
From Theory to Practice: Rethinking Green and Martin Kernels
for Unleashing Graph Transformers

Yoon Hyeok Lee * 1 Jaemin Park * 1 Taejin Paik 1 Doyun Kim 2 Bosun Hwang 3

Abstract

Graph Transformers (GTs) have emerged as a
powerful alternative to message-passing neural
networks, yet their performance heavily depends
on effectively embedding structural inductive bi-
ases. In this work, we introduce novel structural
encodings (SEs) grounded in a rigorous analy-
sis of random walks (RWs), leveraging Green
and Martin kernels that we have carefully rede-
fined for AI applications while preserving their
mathematical essence. These kernels capture the
long-term behavior of RWs on graphs and allow
for enhanced representation of complex topolo-
gies, including non-aperiodic and directed acyclic
substructures. Empirical evaluations across eight
benchmark datasets demonstrate strong perfor-
mance across diverse tasks, notably in molecu-
lar and circuit domains. We attribute this perfor-
mance boost to the improved ability of our kernel-
based SEs to encode intricate structural informa-
tion, thereby strengthening the global attention
and inductive bias within GTs. This work high-
lights the effectiveness of theoretically grounded
kernel methods in advancing Transformer-based
models for graph learning.

1. Introduction
Graph Transformers (GTs) [Ying et al., 2021; Hussain et al.,
2022; Chen et al., 2022a; Bo et al., 2023; Rampášek et al.,
2022; Ma et al., 2023a] have been proposed as a superior
alternative to conventional Message Passing Neural Net-
works (MPNNs) [Gilmer et al., 2017], mitigating MPNNs’
well-known issues such as over-smoothing [Oono & Suzuki,

*Equal contribution 1Design AI Lab, AI Center, Samsung Elec-
tronics, Suwon, Republic of Korea 2Normal Computing, New York,
USA 3Independent Researcher, Paju, Republic of Korea. Corre-
spondence to: Yoon Hyeok Lee <yoonhuk1039@gmail.com>,
Bosun Hwang <bshwang07@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2019; Rusch et al., 2023], over-squashing [Alon & Yahav,
2020; Topping et al., 2021], under-reaching [Sun et al., 2022;
Barceló et al., 2020], and limited expressive power [Xu et al.,
2018; Morris et al., 2019]. For GTs to perform effectively,
it is essential to incorporate inductive biases [Dosovitskiy
et al., 2020] specific to graph data. Additionally, global
attention of GTs requires structural encodings (SEs) that
enable precise differentiation of nodes within the graph and
its substructures [Dwivedi & Bresson, 2020]. Recent model,
GRIT [Ma et al., 2023a], has shown state-of-the-art (SOTA)
performance for various benchmarks by implicitly incorpo-
rating the graph inductive bias from message-passing and
the global attention advantages of Transformer [Vaswani
et al., 2017] by using Relative Random Walk Probabilities
(RRWP) as the SE.

Random walks (RWs) have been extensively studied as a
means of exploring the structure of graphs. Several re-
sults [Lyons, 1994; Broise-Alamichel et al., 2019; Barlow,
2017] have demonstrated that the long-term behavior of a
RW encapsulates the topological information of the graph.
There are two mathematical quantities that capture this long-
term behavior, providing valuable insights into the graph’s
characteristics. The Green kernel is classically defined as
a “pseudo-inverse operator” used to find solutions to equa-
tions [Evans, 2022]. Analogously, the Green kernel on a
graph can be defined by the Moore-Penrose Inverse of the
graph Laplacian matrix in [Chung & Yau, 2000; Xu & Yau,
2013], in which the Green kernel is utilized for calculating
various probabilistic quantities. In the context of RWs on
graphs, it represents the expected number of visits to one
node from another [Lyons & Peres, 2017]. The Martin ker-
nel, on the other hand, is an important function in probability
theory and potential theory, particularly within the frame-
work of Martin boundary theory [Tsuji, 1959]. By utilizing
Martin kernel, one can construct the harmonic potential
function, which is essential tool for analyzing behavior of
the Brownian motion [Paulin et al., 2012]. The Martin
kernel is defined on graphs analogously and used for con-
structing the harmonic potential function [Broise-Alamichel
et al., 2019]. Moreover, it is equal to the probability that a
RW starting from one node will reach another node within
a finite time [Barlow, 2017].

1

Green and Martin Kernels for Graph Transformers

In this study, we introduce two extended concepts from
the theory of RWs—the Green and Martin kernels [Barlow,
2017; Lyons & Peres, 2017; Woess, 2000]—as new SEs. To
the best of our knowledge, our paper is the first to introduce
these concepts to design SEs. We apply these new SEs
to the recently developed GRIT model [Ma et al., 2023a]
and demonstrate that they outperform existing methods on
various benchmark datasets, including the molecular and cir-
cuit domains. Through this targeted innovation, we present
new SEs that are not only specialized for non-aperiodic sub-
structures and DAGs, but also enhanced performance across
diverse benchmarks1

In summary, our contributions are as follows. (i) We propose
new SEs, Green Kernel Structural Encoding (GKSE) and
Martin Kernel Structural Encoding (MKSE), based on the
Green and Martin kernels, which extend the RWs. (ii) We in-
tegrate GKSE and MKSE into the GRIT, demonstrating that
GKSE and MKSE exhibit strong performance across vari-
ous graph benchmarks, including those with small, medium,
large, and long-range interactions. (iii) In molecular graphs
containing numerous non-aperiodic substructures (e.g., ben-
zene rings), our methods demonstrate efficient learning
and strong performance on ZINC [Dwivedi et al., 2023]
and PCQM4Mv2 [Hu et al., 2021]. (iv) We demonstrate
that GKSE and MKSE efficiently learn circuit domain data,
which is represented as a DAG, and provide several baseline
benchmark results on Open Circuit Benchmark (OCB), the
first graph benchmark dataset in the circuit domain.

2. Related Work
Graph Transformers. Graph Neural Networks (GNNs)
have advanced considerably, evolving from MPNNs [Gilmer
et al., 2017] to sophisticated GTs. GTs capitalize on
Transformers’ flexibility and scalability, incorporating SEs
to enhance learning from graph data. Notably, NAG-
phormer [Chen et al., 2022b], AGT [Ma et al., 2023b] and
TokenGT [Kim et al., 2022] leverage Laplacian eigenvectors
as SEs, demonstrating strong performance in node classi-
fication tasks by effectively capturing the global structure
of graphs. In addition, the magnetic Laplacian have been
explored for SEs, emphasizing the importance of directed
graphs [Geisler et al., 2023].

GT models have also evolved to incorporate edge attributes,
improving their ability to capture the structural information
present in graphs. The Graphormer [Ying et al., 2021] and
EGT [Hussain et al., 2022] enhance the self-attention mech-
anism by integrating edge attributes, which improve the
interaction between node attributes during the learning pro-
cess. Moreover, several models have introduced relative SEs

1The code is publicly available at https://github.com/
yoonhuk30/GKSE-MKSE.

to handle edge attributes more effectively. GraphGPS [Ram-
pášek et al., 2022] applies relative SEs to facilitate interac-
tion between local message-passing and global self-attention
mechanism. In particular, the GRIT [Ma et al., 2023a] em-
ploys a multimodal approach to incorporating both node
and edge attributes into the self-attention mechanism. It
achieves high performance by utilizing RRWP, an SE based
on RWs, effectively capturing the structural properties of
graphs. For comprehensive insights into GTs, readers can
refer to detailed surveys that cover recent methodologies,
challenges, and future research opportunities [Min et al.,
2022; Müller et al., 2023].

Structural Encodings for Graphs. GTs encounter notable
challenges in encoding structural information, which are
crucial for distinguishing non-isomorphic structures and uti-
lizing graph symmetries. In this paper, we consider and
utilize SE as node and edge representations that are invari-
ant to graph isomorphisms, in order to better capture the
structural information of the graph [Lim et al., 2024; Li
et al., 2020].

For SEs, the use of graph Laplacians in graph analysis has
been widely explored. One study introduced globally con-
sistent anisotropic kernels using Laplacian eigenvectors to
incorporate directional information in GNNs [Beaini et al.,
2021]. Additionally, other research has generalized graph
Laplacians, demonstrating their effectiveness in capturing
the geometric structure of graphs [Dwivedi & Bresson, 2020;
Kreuzer et al., 2021]. Researchers have tackled the con-
straints of spectral methods through the development of
SignNet and BasisNet, which maintain invariance to sign
flips and the basis symmetries of eigenvectors [Lim et al.,
2023]. Additionally, another study leveraged the eigenvec-
tors of the Magnetic Laplacian to integrate directional infor-
mation into SEs [Geisler et al., 2023; Zhang et al., 2021].
Furthermore, an alternative approach utilized the Hodge
1-Laplacian spectrum for creating edge-level SEs [Zhou
et al., 2024]. On the other hand, the Random Walk-based
Structural Encoding (RWSE) has been proposed [Dwivedi
et al., 2022a], while direction- and structure-aware SEs
for directed graphs based on directional RWs have been
developed [Geisler et al., 2023]. In addition, the RRWPs
were proposed using RW probabilities and learned relative
SEs [Ma et al., 2023a]. This was extended by applying
edge-level RWs on a simplicial complex for edge SEs in
graphs [Zhou et al., 2024].

3. Mathematical Background
The Green and Martin kernels are mathematical tools that
capture the long-term behavior of RWs on graphs. Specifi-
cally, both kernels are functions of node pairs, and from this
perspective, we utilize them as absolute or relative SEs for
GNNs or GTs. When used as SEs, these kernels leverage

2

https://github.com/yoonhuk30/GKSE-MKSE
https://github.com/yoonhuk30/GKSE-MKSE

Green and Martin Kernels for Graph Transformers

the RW information that inherently reflects the topological
properties of the graph, enabling the model to better capture
structural patterns. We begin by describing RWs on grpahs
as a stochastic process, focusing on the Green and Martin
kernels.

3.1. Random Walk on Graphs as a Stochastic Process

Let G = (V, E) be a graph, and let P : V × V → R repre-
sent the transition probability kernel of G, that is, P(x, y)
denotes the probability that a RW starting at node x moves
to node y in the next step. We define P(i) : V × V → R
for i ∈ N, by performing the convolution of P with itself as
follows: for x, y ∈ V ,

P(i)(x, y) =

∫
V
P(i−1)(x, z)P(z, y) dz. (1)

We note that if G is a finite graph with n nodes, P can be
represented as an n × n matrix defined by P = D−1A,
where D is the diagonal matrix with the degrees of the
nodes as its diagonal entries, and A is the adjacency matrix
of the graph G. In this case, P(i) is the matrix Pi, which is
obtained by multiplying P by itself i times.

We define the sequence spaces Ω(x) ⊂ VN∪{0} for x ∈ V
by the set of all sequence ω = (ω0, ω1, . . .) ∈ VN∪{0} with
ω0 = x and (ωi, ωi+1) ∈ E for all i ∈ N ∪ {0}, that is,
the space of all forward trajectories derived from the RW
on G starting from the node x. We simply denote by Ω =
∪x∈VΩ(x), which is the space of all forward trajectories.

We define the probability measure Pω∈Ω(x) on Ω(x) such
that, for u1, . . . , uk ∈ V ,

Pω∈Ω(x)({ω ∈ Ω(x) | ωi = ui, ∀i = 1, . . . , k})

:= P(x, u1) ·
k−1∏
i=1

P(ui, ui+1),
(2)

which means the probability that a RW starting at node x
passes through u1, . . . , uk in that specific order.

Lastly, we define the set of random variables X = {Xi :
Ω → V}i∈N∪{0} by Xi(ω) = ωi for all i ∈ N ∪ {0} and
ω ∈ Ω. We intentionally omit further mathematical details,
such as σ-algebra and precise construction of measure, for
the sake of simplicity. For a more detailed explanation,
please refer to [Billingsley, 2017].

