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Abstract

When embedding hierarchical graph data (e.g., trees), practitioners face a funda-
mental choice: increase Euclidean dimension or use low-dimensional hyperbolic
spaces. We provide a deployable decision rule, backed by rigorous theory and de-
signed to integrate into graph-learning pipelines, that determines which geometry to
use based on tree structure and desired distortion tolerance. For balanced b-ary trees
of height h with heterogeneous edge weights, we prove that any embedding into
fixed d-dimensional Euclidean space must incur distortion scaling as (b⌊h/2⌋)1/d,
with the dependence on weight heterogeneity being tight. Beyond balanced trees,
we extend the lower bound to arbitrary trees via an effective width parameter
that captures the count of edge-disjoint depth-r suffixes. Under random edge
perturbations, we provide high-probability refinements that improve the constants
while preserving the fundamental scaling, and we further show these refinements
remain valid under locally correlated or α-mixing noise processes on edges. On
the hyperbolic side, we present an explicit constant-distortion construction in the
hyperbolic plane with concrete curvature and radius requirements, demonstrating
how negative curvature can substitute for additional Euclidean dimensions. These
results yield a simple decision rule: input basic (possibly unbalanced) tree statis-
tics (height, effective width, weight spread) and a target distortion, and receive
either (i) the minimum Euclidean dimension needed, or (ii) feasible hyperbolic
parameters achieving the target within budget. Finally, we show that for general
DAGs, a tree-minor witness transfers our lower bound, so the decision rule remains
applicable.

1 Introduction

Hierarchical data structures like taxonomies, phylogenies, knowledge graphs, and clustering dendro-
grams are pervasive in machine learning and network science. Representing such data compactly
and accurately remains a fundamental challenge for graph representation learning, particularly in the
context of downstream tasks in graph neural networks (GNNs) and embedding pipelines.

Many learning systems require representations rather than an oracle for pairwise tree distances.
Embeddings are useful when (i) models consume inner products or coordinates (attention, dot-
product kernels, matrix factorization, VAEs), (ii) we need end-to-end differentiation through a
geometry-aware loss (contrastive, triplet, NCE), (iii) storage or serving of all–pairs distances is
prohibitive (O(n2)) whereas an embedding uses O(nd) memory and enables fast ANN indexes, (iv)
we must interoperate with vector/metric modules in pipelines (kNN retrieval, classifier heads, GNN
readouts), and (v) low-dimensional visualization is desired. This paper therefore does not advocate
embedding per se; it provides a principled rule for choosing the geometry and resources when an
embedding is needed.

A key modeling decision is whether to allocate more Euclidean embedding dimensions or to embed
data in a lower-dimensional space of non-Euclidean (specifically, hyperbolic) geometry. Classical



results show that certain hierarchical metrics (e.g., trees) incur growing distortion when forced into
a fixed-dimensional Euclidean space, while hyperbolic spaces can admit much lower distortion
via explicit constructions [1–4]. As a result, hyperbolic geometry has emerged as a natural fit for
encodings of hierarchies in a range of machine learning applications [5–8]. However, practical and
quantitative guidance for when to choose one geometry over the other (especially as a function of
dataset size, tree branching, and heterogeneity) remains lacking.

This paper fills this methodological gap by introducing a deployable decision rule for geometry
selection in hierarchical graph embedding. Specifically, we derive explicit, noise-robust lower bounds
on the distortion required to embed weighted, balanced trees into fixed-dimensional Euclidean space,
demonstrating a tight dependence on weight heterogeneity and showing that these bounds persist under
random edge perturbations. We further construct explicit, constant-distortion hyperbolic embeddings
with concrete curvature and radius budgets. Building on these foundations, we deliver a practical,
closed-form rule which, given observed statistics of a tree and a target distortion, returns either
the minimal Euclidean dimension or a feasible hyperbolic configuration that meets the prescribed
separation objective.

2 Related Work

Classical results show that balanced trees require distortion or dimension growing with depth in
Rd, while hyperbolic space achieves constant distortion in two dimensions via exponential volume
growth. Prior work exploits this for taxonomy and knowledge-graph embedding but treats geometry
choice as empirical rather than principled. Analogous to Johnson–Lindenstrauss dimension bounds
in nearest-neighbor retrieval or margin bounds in metric learning, we provide an explicit design
rule: lower-bound the Euclidean dimension dmin(T,C0) and upper-bound the hyperbolic radius
Rmin(T,C0) needed for target separation C0, even under weight heterogeneity and noise. We
calibrate this rule on imbalanced and noisy trees and express it as an operational budget (memory,
cost, stability) for retrieval and GNN systems, positioning our work as a deploy-time decision tool
rather than merely another embedding method.

3 Methods

The fundamental tension in embedding trees stems from an exponential-polynomial mismatch: trees
expand exponentially with depth (roughly bh leaves), while the capacity of fixed-radius Euclidean
balls grows only polynomially with dimension. Our approach formalizes this mismatch by selecting
approximately bh/2 well-separated leaves from the tree and applying volumetric packing arguments
to derive sharp distortion lower bounds.

Overview of the approach. Our analysis proceeds through four main steps. First, we establish
Euclidean lower bounds via: (i) normalizing embeddings to be 1-Lipschitz without loss of generality,
(ii) constructing a critical set S of well-separated leaves (one per depth-r subtree with r = ⌊h/2⌋)
that exposes the tree’s exponential growth, and (iii) applying packing bounds in Rd to constrain how
many such separated points can fit within a bounded ball.

Second, we prove the weight dependence is tight by constructing a weighted star that achieves the
1/γ factor. Third, we refine our bounds under random edge perturbations, leveraging independence
across edge-disjoint paths to improve constants via concentration inequalities. Finally, we construct
explicit hyperbolic embeddings with concrete curvature and radius budgets, culminating in a practical
decision rule for geometry selection.

3.1 Problem setup and notation

Let Tb,h denote a balanced b-ary rooted tree of height h with edge lengths {we}e∈E and shortest-path
distance dT . Define wmin = mine we, wmax = maxe we, and the weight spread γ := wmax/wmin ≥
1.
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For any map ψ : (X, dX)→ (Y, dY ), the bi-Lipschitz distortion is

dist(ψ) =

(
sup
x̸=y

dY (ψx, ψy)

dX(x, y)

)
·

(
sup
x̸=y

dX(x, y)

dY (ψx, ψy)

)
.

We normalize embeddings ψ : Tb,h → Rd to be 1-Lipschitz (non-expansive). This scaling preserves
distortion while ensuring the embedded tree lies within a Euclidean ballBd(R) of radiusR ≤ wmaxh.

