate 0 --ep 0.123). Because of
the time-intense multiple sequence alignment the sequences sets were randomly sampled to have
a maximum size of 5000 sequences. From the alignment, a profileHMM was built with HMMER
which was then sampled to generate a sequence.

In the n-gram baseline also, sequences were selected according to label sets and single labels. Here
the full data was used. n was set to 3. The sequence lengths were sampled from the training data
length distribution.

The Predictor Guided baseline was a variant of ProteoGAN without conditioning mechanism trained
on the whole data. A sample was generated like in the other models, however the labels were
annotated by sampling the per-label probabilities outputted by the NetGO protein function predictor.

Table A3: Evaluation of ProteoGAN and PepCVAE on truncated sequences with length 32. Shown
are mean and standard deviation of five different data splits. The arrows indicate that lower (↓) or
higher (↑) is better.

Model MMD↓ Gaussian MMD↓ MRR↑

PepCVAE (L=32) 0.122 ± 0.019 0.077 ± 0.012 0.139 ± 0.022
ProteoGAN (L=32) 0.033 ± 0.002 0.022 ± 0.001 0.321 ± 0.029
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Figure A2: Sequence feature analysis of the models trained on truncated data (Sequence length =
32). KS statistics over ∼ 500 ProFET features, lower is better.

A.2.3 HYPERPARAMETER SEARCH

Description of the BOHB: For ProteoGAN, we conducted hyperparameter searches with the
Bayesian Optimization and HyperBand (BOHB) algorithm. The Hyperband (Li et al., 2017b) al-
gorithm uses successive halving (Jamieson & Talwalkar, 2016) to evaluate a number of models on a
given budget of resources. The better half of the models are then evaluated on twice the budget, et
cetera. Hyperband is an independent optimization algorithm that has been combined with Bayesian
optimization to form Bayesian optimization and Hyperband (BOHB) (Falkner et al., 2018), the op-
timization strategy used in this project.

Hyperparameter optimization with BOHB: We conducted two BOHB optimizations. For both we
evaluated 1, 000 models. All networks were trained with the Adam optimizer (Kingma & Ba, 2015)
with β1 = 0 and β2 = 0.9 (following (Gulrajani et al., 2017)). The optimization consisted first of a
broad search among 23 hyperparameters and second, of a smaller and more specific search, among
9 selected hyperparameters. For the first BOHB optimization, an optimization iteration was defined
as two epochs which we found through pilot experiments was the minimum time to observe a viable
trend in the metrics. The parameters R and η (in the notation (Li et al., 2017b)) were set to 9 and
3, respectively, which allowed for a maximum training time of 18 epochs (22.5K gradient updates).
The optimization objective was to maximize, in the validation set, the ratio of metrics MMD/MRR
which are introduced in the main document Section 3.2.1. During the optimization, BOHB selected
the models based on evaluations at the end of a training period. For the second optimization, we
reduced the number of hyperparameters to only 9. We selected values for the other hyperparameters
based on the analysis of the hyperparameter importance of the first optimization (see paragraph
below). The hyperparameters that showed either no importance or that were detrimental to training
were removed. For this second optimization, the smaller network size allowed for 3 epochs per
iteration, resulting in a maximum training time of 27 epochs (1.2K gradient updates). The list of
hyperparameters of the two BOHB optimizations and their ranges is presented in Table A4. The
parameters of the best models selected by the two BOHB optimizations are presented Table A5.

Quantification of hyperparameter importance: After the optimization, we analyze hyperparam-
eter importance with the approach presented in (Hutter et al., 2014). A surrogate model (random
forest) is trained on the parameter configurations and the respective evaluation scores. This enables
a functional analysis of variance (fANOVA) which allows for a quantification of hyperparameter
importance in terms of the variance they explain. It also provides marginal predictions for each
hyperparameter which gives insights about their optimal value setting. For the random forest, we
used 1, 000 trees with a maximum depth of 64, and repeat the estimation 100 times. We do so for
all evaluated models of the first and second BOHB optimizations. The hyperparameter importances
obtained from the first optimization (and resp. second optimization) are presented in Figure A5
(resp. Figure 2). The first fANOVA showed that parameters related to the discriminator (learning
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Table A4: Hyperparameters subject to BOHB optimization.