The triple (Ω, (Pω∈Ω(x))x∈V , X) uniquely determines the
RW on a graph. For example, for x, y ∈ V and i ∈ N ∪ {0},
the probability that a RW starting from x will visit y after
i step is Pω∈Ω(x)[Xi(ω) = y]. We note that the transition
probability matrix P also uniquely determines the RW. Ob-
serve that the kernel P(i) represents the probability moving
from one node to another node in i steps. In other word, the
value P(i)(x, y) is equal to Pω∈Ω(x)[Xi(ω) = y].

3.2. Green Kernel and Martin Kernel on Graphs

In this subsection, we introduce the Green kernel and Martin
kernel, which are essential tools in understanding RWs on
graphs. The Green kernel represents the expected number
of visits from one node to another, while the Martin kernel
describes the probability of reaching a specific node from
another within a finite number of steps. One can formulate
both kernels as follows: for x, y ∈ V ,

(Green kernel) G(x, y) = Eω∈Ω(x)[L
(∞)
y (ω)]; (3)

(Martin kernel) M(x, y) = Pω∈Ω(x)[τy(ω) < ∞], (4)

where L
(k)
y : Ω → N ∪ {0} is the counting function and

τy : Ω → N ∪ {0} is the first hitting time map, which are
defined as follows: for ω ∈ Ω,

L(k)
y (ω) =

k∑
i=0

1{Xi(ω)=y}; (5)

τy(ω) =min{i ∈ N ∪ {0} | Xi(ω) = x}. (6)

Both kernels are deeply connected to the underlying struc-
ture of the graph, as they reflect important topological prop-
erties of the graph [Barlow, 2017; Lyons & Peres, 2017;
Broise-Alamichel et al., 2019]. However, it is important
to note that the Green and Martin kernels are primarily
meaningful in transient graphs, where RWs do not return
to the starting node infinitely often. In fact, for a recurrent
graph, which is a non-transient graph, the value of Green
kernel is always +∞ and the value of Martin kernel remains
constantly 1.

3.3. Adapting Green and Martin Kernels for Recurrent
Graphs

Most graph data in practical applications tends to be recur-
rent rather than transient, which makes the computation of
the traditional Green and Martin kernels less meaningful. In
finite graphs, RWs are recurrent unless there is a sink region
that terminates the walk (i.e., a killed process). This issue
arises because the traditional Green and Martin kernels cap-
ture the long-term behavior of RWs over infinite time, where
RWs repeatedly revisit nodes. To address this limitation, we
developed new versions of the Green and Martin kernels by
restricting the RW to a finite number of steps. This approach
allows us to create new kernels for our proposed SEs, which
reflect meaningful RW properties even in recurrent graphs
by capturing the behavior over a finite horizon.

One further issue is that, for all x ∈ V , the value of the
Martin kernel at (x, x) is always 1 because the RW immedi-
ately revisits itself at step 0. As a result, even when using
the finite-step Martin kernel, the absolute SE consists of
constant 1s. To resolve this, we replace the first hitting time

3

Green and Martin Kernels for Graph Transformers

map τx with the first return time map τ+x : Ω → N ∪ {0},
which is defined as

τ+x (ω) := min{i ∈ N | Xi(ω) = x}, ∀ω ∈ Ω. (7)

By modifying the definition of the Martin kernel to use the
first return time map, the absolute SE reflects the topology
of the graph. More specifically, it becomes the probabil-
ity that a RW starting from a node returns to itself. This
adjustment ensures that the SE reflects more meaningful
information about the graph structure. Importantly, the rela-
tive SE remains unaffected by this change.

4. Methodology: Introducing GKSE and
MKSE

In this section, we introduce our proposed Green Kernel
Structural Encoding (GKSE) and Martin Kernel Structural
Encoding (MKSE), which are designed to reflect the theoret-
ical significance of the Green and Martin kernels discussed
in the previous section. Moreover, these encodings incorpo-
rate all the considerations discussed in section 3.3, leading
to the development of new mathematical constructs that ef-
fectively capture meaningful structural properties of graphs.

4.1. Green and Martin Kernel Structural Encodings

Applying observations in previous section 3.3, we now intro-
duce our GKSE and MKSE. First, we define the finite-step
Green kernel and finite-step Martin kernel to capture mean-
ingful RW behavior within a limited number of steps, whose
meanings are as follows: for x, y ∈ V and k ∈ N ∪ {0},

(finite-step Green kernel) Eω∈Ω(x)[L
(k)
y (ω)]; (8)

(finite-step Martin kernel) Pω∈Ω(x)[τ
+
y (ω) ≤ k]. (9)

Mathematically, the finite-step Green kernel represents the
expected number of visits from one node to another within
k steps, while the finite-step Martin kernel approximates the
probability of reaching a specific node from another within
k steps.

Based on these definitions, we construct the GKSE : V ×
V → RK and MKSE : V × V → RK with the dimension
K of SE as follows: for x, y ∈ V ,

GKSE (x, y) = [G(0)(x, y), . . . ,G(K−1)(x, y)]; (10)

MKSE (x, y) = [M(0)(x, y), . . . ,M(K−1)(x, y)], (11)

where G(k) and M(k) are finite-step Green and Martin ker-
nels (eq. (8), eq. (9)), respectively, whose actual formula-
tions are described in the section 4.2. These new encodings
provide significant structural information while overcoming
the limitations of traditional kernels, making them applica-
ble to recurrent graphs. It can be easily checked that these
SEs are invariant under graph isomorphisms.

For application to GNN models, the GKSE and MKSE are
used as relative SEs in attention mechanisms or message-
passing operations. Furthermore, their diagonal components
are used as absolute SEs by concatenating or summing them
with node features. For more details, please refer to [Black
et al., 2024].

4.2. Computation of finite-step Green and Martin
Kernels

In this subsection, we introduce the practical method for
calculating the finite-step Green and Martin kernels. While
the theoretical definition of the Green and Martin kernels
may seem complex, its actual computation can be efficiently
performed using a recursive approach. In fact, its computa-
tion speed is comparable to that of RRWP, with the detailed
computation times provided in Appendix B.6.

Finite-step Green Kernel. The finite-step Green kernel can
be calculated using the following recurrence relation: for
k ∈ N ∪ {0}, {

G(0) = I;

G(k+1) = I+P ⋆G(k),
(12)

where I(x, y) is 1 if x = y and 0 otherwise. Here, ⋆ denotes
convolution of kernels, which, in the case of a finite graph,
corresponds to matrix multiplication.

The following theorem shows that the theoretical definition
of the finite-step Green kernel (eq. (8)) and its practical
computation (eq. (12)) are consistent. The proof is provided
in Appendix C.2.

Theorem 4.1. For k ∈ N ∪ {0} and x, y ∈ V , let G(k) be
the finite-step Green kernel as computed by eq. (12). Then,
the following equality holds:

G(k)(x, y) = Eω∈Ω(x)[L
(k)
y (ω)], (13)

where Eω∈Ω(x)[·] means the expectation taken with respect
to the probability Pω∈Ω(x).

Finite-step Martin Kernel. Before introducing the finite-
step Martin kernel, we first observe that the traditional
Martin kernel M on graphs is defined by M(x, y) :=
G(x, y)/G(y, y) for x, y ∈ V . Based on this definition,
the finite-step Martin kernel (with the first hitting time map)
M̃(k) can be computed using the following formula: for
x, y ∈ V and k ∈ N ∪ {0},

M̃(k)(x, y) =
G(k)(x, y)

G(k)(y, y)
(14)

To apply the first return time map in the finite-step Martin
kernel M(k), we use the following modification: for x, y ∈

4

Green and Martin Kernels for Graph Transformers

V and k ∈ N ∪ {0},

M(k)(x, y) =

{
(P ⋆ M̃(k−1))(x, y) if x = y;

M̃(k)(x, y) if x ̸= y.
(15)

Although the finite-step Martin kernel computed using
eq. (15) may not exactly match the eq. (9), it provides a
close approximation. The following theorem ensures that
this approximation is accurate. The proof is provided in
Appendix C.4.

Theorem 4.2. For k ∈ N ∪ {0} and x, y ∈ V , let M(k) be
the finite-step Martin kernel as computed by eq. (15). Then,
the following inequalities hold:

1. 0 ≤ Pω∈Ω(x)[τ
+
y (ω) ≤ k]−M(k)(x, y) (16)

≤ H(k)(x, y)

G(k−δ(x,y))(y, y)
; (17)

2.
1

G(k−δ(x,y))(y, y)
≤ M(k)(x, y)

Pω∈Ω(x)[τ
+
y (ω) ≤ k]

≤ 1,

(18)

where H(k)(x, y) = Eω∈Ω(x)[τ
+
y (ω) ; τ+y (ω) ≤ k] =

Eω∈Ω(x)[1{τ+
y (ω)≤k} τ

+
y (ω)] is the k-step hitting time,

meaning the expectation of the first hitting time within k-
steps and δ is the Dirac function given by δ(x, y) = 1 if
x = y and otherwise 0.

In the above theorem, eq. (18) ensures the approximation
when k is small, while eq. (17) guarantees the approxima-
tion when k is large. In fact, as k becomes large, G(k)(y, y)
increases sublinearly, and for finite graphs, G(k)(x, y) con-
verges to a specific constant. Consequently, the lower bound
in eq. (18) is close to 1 when k is small, and the upper bound
in eq. (17) converges to 0 as k becomes large.

4.3. Representational Power of GKSE and MKSE

As we conclude this section, we focus on the representa-
tional power of the newly proposed GKSE and MKSE in
the theoretical view.

4.3.1. CONSTRUCTIBILITY COMPARISON

We begin by clarifying the concept of constructiblity com-
parison between two SEs. We say that SE1 is constructible
over SE2 if there exists continuous function that transforms
SE1 into SE2. This concept provides a framework to ana-
lyze the relationship between SEs in terms of their ability to
represent one another.

From a practical perspective, if SEs are passed through
an MLP before being input into GT, the constructibility
relationship between SEs directly reflects their relative rep-
resentational power. This is because the MLP acts as the

continuous function defined in the definition of constructibil-
ity.

The following theorem compares the constructilibity of
GKSE and MKSE with RRWP.

Theorem 4.3. The following two statements hold:

1. GKSE and RRWP are mutually constructible, meaning
they are equivalent in terms of constructibility.

2. MKSE is not constructible over RRWP, that is, MKSE
exhibits unique constructibility properties that are in-
dependent of RRWP.

We prove the theorem in generalized RW setting, as stated in
Appendix D.2. Furthermore, inspired by [Ma et al., 2023a],
we also provides the following results.

Corollary 4.4. The following two statements hold:

1. GKSE can construct the shortest path distance, heat
kernel, and graph Laplacian;

2. MKSE can construct the shortest path distance and
graph Laplacian.

We present more general statements in Appendix D.3 with
the corresponding proofs provided in Appendix D.4.

4.3.2. EXPRESSIVENESS COMPARISON

Next, we compare GKSE and MKSE with other SE when
they combined with the Generalized Distance Weisfeiler-
Lehman test (GD-WL), which is a variant of Weisfeiler-
Lehman test that uses a distance between nodes to update
node colors as follows: for x ∈ V ,

χt(x) = hash({{(d(x, y), χt−1(y)) : y ∈ V}}). (19)

The distance in GD-WL can be chosen from any graph
kernel, such as the shortest path distance (SPD). By utilizing
GKSE and MKSE as the distance, we obtain the following
result. The proof is provided in Appendix D.4.

Theorem 4.5. GD-WL with GKSE or MKSE is strictly
stronger than GD-WL with SPD.

5. Experimental Results
5.1. Benchmarking of GKSE and MKSE

We evaluate GKSE and MKSE on a comprehensive suite of
graph-level task benchmarks, encompassing three datasets
from the Benchmarking GNNs [Dwivedi et al., 2023]
and two datasets from the Long-Range Graph Benchmark
(LRGB) [Dwivedi et al., 2022b]. In addition to these, we
conduct experiments on the larger dataset PCQM4Mv2 from

5

Green and Martin Kernels for Graph Transformers

Table 1. Test performance on three graph-task benchmarks from
the Benchmarking GNNs [Dwivedi et al., 2023]. Shown is the
mean ± s.d. of 4 runs with different random seeds. Highlighted
are the top first, second, and third results.

