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Abstract

When embedding hierarchical graph data (e.g., trees), practitioners face a funda-
mental choice: increase Euclidean dimension or use low-dimensional hyperbolic
spaces. We provide a deployable decision rule, backed by rigorous theory and de-
signed to integrate into graph-learning pipelines, that determines which geometry to
use based on tree structure and desired distortion tolerance. For balanced b-ary trees
of height h with heterogeneous edge weights, we prove that any embedding into
fixed d-dimensional Euclidean space must incur distortion scaling as (bL?/21)1/4,
with the dependence on weight heterogeneity being tight. Beyond balanced trees,
we extend the lower bound to arbitrary trees via an effective width parameter
that captures the count of edge-disjoint depth-r suffixes. Under random edge
perturbations, we provide high-probability refinements that improve the constants
while preserving the fundamental scaling, and we further show these refinements
remain valid under locally correlated or a-mixing noise processes on edges. On
the hyperbolic side, we present an explicit constant-distortion construction in the
hyperbolic plane with concrete curvature and radius requirements, demonstrating
how negative curvature can substitute for additional Euclidean dimensions. These
results yield a simple decision rule: input basic (possibly unbalanced) tree statis-
tics (height, effective width, weight spread) and a target distortion, and receive
either (i) the minimum Euclidean dimension needed, or (ii) feasible hyperbolic
parameters achieving the target within budget. Finally, we show that for general
DAGs, a tree-minor witness transfers our lower bound, so the decision rule remains
applicable.

1 Introduction

Hierarchical data structures like taxonomies, phylogenies, knowledge graphs, and clustering dendro-
grams are pervasive in machine learning and network science. Representing such data compactly
and accurately remains a fundamental challenge for graph representation learning, particularly in the
context of downstream tasks in graph neural networks (GNNs) and embedding pipelines.

Many learning systems require representations rather than an oracle for pairwise tree distances.
Embeddings are useful when (i) models consume inner products or coordinates (attention, dot-
product kernels, matrix factorization, VAEs), (ii) we need end-to-end differentiation through a
geometry-aware loss (contrastive, triplet, NCE), (iii) storage or serving of all-pairs distances is
prohibitive (O(n?)) whereas an embedding uses O(nd) memory and enables fast ANN indexes, (iv)
we must interoperate with vector/metric modules in pipelines (kNN retrieval, classifier heads, GNN
readouts), and (v) low-dimensional visualization is desired. This paper therefore does not advocate
embedding per se; it provides a principled rule for choosing the geometry and resources when an
embedding is needed.

A key modeling decision is whether to allocate more Euclidean embedding dimensions or to embed
data in a lower-dimensional space of non-Euclidean (specifically, hyperbolic) geometry. Classical



results show that certain hierarchical metrics (e.g., trees) incur growing distortion when forced into
a fixed-dimensional Euclidean space, while hyperbolic spaces can admit much lower distortion
via explicit constructions [1-4]. As a result, hyperbolic geometry has emerged as a natural fit for
encodings of hierarchies in a range of machine learning applications [5-8]. However, practical and
quantitative guidance for when to choose one geometry over the other (especially as a function of
dataset size, tree branching, and heterogeneity) remains lacking.

This paper fills this methodological gap by introducing a deployable decision rule for geometry
selection in hierarchical graph embedding. Specifically, we derive explicit, noise-robust lower bounds
on the distortion required to embed weighted, balanced trees into fixed-dimensional Euclidean space,
demonstrating a tight dependence on weight heterogeneity and showing that these bounds persist under
random edge perturbations. We further construct explicit, constant-distortion hyperbolic embeddings
with concrete curvature and radius budgets. Building on these foundations, we deliver a practical,
closed-form rule which, given observed statistics of a tree and a target distortion, returns either
the minimal Euclidean dimension or a feasible hyperbolic configuration that meets the prescribed
separation objective.