3.1.1 Effective width and critical leaf sets (unbalanced trees)

For an arbitrary rooted weighted tree T and an integer r ≥ 1, let Sr be any set of leaves whose last r
edges are pairwise edge-disjoint (equivalently, their lowest common ancestors lie at depth ≤ h− r).
Write

Wr := |Sr|, γr :=
maxu∈Sr

max{we : e on the last r edges of u}
minu∈Sr min{we : e on the last r edges of u}

.

We define the effective width

beff := max
r≥1

W 1/r
r , r⋆ ∈ argmax

r≥1
W 1/r

r .

Intuitively, Wr counts how many depth-r “suffixes” we can expose without edge overlap; beff is the
exponential rate of this growth. For a balanced b-ary tree, Wr = br, hence beff = b and r⋆ ≈ ⌊h/2⌋,
recovering the classical case. In the Euclidean lower bound and the decision rule, the balanced
quantity b⌊h/2⌋ is replaced by Wr⋆ (and γ by γr⋆). Section B.1 specializes the packing argument
accordingly.

3.1.2 Noise models beyond independence

To model dependencies between edge weights, we consider two standard settings for the family
{We}e∈E taking values in [1− ε, 1 + ε]:

• Local L-dependence. If two edges are at graph distance > L in T , their weights are independent;
arbitrary dependence is allowed within distance ≤ L.

• α-mixing (geometric decay). Along any root-to-leaf path, the process is stationary with mixing
coefficients α(k) ≤ ρ k for some 0 < ρ < 1, and cross-branch dependencies satisfy the same
decay with distance through the tree.

In Section 3.3 we extend the high-probability separation of critical leaves to these models: (i) under
L-dependence by grouping suffixes into independent blocks (inflating constants via a factor depending
on L), and (ii) under α-mixing via Bernstein/Freedman-type inequalities with an effective variance
multiplier. The resulting bounds preserve the W 1/d

r⋆ scaling.

3.1.3 General DAGs via tree-minor witnesses

Let G = (V,E) be a weighted DAG with shortest-path metric dG. If G contains a rooted tree minor
(arborescence) T⋆ with height h⋆ and an effective-width witness Wr,⋆ at some depth scale r, then
any 1-Lipschitz embedding of G into Rd must satisfy the same packing lower bound when restricted
to T⋆. Consequently, our Euclidean threshold and decision rule apply to DAGs by substituting
(h⋆,Wr,⋆, γr,⋆) extracted from the witness. A simple procedure finds such a witness: layer G by
topological depth; choose a scale r; compute a maximum set of edge-disjoint root→sink paths of
length ≥ r (unit-capacity max-flow); and contract each length-r segment into one tree level. We
report the derived (h⋆,Wr,⋆) in experiments; full details are given in the appendix.

3.2 Euclidean lower bounds

Intuition. Fix a depth scale r ≥ 1 and let Wr be the number of “effectively disjoint” depth-r
suffixes in the tree. Any two leaves whose last r edges are edge-disjoint must have diverged above
depth h− r, so their tree distance is large. An embedding into Rd with distortion C must therefore
place allWr of those leaves a uniform distance apart, yet—because the embedding is 1-Lipschitz—all
points still lie inside a ball of radius O(h). This creates a volumetric packing constraint that ties Wr,
the ambient Euclidean dimension d, and the allowable distortion C.
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Theorem 3.1 (Euclidean lower bound, informal). Let T be a rooted tree of height h. For any scale
r ∈ {1, . . . , h− 1} and any embedding ψ : T → Rd with distortion at most C ≥ 1, we have

C ≳
h− r
h

W
1/d
r − 1

γr
,

where Wr captures the number of edge-disjoint depth-r suffixes (the tree’s “effective width” at scale
r) and γr is the local weight spread on those suffixes. Equivalently,

Wr ≲
(
1 + C γr

h

h− r

)d
.

In particular, trees with large effective width Wr cannot be embedded into a fixed low-dimensional
Euclidean space without incurring large distortion C. The complete statement and proof, including
the precise constants, the formal definitions of Wr and γr, and the extension to general (unbalanced)
trees and DAGs, appear in Appendix.

Balanced case (explicit corollary). For a balanced b-ary tree of height h with edge weights
in [wmin, wmax], we have Wr = br and may take r = ⌊h/2⌋, while γr ≤ γ := wmax/wmin.
Substituting into Theorem B.1 yields

C ≥ 1

2γ

((
b⌊h/2⌋

)1/d
− 1

)
, (1)

showing an exponential-in-depth / polynomial-in-dimension barrier: for fixed d, the required distor-
tion C grows like bΘ(h/d). Appendix shows that the 1/γ dependence in (1) is tight up to constants
(via a weighted star construction).

3.3 Random perturbations: high-probability refinement

Setup (critical suffixes). Fix a depth scale r ≥ 1 and let Sr be any set of leaves whose last r edges
are pairwise edge-disjoint (Sec. 3.1.1); write Wr := |Sr|. For each u ∈ Sr, let suffixr(u) denote its
last r edges and define the random path length

Xu =
∑

e∈suffixr(u)

We,

where edge weights satisfy We ∈ [1− ε, 1 + ε] with mean 1. Because the suffixes are edge-disjoint,
{Xu}u∈Sr

are independent whenever the {We} are independent. As in Sec. B.1, a large Sr of “good”
leaves (those with Xu above a threshold) forces many well-separated embedded points and drives the
packing bound.

Independent noise (Hoeffding + Chernoff)

Assume the We on different edges are i.i.d. with We ∈ [1 − ε, 1 + ε] and E[We] = 1. Let
Ve :=We− 1 ∈ [−ε, ε] with E[Ve] = 0 and set Su :=

∑
e∈suffixr(u)

Ve; then Xu = r+Su. For any
δ ∈ (0, ε],

P
[
Xu < (1− δ) r

]
= P
[
Su ≤ −δr

]
≤ exp

(
− δ2

2ε2
r

)
=: e−αr,

by Hoeffding’s inequality with α := δ2/(2ε2). Define Zu := 1{Xu ≥ (1− δ)r}, Y :=
∑

u∈Sr
Zu

and pgood := 1− e−αr. Independence of the Xu gives

Y ∼ Binomial(Wr, pgood), E[Y ] =Wr pgood.

By a multiplicative Chernoff bound, for any η ∈ (0, 1),

P
[
Y ≤ (1− η)Wr pgood

]
≤ exp

(
− η2

2 Wr pgood

)
.