Model ZINC MNIST CIFAR10

MAE↓ Accuracy↑ Accuracy↑
GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527
GraphSAGE 0.398 ± 0.002 97.312 ± 0.097 65.767 ± 0.308
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311
PNA 0.188 ± 0.004 97.940 ± 0.120 70.350 ± 0.630
CRaW1 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259

EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356
GRIT+RRWP 0.059 ± 0.001 98.108 ± 0.111 76.468 ± 0.881

GRIT+GKSE (ours) 0.058 ± 0.002 98.305 ± 0.125 76.718 ± 0.919
GRIT+MKSE (ours) 0.056 ± 0.021 98.235 ± 0.155 77.365 ± 0.640

the Open Graph Benchmark - Large Scale Challenge (OGB-
LSC) [Hu et al., 2021] to further validate the scalability and
effectiveness of our approaches. Furthermore, we evaluate
our methods on the Open Circuit Benchmark (OCB) [Dong
et al., 2023], the first benchmark specifically designed for
the circuit domain. Detailed descriptions of the experimen-
tal setup and configurations can be found in Appendix A.

Benchmarking GNNs [Dwivedi et al., 2023]. We ini-
tially test our methods on three graph-level task bench-
mark datasets from the BenchmarkingGNN [Dwivedi et al.,
2023]: ZINC, MNIST, and CIFAR10. We primarily com-
pare our methods against the SOTA GT model, GRIT [Ma
et al., 2023a], and various baselines described in Ap-
pendix A.2. To ensure a fair comparison with prior studies,
we adopted experimental settings similar to those in the
GraphGPS [Rampášek et al., 2022] and GRIT [Ma et al.,
2023a] papers, maintaining parameter limits of approxi-
mately 500K for ZINC and approximately 100K for MNIST
and CIFAR10. Detailed hyperparameter configurations are
provided in the Table 6. The experimental results are sum-
marized in Table 1. In our experiments, GRIT+GKSE
achieved SOTA performances on MNIST, and the second-
best performances on ZINC and CIFAR10 when paired with
GRIT+RRWP [Ma et al., 2023a]. GRIT+MKSE achieved
SOTA performances on ZINC and CIFAR10, and exhibited
the second-best performance on MNIST. These findings in-
dicate that GKSE, and MKSE can surpass a range of existing
methods on small to medium-sized datasets.

Long-Range Graph Benchmark [Dwivedi et al., 2022b].
We further evaluate our methods on two peptide graph
benchmarks from the LRGB [Dwivedi et al., 2022b] suite:
Peptides-func and Peptides-struct. These benchmarks were
selected to test the capability of our methods in capturing
long-range dependencies within input graphs. Our meth-
ods was compared against various baselines described in
Appendix A.2. Our experimental setup and hyperparam-

eter choices closely followed those used in the baseline
tested in GRIT [Ma et al., 2023a], with exceptions made
for batch size and RW steps. Detailed hyperparameter con-
figurations are provided in the Table 7. The results, pre-
sented in the Table 2, indicate that on the Peptides-struct
dataset, an 11-task regression benchmark, GRIT+GKSE
model achieved the best performance, followed by MKSE
and RRWP. On the Peptides-func dataset, a 10-label clas-
sification task, GRIT+GKSE and GRIT+MKSE performed
comparably to GRIT+RRWP. These findings demonstrate
our SEs’ proficiency in learning long-range interactions.
Notably, the superior performance of GKSE and MKSE on
the Peptides-struct dataset, which uses the same graph struc-
tures as Peptides-func, suggests that our SEs are particularly
effective in multi-task regression scenarios, outperforming
GRIT+RRWP despite its established efficacy in multi-label
classification tasks.

Table 2. Test performance on two benchmarks from the
LRGB [Dwivedi et al., 2022b]. Shown is the mean ± s.d. of
4 runs with different random seeds. Highlighted are the top first,
second, and third results.

Model Peptides-func Peptides-struct

AP↑ MAE↓
GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GatedGCN 0.5864 ± 0.0077 0.3420 ± 0.0013
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006
GatedGCN+EdgeRWSE 0.6002 ± 0.0048 0.2679 ± 0.0015
GatedGCN+Hodge1Lap 0.5926 ± 0.0059 0.2632 ± 0.0008

Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043
SAN+RWSE 0.6439 ± 0.0075 0.2545 ± 0.0012
GPS 0.6535 ± 0.0041 0.2500 ± 0.0005
GPS+EdgeRWSE 0.6625 ± 0.0042 0.2501 ± 0.0012
GPS+Hodge1Lap 0.6584 ± 0.0033 0.2505 ± 0.0014
GRIT+RRWP 0.6988 ± 0.0082 0.2460 ± 0.0012

GRIT+GKSE (ours) 0.6976 ± 0.0097 0.2452 ± 0.0012
GRIT+MKSE (ours) 0.6784 ± 0.0057 0.2457 ± 0.0013

PCQM4Mv2 from OGB-LSC [Hu et al., 2021]. The
PCQM4Mv2 dataset [Hu et al., 2021], one of the largest
molecular datasets available, serves as a critical benchmark
for GTs. Our methods was compared against various base-
lines described in Appendix A.2. Given the extensive size
of the dataset, we followed the setup of prior studies [Ram-
pášek et al., 2022]. Due to time constraints, we did not
engage in hyperparameter exploration; instead, we utilized
the hyperparameter settings from GraphGPS [Rampášek
et al., 2022]. Detailed descriptions of the experimental
setup and hyperparameters can be found in Appendix A.1
and Table 7, respectively. We carried out experiments with
4 random seeds to confirm our proposed SEs’ performance
and found that GRIT+GKSE achieved an MAE of 0.0837,
which is much better than previously reported results, as
illustrated in the Table 3.

6

Green and Martin Kernels for Graph Transformers

Table 3. Test performance on PCQM4Mv2 benchmark from the
OGB-LSC [Hu et al., 2021]. Shown is the result of a single run,
excluding experiments with GKSE and MKSE, which consists of
4 runs with different random seeds. Highlighted are the top first,
second, and third results.

Model MAE ↓ # Param

GCN 0.1379 2.0M
GCN-virtual 0.1153 4.9M
GIN 0.1195 3.8M
GIN-virtual 0.1083 6.7M

TokenGT (ORF) 0.0962 48.6M
TokenGT (Lap) 0.0910 48.5M
GRPE 0.0890 46.2M
EGT 0.0869 89.3M
Graphormer 0.0864 48.3M
Specformer-medium 0.0916 4.1M
GPS-small 0.0938 6.2M
GPS-medium 0.0858 19.4M
GRIT+RRWP 0.0859 16.6M

GRIT+GKSE (ours) 0.0837 ± 0.0002 11.8M
GRIT+MKSE (ours) 0.0839 ± 0.0002 11.8M

Open Circuit Benchmark [Dong et al., 2023]. We con-
duct experiments using our methods on two datasets from
the OCB [Dong et al., 2023], specifically Ckt-Bench101
and Ckt-Bench301. These datasets represent the first ana-
log circuit benchmarks modeled as DAGs. In our eval-
uation, we compared our methods against various base-
lines described in Appendix A.2. Detailed information on
dataset preparation and the experimental hyperparameters
can be found in Appendix A.1 and Table 8, respectively.
As shown in Table 4, the GT models outperformed the
MPNNs, with GRIT+GKSE achieving the best results and
GRIT+MKSE achieving the second-best results or compara-
ble with GRIT+RRWP. We also conducted a sensitivity anal-
ysis on the choice of K values, with the results provided in
Appendix B.3. These results suggest that GKSE and MKSE
are highly effective on datasets modeled as DAGs, further
demonstrating their versatility and robustness in various
graph structures.

5.2. Analysis of Experimental Results

Our proposed SEs showed strong performance on 7 out
of 8 benchmarks, with superior performance on regres-
sion tasks compared to classification tasks. In particular,
our proposed SEs outperformed on PCQM4Mv2 and Ckt-
Bench101, which we attribute to the advantage of our pro-
posed approaches in encapsulating graph structural infor-
mation more effectively than existing SEs in certain graphs.
We have explored which properties of our proposed SEs
contribute to the improvement in performance compared
with another RW-based SE, specifically RRWP. We inves-
tigated the unique characteristics of molecule and circuit

Table 4. Test performance on two benchmarks from the
OCB [Dong et al., 2023]. Shown is the mean ± s.d. of 4 runs with
different random seeds. Highlighted are the top first, second, and
third results.

Model Ckt-Bench101 Ckt-Bench301

MAE↓ MAE↓

GCN 0.0801 ± 0.0017 0.0584 ± 0.0006
GAT 0.0719 ± 0.0012 0.0583 ± 0.0016
GIN 0.0691 ± 0.0011 0.0528 ± 0.0004
GraphSAGE 0.0662 ± 0.0004 0.0545 ± 0.0005
GatedGCN 0.0668 ± 0.0006 0.0527 ± 0.0004

GPS+LapPE 0.0440 ± 0.0011 0.0199 ± 0.0004
GRIT+DAGPE 0.0444 ± 0.0011 0.0240 ± 0.0004
GRIT+RRWP 0.0418 ± 0.0021 0.0190 ± 0.0005

GRIT+GKSE (ours) 0.0395 ± 0.0033 0.0188 ± 0.0004
GRIT+MKSE (ours) 0.0409 ± 0.0016 0.0192 ± 0.0004

graphs and observed that GKSE and MKSE, compared to
RRWP, represents these features in fundamentally different
ways.

First, the molecular graph dataset is characterized by a large
number of substructures, such as hexagonal benzene rings.
In Figure 1, we visualize three SE values, RRWP, GKSE,
and MKSE, on the fluorescein molecule graph. For RRWP,
the edges with higher RRWP values form hexagons when
k is odd, on the other side they form a star shape when k
is even. This phenomenon arises because the hexagonal
subgraph is non-aperiodic. In fact, transition probabilities
on non-aperiodic graphs oscillate indefinitely. Mathemat-
ical details supporting this stability are provided in Ap-
pendix D.1. In contrast, our proposed SEs provide more
stable and consistent representations under non-aperiodic
structures, accurately reflecting the original graph structures,
as illustrated in Figure 1 and Figure 3. Based on our ex-
perimental results, we hypothesize that the stability of our
proposed SEs in handling non-aperiodic substructures con-
tributes to their improved performance. Related indirect
experimental evidence can be found in Appendix B.4. How-
ever, as our experimental results address only a limited set
of cases, they do not serve as definitive evidence to confirm
our assumptions. Thus, further observations and theoretical
investigations are necessary to substantiate this hypothesis
and gain deeper insights into the underlying mechanisms.

Second, our proposed SEs also demonstrate strong perfor-
mance on datasets with DAG structures, such as OCB, which
is common in the circuit domain. In DAGs, RWs terminate
after a finite number of steps due to the inability to return
to previously visited nodes, leading to sparse representa-
tions when using RRWP–especially for values of K that are
larger than diameter of the graph. This sparsity can weaken
the representational power of the graph structure. Indeed,
in datasets where graph samples have varying diameters,

7

Green and Martin Kernels for Graph Transformers

RR
W

P

k=1 k=2 k=3 k=4 k=5

GS
KE

M
KS

E

Figure 1. Visualization of RRWP, GKSE, and MKSE on a fluorescein molecule graph for k-steps ranging from 1 to 5. In each graph, the
thickness and color intensity of the edges represent the magnitude of the corresponding SE values, with higher values indicated by thicker
and darker edges.

RR
W

P

k=1 k=2 k=3 k=4 k=5

GK
SE

Figure 2. Visualization of RRWP and GKSE on a OCB graph sample for k-steps ranging from 1 to 5. In each graph, the thickness and
color intensity of the edges represent the magnitude of the corresponding SE values, with higher values indicated by thicker and darker
edges.

a fixed hyperparameter K may fit well for some samples
but result in overly sparse SEs for others with low diame-
ters. Related indirect experimental evidence can be found
in Appendix B.5. Such imbalance can negatively affect
the overall learning performance. However, our proposed
SEs maintain consistent representations even for large K,
making it suitable for capturing the structural information
of DAGs, as shown in Figure 2. This enhanced efficacy on
directed graphs can be attributed to the intrinsic properties
of the SEs.