2 Related Work

Classical results show that balanced trees require distortion or dimension growing with depth in
R?, while hyperbolic space achieves constant distortion in two dimensions via exponential volume
growth. Prior work exploits this for taxonomy and knowledge-graph embedding but treats geometry
choice as empirical rather than principled. Analogous to Johnson-Lindenstrauss dimension bounds
in nearest-neighbor retrieval or margin bounds in metric learning, we provide an explicit design
rule: lower-bound the Euclidean dimension dp,i, (T, Cp) and upper-bound the hyperbolic radius
Ruin (T, Cp) needed for target separation C, even under weight heterogeneity and noise. We
calibrate this rule on imbalanced and noisy trees and express it as an operational budget (memory,
cost, stability) for retrieval and GNN systems, positioning our work as a deploy-time decision tool
rather than merely another embedding method.

3 Methods

The fundamental tension in embedding trees stems from an exponential-polynomial mismatch: trees
expand exponentially with depth (roughly b" leaves), while the capacity of fixed-radius Euclidean
balls grows only polynomially with dimension. Our approach formalizes this mismatch by selecting
approximately b/2 well-separated leaves from the tree and applying volumetric packing arguments
to derive sharp distortion lower bounds.

Overview of the approach. Our analysis proceeds through four main steps. First, we establish
Euclidean lower bounds via: (i) normalizing embeddings to be 1-Lipschitz without loss of generality,
(ii) constructing a critical set S of well-separated leaves (one per depth-r subtree with r = |h/2])
that exposes the tree’s exponential growth, and (iii) applying packing bounds in R? to constrain how
many such separated points can fit within a bounded ball.

Second, we prove the weight dependence is tight by constructing a weighted star that achieves the
1/~ factor. Third, we refine our bounds under random edge perturbations, leveraging independence
across edge-disjoint paths to improve constants via concentration inequalities. Finally, we construct
explicit hyperbolic embeddings with concrete curvature and radius budgets, culminating in a practical
decision rule for geometry selection.

3.1 Problem setup and notation

Let Ty, , denote a balanced b-ary rooted tree of height h with edge lengths {w. }.c g and shortest-path
distance dp. Define Wi, = mine We, Wimax = Max, we, and the weight spread v := Wnax/Wmin >
1.



For any map ¥ : (X, dx) — (Y, dy ), the bi-Lipschitz distortion is

dist(y) = | sup ———L || sup ———2F— | .
Ay dx (.13, y) TH#Y dy (wan wy)
We normalize embeddings ) : T ;, — R? to be 1-Lipschitz (non-expansive). This scaling preserves
distortion while ensuring the embedded tree lies within a Euclidean ball B;(R) of radius R < waxh.

3.1.1 Effective width and critical leaf sets (unbalanced trees)

For an arbitrary rooted weighted tree 7" and an integer > 1, let S,- be any set of leaves whose last r
edges are pairwise edge-disjoint (equivalently, their lowest common ancestors lie at depth < h — r).

Write

maxy,es, max{w, : e on the last r edges of u}
W, = |Sr|a Vr = “ -

min,es, min{w, : e on the last r edges of u}
We define the effective width

R 1/r * 1/r
bep = max W, r* € arg max W
Intuitively, W, counts how many depth-r “suffixes” we can expose without edge overlap; beg is the
exponential rate of this growth. For a balanced b-ary tree, W, = b", hence begr = b and 7* ~ | h/2],
recovering the classical case. In the Euclidean lower bound and the decision rule, the balanced
quantity bL"/2 is replaced by W, (and 7 by 7,+). Section B.1 specializes the packing argument
accordingly.

3.1.2 Noise models beyond independence

To model dependencies between edge weights, we consider two standard settings for the family
{We}eek taking values in [1 — &, 1 4 ¢]:

* Local L-dependence. If two edges are at graph distance > L in T, their weights are independent;
arbitrary dependence is allowed within distance < L.