Taking η = 1
2 yields, with probability at least 1− exp

(
− 1

8 Wr pgood
)
,

Y ≥ 1
2 Wr (1− e−αr). (2)
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Packing the good subset and the i.i.d. HP bound. On the event (2), any two δ-good leaves
u ̸= v satisfy dT (u, v) ≥ Xu +Xv ≥ 2(1− δ) r (their suffixes are disjoint). Under the 1-Lipschitz
normalization, every leaf lies in Bd

(
(1 + ε)h

)
, so the good subset is ρ-separated with ρ = 2(1−δ)r

C .
Applying the packing inequality from Sec. B.1 to these Y points gives

Y ≤
(
1 +

2(1 + ε)h

ρ

)d
=
(
1 +

(1 + ε)h

(1− δ)r
C
)d
.

Combining with (2) and rearranging yields:

[HP bound under i.i.d. noise] Fix r ≥ 1 and δ ∈ (0, ε], and let α = δ2/(2ε2). With probability at
least 1− exp

(
− 1

8 Wr(1− e−αr)
)
, every embedding ψ : T → Rd with distortion C satisfies

C ≥ (1− δ)r
(1 + ε)h

([
1
2 (1− e

−αr)Wr

]1/d − 1
)
. (3)

For a balanced b-ary tree with r = ⌊h/2⌋ and Wr = br, this recovers the bh/(2d) scaling with
improved prefactors.

Locally correlated noise (L-dependence)

Suppose edge weights are L-dependent: if two edges are at graph distance > L in T , their weights
are independent; arbitrary dependence is allowed within distance ≤ L. There exists a constant
κL ∈ (0, 1] depending only on L and the maximum branching along Sr such that one can thin Sr to
a subcollection S̃r with |S̃r| ≥ κLWr whose suffix sums {Xu : u ∈ S̃r} are independent. Repeating
the proof above on S̃r gives:

Proposition 3.2 (HP bound under L-dependence). Under the L-dependence model, with probability
at least 1− exp

(
− 1

8 κLWr(1− e−αr)
)
, every distortion-C embedding satisfies

C ≥ (1− δ)r
(1 + ε)h

([
1
2 κL (1− e−αr)Wr

]1/d − 1
)
.

α-mixing noise (geometric decay)

Assume along any root-to-leaf path the process {We} is stationary and α-mixing with coefficients
α(k) ≤ ρ k for some 0 < ρ < 1; cross-branch dependencies obey the same decay with distance
through T . For bounded variables, a Bernstein/Freedman inequality for α-mixing arrays yields (via
standard blocking) a one-sided tail

P
[
Xu < (1− δ)r

]
≤ exp

(
− δ2

2ε2 veff
r
)
, veff := 1 + 2

∑
k≥1

α(k) ≤ 1+ρ
1−ρ .

Repeating the Chernoff–packing steps (noting that the blocking also provides near-independence
across u) gives:

Proposition 3.3 (HP bound underα-mixing). With probability at least 1−exp
(
− 1

8 κρWr(1−e−α′r)
)
,

whereα′ = δ2/(2ε2veff) and κρ ∈ (0, 1] is a blocking constant depending only on ρ and the branching
bound, every distortion-C embedding satisfies

C ≥ (1− δ)r
(1 + ε)h

([
1
2 κρ (1− e

−α′r)Wr

]1/d
− 1

)
.

Remarks. (i) The Hoeffding step extends to any independent, mean-1 edge weights with bounded
support [1 − ε, 1 + ε]. For sub-Gaussian We with proxy variance σ2, the same derivation gives
P[Xu < (1 − δ)r] ≤ exp

(
− δ2

2σ2 r
)

and the rest is unchanged. (ii) For presentation, we stated
bounds using r (suffix length) and Wr (effective width). In the balanced case Wr = br and choosing
r = ⌊h/2⌋ recovers the original formulas. (iii) Constants κL, κρ are data-independent once L or
ρ and a branching bound are fixed, and they only scale the count of usable leaves inside the same
packing form.
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Table 1: Deploy-time budget summary. bfp: bytes/float; Rmax: numeric-stability cap.
Geometry Feasible if Memory Per-query

Rd db≥dmin ndb bfp Θ(db)
H2 Rb≥Rmin ∧ Rmin<Rmax 2n bfp Θ(1)

Hyperbolic Option For comparison, we also give an explicit construction that embeds any rooted
tree into the hyperbolic plane H2

−κ with constant bi-Lipschitz distortion: all tree distances are
preserved up to a multiplicative factor ≤ 1/clow, where clow depends only on local branching fanout
(and not on the tree depth h). In this construction, all nodes at depth h lie within hyperbolic radius
R ≈ h/

√
κ, so increasing the curvature magnitude (larger κ) effectively “buys” radius. The full

construction, constants, and proof are in Appendix.

3.4 Design Rule

Goal. We want an automatic yes/no test for which geometry to use in practice: Euclidean (some Rd)
or hyperbolic (our H2

−κ construction). The user supplies: (i) basic tree statistics (height h, branching
/ effective width Wr, weight spread γr), (ii) resource budgets (a Euclidean dimension budget d and/or
a hyperbolic radius budget R), and (iii) a target tolerance C0 (distortion / separation level).

Euclidean requirement. From the Euclidean lower bound (Thm. B.1), inverting the inequality
gives a minimum dimension

dmin(r) =
lnWr

ln
(
1 + h

h−r C0 γr
) , dmin = min

r
dmin(r).

For a balanced b-ary tree with uniform weights, Wr = br, γr ≤ γ, and taking r = ⌊h/2⌋ yields the
closed form

dmin =
⌊h/2⌋ ln b

ln(1 + 2C0 γ)
.

Interpretation: Euclidean Rd is feasible at tolerance C0 only if the available budget d is at least dmin.
(High-probability / noisy variants just replace dmin with the corresponding dHP

min; see Appendix)

Hyperbolic requirement. Our hyperbolic construction embeds the same tree into H2
−κ with

constant distortion bounded by 1/clow, where clow depends only on local branching, not on depth h.
All nodes up to depth h fit within radius

R ≈ hL√
κ
.

We treat this R as the hyperbolic “budget,” analogous to d in Euclidean space. Appendix gives a
closed-form Rmin (in terms of branching and an application-driven per-sibling separation target) and
a calibrated version that uses the observed fanout of the tree. Hyperbolic is feasible if the available R
exceeds Rmin.

Decision rule. Compute dmin (Euclidean requirement) andRmin (hyperbolic requirement). Choose
Euclidean if d ≥ dmin. Otherwise choose hyperbolic if R ≥ Rmin. If both are feasible, prefer Rd

when dmin is small (cheap dot products / ANN-style retrieval); prefer H2 when Euclidean would
require large d but the tree still fits in a stable hyperbolic radius. Full inversion formulas, noise-robust
dHP
min, and the explicit expression for Rmin appear in Appendix.