Overall, we infer that our proposed SEs are particularly
beneficial for regression tasks involving non-aperiodic sub-
structures or DAGs. The performance advantage of GKSE
and MKSE can be attributed to their ability to effectively
capture intricate structural details in such graphs, thereby
enhancing the learning capabilities of GTs across diverse
applications.

6. Conclusion
In this work, we introduced novel SEs, GKSE and MKSE,
to expedite GTs by leveraging theoretical insights into the
Green and Martin kernels within graph data. These en-
codings provide a foundational approach to extending RW-
based methods, enhancing the expressiveness and efficiency
of GTs. Our proposed SEs demonstrated significant im-
provements across multiple benchmarks, demonstrating
strong performance in 7 out of 8 tasks. These results confirm
that our methods not only achieve superior performance
but also effectively represent both molecular and circuit
data, aligning with our theoretical analyses. The ability
of GKSE and MKSE to capture unique structural features
across diverse graph domains suggests promising directions
for future research. We plan to further explore these capa-
bilities to develop more expressive SEs with theoretically
provable properties and to design model architectures that

8

Green and Martin Kernels for Graph Transformers

fully leverage this enhanced expressiveness. By providing a
deeper understanding of the underlying kernels and a prac-
tical approach to improve GTs, this study contributes to
the advancement of graph representation learning. It paves
the way for developing more sophisticated and capable GT
models in future research.

Impact Statement
We contribute to the technological progress in the domain
of electronic design automation, which is very important
but still underrepresented in terms of graph representation
learning (GRL) techniques, by developing new SEs. As a
general GRL method, we do not expect any negative soci-
etal consequences in the immediate future, but we believe
that thorough validation is needed in areas such as drug
discovery and computational biology.

References
Alon, U. and Yahav, E. On the bottleneck of graph neural

networks and its practical implications. arXiv preprint
arXiv:2006.05205, 2020.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J.,
and Silva, J.-P. The logical expressiveness of graph neural
networks. In 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Barlow, M. T. Random walks and heat kernels on graphs,
volume 438. Cambridge University Press, 2017.

Beaini, D., Passaro, S., Létourneau, V., Hamilton, W.,
Corso, G., and Liò, P. Directional graph networks. In
International Conference on Machine Learning, pp. 748–
758. PMLR, 2021.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron,
H. Equivariant subgraph aggregation networks. arXiv
preprint arXiv:2110.02910, 2021.

Billingsley, P. Probability and measure. John Wiley & Sons,
2017.

Black, M., Wan, Z., Mishne, G., Nayyeri, A., and Wang, Y.
Comparing graph transformers via positional encodings.
arXiv preprint arXiv:2402.14202, 2024.

Bo, D., Shi, C., Wang, L., and Liao, R. Specformer: Spectral
graph neural networks meet transformers. arXiv preprint
arXiv:2303.01028, 2023.

Brandes, U. On variants of shortest-path betweenness cen-
trality and their generic computation. Social networks,
30(2):136–145, 2008.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Broise-Alamichel, A., Parkkonen, J., and Paulin, F.
Equidistribution and counting under equilibrium states
in negative curvature and trees. Springer, 2019.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-
aware transformer for graph representation learning.
In International Conference on Machine Learning, pp.
3469–3489. PMLR, 2022a.

Chen, J., Gao, K., Li, G., and He, K. Nagphormer: A
tokenized graph transformer for node classification in
large graphs. arXiv preprint arXiv:2206.04910, 2022b.

Chung, F. and Yau, S.-T. Discrete green’s functions. Journal
of Combinatorial Theory, Series A, 91(1-2):191–214,
2000.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems, 33:
13260–13271, 2020.

Dong, Z., Cao, W., Zhang, M., Tao, D., Chen, Y., and Zhang,
X. Cktgnn: Circuit graph neural network for electronic de-
sign automation. arXiv preprint arXiv:2308.16406, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y.,
and Bresson, X. Graph neural networks with learn-
able structural and positional representations. In
International Conference on Learning Representations,
2022a. URL https://openreview.net/forum?
id=wTTjnvGphYj.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A.,
Wolf, G., Luu, A. T., and Beaini, D. Long range graph
benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022b.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural net-
works. Journal of Machine Learning Research, 24(43):
1–48, 2023.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

9

https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj

Green and Martin Kernels for Graph Transformers

Fey, M. and Lenssen, J. E. Fast graph representa-
tion learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

Geisler, S., Li, Y., Mankowitz, D. J., Cemgil, A. T., Gün-
nemann, S., and Paduraru, C. Transformers meet di-
rected graphs. In International Conference on Machine
Learning, pp. 11144–11172. PMLR, 2023.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Goh, K.-I., Kahng, B., and Kim, D. Universal behavior of
load distribution in scale-free networks. Physical review
letters, 87(27):278701, 2001.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hornik, K., Stinchcombe, M., and White, H. Multi-
layer feedforward networks are universal approximators.
Neural networks, 2(5):359–366, 1989.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. arXiv preprint arXiv:1905.12265, 2019.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. Ogb-lsc: A large-scale challenge
for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Global
self-attention as a replacement for graph convolution. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665,
2022.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

Johnson, S., Domínguez-García, V., Donetti, L., and Muñoz,
M. A. Trophic coherence determines food-web stability.
Proceedings of the National Academy of Sciences, 111
(50):17923–17928, 2014.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., and
Hong, S. Pure transformers are powerful graph learners.

Advances in Neural Information Processing Systems, 35:
14582–14595, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020.

Lim, D., Robinson, J. D., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and basis invariant networks for
spectral graph representation learning. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=Q-UHqMorzil.

Lim, D., Robinson, J., Jegelka, S., and Maron, H. Expressive
sign equivariant networks for spectral geometric learning.
Advances in Neural Information Processing Systems, 36,
2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Luo, Y., Thost, V., and Shi, L. Transformers over di-
rected acyclic graphs. Advances in Neural Information
Processing Systems, 36, 2024.

Lyons, R. Equivalence of boundary measures on covering
trees of finite graphs. Ergodic Theory and Dynamical
Systems, 14(3):575–597, 1994.

Lyons, R. and Peres, Y. Probability on trees and networks,
volume 42. Cambridge University Press, 2017.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P., and Lim, S.-N. Graph in-
ductive biases in transformers without message passing.
In International Conference on Machine Learning, pp.
23321–23337. PMLR, 2023a.

Ma, L., Pal, S., Zhang, Y., Zhou, J., Zhang, Y., and Coates,
M. Ckgconv: General graph convolution with continuous
kernels. arXiv preprint arXiv:2404.13604, 2024.

Ma, X., Chen, Q., Wu, Y., Song, G., Wang, L., and Zheng,
B. Rethinking structural encodings: Adaptive graph trans-
former for node classification task. In Proceedings of the
ACM Web Conference 2023, pp. 533–544, 2023b.

10

https://openreview.net/forum?id=Q-UHqMorzil
https://openreview.net/forum?id=Q-UHqMorzil

Green and Martin Kernels for Graph Transformers

Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W.,
Zhao, P., Huang, J., Ananiadou, S., and Rong, Y. Trans-
former for graphs: An overview from architecture per-
spective. arXiv preprint arXiv:2202.08455, 2022.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and le-
man go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 4602–4609, 2019.

Müller, L., Galkin, M., Morris, C., and Rampášek,
L. Attending to graph transformers. arXiv preprint
arXiv:2302.04181, 2023.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947, 2019.

Park, W., Chang, W., Lee, D., Kim, J., and Hwang, S.-w.
Grpe: Relative positional encoding for graph transformer.
arXiv preprint arXiv:2201.12787, 2022.

Paulin, F., Pollicott, M., and Schapira, B. Equilibrium states
in negative curvature. arXiv preprint arXiv:1211.6242,
2012.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. arXiv preprint
arXiv:2303.10993, 2023.

Singh, S., Chaudhary, K., Dhanda, S. K., Bhalla, S., Usmani,
S. S., Gautam, A., Tuknait, A., Agrawal, P., Mathur, D.,
and Raghava, G. P. Satpdb: a database of structurally
annotated therapeutic peptides. Nucleic acids research,
44(D1):D1119–D1126, 2016.

Strang, G. Linear algebra and its applications. 2012.

Sun, Q., Li, J., Yuan, H., Fu, X., Peng, H., Ji, C., Li, Q.,
and Yu, P. S. Position-aware structure learning for graph
topology-imbalance by relieving under-reaching and over-
squashing. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management,
pp. 1848–1857, 2022.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
learning with 1d convolutions on random walks. arXiv
preprint arXiv:2102.08786, 2021.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong,
X., and Bronstein, M. M. Understanding over-squashing
and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Tsuji, M. Potential theory in modern function theory.
Maruzen, 1959.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017.

Woess, W. Random walks on infinite graphs and groups.
Number 138. Cambridge university press, 2000.

Xu, H. and Yau, S.-T. Discrete green’s functions and ran-
dom walks on graphs. Journal of Combinatorial Theory,
Series A, 120(2):483–499, 2013.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? Advances in neural information
processing systems, 34:28877–28888, 2021.

You, J., Ying, Z., and Leskovec, J. Design space for
graph neural networks. Advances in Neural Information
Processing Systems, 33:17009–17021, 2020.

Zhang, X., He, Y., Brugnone, N., Perlmutter, M., and
Hirn, M. Magnet: A neural network for directed graphs.
Advances in neural information processing systems, 34:
27003–27015, 2021.

Zhou, C., Wang, X., and Zhang, M. Facilitating graph neural
networks with random walk on simplicial complexes.
Advances in Neural Information Processing Systems, 36,
2024.

11

Green and Martin Kernels for Graph Transformers

A. Experimental Details
A.1. Description of Benchmark Datasets

A detailed overview of the statistical properties and characteristics of the benchmark datasets is presented in Table 5. The
initial five datasets are sourced from the BenchmarkingGNNs [Dwivedi et al., 2023], followed by the subsequent two from
the LRGB [Dwivedi et al., 2022b], one dataset in the middle is from the OGB-LSC [Hu et al., 2021], and the final two
datasets are provided by the OCB [Dong et al., 2023].

Table 5. Overview of the graph learning benchmark datasets used in this study [Dwivedi et al., 2023; 2022b; Hu et al., 2021; Dong et al.,
2023]

Dataset # Graphs Avg. #
nodes

Avg. #
edges Directed Prediction

level
Prediction

task Metric

ZINC 12,000 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classification Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classification Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classification Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classification Weighted Accuracy

Peptides-func 15,535 150.9 307.3 No graph 10-task classification Avg. Precision
Peptides-struct 15,535 150.9 307.3 No graph 11-task regression Mean Abs. Error

PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

Ckt-Bench101 10,000 9.6 14.5 Yes graph regression Mean Abs. Error
Ckt-Bench301 47,248 9.9 15.5 Yes graph regression Mean Abs. Error

ZINC [Dwivedi et al., 2023] comprises 12,000 molecular graphs sampled from the ZINC database [Irwin et al., 2012] of
commercially available chemical compounds. These molecular graphs contain between 9 and 37 nodes, where each node
corresponds to a heavy atom from one of 28 possible atom types, and each edge represents one of three possible bond types.
The task associated with this dataset is to predict a molecular property known as constrained solubility (logP). The dataset is
provided with a predefined split of 10,000 training, 1,000 validation, and 1,000 test samples.

MNIST and CIFAR10 [Dwivedi et al., 2023] are derived from their corresponding classical image classification datasets by
constructing 8 nearest-neighbor graphs of SLIC superpixels for each image. The resulting graphs contain 40-75 nodes for
MNIST and 85-150 nodes for CIFAR10. The 10-class classification tasks and standard dataset splits mirror the original image
classification datasets, specifically 55K/5K/10K for MNIST and 45K/5K/10K for CIFAR10 in terms of train/validation/test
graphs. These datasets serve as sanity checks, with most GNNs expected to achieve near 100% accuracy for MNIST and
perform sufficiently well for CIFAR10.