* a-mixing (geometric decay). Along any root-to-leaf path, the process is stationary with mixing
coefficients o (k) < p* for some 0 < p < 1, and cross-branch dependencies satisfy the same
decay with distance through the tree.

In Section 3.3 we extend the high-probability separation of critical leaves to these models: (i) under
L-dependence by grouping suffixes into independent blocks (inflating constants via a factor depending
on L), and (ii) under a-mixing via Bernstein/Freedman-type inequalities with an effective variance

multiplier. The resulting bounds preserve the er,/ ¢ scaling.

3.1.3 General DAGs via tree-minor witnesses

Let G = (V, E) be a weighted DAG with shortest-path metric d¢. If G contains a rooted tree minor
(arborescence) T, with height h, and an effective-width witness W,. , at some depth scale r, then
any 1-Lipschitz embedding of G into R? must satisfy the same packing lower bound when restricted
to T),. Consequently, our Euclidean threshold and decision rule apply to DAGs by substituting
(B, Wi, Vr.+) extracted from the witness. A simple procedure finds such a witness: layer G by
topological depth; choose a scale r; compute a maximum set of edge-disjoint root—sink paths of
length > r (unit-capacity max-flow); and contract each length-r segment into one tree level. We
report the derived (h,, W, ,) in experiments; full details are given in the appendix.

3.2 Euclidean lower bounds

Intuition. Fix a depth scale » > 1 and let W,. be the number of “effectively disjoint” depth-r
suffixes in the tree. Any two leaves whose last 7 edges are edge-disjoint must have diverged above
depth h — r, so their tree distance is large. An embedding into R? with distortion C' must therefore
place all W, of those leaves a uniform distance apart, yet—because the embedding is 1-Lipschitz—all
points still lie inside a ball of radius O(h). This creates a volumetric packing constraint that ties W,
the ambient Euclidean dimension d, and the allowable distortion C'.



Theorem 3.1 (Euclidean lower bound, informal). Let T be a rooted tree of height h. For any scale
r € {1,...,h— 1} and any embedding 1) : T — R% with distortion at most C' > 1, we have

o> h—r WHe_1

~ h '}/7- )
where W,. captures the number of edge-disjoint depth-r suffixes (the tree’s “effective width” at scale
r) and 7y, is the local weight spread on those suffixes. Equivalently,

b \d
W, < (1 +C, 7) .
h—r
In particular, trees with large effective width W,. cannot be embedded into a fixed low-dimensional
Euclidean space without incurring large distortion C. The complete statement and proof, including
the precise constants, the formal definitions of W,. and .., and the extension to general (unbalanced)
trees and DAGs, appear in Appendix.

Balanced case (explicit corollary). For a balanced b-ary tree of height h with edge weights

in [Win, Wmax|, we have W,. = b" and may take r = |h/2], while 7. < 7 = Wmax/Wmin-
Substituting into Theorem B.1 yields
1/d
c> L ((bth/%) 1), )
= 5

showing an exponential-in-depth / polynomial-in-dimension barrier: for fixed d, the required distor-
tion C' grows like b¥©("/%)_ Appendix shows that the 1/ dependence in (1) is tight up to constants
(via a weighted star construction).

3.3 Random perturbations: high-probability refinement

Setup (critical suffixes). Fix a depth scale r > 1 and let S, be any set of leaves whose last  edges
are pairwise edge-disjoint (Sec. 3.1.1); write W,. := |S,|. For each u € S,., let suffix,.(u) denote its
last r edges and define the random path length

X, = Z W€7

e€suffix, (u)

where edge weights satisfy W, € [1 — ¢, 1 + ¢] with mean 1. Because the suffixes are edge-disjoint,
{ X4 }ues, are independent whenever the {TV, } are independent. As in Sec. B.1, a large S, of “good”
leaves (those with X, above a threshold) forces many well-separated embedded points and drives the
packing bound.