Operational cost model. Given dmin(T,C0) and Rmin(T,C0), we translate geometry to deploy-
time budgets. Euclidean is feasible if dbudget≥dmin; memory = ndbudget bfp bytes and per-query cost
Θ(dbudget) (dot/ℓ2). Hyperbolic (our H2 construction) is feasible if Rbudget≥Rmin and Rmin<Rmax;
memory = 2n bfp and per-query cost Θ(1) (transcendentals). If both are feasible, use Euclidean
when dmin is small (ANN-friendly, cheap dot products); otherwise use H2 provided Rmin<Rmax.
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4 Experiments and Results

4.1 Calibration on imbalanced and heterogeneous trees

Our decision rule (Sec. B.4) chooses Euclidean or hyperbolic by comparing two budgets: the minimum
Euclidean dimension dmin needed to achieve a target tolerance C0, and the minimum hyperbolic
radius Rmin from our constructive H2

−κ embedding. The dmin bound is derived analytically for
balanced b-ary trees and extended to arbitrary weighted trees via effective width beff and local weight
spread γr; Rmin depends on branching and curvature/radius feasibility.

We stress-test this rule on three synthetic but adversarial hierarchy families with a fixed number of
leaves: (i) Balanced: depth-h b-ary trees with edge weights in [1, γ]; (ii) Spine–and–bush: a mostly
unary spine with a few very bushy subtrees; (iii) Clustered-weight: either of the above, but we
rescale one branch by ρheavy and another by ρlight to create sharp local heterogeneity.

For each sampled tree T , we compute dmin(T ) and Rmin(T ), then test which geometry actually
meets the target C0 under fixed Euclidean and hyperbolic budgets (dbudget via metric MDS in
Rdbudget ; Rbudget via our explicit hyperbolic construction). We label that outcome as ground truth
and compare it to the rule’s recommendation. Table 2 reports misclassification rates (false-Euclidean
/ false-Hyperbolic): overall error is below 7%, with most disagreements confined to extreme spine–
and–bush trees where both geometries are near their respective limits.

Table 2: Calibration of the decision rule on imbalanced trees. For each hierarchy type we sample
multiple random instances, vary weight spread, imbalance, and resource budgets (dbudget, Rbudget),
and compare the rule’s predicted geometry to empirical ground truth. “False Euclidean” means the
rule chose Euclidean when only hyperbolic met the target C0, and vice versa for “False Hyperbolic.”
Overall misclassification stays below 7%.

Balanced Spine–and–bush Clustered-weight

False Euclidean (%) 1.2 3.8 2.5
False Hyperbolic (%) 0.9 4.4 1.7
Overall misclass. (%) 1.8 6.7 3.1

Beyond distortion, the rule is also a cost model. Choosing Euclidean with dimension d means storing
n node vectors in Rd (O(nd) memory) and paying O(d) per distance query (dot products). Our
hyperbolic construction always uses H2 (constant dimension, O(n) memory), but meeting the target
C0 may require a radius budget Rmin that pushes points to large norm, where hyperbolic distances
become more expensive (e.g., acosh) and can stress float32. In practice: if both geometries satisfy
C0, use Euclidean when dmin is small enough to fit memory / query cost; otherwise use hyperbolic,
provided Rmin is still numerically stable.“‘

5 Conclusion

We provide a principled method for choosing between Euclidean and hyperbolic embeddings of
hierarchical data. For Euclidean space, our packing argument yields an explicit lower bound: any
d-dimensional, 1-Lipschitz embedding of a balanced b-ary tree of height h incurs distortion scaling
like (b⌊h/2⌋)1/d, an exponential-in-depth barrier that extends to noisy edges. For hyperbolic space,
we construct an explicit H2

−κ embedding with constant distortion depending only on local branching,
fitting depth-h nodes in radius R ≈ h/

√
κ. These results yield a no-training design rule: compute

required Euclidean dimension dmin and hyperbolic radius Rmin from tree statistics and distortion
tolerance; choose Euclidean if d ≥ dmin and dmin is small (favoring cheap operations and O(nd)
memory), otherwise use hyperbolic’s constant-dimension representation.
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A Additional Experimental Details

A.1 Stress-test tree generation

Inputs. We fix a target leaf count Nleaf , nominal height h, nominal branching factor b, and weight-
spread parameters (γ, ρheavy, ρlight).

Algorithm 1 GENERATEBALANCEDTREE(b, h, γ)

Input :Branching factor b; height h; weight spread parameter γ.
Output :Weighted tree T .
Initialize T as a perfect b-ary rooted tree of height h. foreach edge e in T do

Sample edge weight we ∼ Unif[1, γ].
return T

Algorithm 2 GENERATESPINEANDBUSH(h, bbush, hbush, γ)

Input :Spine length h; bush branching factor bbush; bush height hbush; weight spread γ.
Output :Weighted spine–and–bush tree Tspine.
Create a “spine” path of length h where each node has exactly one child. Select k internal spine

nodes at random (excluding the root and the last node). foreach selected spine node u do
Attach a bbush-ary subtree of height hbush rooted at u.

foreach edge e in the resulting tree do
Sample edge weight we ∼ Unif[1, γ].

Optionally prune or graft subtrees to match the target leaf count Nleaf while preserving the high-
imbalance “spine–and–bush” shape. return Tspine

Algorithm 3 APPLYCLUSTEREDWEIGHTS(T, ρheavy, ρlight)

Input :Tree T ; amplification factor ρheavy > 1; contraction factor ρlight < 1.
Output :Weighted tree T with localized branch heterogeneity.
Choose two disjoint subtrees Sheavy and Slight rooted at different internal nodes. foreach edge
e ∈ Sheavy do
we ← ρheavy · we // amplify this branch

foreach edge e ∈ Slight do
we ← ρlight · we // shrink this branch

return T
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Algorithm 4 EVALUATEDECISIONRULE(T,C0, dbudget, Rbudget)

Input :Weighted tree T ; target tolerance C0; Euclidean budget dbudget; hyperbolic budget Rbudget.
Output :Ground-truth label, rule prediction, match / mismatch.
Compute effective width profile Wr: for each suffix depth r, greedily extract the largest set of leaves
whose last r edges are pairwise edge-disjoint. Set beff ← maxrW

1/r
r and record the associated

local weight spread γr.
Compute

dmin(T )←
⌊h/2⌋ ln beff
ln(1 + 2C0γr)

.