PATTERN and CLUSTER [Dwivedi et al., 2023] are synthetic datasets derived from a probabilistic block model,
specifically designed for inductive node-level classification tasks. In the PATTERN dataset, the objective is to identify nodes
that belong to one of 100 possible subgraph patterns. These patterns are randomly generated using different Stochastic
Block Model (SBM) parameters from the rest of the graph. In the CLUSTER dataset, each graph is divided into six clusters,
all generated using the same SBM distribution. Within each cluster, only one node has a unique cluster ID. The task is to
determine the cluster ID for each node based on the structure of the graph.

Peptides-func and Peptides-struct [Dwivedi et al., 2022b] datasets consist of atomic graphs of peptides. Derived from
a collection of 15,535 peptides encompassing a total of 2.3 million nodes from SATPdb [Singh et al., 2016], these two
datasets share the same set of graphs but differ in their prediction tasks. In the Peptides-func dataset, the task is to classify
each graph into one or more of 10 non-exclusive peptide functional classes. In the Peptides-struct dataset, the goal is to
regress 11 distinct 3D structural properties of the peptides. These graphs are designed to require inference of long-range
interactions (LRI) for robust performance. With an average of 150.9 nodes per graph and a mean graph diameter of 57, they
provide a challenging benchmark for GTs and other GNNs aimed at capturing LRIs.

PCQM4Mv2 [Hu et al., 2021] dataset is an extensive graph regression benchmark comprising almost 3.7 million molecular
graphs. The objective is to predict the HOMO-LUMO gap, a quantum mechanical property computed using Density
Functional Theory. The true labels for the original "test-dev" and "test-challenge" dataset splits are withheld by the
OGB-LSC challenge organizers to ensure the integrity of the competition. Thus, we utilized the original validation set as our
test set, excluding 150,000 randomly selected molecules to refine the validation process. This adjustment ensures rigorous

12

Green and Martin Kernels for Graph Transformers

evaluation while maintaining consistency with the dataset’s intended use in benchmarking advanced GNN models.

Ckt-Bench101 and Ckt-Bench301 [Dong et al., 2023] are pioneering datasets in the circuit domain, specifically designed
for optimizing both analog circuit topologies and device parameters. Ckt-Bench101 comprises 10,000 operational amplifier
(OpAmp) circuits, each topology represented as a directed acyclic graph (DAG). Ckt-Bench301 includes 47,248 OpAmp
circuits, after excluding 2,752 invalid simulation results from the original 50,000 entries. For regression tasks, performance
metrics for these circuits have been meticulously extracted using a circuit simulator. The OCB dataset provides critical
performance metrics such as gain, bandwidth, phase margin, and a figure of merit (a composite metric of these parameters)
as labels. The OCB dataset provides both subgraph-level and node-level graphs for CktGNN, a nested-GNN leveraging
domain-specific knowledge of circuits. In this study, we focused on extracting node-level graph information and organizing
the data for use within the GraphGPS framework [Rampášek et al., 2022]. Each node in the dataset has node attributes
of a circuit device, annotated with device-specific types and feature values, including resistance r, capacitance c, and
transconductance gm. Due to the lack of inherent edge attribute values in the domain, we introduced a three-dimensional
edge feature vector derived from the structural properties of the graphs. These features include edge betweenness [Brandes,
2008], edge load centrality [Goh et al., 2001; Hagberg et al., 2008], and trophic differences [Johnson et al., 2014], all
computed using NetworkX [Hagberg et al., 2008]. The preprocessed Ckt-Bench101 and Ckt-Bench301 datasets are provided
in the github (https://github.com/yoonhuk30/GKSE-MKSE) for further research.

A.2. Baselines

Comparison for the BenchmarkingGNNs, we benchmark our approaches against several widely used GNN models, including
prominent MPNNs and leading GNNs (GCN [Kipf & Welling, 2016], GAT [Velickovic et al., 2017], GIN [Xu et al., 2018],
GraphSAGE [Hamilton et al., 2017], GatedGCN [Bresson & Laurent, 2017], PNA [Corso et al., 2020], CRaW1 [Toenshoff
et al., 2021]); and GTs with various PE and SE (EGT [Hussain et al., 2022], GraphGPS [Rampášek et al., 2022],
GRIT [Ma et al., 2023a]). Comparison for the LRGB, we compare our methods against various MPNNs with several PESE
(GCN [Kipf & Welling, 2016], GINE [Hu et al., 2019], GatedGCN [Bresson & Laurent, 2017]) as well as several GTs
(Transformer [Vaswani et al., 2017], SAN [Chen et al., 2022a], GraphGPS [Rampášek et al., 2022], and GRIT [Ma et al.,
2023a], EdgeRWSE, and Hodge1Lap [Zhou et al., 2024]). Comparison for the PCQM4Mv2, our methods was compared
against two MPNNs with and without virtual nodes (GCN [Kipf & Welling, 2016], GIN [Xu et al., 2018]) as well as several
GTs (TokenGT [Kim et al., 2022], GRPE [Park et al., 2022], EGT [Hussain et al., 2022], Graphormer [Ying et al., 2021],
Specformer [Bo et al., 2023], GraphGPS [Rampášek et al., 2022], and GRIT [Ma et al., 2023a]). Comparison for the OCB,
we compare our methods against various MPNNs (GCN [Kipf & Welling, 2016], GAT [Velickovic et al., 2017], GIN [Xu
et al., 2018], GraphSAGE [Hamilton et al., 2017], GatedGCN [Bresson & Laurent, 2017]) as well as two prominent GTs
(GraphGPS [Rampášek et al., 2022], GRIT [Ma et al., 2023a]). We also implemented directed acyclic graph positional
encodings (DAGPE) [Luo et al., 2024] as a baseline of DAG. This comprehensive comparison ensures a robust assessment
of our methods’ relative performance across diverse graph benchmarks.

A.3. Dataset Splits and Random Seeds

For the datasets under evaluation, we adhere to the standard train/validation/test splits established by the benchmarks. We
conduct four experimental runs on each dataset, utilizing distinct random seeds (0, 1, 2, 3). We then report both the mean
performance and the standard deviation across these runs to ensure the robustness and reproducibility of our results.

A.4. Hyperparameter Settings

Due to constraints in time and computational resources, an exhaustive or grid search for hyperparameters was not conducted.
Instead, we primarily adhered to the hyperparameter settings of GraphGPS [Rampášek et al., 2022], making minor
adjustments where necessary to align with commonly used parameter budgets. For benchmarking various datasets, we
adhered to the standard parameter budgets widely accepted in the literature [Dwivedi et al., 2023; 2022b]. Specifically, we
used a maximum of 500K parameters for the ZINC, PATTERN, CLUSTER, Peptides-func, and Peptides-struct datasets.
For the MNIST and CIFAR10 datasets, the parameter budget was capped at 100K parameters. Across all experiments, we
utilized the AdamW optimizer [Loshchilov & Hutter, 2017] with default settings of β1 = 0.9, β2 = 0.999, and ϵ = 10−8

same as the GraphGPS [Rampášek et al., 2022]. The learning rate schedule featured a linear "warm-up" phase at the
beginning of training, followed by a cosine decay. The duration of the warm-up period, the base learning rate, and the total
number of epochs were tuned for each dataset. The final hyperparameter configurations are detailed in Tables 6, 7, and 8.

13

https://github.com/yoonhuk30/GKSE-MKSE

Green and Martin Kernels for Graph Transformers

Table 6. Hyperparameters of GKSE and MKSE for five benchmarks from the BenchmarkingGNNs [Dwivedi et al., 2023]

Category Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER

GTs

Transformer Layers 10 3 3 10 16
Hidden dim 64 52 52 64 48
Heads 8 4 4 8 8
Dropout 0 0 0 0 0.01
Attention dropout 0.2 0.5 0.5 0.2 0.5
Graph pooling sum mean mean - -

Training

Batch size 32 16 8 32 16
Learning Rate 0.001 0.001 0.001 0.0005 0.001
Epochs 2000 200 200 100 100
Warmup epochs 50 5 5 5 5
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5

GKSE
ksteps (RW-steps) 19 18 17 26 40
PE encoder linear linear linear linear linear
Parameters 473,217 102,138 99,382 478,593 432,438

MKSE
ksteps (RW-steps) 18 16 17 14 41
PE encoder linear linear linear linear linear
Parameters 473,089 101,930 99,382 477,057 432,534

Table 7. Hyperparameters of GKSE and MKSE for two benchmarks from the LRGB [Dwivedi et al., 2022b] and PCQM4Mv2 benchmark
from the OGB-LSC [Hu et al., 2021]

Category Hyperparameter Peptides-func Peptides-struct PCQM4Mv2

GTs

Transformer Layers 4 4 16
Hidden dim 96 96 256
Heads 4 8 8
Dropout 0 0 0.1
Attention dropout 0.5 0.5 0.1
Graph pooling mean mean mean

Training

Batch size 8 32 256
Learning Rate 0.0003 0.0003 0.0002
Epochs 200 200 150
Warmup epochs 5 5 10
Weight decay 0 0 0

GKSE
MKSE

ksteps (RW-steps) 26 24 16
PE encoder linear linear linear
Parameters 445,162 449,579 11.8M

B. Supplementary Experiments
B.1. Experiments on inductive node-level task

We test our methods on two inductive node-level classification task benchmark datasets from the Benchmarking-
GNN [Dwivedi et al., 2023]: PATTERN and CLUSTER. We primarily compare our methods against the SOTA GT
model, GRIT [Ma et al., 2023a], and various baselines described in Appendix A.2. To ensure a fair comparison with
prior studies, we adopted experimental settings similar to those in the GraphGPS [Rampášek et al., 2022] and GRIT [Ma
et al., 2023a] papers, maintaining parameter limits of approximately 500K for both datasets. Detailed hyperparameter
configurations are provided in the Table 6. The experimental results show that except for GRIT+GKSE performing well on
the PATTERN dataset, the other results are slightly lower of comparable to the GRIT+RRWP as summarized in Table 9. We

14

Green and Martin Kernels for Graph Transformers

Table 8. Hyperparameters of GKSE and MKSE for two benchmark datasets from the Open Circuit Benchamark [Dong et al., 2023]

Category Hyperparameter Ckt-Bench101 Ckt-Bench301

MPNNs

Pre Message Passing Layers 2 2
Message Passing Layers 2 2
Post Message Passing Layers 1 1
Hidden dim 64 64
Dropout 0 0
Aggregation mean mean

GTs

Transformer Layers 10 10
Hidden dim 64 64
Heads 8 8
Dropout 0 0
Attention dropout 0.2 0.2
Graph pooling mean mean

Training

Batch size 32 64
Learning Rate 0.001 0.001
Epochs 200 200
Warmup epochs 5 5
Weight decay 1e-5 1e-5

GPS

GPS-MPNN GINE GINE
GPS-GlobAttn Transformer Transformer
PE LapPE LapPE
PE dim 8 8
PE encoder DeepSet DeepSet

RRWP
GKSE
MKSE

ksteps (RW-steps) 18 21
PE encoder linear linear
Parameters 471,745 472,129

Table 9. Test performance on two inductive node-level task benchmarks from the Benchmarking GNNs. Shown is the mean ± s.d. of 4
runs with different random seeds. Highlighted are the top first, second, and third results.

Model PATTERN CLUSTER

W. Accuracy↑ W. Accuracy↑
GCN 71.892 ± 0.334 68.498 ± 0.976
GAT 78.271 ± 0.186 70.587 ± 0.447
GIN 85.387 ± 0.136 64.716 ± 1.553
GraphSAGE 50.492 ± 0.001 63.844 ± 0.110
GatedGCN 85.568 ± 0.088 73.840 ± 0.326

SAN 86.581 ± 0.037 76.691 ± 0.065
EGT 86.821 ± 0.020 79.232 ± 0.348
GPS 86.685 ± 0.059 78.016 ± 0.180
GRIT+RRWP 87.196 ± 0.076 80.026 ± 0.277

GRIT+GKSE (ours) 87.328 ± 0.216 79.858 ± 0.034
GRIT+MKSE (ours) 87.150 ± 0.194 79.729 ± 0.145

believe this is partly due to the high average number of edges in graphs of PATTERN and CLUSTER. The dense connectivity
in these datasets may hinder the ability of RWs to represent structural nuances effectively. Additionally, the synthetic nature
of the datasets, derived from SBM with specific patterns and clustring tasks, might require alternative encoding strategies
better suited for dense graphs and node-level classification.