Independent noise (Hoeffding + Chernoff)

Assume the W, on different edges are i.i.d. with W, € [1 —¢,1 4 ¢] and E[W,] = 1. Let
Ve =W.—1¢€[—¢,e]withE[V.] =0andset S, := ) (w) Ve; then X, = r + S,,. For any
0 € (0,¢],

eesuffix,

2
P X, < (1—68)r] =P[S, < —br] <exp <—25€2 r) =e

by Hoeffding’s inequality with o := §%/(2¢?). Define Z,, := 1{X,, > (1 = 0)r}, Y := Y s Zu
and pgood 1= 1 — ™" Independence of the X, gives

Y ~ Binomial(W;, pgood), E[Y] = W, pgood-
By a multiplicative Chernoff bound, for any n € (0, 1),

2
P[Y <(L—=n) W, pgood] < eXp( - % W, pgood) .
Taking 7 = 3 yields, with probability at least 1 — exp( — 5 Wy Pgood ).
Y > tW,(1—e ). 2)



Packing the good subset and the i.i.d. HP bound. On the event (2), any two J-good leaves
u # v satisfy dp(u,v) > X, + X, > 2(1 — 0) r (their suffixes are disjoint). Under the 1-Lipschitz
normalization, every leaf lies in Bq((1 + £)h), so the good subset is p-separated with p = w.
Applying the packing inequality from Sec. B.1 to these Y points gives

Y < (1+2(1;5)h)d - (1+Wc)d.

Combining with (2) and rearranging yields:

[HP bound under i.i.d. noise] Fix r > 1 and § € (0,¢], and let e = §2/(2¢2). With probability at
least 1 — exp( — é W,.(1 - e*‘”)), every embedding ¢ : T — RY with distortion C satisfies
(1—=0)r

C2 ran (Fa-enw]/=1). 3)

For a balanced b-ary tree with r = |[h/2] and W, = b", this recovers the b"/(??) scaling with
improved prefactors.

Locally correlated noise (L-dependence)

Suppose edge weights are L-dependent: if two edges are at graph distance > L in T', their weights
are independent; arbitrary dependence is allowed within distance < L. There exists a constant
k1, € (0,1] depending only on L and the maximum branching along S, such that one can thin S, to
a subcollection §T with \gr\ > k1, W, whose suffix sums {X,, : u € 57,} are independent. Repeating
the proof above on S, gives:

Proposition 3.2 (HP bound under L-dependence). Under the L-dependence model, with probability
at least 1 — exp( — é KL Wy(1 — 6*0”)), every distortion-C' embedding satisfies

€z G (ra-ew] 1),

a-mixing noise (geometric decay)

Assume along any root-to-leaf path the process {WW.} is stationary and a-mixing with coefficients
a(k) < p* for some 0 < p < 1; cross-branch dependencies obey the same decay with distance
through 7. For bounded variables, a Bernstein/Freedman inequality for a-mixing arrays yields (via
standard blocking) a one-sided tail

]P’[Xu<(175)7"] < exp(f 265571“7’), Veff *1+2Z
k>1

‘b

Repeating the Chernoff—packing steps (noting that the blocking also provides near-independence
across u) gives:

Proposition 3.3 (HP bound under a-mixing). With probability at least 1 —exp (— & #, W, (1—e=*")),
where o = 62 /(2e%veg) and , € (0, 1] is a blocking constant depending only on p and the branching
bound, every distortion-C embedding satisfies

0 (e )

Remarks. (i) The Hoeffding step extends to any independent, mean-1 edge weights with bounded
support [1 — ¢,1 + ¢]. For sub-Gaussian W, with proxy variance o2, the same derivation gives

P[X, < (1 —0)r] < exp( — 5 27") and the rest is unchanged. (ii) For presentation, we stated
bounds using r (suffix length) and W, (effective width). In the balanced case W,. = b" and choosing
r = |h/2] recovers the original formulas. (iii) Constants s, k, are data-independent once L or
p and a branching bound are fixed, and they only scale the count of usable leaves inside the same
packing form.