Name Symbol Values

Use chemophysical properties Yes, No, only
Label embedding one-hot, node2vec, Poincaré
Conditioning mechanism projection, AC, both
AC weighting factor γ [1, 1000]†

Label smoothing factor θ [0, 0.5]
Latent noise dimension dZ [1, 1000]†

Input noise standard deviation σ [0, 1]
Generator learning rate ηG [1e-5, 1e-2]
Generator learning rate 2 ηG2 [1e-5, 1e-2]
Discriminator learning rate ηD [1e-5, 1e-2]
Discriminator learning rate 2 ηD2 [1e-5, 1e-2]
Training ratio ncritic [1, 10]
Learning rate schedule constant, cosine, exponential
Schedule interval (in epochs) i [1, 18]
Generator layer number nG [1, 10]
Discriminator layer number nD [1, 10]
Strides s 1, 2, 4, 8
Filter size f [3, 12]
Generator skip hG [0, 10]
Discriminator skip hD [0, 10]
Number of projections nP [1, 5]
Output source layers oS [1, 3]
Output label layers oL [1, 3]

† Values were sampled on a logarithmic scale. AC = auxiliary classifier.

Table A5: Hyperparameters found in the first and second BOHB optimization. Values with an
asterisk indicate the preset configurations in the second optimization.

Name First Second

Use chemophysical properties Yes No
Label embedding one-hot one-hot
Conditioning mechanism both both
AC weighting factor 178 135
Label smoothing factor 0.28 -*
Latent noise dimension 91 100*
Input noise standard deviation 0.29 -*
Generator learning rate 2.0e-3 4.1e-4
Generator learning rate 2 - -*
Discriminator learning rate 8.5e-4 4.0e-4
Discriminator learning rate 2 - -*
Training ratio 1 1*
Learning rate schedule constant constant*
Schedule interval (in epochs) - -*
Generator layer number 2 2*
Discriminator layer number 3 2*
Strides 4 8
Filter size 8 12
Generator skip - -*
Discriminator skip - -*
Number of projections 1 2
Output source layers - 1*
Output label layers 2 1*

AC = auxiliary classifier.
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rate, number of layers) are most important for model performance,1 and helped to select poten-
tially important hyperparameters for the second analysis. Noticeably, the best model of the first
optimization was already a well-performing model but we chose to run a second optimization to
better understand the role of key hyperparameters, to gain insight in potential good practice when
designing conditional generative adversarial networks and to further improve the performance of
our model. The second fANOVA clarified the importance of the remaining hyperparameters, such
as use of chemophysical features and label embeddings among others (Figure 2).

We also show marginal predictions for hyperparameters of the first optimization in Figure A6, and
for the second optimization in Figure A3 and Figure A4.

Obtainment of the final model: The 27 best selected models of the second hyperparameter search
were then trained for a prolonged duration of 100 epochs, where the conditioning mechanism and
an associated weighing factor became most important, according to the last fANONA study (Fig-
ure A4). We evaluated twice per epoch and selected the weights of the final model at the checkpoint
that showed the best (smallest) ratio MMD/MRR in the validation set. The final model, ProteoGAN,
is a convolutional conditional generative adversarial network, with two conditioning mechanisms:
an auxiliary classifier and projections. The dimensions of the convolutional layers are following the
pyramidal architecture of DCGAN (Radford et al., 2015), i.e. with increasing output length and
decreasing filter depth for the generator, and vice versa for the discriminator. The other hyperpa-
rameters are presented Table A5.

1Some other important factors were learning rate schedule-related parameters such as Generator learning
rate 2 or schedule. We realized that these were detrimental to model performance as the short duration of
training in the optimization did not allow to estimate long term effects seen in the selected models that were
trained for 100 epochs.
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(a) Auxiliary Classifier weighing
factor (b) Conditioning mechanism (c) Discriminator learning rate

(d) Generator learning rate (e) Kernel size (f) Label embedding

(g) Projections (h) Strides (i) Use chemophysical features

Figure A3: Marginal predictions of hyperparameters based on optimization data in the second op-
timization. Predictions were obtained training on MMD and MRR. Note that for MMD, lower is
better.
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(a) Auxiliary Classifier weighing
factor (b) Conditioning mechanism (c) Discriminator learning rate

(d) Generator learning rate (e) Kernel size (f) Label embedding

(g) Projections (h) Strides (i) Use chemophysical features

Figure A4: Marginal predictions of hyperparameters based on the data of the 27 best selected models
in the second optimization. Predictions were obtained training on MMD and MRR. Note that for
MMD, lower is better.
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Figure A5: Hyperparameter importance for the first BOHB optimization. Shown are all hyperpa-
rameters subject to optimization for all models (left), and a manual selection of models that was
trained for 100 epochs (right).