15

Green and Martin Kernels for Graph Transformers

B.2. Experiments on CKGConv architecture

To provide further evidence of the broad applicability of our SEs, we have integrated them into the recently accepted
CKGCN model [Ma et al., 2024]. Using the authors’ publicly available code repository and configurations, we conducted
experiments on five benchmarks. For the ckt-bench101 and ckt-bench301 datasets, we used the configurations described in
our paper. As the results indicated in Table 10, integrating our SEs into CKGCN led to performance improvements on all
datasets except CIFAR10. These findings suggest that our SEs can enhance models beyond GRIT.

Table 10. Test performance of GKSE and MKSE on CKGCN architecture. Shown is the mean ± s.d. of 4 runs with different random
seeds. Highlighted are the top first results.

Model ZINC MNIST CIFAR10 Ckt-bench101 Ckt-bench301

MAE↓ Accuracy↑ Accuracy↑ MAE↓ MAE↓
CKGCN+RRWP 0.0621 ± 0.0049 98.426 ± 0.155 72.785 ± 0.436 0.0449 ± 0.0007 0.0190 ± 0.0003
CKGCN+GKSE (ours) 0.0605 ± 0.0040 98.490 ± 0.138 72.328 ± 0.152 0.0443 ± 0.0006 0.0187 ± 0.0006
CKGCN+MKSE (ours) 0.0611 ± 0.0034 98.492 ± 0.063 72.225 ± 0.104 0.0435 ± 0.0003 0.0189 ± 0.0003

B.3. Sensitivity Analysis

We conducted a sensitivity analysis on the parameter K for RRWP and GKSE using the Ckt-Bench101 dataset. The
results, presented in Table 11, provide insights into how varying K impacts model performance. For this analysis, all other
hyperparameters were held constant. Notably, GKSE outperformed RRWP across most values of K, except for K = 15.
Furthermore, GKSE maintained the same MAE values at K = 18 (where RRWP performed best) even when utilizing a
shorter SE length of K = 6. Remarkably, at an extremely short K = 3, the performance of GKSE remained comparable to
that of GraphGPS, as indicated in Table 4. These findings suggest that GKSE are highly efficient in representing DAGs. The
robustness of their performance across different values of K indicates their capability to effectively capture graph structures
with reduced SE lengths, demonstrating their adaptability and efficiency in various graph scenarios.

Table 11. Sensitivity Analysis of K steps of RRWP and GKSE on Ckt-Bench101 [Dong et al., 2023] dataset. Shown is the mean ± s.d. of
4 runs with different random seeds. Highlighted indicate comparable values to the GRIT+GKSE, GRIT+RRWP, and GPS+LapPE in the
Ckt-Bench101 column of Table 4, respectively.

K GRIT+RRWP GRIT+GKSE

MAE↓ MAE↓

3 0.0443 ± 0.0009 0.0440 ± 0.0003
6 0.0425 ± 0.0010 0.0418 ± 0.0010
9 0.0434 ± 0.0008 0.0423 ± 0.0015

12 0.0435 ± 0.0008 0.0429 ± 0.0010
15 0.0427 ± 0.0003 0.0431 ± 0.0015
18 0.0418 ± 0.0021 0.0395 ± 0.0033
21 0.0440 ± 0.0004 0.0409 ± 0.0005
24 0.0430 ± 0.0022 0.0424 ± 0.0021
27 0.0426 ± 0.0012 0.0423 ± 0.0017
30 0.0433 ± 0.0016 0.0426 ± 0.0010

B.4. Experiments for checking expressiveness of proposed SEs on non-aperiodic substructures

To verify, even indirectly, the expressive power of our proposed SEs on non-aperiodic structures, we conducted experiments
on subsets of the PCQM4Mv2 dataset, focusing on the presence of benzene rings (a representative non-aperiodic structure).
Specifically, we sampled 50,000 graphs containing benzene rings (with-ring) and 50,000 graphs without any hexagonal
ring structures (without-ring). These subsets allowed us to analyze the performance of RRWP and GKSE in isolation. Due
to resource constraints and the similarity in performance between GKSE and MKSE, we only included GKSE in these

16

Green and Martin Kernels for Graph Transformers

comparisons. For these experiments, we used the same hyperparameters as in the ZINC dataset experiments, with the
exception of limiting the training to 100 epochs. The results are summarized in Table 12.

Table 12. Test performance on PCQM4Mv2-subsets with or without non-aperiodic substruactures. Shown is the mean ± s.d. of 4 runs
with different random seeds. Highlighted are the top first results.

Model PCQM4Mv2-subset-with-ring PCQM4Mv2-subset-without-ring

MAE↓ MAE↓
GRIT+RRWP 0.1941 ± 0.0191 0.1944 ± 0.0148
GRIT+GKSE 0.1917 ± 0.0108 0.2128 ± 0.0358

For with-ring graphs, GKSE consistently outperforms RRWP, demonstrating its ability to better capture the structural
properties of non-aperiodic substructures. For without-ring graphs, RRWP shows better performance, likely due to its
design being more suited to periodic or simpler graph structures. We further analyzed the full PCQM4Mv2 dataset and
found that the ratio of with-ring to without-ring graphs is approximately 1.95:1 (with 2,477,194 graphs containing rings
and 1,269,426 without). This distribution explains why GKSE performs better than RRWP on the full dataset, as it better
represents the dominant structural characteristics. Based on these findings, we hypothesize that using GKSE for with-ring
graphs and RRWP for without-ring graphs could lead to further performance improvements on molecular datasets. This
hybrid approach would leverage the strengths of each encoding based on the underlying graph structures.

B.5. Experiments for checking expressiveness of proposed SEs on DAGs

To verify, even indirectly, the expressive power of our proposed SEs on DAGs, we analyzed the MAE for test samples of
ckt-bench101 with smaller graph diameters. Specifically, there are 1,836 DAGs with diameter 1 and 1,164 DAGs with
diameter 2 in the ckt-bench101 datasets. These subsets allowed us to analyze the performance of RRWP and GKSE in terms
of sparsity of representations. Due to resource constraints and the similarity in performance between GKSE and MKSE, we
only included GKSE in these comparisons. For these experiments, we used the same hyperparameters as in the ckt-bench101
dataset experiments. The results are summarized in Table 13

Table 13. Test performance on ckt-bench101 with diameter 1 or 2. Shown is the mean ± s.d. of 4 runs with different random seeds.
Highlighted are the top first results.

Model Diameter 1 Diameter 2

MAE↓ MAE↓
GRIT+RRWP 0.0433 ± 0.0706 0.0513 ± 0.0776
GRIT+GKSE 0.0398 ± 0.0647 0.0479 ± 0.0741

As hypothesized, RRWP’s sparse representations for smaller-diameter graphs may lead to a loss of critical structural
information, weakening its performance. In contrast, GKSE maintains denser representations, resulting in superior
performance in these cases. While this is consistent with our claim, we recognize that a more targeted comparative
experiment would strengthen our argument and plan to explore this in future work.

B.6. Asymtotic Complexity, Experimental Environment and Computing Resources

The asymtotic complexities of GKSE and MKSE are O(K|V||E|) and O(K|V||E| +K|E|) respectively, where K is the
number of hops of PEs, |E| is the number of edges and |V| is the number of nodes, the asymtotic complexity of GRIT [Ma
et al., 2023a]. We implemented our study based on the GraphGPS [Rampášek et al., 2022] and GRIT [Ma et al., 2023a]
repositories, leveraging the PyG [Fey & Lenssen, 2019] library and its GraphGym [You et al., 2020] module. All experiments
were conducted in a compute cluster environment equipped with various CPUs, as well as NVIDIA A6000 (48GB) and A100
(40GB) GPUs. As shown in Table 14, we present the runtime and GPU memory consumption metrics for the GRIT+RRWP
baseline, GKSE and MKSE on the ZINC dataset. The runtime measurements were obtained using the GraphGPS pipeline,
while the GPU memory usage was monitored via the NVIDIA System Management Interface (nvidia-smi). All these
experiments are carried out on a single NVIDIA A100 (40GB) GPU.

17

Green and Martin Kernels for Graph Transformers

Table 14. Computing result statistics of GRIT+RRWP, GRIT+GKSE, and GRIT+MKSE on ZINC dataset with hyperparameters at Table 6

ZINC GRIT+RRWP GRIT+GKSE (ours) GRIT+MKSE (ours)

MAE↓ 0.059 ± 0.001 0.058 ± 0.002 0.056 ± 0.021
PE Precompute-time 7.9 sec 9.5 sec 18.0 sec
GPU Memory 1252MB 1277MB 1208MB
Training time 23.8 sec/epoch 23.6 sec/epoch 23.1 sec/epoch

C. Mathematical Details
In this section, we will examine the RW from the perspective of stochastic processes and discuss the specific meanings and
implications of the Green kernel and Martin kernel hold in that context. For convenience, we use the following notations:

Px = Pω∈Ω(x); (20)
Ex = Eω∈Ω(x). (21)

C.1. Markov Properties

We note that a RW on a graph defined in section 3.1 is a Markov process. A Markov process possesses two key properties:
the simple Markov property for fixed times and the strong Markov property for the first hitting times. These properties are
stated in the following lemma, which is essential for proving various theoretical results.

For j ∈ N ∪ {0}, we define the shift map θj : Ω → Ω by

θj((ω0, ω1, . . .)) = (ωj , ωj+1, . . .), ∀(ω0, ω1, . . .) ∈ Ω. (22)

We see that Xi(θjω) = Xi+j(ω) for i ∈ N ∪ {0} and ω ∈ Ω.

Lemma C.1. Let x, y ∈ V and j ∈ N ∪ {0}. Let ξ, η be random variables with some regularity conditions. Then

1. (simple Markov property) Ex [ξ(η ◦ θj)] = Ex

[
ξ EXj [η]

]
;

2. (strong Markov property) Ex

[
ξ(η ◦ θτy)

]
= Ex [ξ Ey[η]] .

The detailed statement can be found in the [Barlow, 2017]. In this paper, we present only a brief version and omit the
detailed conditions. Nevertheless, all random variables in the proofs below satisfy the regularity conditions.

C.2. Finite Step Green Function

In section 4.2, we define the finite-step Green kernel G(k) using recursive relations as in eq. (12). We can describe G(k) in
the explicit form as follows: for k ∈ N and x, y ∈ V ,

G(k)(x, y) =

k∑
i=0

P(i)(x, y), (23)

in which P(0) = I.

In order to interpret the finite-step Green kernel in terms of the stochastic process as described in the previous subsection,
we first define the counting function L

(k)
y : Ω → N ∪ {0} formally, as follows: for ω ∈ Ω,

L(k)
y (ω) =

k∑
i=0

1{Xi(ω)=y}, (24)

where 1{Xi(·)=y} : Ω → {0, 1} is the indicator function, meaning it takes the value 1 if Xi(ω) = y and 0 otherwise. It
follows directly from the definition that the value of L(k)

y (ω) is equal to the number of times that the trajectory ω visits node
y within k-steps.

18

Green and Martin Kernels for Graph Transformers

We now turn to Theorem 4.1. As described above, for ω ∈ Ω, the value of L(k)
y (ω) is equal to the number of times that the

trajectory ω visits node y within k-steps. Recall that the probability Px is concentrated on the set of all trajectories starting
at node x. Thus, after applying the expectation Ex[·] to the counting function L

(k)
y , its value is equal to the expected number

of times that a trajectory starting at node x visits node y within k-steps. Finally, we provide the following proof at the end of
this section.