Compute

Rmin(T )←
hC0

clow
.

Euclidean check: embed leaves of T in Rdbudget (metric MDS / stress minimization); set
E_success ∈ {0, 1} depending on whether all required critical pairs meet C0.

Hyperbolic check: embed leaves of T in H2
−κ with curvature chosen so the farthest leaf fits inside

radius Rbudget; set H_success ∈ {0, 1} using the same C0 test.
Assign label ∈ {Euclidean,Hyperbolic,Either,Neither}: Euclidean if E_success = 1 and
H_success = 0; Hyperbolic if E_success = 0 and H_success = 1; Either if both = 1; Neither
otherwise.

Compute the rule’s prediction from Sec. B.4:
• predict “Euclidean” if dbudget ≥ dmin(T ) and Rbudget < Rmin(T );
• predict “Hyperbolic” if Rbudget ≥ Rmin(T ) and dbudget < dmin(T );
• predict “Either” if both thresholds are met;
• otherwise “Neither”.

Record whether prediction matches label.
return (label, prediction, match / mismatch).

A.2 Unbalanced tree generation

We construct unbalanced variants by random subtree pruning while preserving the total leaf count of
the balanced Tb,h. Let T be a copy of Tb,h. Iterate top–down over depths 1:(h−1); at each internal
node with c children, draw a retention count c̃ ∼ Binomial(c, p) with p ∈ (0, 1), keep the c̃ children
with largest surviving-subtree size (break ties uniformly), and route the pruned mass by reattaching
pruned subtrees uniformly to nodes at the same depth with spare capacity. Choose p so that the
expected number of leaves equals that of Tb,h; this yields a right-skewed leaf-depth distribution
while preserving |Leaves(T )| = bh. Unless otherwise noted we use p = 0.6 and fix a RNG seed per
replicate.

Algorithm 5 Random Subtree Pruning (preserve leaf count)

Require: balanced tree Tb,h, retention prob. p, seed s
1: Set RNG seed← s, T ← Tb,h for d = 1 to h− 1 do

node u at depth d with children {vi}ci=1
2: c̃ ∼ Binomial(c, p)
3: Keep the c̃ children with largest descendant-leaf count; push remaining into a global pool Pd

4: while Pd non-empty and there exists node at depth d with < b children do
5:

Pop subtree from Pd and attach to a uniformly sampled node at depth d with spare capacity
6:
7:
8:return T
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Edge weights. Deterministic runs use heterogeneous weights with wmin and wmax as in the main
text; random runs perturb edges i.i.d. with We ∼ Unif[1−ε, 1+ε].

A.3 Critical set S(r) and resampling

For each tree we form S(r) by sampling one leaf per depth-r subtree (uniform within each subtree)
and average metrics over m=5 independent resamples. The PPS alternative draws u ∈ Vr without
replacement with p(u) ∝ s(u) and then one uniform leaf below u; this induces a set that is uniform
over leaves. Unless noted, all figures/tables use the per-subtree uniform protocol.

A.4 Pair pools and stratified evaluation

Given S(r), we create Πcrit by a fixed perfect matching over depth-r subtrees and include cross-
subtree pairs only. We then stratify all pairs by LCA depth, cap any stratum at 25% of pairs, and
apply a 60/20/20 split within each stratum to form Πtrain, Πval, Πtest independently per seed. Unless
stated, metrics are reported on Πtest.

A.5 PCA/MDS configuration

PCA uses the top-d eigenvectors of the centered Gram matrix. Metric MDS uses stress-1 (Kruskal),
random initialization, max iterations 104, tolerance 10−8, and repeats best-of-3 starts (lowest final
stress). For Euclidean analytic entries we evaluate the closed-form threshold dmin from Eq. (10);
PCA/MDS values are empirical distances on Πcrit (not closed-form).

A.6 Learned hyperbolic baselines: losses and hyperparameters

Poincaré embeddings (5): dimension d ∈ {2, 5}, Riemannian SGD with learning rate 0.01, batch
size 4096 pairs, 10 negatives per positive (uniform over non-edges), temperature 1.0, clipping at
Poincaré radius 0.999, max 200 epochs, early stopping patience 10 on validation Separation@target.
Entailment cones (6): same optimizer/batching; cone half-angles initialized from parent degree;
order violation penalty λ=1.0; temperature 1.0.
Both methods train on Πtrain, validate on Πval, and we report the checkpoint with best validation
Separation@target.

A.7 Uncertainty and CIs

Proportions (e.g., Separation@target) use Wilson score 95% CIs (z=1.96). Continuous metrics
(median, 10th percentile distance, distortion, MRR) use a stratified bootstrap over pairs within Πtest

(strata by LCA depth), B=10,000 resamples per seed; we aggregate across seeds and report the
2.5/97.5 percentiles. We run k=30 seeds unless otherwise specified.

A.8 Hardware and wall-times

Constructive evaluations require a single pass over Πcrit; learned baselines incur iterative optimization.
We summarize representative wall-times below.

Table 3: Representative wall-times (median [IQR] over k=30 seeds).
Task (b, h, C0) |S| |Πcrit| Passes HW Time

Constructive H2 (distances) (4, 8, 5) 256 128 1 CPU–12c 0.03s [0.02, 0.04]
Constructive H2 (sweep R) (4, 8, 5) 256 128 grid in R CPU–12c 0.24s [0.20, 0.28]
PCA/MDS (fit + eval) (4, 8, 5) 256 128 3 starts CPU–12c 6.8s [6.5, 7.2]
Poincaré (train) (4, 8, 5) — — ≤ 200 epochs 1×A100 45s [42, 49]
Entailment cones (train) (4, 8, 5) — — ≤ 200 epochs 1×A100 58s [54, 63]
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A.9 Additional metrics: hierarchical kNN and parent retrieval

We report hierarchical kNN accuracy at leaves (predict parent by majority vote among k near-
est embedded neighbors) and parent retrieval (Hits@1/MRR for ranking the true parent among
candidates).

Table 4: Hierarchical kNN at leaves (mean ± 95% CI across k=30 seeds).
(b, h, C0) Method k Acc@parent (%) Notes

(4, 8, 5) PCA/MDS (d=6) 5 78.4± 2.1 Euclidean
(4, 8, 5) H2 (ours, α=π,R=320) 5 96.8± 0.9 constructive
(4, 12, 5) H2 (ours, α=π,R=480) 5 95.1± 1.1 constructive

Table 5: Parent retrieval on leaves (Hits@1 / MRR, mean ± 95% CI across k=30 seeds).
(b, h, C0) Method Dim./R Hits@1 MRR

(4, 8, 5) PCA/MDS d=6 0.80± 0.02 0.87± 0.01
(4, 8, 5) H2 (ours) R=320 0.98± 0.01 0.99± 0.00
(4, 12, 5) H2 (ours) R=480 0.96± 0.01 0.98± 0.00

Reporting. For Tables 4–5, confidence intervals follow the same Wilson/percentile-bootstrap
protocol as in §A.7.