A.3 METHODS

In this section, we first describe in details the state-of-the-art conditioning mechanisms and con-
structed variants that we used in this project. Second, we introduce three variants of MRR suited for
hierarchically-structured labels. Finally, we assess the proposed evaluation measures of cGANs by
estimating empirical worst and best bounds for our experimental setting.

A.3.1 CONDITIONING MECHANISM

In this section, we first detail how we adapted the Wasserstein loss to the conditional setting, then
we describe state-of-the-art conditional GANs’ objective functions and variants used in this project.

Loss function of conditional GANs: Our models are trained with the Wasserstein objective with
gradient penalty from (Gulrajani et al., 2017). As a reminder, the WGAN-GP losses can be written
as follows:

LD = Eq(xxx)[D(xxx)]− Ep(xxx)[D(xxx)]

+ λEm(x̂xx)[(‖∇x̂xxD(x̂xx)‖2 − 1)2]

LG = −Eq(xxx)[D(xxx)]

(3)

where xxx ∼ p(xxx) is the data distribution and xxx ∼ q(xxx) is the generator model distribution, x̂xx is an
interpolated sample between a real sequence and a generated one, m is the distribution of interpo-
lated samples, D is the discriminator (or critic), LD the loss of the discriminator and LG the loss
of the generator. The term Em(x̂xx)[(‖∇x̂xxD(x̂xx)‖2 − 1)2] ensures that the discriminator is Lipschitz
continuous.

To be able to use the Wasserstein objective with gradient penalty in the conditional setting of projec-
tion cGAN (Miyato & Koyama, 2018) (see below), we had to adapt the objective formula to include
the label information. Let (xxx,yyy) ∼ p be a sample from the dataset, where xxx is the sequence and yyy
the label. Let D be the discriminator and G the generator. Let q be the generator model distribution,
such that yyy → q(yyy) is defined by the user and xxx → q(xxx|yyy) is learned. In practice, q(yyy) follows the
label distribution of the data p(yyy). Let x̂xx be an interpolated sequence between a real sequence and a
generated one. We call x̂xx → m(x̂xx|yyy) the distribution of interpolated sequences given a label yyy. Let
λ be a weighing factor introduced in (Gulrajani et al., 2017). Taking conditional information into
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(a) Auxiliary Classifier weighing
factor (b) Discriminator layer number (c) Discriminator learning rate

(d) Generator layer number (e) Input noise (f) Training ratio

(g) Strides (h) Use chemophysical features (i) Latent dimensionality

(j) Auxiliary Classifier weighing
factor (Selected)

Figure A6: Marginal predictions of hyperparameters based on data in the first optimization. We
show some selected predictions that allowed for interpretation, all others were inconclusive. If not
otherwise noted, data comes from all trials in the optimization. Predictions were obtained training
on MMD and MRR. Note that for MMD, lower is better.
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account, the discriminator and generator losses can be expressed as follows:
LD = Eq(yyy)[Eq(xxx|yyy)[D(xxx,yyy)]]− Ep(yyy)[Ep(xxx|yyy)[D(xxx,yyy)]]

+ λEp(yyy)[Em(x̂xx|yyy)[(‖∇x̂xxD(x̂xx,yyy)‖2 − 1)2]],

LG = −Eq(yyy)[Eq(xxx|yyy)[D(xxx,yyy)]].

(4)

This formulation ensures that the Lipschitz constraints imposed on the discriminator in the uncon-
ditional WGAN-GP objective holds for each class.