Proof of Theorem 4.1. The proof is inspired by [Barlow, 2017], which addresses the case when k = ∞. It follows from the
definition that:

Ex

[
L(k)
y

]
= Ex

[
k∑

i=0

1{Xi(ω)=y}

]

=

k∑
i=0

Ex

[
1{Xi(ω)=y}

]
=

k∑
i=0

Px[Xi(ω) = y]

=

k∑
i=0

Pi(x, y)

= G(k)(x, y).

Thus, we prove the theorem.

C.3. Finite-Step Martin Kernel with the first hitting time map

To prove the theorem 4.2, we first observe what the finite-step Martin kernel with the first hitting time map M̃(k) approximates.
The following lemmas will be used in the proof of theorem 4.2.

Lemma C.2. For k ∈ N ∪ {0} and x, y ∈ V , let M̃(k) be defined in eq. (14). Then, the following equality holds:

0 ≤ Px[τy ≤ k]− M̃(k)(x, y) ≤ H̃(k)(x, y)

G(k)(y, y)
, (25)

where H̃(k)(x, y) = Ex[τy ; τy ≤ k] = Ex[1{τy≤k} τy] is the k-step hitting time, meaning the expectation of the first hitting
time within k-steps.

Proof. By Theorem 4.1, we have

G(k)(x, y) = Ex

[
L(k)
y

]
= Ex

[
1{τy≤k}L

(k)
y

]
. (26)

The second equality comes from the fact that if τy(ω) > k, then L
(k)
y (ω) = 0 for all ω ∈ Ω.

19

Green and Martin Kernels for Graph Transformers

Observe that

L(k)
y =

k∑
i=0

1{Xi=y}

=

k∑
i=τy

1{Xi=y}

=

k−τy∑
i=0

1{Xi+τy=y}

=

k−τy∑
i=0

1{Xi=y} ◦ θτy

= L(k−τy)
y ◦ θτy .

(27)

Combining with eq. (26) and eq. (27), we have

G(k)(x, y) = Ex

[
1{τy≤k}

(
L(k−τy)
y ◦ θτy

)]
(28)

= Ex

[
1{τy≤k} Ey

[
L(k−τy)
y

]]
(29)

= Ex

[
1{τy≤k} Ey

[
L(k)
y

]]
− Ex

1{τy≤k} Ey

 k∑
i=k−τy+1

1{Xi=y}

 . (30)

Here, the strong Markov property in Lemma C.1 is applied for the second equality. We note that Ey

[
L
(k−τy)
y

]
, which is in

eq. (29), is not a constant, but a function of ω ∈ Ω such that X0(ω) = x.

For the first term in eq. (30),

Ex

[
1{τy≤k} Ey

[
L(k)
y

]]
= Ex

[
1{τy≤k}

]
Ey

[
L(k)
y

]
= Px[τy ≤ k]G(k)(y, y). (31)

For the second therm in eq. (30), we first observe that for ω ∈ Ω such that X0(ω) = x,

0 ≤
k∑

i=k−τy(ω)+1

1{Xi(ω)=y} ≤ τy(ω), (32)

and hence,

0 ≤ Ey

 k∑
i=k−τy(ω)+1

1{Xi(ω)=y}

 ≤ Ey [τy(ω)] = τy(ω). (33)

Thus the second term in eq. (30) is

0 ≤ Ex

1{τy≤k} Ey

 k∑
i=k−τy+1

1{Xi=y}

≤ Ex

[
1{τy≤k} τy

]
= Ex [τy ; τy ≤ k]

= H̃(k)(x, y).

(34)

Using eq. (28-34), we have

Px[τy ≤ k]G(k)(y, y)− H̃(k)(x, y) ≤ G(k)(x, y) ≤ Px[τy ≤ k]G(k)(y, y), (35)

20

Green and Martin Kernels for Graph Transformers

or

0 ≤ Px[τy ≤ k]− G(k)(x, y)

G(k)(y, y)
≤ H̃(k)(x, y)

G(k)(y, y)
. (36)

We complete the proof.

Lemma C.3. For k ∈ N ∪ {0} and x, y ∈ V , let M̃(k) be defined in eq. (14). Then, the following equality holds:

1

G(k)(y, y)
≤ M̃(k)(x, y)

Px[τy ≤ k]
≤ 1 (37)

Proof. From eq. (29), we have

G(k)(x, y) = Ex

[
1{τy≤kEy

[
L(k−τy)
y

]]
(38)

=

k∑
i=0

Ex

[
1{τy=i}Ey

[
L(k−i)
y

]]
(39)

=

k∑
i=0

Px [τy = i]G(k−i)(y, y) (40)

≥
k∑

i=0

Px [τy = i] (41)

= Px [τy ≤ k] . (42)

Thus, we have

1 ≤ G(k)(x, y)

Px [τy ≤ k]
, (43)

and hence
1

G(k)(y, y)
≤ M̃(k)(x, y)

Px [τy ≤ k]
. (44)

The upperbound comes from the lowerbound in Lemma C.2, which is

0 ≤ Px[τy ≤ k]− M̃(k)(x, y). (45)

These two inequalities complete the proof.

C.4. Finite Step Martin Kernel

Recall that, for y ∈ V , the first hitting time map τy and the first return time map τ+y is defined as follows: for ω ∈ Ω,

τy(ω) = min{i ∈ N ∪ {0} : Xi(ω) = y}; (46)

τ+y (ω) = min{i ∈ N : Xi(ω) = y}. (47)

We note that if ω starts from a node other than y, then τy(ω) = τ+y (ω). This is because random walk requires at least one
step to visit another node, so the minimum in eq. (46) cannot be attained when i = 0.

Proof of 1 in Theorem 4.2. Let k ∈ N. We first prove the case when x = y ∈ V . By the definition of the first return time
and the first hitting time, for ω ∈ Ω,

τ+x (ω) = min{i ≥ 1 : Xi(ω) = x}
= min{i ≥ 0 : Xi+1(ω) = x}+ 1

= min{i ≥ 0 : Xi(θ1ω) = x}+ 1

= τx(θ1ω) + 1.

(48)

21

Green and Martin Kernels for Graph Transformers

By eq. (48), we have

Px[τ
+
x ≤ k] = Ex

[
1{τ+

x ≤k}

]
= Ex

[
1{τx◦θ1≤k−1}

]
= Ex

[
1{τx≤k−1} ◦ θ1

]
= Ex

[
EX1

[
1{τx≤k−1}

]]
= Ex [PX1 [τx ≤ k − 1]]

=
∑
z∈V

Px[X1 = z]Pz[τx ≤ k − 1]

=
∑
z∈V

P(x, z)Pz[τx ≤ k − 1].

(49)

Here, the third equality comes from the simple Markov property in Lemma C.1.

From Lemma C.2,

M̃(k−1)(z, x)− H̃(k−1)(z, x)

G(k−1)(x, x)
≤ Pz[τx ≤ k − 1] ≤ M̃(k−1)(z, x). (50)

Combining with eq. (49) and eq. (50), we get the following two inequalities

Px[τ
+
x ≤ k] ≤

∑
z∈V

P(x, z) M̃(k−1)(z, x) =
(
P ⋆ M̃(k−1)

)
(x, x) (51)

Px[τ
+
x ≤ k] ≥

∑
z∈V

P(x, z)

(
M̃(k−1)(z, x)− H̃(k−1)(z, x)

G(k−1)(x, x)

)
(52)

=
(
P ⋆ M̃(k−1)

)
(x, x)−

(
P ⋆ H̃(k−1)

)
(x, x)

G(k−1)(x, x)

By definition,
(
P ⋆M(k−1)

)
(x, x) = M(k)(x, x).

It remains to show
(
P ⋆ H̃(k−1)

)
(x, x) ≤ H(k)(x, x). Indeed,(

P ⋆ H̃(k−1)
)
(x, x) =

∑
z∈V

P(x, z) H̃(k−1)(z, x)

=
∑
z∈V

Px[X1 = z]Ez[τx ; τx ≤ k − 1]

= Ex

[
EX1

[
1{τx≤k−1} τx

]]
= Ex

[(
1{τx≤k−1} τx

)
◦ θ1

]
= Ex

[
1{τ+

x ≤k}(τ
+
x − 1)

]
= Ex

[
τ+x ; τ+x ≤ k

]
− Px[τ

+
y ≤ k]

≤ Ex

[
τ+x ; τ+x ≤ k

]
= H(k)(x, x)

(53)

Here, the fourth equality comes from the simple Markov property in Lemma C.1 and the fifth equality comes from eq. (48).

Now, we prove the case when x ̸= y ∈ V . Obeserve that τy(ω) = τ+y (ω) for all ω ∈ Ω such that X0(ω) = x, since a RW
requires at least one step to move from node x to y. Thus we have

Px[τ
+
y ≤ k] = Px[τy ≤ k] (54)

H(k)(x, y) = Ex[τ
+
y ; τ+y ≤ k] = Ex[τy ; τy ≤ k] = H̃(k)(x, y). (55)

We also have M(k)(x, y) = M̃(k)(x, y) by definition. The proof follows from Lemma C.2.

22

Green and Martin Kernels for Graph Transformers

Proof of 2 in Theorem 4.2. Let k ∈ N. We first prove the case when x = y ∈ V . From Lemma C.3,

Px[τx ≤ k − 1]

G(k−1)(x, x)
≤ M̃(k−1)(x, x) ≤ Px[τx ≤ k − 1]. (56)

Applying convolution to each instance with P, by eq. (49) and the definition of M(k), we have

Px[τ
+
x ≤ k]

G(k−1)(x, x)
≤ M(k)(x, x) ≤ Px[τ

+
x ≤ k], (57)

which complete the proof in the case x = y.

Now, we prove the case when x ̸= y ∈ V . By eq. (54), eq. (55) and the definition of M(k), the proof follows from the
Lemma C.3.

D. Representational Power
D.1. Aperiodicity of Graphs

Let G = (V, E) be a graph. The period pG of G is defined by the greatest common divisor of the lengths of its cycles:

pG := gcd{n : X0(ω) = Xn(ω), ω ∈ Ω}. (58)

We call a graph G is aperiodic if pG = 1 and non-aperiodic if pG > 1.

One important remark about the period of a graph is it affects the spectrum of the transition probability matrix P of the graph.
By the Perron-Frobenius theorem for irreducible non-negative matrix [Strang, 2012], there exists exact pG eigenvalues
attaining the maximal absolute value.

For example, the hexagon graph C6, which is the cycle graph on 6 nodes as illustrated in Figure 3, has pC6 = 2 and its
transition probability matrix has eigenvalues 1 and −1. In this case, the eigenvectors associated with the eigenvalues 1 and
−1 is ϕ1 = (1, 1, 1, 1, 1, 1)T and ϕ−1 = (1,−1, 1,−1, 1,−1)T , respectively. It can be observed by spectral analysis that
for any vector v ∈ R6 that is not spanned by ϕ1 or ϕ−1, Pkv oscillates between ϕ1 +ϕ−1 and ϕ1 −ϕ−1 as k → +∞. This
phenomenon may leads to the unstability of RRWP.

Formally, let 1x be the one-hot vector supported at a node x ∈ V . Then we have

P(x, y) = 1T
x P1y, ∀x, y ∈ V. (59)

Since 1y is not spanned by ϕ1 or ϕ−1, P1y oscillates as k → +∞ and hence P(x, y) also oscillates as k → +∞.

However, G(k)(x, y) diverges to +∞ and M(k)(x, y) converges to 1 as k → +∞ for recurrent graphs. Thus, G(k)

and M(k) do not oscillate indefinitely as illustrated in Figure 3, indicating that they are more stable under the choice of
K ∈ N ∪ {0} and capture the structural property of a graph well.

Despite the above observations, it remains unclear whether the absence of oscillation in GKSE and MKSE actually enables
better detection of non-aperiodic substructures. As noted in [?], detecting specific substructures is an extremely challenging
task and is proven to be infeasible with many existing GNN models. Nevertheless, since GKSE and MKSE exhibit distinct
patterns compared to traditional methods, we are optimistic that they could provide some advantage. Further research is
necessary to confirm this hypothesis.