Table 1: Deploy-time budget summary. bg,: bytes/float; R,.,: numeric-stability cap.

Geometry Feasible if Memory Per-query
R dy> dumin ndyby,  O(ds)
H2 Rb 2 Rmin A Rmin < Rmax 2n bfp 6(1)

Hyperbolic Option For comparison, we also give an explicit construction that embeds any rooted
tree into the hyperbolic plane H? , with constant bi-Lipschitz distortion: all tree distances are
preserved up to a multiplicative factor < 1/¢jow, Where ¢joy depends only on local branching fanout
(and not on the tree depth h). In this construction, all nodes at depth h lie within hyperbolic radius
R =~ h/+/k, so increasing the curvature magnitude (larger ) effectively “buys” radius. The full
construction, constants, and proof are in Appendix.

3.4 Design Rule

Goal. We want an automatic yes/no test for which geometry to use in practice: Euclidean (some R?)
or hyperbolic (our H? ,_ construction). The user supplies: (i) basic tree statistics (height h, branching
/ effective width W,., weight spread ~,.), (ii) resource budgets (a Euclidean dimension budget d and/or
a hyperbolic radius budget R), and (iii) a target tolerance Cy (distortion / separation level).

Euclidean requirement. From the Euclidean lower bound (Thm. B.1), inverting the inequality
gives a minimum dimension
In W,

dmin = )
) (1 + = Co)

Amin = min dpin (7).

For a balanced b-ary tree with uniform weights, W,. = 0", ~,. < +, and taking r = | h/2] yields the
closed form

[h/2] Inb
In(1+2Cyv)

Interpretation: Euclidean R¢ is feasible at tolerance Cj only if the available budget d is at least dy,jy,.
(High-probability / noisy variants just replace d,y;,, with the corresponding d!I¥ ; see Appendix)

min?

dmin =

Hyperbolic requirement. Our hyperbolic construction embeds the same tree into H? . with
constant distortion bounded by 1/¢jow, Where ¢y depends only on local branching, not on depth h.
All nodes up to depth A fit within radius

We treat this R as the hyperbolic “budget,” analogous to d in Euclidean space. Appendix gives a
closed-form R, (in terms of branching and an application-driven per-sibling separation target) and
a calibrated version that uses the observed fanout of the tree. Hyperbolic is feasible if the available R
exceeds Ruin.

Decision rule. Compute d,,;;, (Euclidean requirement) and R,,;,, (hyperbolic requirement). Choose
Euclidean if d > d,;,,. Otherwise choose hyperbolic if R > R,,;,. If both are feasible, prefer R
when d,,i, is small (cheap dot products / ANN-style retrieval); prefer H? when Euclidean would
require large d but the tree still fits in a stable hyperbolic radius. Full inversion formulas, noise-robust
d2P and the explicit expression for R, appear in Appendix.

Operational cost model. Given dy,i, (T, Cp) and Ry,in (7', Cp), we translate geometry to deploy-
time budgets. Euclidean is feasible if dyydget > dmin; memory = n dpudget brp bytes and per-query cost
O (dpudger) (dot/ls). Hyperbolic (our H? construction) is feasible if Riudget = Rmin and Riyin < Rmax;
memory = 2n bg, and per-query cost ©(1) (transcendentals). If both are feasible, use Euclidean
when dy,;, is small (ANN-friendly, cheap dot products); otherwise use H? provided Ruin < Riax-



4 Experiments and Results

4.1 Calibration on imbalanced and heterogeneous trees

Our decision rule (Sec. B.4) chooses Euclidean or hyperbolic by comparing two budgets: the minimum
Euclidean dimension d,,;, needed to achieve a target tolerance Cj, and the minimum hyperbolic
radius Ry, from our constructive H? .. embedding. The d,,;, bound is derived analytically for
balanced b-ary trees and extended to arbitrary weighted trees via effective width b.g and local weight
spread ,-; Rmin depends on branching and curvature/radius feasibility.