Case of the projection cGAN model (Miyato & Koyama, 2018): In the conditional GAN with
projection discriminator model, the discriminator is decomposed into a sum of two terms, one being
the inner product between a label embedding and an intermediate transformation of the input, and
the second term being solely depending on the input xxx. The new expression of the projection dis-
criminator can be derived by assuming that the label is categorical and that both the log-likelihoods
of the data and target distribution can be written as log linear models. Let yyy → vvv(yyy) be a linear pro-
jection of the label into a label embedding. Let φφφθ be a vector output function applied to the input xxx
and ψγ a scalar function applied to the vector output functionφφφθ(xxx). LetA be an activation function
of choice. The projection discriminator in (Miyato & Koyama, 2018) can therefore be written as:

D(xxx,yyy) = A(f(xxx,yyy))
= A(vvv(yyy)Tφφφθ(xxx) + ψγ(φφφθ(xxx)))

(5)

The label information is therefore introduced via an inner-product. In practice, the discriminator
is equipped with a projection layer that takes the inner product between the embedded label and an
intermediate output of the discriminator. This formulation leads to a more stable algorithm compared
to a simple concatenation of the label with the input, potentially thanks to the introduction of a form
of regularization on the discriminator.

In this project, we also tested the possibility to include several projections in the discriminator. In
addition to the previous notations of this paragraph, let us assume that we have k projections. Let
{gi}ki=1 be k neural networks, which can be decomposed in ni layers gi = lini

◦ lllini−1 ◦ · · · lll
i
2 ◦ llli1.

Let {pi}ki=1 be the layer number at which the inner product with the output of the projection {vvvi}ki=1
occurs in each neural network. The expression of the discriminator is given by:

D(xxx,yyy) = A(f(xxx,yyy))

= A(
k∑
i=1

(vvvi(yyy)
T lllipi ◦ · · · lll

i
1(xxx) + gi(xxx)))

(6)

In practice we share lower layer parameters and allow for up to four projections. Our BOHB hyper-
parameter searches did not show evidence of the superiority of projection mechanisms for condition-
ing purposes when they are the unique type of conditional mechanism in the network. However, the
projection models were able to generate sequences similar to naturally occurring ones (low MMD).

Case of the cGAN model with auxiliary classifier (Odena et al., 2017): As opposed to projection
cGANs, cGANs with auxiliary classifier add a term to the generator and discriminator losses to
incorporate the log-likelihood of the correct labels (compare Equation 4). In addition to notations
introduced for Equation 4, let CD be the auxiliary classifier, ce the cross entropy and γ a weighting
factor. The loss function of cGANs with auxiliary classifiers can be written as:

LD = Eq(xxx)[D(xxx)]− Ep(xxx)[D(xxx)]

+ λEm(x̂xx)[(‖∇x̂xxD(x̂xx)‖2 − 1)2] + γEp(yyy)[Ep(xxx|yyy)[ce(CD(xxx), yyy)]]
LG = −Eq(xxx)[D(xxx)] + γEp(yyy)[Eq(xxx|yyy)[ce(CD(xxx), yyy)]].

(7)

CD typically shares weights with D and is trained when minimising LD but is fixed when minimis-
ing LG.

In our work, we compare both types of conditional GANs (GAN equiped with auxiliary classifier
or with multiple projections at several layers (see Equation 6)) to a third proposed model that com-
bines both mechanisms. It is important to note that in this case the label information introduced in
the projection may not be shared with the auxiliary classifier (compare Figure 1). The fANOVA
analysis performed on the second BOHB optimization results shows that the combination of both
mechanisms helps to obtain a better performing conditioning mechanism, as measured by MRR.
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A.3.2 EVALUATION MEASURES FOR CONDITIONAL GENERATIVE MODELS IN THE CASE OF
HIERARCHICAL LABELS

In addition to the evaluation measures MMD and MRR described in the main document Sec-
tion 3.2.1, we built three variants of MRR in order to better characterise the effectiveness of the
conditional generation and its ability to handle hierarchical multi-label settings. We look at sub-
measures of MRR where either all parent nodes (MRRP ), all child nodes (MRRC), or both (MRRB)
are ignored in the ranking of a conditional MMD term. Removing parent or child terms attempts at
understanding to which degree the conditioning mechanism leads to severe off-target generation of
sequences of unrelated labels. Indeed, these three alternative measures do not penalize if the gen-
erated distribution of sequences for a given label is closer to either parents’ or children’s sequences
than it is to its target’s sequences, which is less severe than off-target generation of sequences of
an unrelated label. Therefore, getting good MRRX values would indicate that our model is able to
conditionally generate sequences up to closely related (parent’s or child’s) functions. Additionally,
comparing MRRX values between themselves and with MRR would give some insight in closely-
related conditional generation performance. For example, a MRRP (resp. MRRC) value much
larger than MRR could indicate that sequences that are generated with a target function are often
closer to the natural sequences exhibiting the parent (resp. child) functional label, i.e. the model is
too general, or too specific, respectively.