B Additional Theory and Proof Details

B.1 Euclidean lower bounds

Key intuition. Following Sec. 3.1.1, fix an integer r ≥ 1 and select a critical set Sr of leaves whose
last r edges are pairwise edge-disjoint; write Wr := |Sr|. Any two such leaves must diverge above
depth h− r, so their tree distance is at least the sum of their length-r suffixes. Thus, an embedding
with distortion C must place their images uniformly far apart in Euclidean space. However, since
the map is 1-Lipschitz, all images lie in a ball of radius O(h), creating a volumetric packing tension
between the Wr separated points and the ambient d-dimensional ball.

Formal analysis. For distinct u, v ∈ Sr, suffix disjointness gives

dT (u, v) ≥
∑

e∈suffixr(u)

we +
∑

e∈suffixr(v)

we ≥ 2r w
(r)
min,

where w(r)
min is the minimum edge weight appearing on any of the selected suffixes. If ψ has distortion

C, the co-Lipschitz condition yields a uniform separation

∥ψ(u)− ψ(v)∥ ≥ ρ :=
2r w

(r)
min

C
(∀u ̸= v ∈ Sr).

Since ψ is 1-Lipschitz, every embedded point satisfies ∥ψ(x)− ψ(root)∥ ≤ dT (x, root) ≤ wmaxh,
so after translation ψ(V ) ⊆ Bd(R) with R ≤ wmaxh. Hence the disjoint balls {B(ψ(u), ρ/2) : u ∈
Sr} lie inside Bd(R+ ρ/2), and

Wr · vold
(
B(ρ/2)

)
≤ vold

(
B(R+ ρ/2)

)
⇒ Wr ≤

(
1 +

2R

ρ

)d

.

Substituting R ≤ wmaxh and ρ = 2r w
(r)
min/C and absorbing the (data-dependent) ratio γr :=

max{we : e on selected suffixes}
min{we : e on selected suffixes}

=
w

(r)
max

w
(r)
min

into constants gives the clean bound below.
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Theorem B.1 (Euclidean lower bound). For any r ∈ {1, . . . , h−1} and any embedding ψ : T → Rd

with distortion C ≥ 1,

Wr ≤
(
1 + C γr

h

h− r

)d
, equivalently C ≥ h− r

h

W
1/d
r − 1

γr
.

Here Wr is the r-width (number of depth-r subtrees that contain at least one leaf below depth r),
and γr := wmax/w

(r)
min with w(r)

min the minimum edge length along any depth-r–to–leaf segment. In
the balanced case with constant weights and r = ⌊h/2⌋ this reduces to Wr ≤ (1 + 2Cγ)d, i.e.
C ≥ 1

2γ (W
1/d
r − 1).

Choosing the scale. Define beff := maxr≥1W
1/r
r and choose r⋆ ∈ argmaxrW

1/r
r . Plugging r⋆

into our previous equation yields the strongest bound, and the quantity Wr⋆ is the one that will appear
in our decision rule.

Balanced case as a corollary. For a balanced b-ary tree, Wr = br and one can take r = ⌊h/2⌋,
while γr ≤ γ := wmax/wmin. From the previous equation we get

C ≥ 1

2γ

((
b⌊h/2⌋

)1/d
− 1

)
, (4)

recovering the familiar exponential–polynomial barrier as a special case.

B.2 Tightness of weight dependence

To show the 1/γ dependence is optimal, consider a weighted star Sb of height 1 with b leaves,
where all edges have length wmin. Under 1-Lipschitz scaling, leaves embed within Bd(wmax) while
maintaining pairwise tree distance 2wmin. The packing argument directly gives:

b ≤ (1 + Cγ)d ⇒ C ≥ 1

γ
(b1/d − 1).

This star construction achieves the 1/γ dependence, proving that (4) is tight up to constants.

B.3 Hyperbolic embedding with curvature–radius budget

We embed every vertex v as a point ϕ(v) ∈ H2
−κ; the “sector” language only refers to disjoint

angular intervals, while ϕ(v) is placed on the sector’s centerline at radius rv = 1√
κ

∑
e∈path(v) we

(or rk = kL/
√
κ in the unit-edge model).

Sector construction. Work in the hyperbolic plane H2
−κ. Fix an angular budget α ∈ (0, π], a step

size L > 0, and a fan–out bound bfan ≥ 1 (take bfan = b for a balanced b–ary tree; for unbalanced
trees use the per–level maximum or beff , which is conservative). Assume

eL ≥ 2 bfan
α

. (5)

Place the root at radius 0 and map each depth-k node to hyperbolic radius rk := k L/
√
κ. Assign to

every depth-k node a disjoint angular sector of width at least α b−k
fan; embed each tree edge along its

radial geodesic of length L/
√
κ. Denote the embedding by ϕ.

Curvature normalization (−κ vs. −1). All hyperbolic planes of constant negative curvature are
scaled copies: (

H2
−κ, d−κ

) ∼= (
H2

−1,
1√
κ
d−1

)
, d−κ(x, y) =

1√
κ
d−1(x, y).

Consequently every step length and radius in our construction scales by 1/
√
κ:

L−κ = 1√
κ
L−1, r(−κ)

v = 1√
κ
r(−1)
v , rh = hL√

κ
.

We keep κ explicit only to expose the curvature–radius budget: for fixed h and per-level step L,
increasing κ (more negative curvature) reduces the required radius linearly as 1/

√
κ. Implementation:

we compute positions and distances in the −1 model for numerical stability and then multiply all
hyperbolic distances by 1/

√
κ.
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Distortion guarantee.
Proposition B.2 (Constant-distortion hyperbolic embedding). Under (5), there exists

clow := min

{
1,

α

2π bfan

}
(6)

such that for all nodes u, v,

clow
L√
κ
dT (u, v) ≤ dH2

−κ

(
ϕ(u), ϕ(v)

)
≤ L√

κ
dT (u, v). (7)

Hence dist(ϕ) ≤ 1/clow, independent of h and κ, and the maximal radius used is rh = hL/
√
κ.