We stress-test this rule on three synthetic but adversarial hierarchy families with a fixed number of
leaves: (i) Balanced: depth-h b-ary trees with edge weights in [1,v]; (ii) Spine-and-bush: a mostly
unary spine with a few very bushy subtrees; (iii) Clustered-weight: either of the above, but we
rescale one branch by ppeavy and another by pien¢ to create sharp local heterogeneity.

For each sampled tree T', we compute di,in (7T') and Ruyin(T), then test which geometry actually
meets the target Cjy under fixed Euclidean and hyperbolic budgets (dhudget Via metric MDS in
Rébudget ; Rpudget via our explicit hyperbolic construction). We label that outcome as ground truth
and compare it to the rule’s recommendation. Table 2 reports misclassification rates (false-Euclidean
/ false-Hyperbolic): overall error is below 7%, with most disagreements confined to extreme spine—
and—-bush trees where both geometries are near their respective limits.

Table 2: Calibration of the decision rule on imbalanced trees. For each hierarchy type we sample
multiple random instances, vary weight spread, imbalance, and resource budgets (dbudget, Rbudget )
and compare the rule’s predicted geometry to empirical ground truth. “False Euclidean” means the
rule chose Euclidean when only hyperbolic met the target C, and vice versa for “False Hyperbolic.”
Overall misclassification stays below 7%.

Balanced Spine-and-bush Clustered-weight

False Euclidean (%) 1.2 3.8 2.5
False Hyperbolic (%) 0.9 4.4 1.7
Overall misclass. (%) 1.8 6.7 3.1

Beyond distortion, the rule is also a cost model. Choosing Euclidean with dimension d means storing
n node vectors in R? (O(nd) memory) and paying O(d) per distance query (dot products). Our
hyperbolic construction always uses H? (constant dimension, O(n) memory), but meeting the target
Cp may require a radius budget R, that pushes points to large norm, where hyperbolic distances
become more expensive (e.g., acosh) and can stress float32. In practice: if both geometries satisfy
Co, use Euclidean when d,,;,, is small enough to fit memory / query cost; otherwise use hyperbolic,
provided R,y is still numerically stable.“*

5 Conclusion

We provide a principled method for choosing between Euclidean and hyperbolic embeddings of
hierarchical data. For Euclidean space, our packing argument yields an explicit lower bound: any
d-dimensional, 1-Lipschitz embedding of a balanced b-ary tree of height h incurs distortion scaling
like (b1"/21)1/4 an exponential-in-depth barrier that extends to noisy edges. For hyperbolic space,
we construct an explicit H? , embedding with constant distortion depending only on local branching,
fitting depth-/ nodes in radius R = h/+/k. These results yield a no-training design rule: compute
required Euclidean dimension d.,;, and hyperbolic radius R,,;,, from tree statistics and distortion
tolerance; choose Euclidean if d > dpin and dyy;, is small (favoring cheap operations and O(nd)
memory), otherwise use hyperbolic’s constant-dimension representation.
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A Additional Experimental Details

A.1 Stress-test tree generation

Inputs. We fix a target leaf count Nje,¢, nominal height i, nominal branching factor b, and weight-
spread parameters (Y, Pheavy, Plight )-

Algorithm 1 GENERATEBALANCEDTREE(b, h, )

Input :Branching factor b; height h; weight spread parameter .

Output : Weighted tree 7T'.

Initialize T as a perfect b-ary rooted tree of height h. foreach edge e in T' do
| Sample edge weight w. ~ Unif[1,v].

return 7'

Algorithm 2 GENERATESPINEANDBUSH (%, bpush, Abushs YY)

Input :Spine length h; bush branching factor by,sp,; bush height hy,g1,; weight spread .

Output : Weighted spine—and—bush tree Tipine.

Create a “spine” path of length h where each node has exactly one child. Select k internal spine
nodes at random (excluding the root and the last node). foreach selected spine node u do
| Attach a by,sh-ary subtree of height hpysn rooted at .

foreach edge c in the resulting tree do
| Sample edge weight w. ~ Unif[1, 7).