A.3.3 ASSESSMENT OF THE EVALUATION MEASURES FOR CGANS

We assess the quality of the proposed evaluation measures by constructing ”best case” and ”worst
case” scenarios, to understand what would represent a perfect success or failure mode of our model.
We consider as ”best case” the case where the generative model generates sequences that are ob-
served. The ”worst case” scenario differs depending on the evaluation measure.

Scenarios for MMD: MMD has theoretical bounds of [0,
√
2] if the sequences in both sets are self-

similar and totally dissimilar from each other. As we aim to compare real sequences to generated
sequences that resemble real sequences, we therefore fix one set to be a collection of n natural
protein sequences and the second set to be n other natural protein sequences modified with different
percentages of random noise. In practice, the set of natural sequences is the test set used to report the
results in the main document, and the random noise is injected in the form of single-point mutations
to sequences of the second set. The results are reported in Table A6 and indicate that MMD is a
proxy for the quality of the generated sequences. We observe that MMD increases with the amount
of noise injected in the sequences of the second set. The generation of close to constant sequences
is a plausible failure mode of the GAN and would lead to a very high MMD value (last row). The
lengths of the sequences of the mutated set were conserved, however we also report MMD with
respect to fully random sequences of maximum length. The MMD value between two sets of real
sequences is around 0.0237, adding 1% of noise to the sequences in one of the set leads to an MMD
value of 0.0240, 10% of noise to 0.0324 and 20% of noise to 0.0484. In comparison, in biology,
proteins have been shown to be viable up to 30 - 60% of mutations in the amino-acids of their
sequences (Repecka et al., 2019; Markiewicz et al., 1994; Ng & Henikoff, 2001). We also report
empirical p-values following Borgwardt et al. (2006), under the null hypothesis that the two sets
are from the same distribution. These were obtained by ranking the original MMD statistic in 1000
iterations of statistics where the aggregated sequences were randomly assigned to each of the two
sets.

Scenarios for MRR: Since MRR is a conditional measure, we constructed the ”worst case” sample
as a set of natural protein sequences with randomized label assignments. This aims to simulate a
generative model that produces well-formed sequences, but ignores the conditioning objective. One
could also construct a scenario that simulates an antagonistic model that actively assigns wrong
labels, instead of random ones. This will likely not occur in practice, though. Table A7 shows the
MRR values for a real data sample and the same sample with randomized labels. The reference for
MRR was again the test set and the evaluated sample an equally structured set (”Positive Control”,
Table A7) where the label annotations were randomly shuffled among the sequences (”Negative
Control”, Table A7). The MRR evaluates a set of sequences with respect to the 50 selected labels.
We also look at the sub-measures of MRR where either all parent terms (MRRP ), all child terms
(MRRC), or both (MRRB) are ignored in the ranking of a term. This gives additional insights on
how well the model works with respect to the up- and downstream labels in the GO DAG.

25



Under review as a conference paper at ICLR 2021

Sample MMD p-value

Dataset Sample 0.0237 0.1499
Dataset Sample + 1% noise 0.0240 0.0370
Dataset Sample + 2% noise 0.0243 0.0050
Dataset Sample + 3% noise 0.0248 0
Dataset Sample + 5% noise 0.0262 0
Dataset Sample + 10% noise 0.0324 0
Dataset Sample + 20% noise 0.0484 0
Dataset Sample + 30% noise 0.0660 0
Dataset Sample + 50% noise 0.1009 0
Dataset Sample + 100% noise 0.1788 0
100% noise (maximum length) 0.3044 0
Constant (all leucine) 1.0258 0

Table A6: MMD values with different percentage of mutations, p-values

Table A7: Best and worst case MRR, as well as model evaluations of the main text with the extended
set of MRR measures. Positive Control simulates a perfect model, Negative Control a model that
ignores conditional information.