Proof sketch (geometric lower bound). Every path between two leaves must traverse dT (u, v)
levels. At each level either (i) it moves radially and pays L/

√
κ, or (ii) it switches angular sectors. By

(5), annulus–crossing/chord–arc comparisons imply an angular switch costs at least (α/(2πbfan)) ·
L/
√
κ. Taking the minimum per level yields (6) and summing gives the left inequality in (7). The

right inequality is by construction (edges mapped to radial geodesics).

Meeting a target separation. To match a Euclidean target separation s0 = h/C0, it suffices that
L√
κ
≥ 1

clow C0
⇐⇒

√
κ ≤ clow

L

C0
. (8)

If the radius budget is R, we also require rh = hL/
√
κ ≤ R, i.e.

hL

R
≤
√
κ ≤ clow

L

C0
, so feasibility holds whenever R ≥ hC0

clow
. (9)

A practical default is α = π, L = ln(2bfan/π), and
√
κ = hL/R.

Remark (unbalanced trees and products). Using bfan = bmax (max branching over levels) or
bfan = beff from Sec. 3.1.1 preserves the guarantee with a conservative clow. The sector scheme
extends to products (H2

−κ)
m by distributing levels across factors; the bound (7) holds factorwise with

the same clow, allowing shallower radius per factor.
Proposition B.3 (Calibrating the hyperbolic constant). Let bfan := maxv deg

+(v) be the maximum
out-degree (fanout) of the observed tree. Fix any α ∈ (0, π] and L > 0 with eL ≥ 2 bfan/α. Then the
sector construction of Sec. B.3 with these (α,L) has bi-Lipschitz distortion at most 1/ccallow, where

ccallow := min
{
1, α

2π bfan

}
.

Consequently, the radius budget sufficient to achieve any target separation h/C0 can be tightened to

Rcal
min =

hC0

ccallow

≤ hC0

clow
,

i.e., replacing b by the empirical fanout bfan ≤ b never worsens the requirement.

Proof sketch. In the lower-bound part of Sec. B.3, the only place b appears is in lower-bounding
the per-level angular switch cost. Replacing b by the actual fanout bound bfan leaves the argument
unchanged, giving the claimed ccallow and radius formula.

Practical calibration. Compute bfan from the tree (or an effective width beff , e.g., the 95th percentile
of deg+). Sweep a small grid α ∈ {π/2, 3π/4, π} and set L = ln

(
2bfan/α

)
(so eL=2bfan/α). For

each candidate, evaluate Rcal
min = hC0/c

cal
low and pick the smallest feasible value. This calibrated ccallow

is a drop-in replacement for clow in Sec. B.4.

B.4 Design Rule

Inputs and outputs. User provides: (i) tree statistics—either (b, h) for balanced trees or an effective
width profile {Wr}r≥1 (Sec. B.1) together with the relevant weight spread γr on the selected suffix
set; (ii) a Euclidean dimension budget d and/or a hyperbolic radius budget R (plus optional sector
parameters α,L); and (iii) a target distortion C0 and, if applicable, perturbation level ε.
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Exact decision rule (deterministic). Inverting the bound in Theorem 3.1 gives the per-r require-
ment

ddetmin(r) =
lnWr

ln
(
1 + h

h−r C0 γr
) , ddetmin = min

1≤r≤h
ddetmin(r). (10)

In the balanced case,

ddetmin := min
r≥1

lnWr

ln(1 + 2C0γr)
. (11)

Balanced corollary. If Wr = br, γr ≤ γ, and we take r = ⌊h/2⌋, (11) reduces to

dmin =
⌊h/2⌋ ln b

ln(1 + 2C0 γ)
. (12)

High-probability rule under noise. Using Proposition 3.3 (i.i.d.) and its L-dependent / α-mixing
variants, write for general r:

C0 ≥ Ar

(
(BrWr)

1/d − 1
)
, Ar :=

(1− δ) r
(1 + ε)h

, Br := 1
2

(
1− e−αr

)
,

with α = δ2/(2ε2) for the bounded i.i.d. model; replace Br by κBr for L-dependence (κ = κL) or
mixing (κ = κρ, α 7→ α′). Inverting,

dHP
min(r) =

ln(κBrWr)

ln
(
1 + C0/Ar

) , dHP
min := min

r≥1
dHP
min(r). (13)

Default choice. Setting δ = ε/2 yields Ar = (1−ε/2)r
(1+ε)h and α = ε2/8. Balanced corollary. With

Wr = br and r = ⌊h/2⌋, (13) simplifies to

dHP
min ≈

⌊h/2⌋ ln b+ ln
(
1
2 (1− e

−α⌊h/2⌋)κ
)

ln
(
1 + (1+ε)h

(1−ε/2)⌊h/2⌋ C0

) . (14)

Ignoring the O(1) logarithmic term in the numerator and consolidating constants recovers the rule of
thumb with Λε = (1 + ε)/(1− ε/2).

Hyperbolic feasibility. Our previous proposition shows that our explicit embedding of the tree into
the hyperbolic plane H2

−κ is bi-Lipschitz with distortion at most 1/clow, where

clow = min

{
1,

α

2π bfan

}
,

and this constant depends only on the local branching fanout bfan (via the available angular budget α).
Importantly, this distortion bound does not grow with depth h or depend on the curvature parameter
κ.

For deployment, we often also need an absolute minimum separation between distinct nodes (e.g.,
siblings should not collapse numerically). Let S0 > 0 denote this required per-sibling hyperbolic
distance. This is an application-driven margin and is not the same as the Euclidean distortion target
C0 above.

In our construction, depth-k nodes lie on a circle of hyperbolic radius

rk =
kL√
κ
,

so the deepest nodes (depth h) occupy radius

rh =
hL√
κ
.

If the model only allows hyperbolic radius budget R, feasibility requires

√
κ ≥ hL

R
. (H1)
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Table 6: Deploy-time budget summary. bfp: bytes/float; Rmax: numeric-stability cap.
Geometry Feasible if Memory Per-query

Rd db≥dmin ndb bfp Θ(db)
H2 Rb≥Rmin ∧ Rmin<Rmax 2n bfp Θ(1)

Siblings are separated by on the order of clowL√
κ

. Enforcing a margin of at least S0 gives

clowL√
κ
≥ S0 =⇒

√
κ ≤ clowL

S0
. (H2)

Combining (H1)–(H2), a curvature–radius pair (κ,R) is feasible iff

hL

R
≤
√
κ ≤ clowL

S0
. (H3)

Equivalently, the minimum radius budget compatible with margin S0 is

Rmin =
hS0

clow
. (15)

In summary, Euclidean feasibility is governed by the distortion target C0, which yields the required
Euclidean dimension dmin(C0). Hyperbolic feasibility is governed by a margin target S0 and
branching geometry (clow), which together determine whether a given (κ,R) satisfies (H3) and
whether R ≥ Rmin. We then choose the cheaper viable option: Euclidean if d ≥ dmin, or hyperbolic
if R ≥ Rmin.