Optionally prune or graft subtrees to match the target leaf count Nje,s While preserving the high-
imbalance “spine—and—bush” shape. return T,

Algorithm 3 APPLYCLUSTEREDWEIGHTS (T, pheavy, Plight )

Input :Tree T'; amplification factor pneavy > 1; contraction factor piight < 1.

Output : Weighted tree 7" with localized branch heterogeneity.

Choose two disjoint subtrees Sheavy and Siign: rooted at different internal nodes. foreach edge
ec Sheavy do

L We < Pheavy " We // amplify this branch
foreach edge e € Sijgn; do

| We < Plight * We // shrink this branch
return 7’




Algorithm 4 EVALUATEDECISIONRULE(T, Cy, dbudget, Rbudget)

Input :Weighted tree T'; target tolerance Cy; Euclidean budget dy,udget; hyperbolic budget Riudget-
Output : Ground-truth label, rule prediction, match / mismatch.
Compute effective width profile WW,.: for each suffix depth r, greedily extract the largest set of leaves

whose last r edges are pairwise edge-disjoint. Set bog < max, w)! /™ and record the associated
local weight spread ;..

Compute
[h/2] Inbeg
Amin (T ——.
@)= 52000
Compute
h
Runin(T) Co
Clow

Euclidean check: embed leaves of 7' in R%wudset (metric MDS / stress minimization); set
E_success € {0, 1} depending on whether all required critical pairs meet Cj.

Hyperbolic check: embed leaves of T"in H? , with curvature chosen so the farthest leaf fits inside
radius Rpudget; set H_success € {0, 1} using the same Cj test.

Assign label € {Euclidean, Hyperbolic, Either, Neither}: Euclidean if E_success = 1 and
H_success = 0; Hyperbolic if E_success = 0 and H_success = 1; Either if both = 1; Neither
otherwise.

Compute the rule’s prediction from Sec. B.4:

* predict “Euclidean” if dpudget > dmin (1) and Rbudget < Rmin(T');
* predict “Hyperbolic” if Rpudget = Rmin(T") and dbudget < dmin(T);
o predict “Either” if both thresholds are met;

e otherwise “Neither”.

Record whether prediction matches label.
return (label, prediction, match / mismatch).

A.2 Unbalanced tree generation

We construct unbalanced variants by random subtree pruning while preserving the total leaf count of
the balanced T}, ,. Let T be a copy of T} 5,. Iterate top—down over depths 1:(h—1); at each internal
node with ¢ children, draw a retention count ¢ ~ Binomial(c, p) with p € (0, 1), keep the ¢ children
with largest surviving-subtree size (break ties uniformly), and route the pruned mass by reattaching
pruned subtrees uniformly to nodes at the same depth with spare capacity. Choose p so that the
expected number of leaves equals that of T3 5,; this yields a right-skewed leaf-depth distribution
while preserving |Leaves(7)| = b". Unless otherwise noted we use p = 0.6 and fix a RNG seed per
replicate.

Algorithm 5 Random Subtree Pruning (preserve leaf count)

Require: balanced tree Ty, 3, retention prob. p, seed s
1: SetRNG seed <= 5, T <~ Ty p ford =1to h — 1 do

node u at depth d with children {v; }{_,
2: ¢ ~ Binomial(c, p)
3: Keep the ¢ children with largest descendant-leaf count; push remaining into a global pool Py
4: while P, non-empty and there exists node at depth d with < b children do
5
Pop subtree from P, and attach to a uniformly sampled node at depth d with spare capacity
6:
7
return 7
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Edge weights. Deterministic runs use heterogeneous weights with wyyi, and wy,ax as in the main
text; random runs perturb edges i.i.d. with W, ~ Unif[1—¢, 1+¢].