D.2. Generalized RWs

Mathematically, the transition probability matrix can be defined as a real-valued matrix whose row sums equal 0 or 1. We
allow the row sum to be 0 since we consider the sink node with an out-degree of 0. To avoid irregular cases, we assume that
there exists a positive lower bound ℓ < 1 for the transition probabilities. The assumption is not superflous since a transition
probability matrix for a simple RW also satisfies this assumption with ℓ = 1/dmax, where dmax is the maximum degree of
the nodes in the graph. Formally, the transition probability matrix P for a generalized RW satisfies

1.
∑

z∈V P(z, y) = 0 or 1, ∀y ∈ V;

23

Green and Martin Kernels for Graph Transformers

RR
W

P
k=1 k=2 k=3 k=4 k=5 k=6

GK
SE

M
KS

E

Figure 3. Visualization of RRWP, GKSE, and MKSE on a hexagon graph for k-steps ranging from 1 to 6.

2. P(x, y) > ℓ, ∀(x, y) ∈ E .

In this generalized setting, RRWP, GKSE, and MKSE can still be defined in accordance with the transition probability
matrix P for general RWs. We will prove the theorems and corollaries in the generalized setting.

D.3. Expressiveness of GKSE and MKSE

In this section, we present several theoretical results illustrating the expressiveness of GKSE and MKSE when combined
with MLP. Our findings are inspired by the study in [Ma et al., 2023a], yet extend to more general scenarios involving RWs
with non-identical transition probabilities. We note that, in the case of a simple RW, the transition probabilities from one
node to an adjacent node in the next step are identical.

The following theorem, a restatement of Theorem 4.3 (1), suggests that the expressiveness of GKSE when integrated with
an MLP is equivalent to that of RRWP. Analogous to the proposition in [Ma et al., 2023a], we derive Corollary D.2, which
implies that GKSE can approximate various graph propagation matrices with precision up to an arbitrary positive error ϵ.
We prove the theoretical results in the general setting, specifically for non-simple RW case

Theorem D.1. GKSE with MLP has exactly the same expressive power as RRWP with MLP.

Corollary D.2. Let n,K ∈ N and let ϵ > 0 be sufficiently small. Then there exists MLP from RK to R or RK such that the
for any GKSE ∈ Rn×n×K derived from a graph with n nodes, MLP(GKSE) can approximate any of the following: for all
x, y ∈ V ,

(a) MLP(GKSE(x, y)) ≈ SPDK−1(x, y);

(b) MLP(GKSE(x, y)) ≈
(∑K−1

k=0 θkP
k
)
(x, y);

(c) MLP(GKSE(x, y)) ≈ (θ0I+ θ1A) (x, y)

within ϵ error. Here, SPDK−1(x, y) represents the K − 1 truncated shortest path distance, and θk ∈ R are arbitrary
coefficients.

We prove that MKSE possesses a unique expressiveness that cannot be achieved by RRWP alone, highlighting its potential
to enhance the representational capability of GNNs in distinguishing complex graph structures. Furthermore, despite its
different representational range, MKSE can also approximate several graph propagation matrices, as stated in Proposition D.4.
The proofs can be found in Appendix D.4. We begin by restating Theorem 4.3 (2) as follows.

Theorem D.3. RRWP with MLP cannot approximate MKSE.

24

Green and Martin Kernels for Graph Transformers

Proposition D.4. Let n,K ∈ N and let ϵ > 0 be sufficiently small. Then there exists MLP from RK to R or RK such that
the for any MKSE ∈ Rn×n×K derived from a graph with n nodes and no self-loop, MLP(MKSE) can approximate any of
the following: for all x, y ∈ V ,

(a) MLP(MKSE(x, y)) ≈ SPDK−1(x, y) ;

(b) MLP(MKSE(x, y)) ≈ (θ0I+ θ1A) (x, y)

within ϵ error. Here, SPDK−1(x, y) represents the K − 1 truncated shortest path distance, and θk ∈ R are arbitrary
coefficients.

D.4. Proofs: Expressiveness of GKSE and MKSE

For convenience, we denote SEs as follows: for K ∈ N,

(RRWP) R = [I,P(1), . . . ,P(K−1)] ∈ Rn×n×K ; (60)

(GKSE) G = [I,G(1), . . . ,G(K−1)] ∈ Rn×n×K ; (61)

(MKSE) M = [I,M(1), . . . ,M(K−1)] ∈ Rn×n×K . (62)

Proof of Theorem D.1. Let K ∈ N. It suffices to show that there exists a continuous bijective function φ : RK → RK with
continuous inverse such that for all x, y ∈ V , φ (G(x, y)) = R(x, y). The reason this completes the proof is as follows.
Supppose there exists a function that can be expressed by some continuous function f as f (R(x, y)). Then, by the above
observation, it is equivalent to (f ◦ φ) (G(x, y)). The converse also holds. Therefore, according to the standard universal
approximation reuslts [Hornik et al., 1989], the expressivenss of GKSE with MLP is entirely equivalent to the expressiveness
of RRWP with MLP.

Now, we define the linear map φ : RK → RK by

φ(x0, x1, . . . , xK−1) = (x0, x1 − x0, x2 − x1, . . . , xK−1 − xK−2). (63)

By the definition, for all x, y ∈ V , φ (G(x, y)) = R(x, y). Obviously, it is continuous and has continuous inverse φ−1

given by
φ−1(x0, x1, . . . , xK−1) = (x0, x0 + x1, x0 + x1 + x2, . . . , x0 + · · ·+ xK−1). (64)

This completes the proof.

Proof of Corollary D.2. We first prove the Proposition 3.1 from [Ma et al., 2023a] in the generalized RW setting stated in
Appendix D.2. Then by Theorem D.1, the results follows.

We claim that for all k = 1, . . . ,K − 1, each nonzero entry of Pk is greater than ℓk. We will prove the claim by using
induction. The case when k = 1 is obvious by definition. Then we assume that the claim holds for k. We note that for
x, y ∈ V with Pk+1(x, y) ̸= 0,

Pk+1(x, y) =
∑

z∈V:P
k(x,z) ̸=0

& (z,y)∈E

Pk(x, z)P(z, y) (65)

Since Pk+1(x, y) ̸= 0, there exists at least one such z ∈ V . Also, by assumption, Pk(x, z) > ℓk and P(z, y) > ℓ. Thus we
have P(k+1)(x, y) > ℓk+1, proving the claim.

Following the claim, by replacing the lower bound L with ℓK−1 in the proof of Proposition 3.1 in [Ma et al., 2023a], the
proof is completed.

25

Green and Martin Kernels for Graph Transformers

x y

1

x y

2

Figure 4. (Left) (4,2)-lollipop graph and (Right) A graph consisting of a 4-cycle and a 2-path connected by a single edge.

Proof of Theorem D.3. We will prove the theorem by providing two examples of graphs with 6 nodes for which each RRWP
with MLP cannot approximate each MKSE simulteneously. Suppose that there exists a function φ : RK → RK constructed
by MLP such that for all graphs with 6 nodes and x, y ∈ V , φ(R(x, y)) approximates M(x, y) within ϵ < 1/15 error.

Consider the graph G1, which is the (4, 2)-lollipop graph consisting of the complete graph K4 on 4 nodes, the path graph P2

on 2 nodes, and one edge connecting K4 and P2. Also, consider the graph G2, which is obtained by G1 by replacing K4 with
the cycle graph C4 on 4 nodes. Let x, y ∈ V be the nodes of G1 or G2, where x is the terminal node of P2, and y is in the K4

or C4 connected to P2. We visualize G1,G2 and x, y in Figure 4.

Now, for i = 1, 2, we denote RRWP, GKSE, and MKSE with K = 3 for Gi by Ri, Gi, and Mi, respectively. Then, we
have

R1(x, y) =

(
0, 0,

1

2

)T

, R2(x, y) =

(
0, 0,

1

2

)T

;

R1(y, y) =

(
1, 0,

3

8

)T

, R2(y, y) =

(
1, 0,

1

2

)T

.

(66)

Using eq. (66), we obtain

G1(x, y) =

(
0, 0,

1

2

)T

, G2(x, y) =

(
0, 0,

1

2

)T

;

G1(y, y) =

(
1, 1,

11

8

)T

, G2(y, y) =

(
1, 1,

3

2

)T

,

(67)

and hence

M1(x, y) =

(
0, 0,

4

11

)T

, M2(x, y) =

(
0, 0,

1

3

)
. (68)

Observe that R1(x, y) = R2(x, y) but ∥M1(x, y)−M2(x, y)∥∞ = 1/15 > ϵ. Thus, we conclude that φ(0, 0, 1/2) cannot
approxiate both M1(x, y) and M2(x, y) simulteneously within ϵ error. This contradiction proves the theorem.

Proof of Proposition D.4. From the proof of Corollary D.2, for k = 1, . . . ,K − 1 and x, y ∈ V with Pk(x, y) ̸= 0, we
have Pk(x, y) > ℓK−1.

Now, let k = 1, . . . ,K − 1 and let x, y ∈ V such that G(k)(x, y) ̸= 0. Then, by the definition of GKSE, one of the Pi(x, y)
is nonzero among i = 0, . . . k. Thus, we have G(k)(x, y) > ℓK−1. Also, we note that Pi(x, y) ≤ 1 for all i = 1, . . . , k and
x, y ∈ V , which implies that G(k)(x, y) ≤ k < K for all i = 1, . . . , k and x, y ∈ V . Lastly, it is obvious from the definition
of the MKSE that Gk(x, y) ̸= 0 iff M(k)(x, y).

Using these observation, we have that for k = 0, . . . ,K − 1 and x, y ∈ V such that M(k)(x, y) ̸= 0,

M(k)(x, y) =
G(k)(x, y)

G(k)(y, y)
>

ℓK−1

K
. (69)

26

Green and Martin Kernels for Graph Transformers

(a) Let f1 : RK → RK be a continuous function such that f1(x)i = 0 if xi ≤ 0 and 1 if xi ≥ ℓK−1/K. Then we have that
for k = 0, . . . ,K − 1,

f1(M(x, y))k =

{
1 if (x can reach y in k hops) or (x = y)
0 else.

(70)

Let f2 : RK → RK be defined by f2(x)k = maxk′≤k xk′ , which is continuous. Then we have for k = 0, . . . ,K − 1,

f2 ◦ f1(M(x, y))k =

{
1 if SPD(x, y) ≤ k

0 else.
(71)

The remainder of the proof follows the same steps as the proof of Proposition 3.1 in [Ma et al., 2023a].

(b) Observe that

f1(M(x, y))1 =

{
1 if (x can reach y in 1 hops) or (x = y)
0 else.

(72)

By the assumption that a graph have no self-loop, the cases where (x can reach y in 1 hops) and (x = y) do not occur
simultaneously. Thus we have f1(M(x, y)) = (I+A)(x, y), where A is the adjacency matrix of the graph.

Now we take f3 : RK → R2 given by f3(x) = ((θ0 − θ1)x0, θ1x1) and f4 : R2 → R given by ft(x0, x1) = x0 +x1. Then
we have

f4 ◦ f3 ◦ f1(M(x, y)) = θ0I+ θ1A. (73)

The remainder of the proof follows the same steps as the proof of Proposition 3.1 in [Ma et al., 2023a].

Proof of Theorem 4.5. We will prove the theorem based on the proof of Proposition 3.2 in [Ma et al., 2023a]. We note that

min{k : G(k)(x, y) ̸= 0} = min{k : M(k)(x, y) ̸= 0} = SPD (x, y), (74)

where SPD is the shortest path distance. This shows that GKSE and MKSE are more expressive than SPD, and thus, they
refine SPD. Using this observation, along with Lemma 2 in [Bevilacqua et al., 2021], we conclude that GD-WL with GKSE
or MKSE is stronger than GD-WL with SPD.

Next, we prove that GD-WL with GKSE or MKSE is strcitly stronger by providing some example graphs. Specifically, the
Desargues graph and the Dodecahedral graph cannot be distinguished by GD-WL with SPD. However, GD-WL with GKSE
or MKSE, using at least 5 steps, can distinguish between them.

27