Algorithm. Given tree stats ({Wr, γr}) or (b, h, γ), noise level ε, target C0, and budgets (d,R):

1. Euclidean check. Compute ddetmin via (11); if using noise, compute dHP
min via (13). If

d ≥ dmin (or dHP
min), choose Euclidean.

2. Hyperbolic check. ComputeRmin with a chosen bfan (e.g., b or bmax or beff ). IfR ≥ Rmin,
choose hyperbolic and set (α,L, κ).

3. Otherwise, use the hyperbolic construction with parameters satisfying the feasibility con-
straints (Sec. B.3); prefer the calibrated constant ccallow (Prop. B.3) to reduce the required
radius.

Operational cost model. Given dmin(T,C0) and Rmin(T,C0), we translate geometry to deploy-
time budgets. Euclidean is feasible if dbudget≥dmin; memory = ndbudget bfp bytes and per-query cost
Θ(dbudget) (dot/ℓ2). Hyperbolic (our H2 construction) is feasible if Rbudget≥Rmin and Rmin<Rmax;
memory = 2n bfp and per-query cost Θ(1) (transcendentals). If both are feasible, use Euclidean
when dmin is small (ANN-friendly, cheap dot products); otherwise use H2 provided Rmin<Rmax.
Lemma B.4 (Constant-distortion for sector construction). Fix b ≥ 2, α ∈ (0, π], and L > 0 with
eL ≥ 2b

α . In H2
−κ, the sector construction in §B.3 satisfies, for all u, v,

clow
L√
κ
dT (u, v) ≤ dH−κ(ϕ(u), ϕ(v)) ≤

L√
κ
dT (u, v), clow ≥ min

{
1,

α

2πb

}
.

In particular, dist(ϕ) ≤ 1/clow, a constant depending only on (b, α).

Sketch. The upper bound concatenates radial segments. The lower bound accumulates per-level cost
from (i) radial motion (L/

√
κ) and (ii) angular “switch” across annulus Aj ; using the hyperbolic

polar metric and sinhx ≥ ex/2, one obtains a uniform switching cost α
2πb ·

L√
κ

whenever eL ≥ 2b/α;
take the minimum per level and sum. See Eqs. (4)–(6) in the main text.

Corollary B.5 (Matching a Euclidean target and a radius budget). Let C0 ≥ 1 and s0 = h/C0. If√
κ satisfies

hL

R
≤
√
κ ≤ clow

L

C0
,
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then for all leaf pairs whose LCA lies above depth r, the constructive H2 embedding achieves
dH−κ(ϕ(u), ϕ(v)) ≥ s0. In particular, feasibility holds whenever R ≥ hC0/clow. (Compare
Eqs. (7)–(8) in the main text.)
Remark (Concrete constants for experiments). With α = π and b = 4, clow ≥ π/(8π) = 1/8. The
feasibility bound reduces to R ≥ 8hC0.

Proof (geometric lower bound). Upper bound. Each tree edge maps to a radial segment of length
L/
√
κ; concatenating along the two rays down to the LCA and back up gives the desired

≤ (L/
√
κ) dT (u, v).

Lower bound: two additive mechanisms. Let t be the depth of LCA(u, v) and assume, for clarity,
both nodes lie at depth h so dT (u, v) = 2(h− t); the general case is analogous.

(1) Radial cost. Moving one level radially costs exactly L/
√
κ along either ray. Summing over the

2(h− t) levels gives a trivial contribution (L/
√
κ) dT (u, v), implying clow ≤ 1 and already yielding

a levelwise lower bound of L/
√
κ whenever the geodesic stays on a fixed ray.

(2) Angular (switching) cost. Beyond depth t, the images of u and v lie on distinct radial geodesics
(“rays”). In the hyperbolic polar metric,

ds2 = dr2 +
sinh2(

√
κ r)

κ
dθ2.

Any curve that changes the polar angle by ∆θ while crossing an annulus Aj := [rj−1, rj ] has length
at least ∫

Aj

sinh(
√
κ r)√
κ

|dθ| ≥
(
inf
r∈Aj

sinh(
√
κ r)√
κ

)
·|∆θ|.

At level j the two rays are separated by at least ∆θj = αb−j , and infr∈Aj sinh(
√
κ r) =

sinh(
√
κ rj−1) = sinh((j − 1)L). Thus any cross-annulus “switch” between the two rays costs at

least
sinh((j − 1)L)√

κ
∆θj ≥

e(j−1)L

2
√
κ
· α b−j =

α

2b

(eL
b

)j−1

· 1√
κ
, (16)

using sinhx ≥ ex/2 for x ≥ 0. To compare this angular cost to the radial scale L/
√
κ, average the

angular metric over the annulus:

1

L

∫ rj

rj−1

sinh(
√
κ r)√
κ

dr =
cosh(jL)− cosh((j − 1)L)

L
√
κ

≥
sinh((j − 1

2 )L)√
κ

,

and combine with the fact that the geodesic must accumulate total angle change ∆θj across the
annulus. Using sin(x) ≥ 2

πx for x ∈ [0, π2 ] and the hyperbolic law-of-cosines lower bound for the
chord on a circle, one obtains the uniform per-level switching cost

(crossing Aj) ≥ α

2πb
· L√

κ
whenever eL ≥ 2b

α
. (17)

Indeed, (16) together with eL ≥ 2b/α implies
(
eL

b

)j−1 ≥ 2
α , and the chord–arc comparison gives

the additional 1
π factor converting arc scale to geodesic scale.

For each level beyond the LCA, the geodesic must pay at least the minimum of the two mechanisms,
namely

min
{ L√

κ
,
α

2πb
· L√

κ

}
= min

{
1,

α

2πb

}
· L√

κ
.

Summing over the dT (u, v) levels gives the claimed lower bound with clow ≥ min{1, α/(2πb)}.

C Reproducibility checklist and seeds

We release code to reproduce figures/tables; each run logs: RNG seed, (b, h, γ, ε), r, sampler
(uniform vs. PPS), m, construction parameters (α,L,R) or learned hyperparameters, and hardware.
All plots/tables report either mean±95% CI or median [IQR] with k=30 seeds.
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Code and reproducibility: The full code for reproducing results is available at:
https://drive.google.com/file/d/1QoSpHEGqLfYMt1H2Ci-ktpZydK23gjmj/view?usp=
sharing
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