Model MRR MRRP MRRC MRRB
Positive Control 0.7887 0.8260 0.8520 0.8925
Negative Control 0.0909 0.1177 0.0923 0.1196

ProteoGAN (ours) 0.5956 ± 0.0237 0.7018 ± 0.0180 0.6494 ± 0.0237 0.7588 ± 0.0166
Unconditional 0.5219 ± 0.0195 0.6089 ± 0.0242 0.5729 ± 0.0205 0.6643 ± 0.0225
Predictor-guided 0.1071 0.1367 0.1261 0.1562
Greener et al. 0.3132 ± 0.0161 0.3658 ± 0.0157 0.3775 ± 0.0154 0.4306 ± 0.0150

PepCVAE (L=32) 0.1910 ± 0.0137 0.2038 ± 0.0156 0.2103 ± 0.0195 0.2267 ± 0.0194
ProteoGAN (L=32) 0.3159 ± 0.0205 0.3464 ± 0.0207 0.3532 ± 0.0240 0.3892 ± 0.0221

Results for MRR variants: Table A7 shows the results for the MRR variants for some models. The
results confirm that our model is better at conditional generation than the baselines, including the
baseline that consists of training 50 unconditional models. The comparison between MRR variants
suggests that proteins often resemble proteins in the target class. When this is not the case, proteins
are often similar to their parent class, which makes sense as the class is then more general. The
small difference between the MRRB value of our model and of the positive control indicates that
the model rarely generates sequences that resemble proteins in an unrelated class. Additionally,
compared to the controls, the MRRC are relatively low compared to MRR, which suggests that the
model does not tend to create more specific child labels, which would be detrimental in a biological
application.

A.3.4 LOSSES AND REAL-TIME EVALUATION OF THE FINAL MODEL

The loss function of the final model presented in the main document, combining projection and
auxiliary classifier, is shown Figure A7. We monitored the duality gap (red), for which we split the
training data into an adversary finding set and a test set of 1% of the train set each. The duality
gap is well-behaved, with a fast convergence to 0, indicating that there is no mode collapse and
suggesting that the samples are of reasonable quality. Also, the evaluations of MMD and MRR can
be seen during training (evaluated twice per epoch) which provides valuable information for model
selection and early stopping.

A.4 RESULTS WITH A SMALLER TESTSET SIZE
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Table A8: Evaluation of ProteoGAN and various baselines with our proposed measures (MMD and
MRR) and NetGO (Fmax) on a smaller testset testset (n=300, ca. 2% of the data). An arrow indicates
that lower (↓) or higher (↑) is better. Given are mean values of n = 10 (MMD/MRR) and n = 3
(Fmax) different random seeds for the latent variable of the model. Note that models marked with
(L=32) have been trained and evaluated on a set of truncated sequences and are hence not directly
comparable to the other values. Also, since without multi-label conditioning, the Unconditional
model was conditioned on different label sets as the other models and controls.

Model MMD↓ MRR↑ Fmax ↑
Positive Control 0.0237 0.7887 0.7705
Negative Control 1.0258 0.0909 0.3485

ProteoGAN (ours) 0.0463 ± 0.0003 0.5956 ± 0.0237 0.4178 ± 0.0004
Unconditional 0.0380 ± 0.0010 0.5219 ± 0.0195 0.3050 ± 0.0024
Predictor-guided 0.0428 0.1071 0.4776
Greener et al. 0.1611 ± 0.0012 0.3132 ± 0.0161 0.4658 ± 0.0020

PepCVAE (L=32) 0.1504 ± 0.0054 0.1910 ± 0.0138 0.4140 ± 0.0003
ProteoGAN (L=32) 0.0372 ± 0.0005 0.3160 ± 0.0205 0.4147 ± 0.0005

Figure A7: Losses and evaluations at training time. W = Wasserstein, AC = Auxiliary Classifier
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Figure A8: Distributions of pairwise distances in kernel feature space between a testset and the
training set (red) and a generated set of ProteoGAN and the training set (green). It can be seen
that the generated sequences are not closer to the training set than the testset (which would indicate
overfitting). Further the generated sequences are about as far, but not further, away from the training
set than the testset.
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