A.3 Critical set S(r) and resampling

For each tree we form S(r) by sampling one leaf per depth-r subtree (uniform within each subtree)
and average metrics over m=y>, independent resamples. The PPS alternative draws u € V,. without
replacement with p(u) o s(u) and then one uniform leaf below u; this induces a set that is uniform
over leaves. Unless noted, all figures/tables use the per-subtree uniform protocol.

A.4 Pair pools and stratified evaluation

Given S(r), we create Il by a fixed perfect matching over depth-r subtrees and include cross-
subtree pairs only. We then stratify all pairs by LCA depth, cap any stratum at 25% of pairs, and
apply a 60/20/20 split within each stratum to form Il 50, Ilval, Iless independently per seed. Unless
stated, metrics are reported on IL;egt.

A.5 PCA/MDS configuration

PCA uses the top-d eigenvectors of the centered Gram matrix. Metric MDS uses stress-1 (Kruskal),
random initialization, max iterations 10%, tolerance 10~8, and repeats best-of-3 starts (lowest final
stress). For Euclidean analytic entries we evaluate the closed-form threshold d i, from Eq. (10);
PCA/MDS values are empirical distances on Il (not closed-form).

A.6 Learned hyperbolic baselines: losses and hyperparameters

Poincaré embeddings (5): dimension d € {2, 5}, Riemannian SGD with learning rate 0.01, batch
size 4096 pairs, 10 negatives per positive (uniform over non-edges), temperature 1.0, clipping at
Poincaré radius 0.999, max 200 epochs, early stopping patience 10 on validation Separation @target.
Entailment cones (6): same optimizer/batching; cone half-angles initialized from parent degree;
order violation penalty A=1.0; temperature 1.0.

Both methods train on Il,,i,, validate on 11}, and we report the checkpoint with best validation
Separation @target.

A.7 Uncertainty and CIs
Proportions (e.g., Separation@target) use Wilson score 95% CIs (2=1.96). Continuous metrics
(median, 10th percentile distance, distortion, MRR) use a stratified bootstrap over pairs within II;cg

(strata by LCA depth), B=10,000 resamples per seed; we aggregate across seeds and report the
2.5/97.5 percentiles. We run k=30 seeds unless otherwise specified.

A.8 Hardware and wall-times

Constructive evaluations require a single pass over I1.,;;; learned baselines incur iterative optimization.
We summarize representative wall-times below.

Table 3: Representative wall-times (median [IQR] over k=30 seeds).

Task (b,h,Co) |S]  |Meris| Passes HW Time
Constructive H? (distances) (4,8,5) 256 128 1 CPU-12¢c 0.03s [0.02, 0.04]
Constructive H? (sweep R)  (4,8,5) 256 128 gridin R CPU-12¢  0.24s [0.20, 0.28]
PCA/MDS (fit+eval) (4,8,5) 256 128 3 starts CPU-12¢ 6.8s [6.5,7.2]
Poincaré (train) (4,8,5) — — < 200 epochs  1xA100 45s [42, 49]
Entailment cones (train) (4,8,5) — — < 200 epochs  1xA100 58s [54, 63]
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A.9 Additional metrics: hierarchical KNN and parent retrieval

We report hierarchical kNN accuracy at leaves (predict parent by majority vote among k near-
est embedded neighbors) and parent retrieval (Hits@ 1/MRR for ranking the true parent among
candidates).

Table 4: Hierarchical kNN at leaves (mean =+ 95% CI across k=30 seeds).
b, h,Cp) Method k  Acc@parent (%) Notes
,5) PCA/MDS (d=6) 5 78.4+2.1 Euclidean

(b,

(4,8

(4,8,5) H? (ours, a=m, R=320) 5 96.8 £0.9 constructive
(4, 12 ,5)  H? (ours, a=m, R=480) 5 95.1+1.1 constructive

Table 5: Parent retrieval on leaves (Hits@1 / MRR, mean 4 95% CI across k=30 seeds).
(b,h,Cy)  Method  Dim./R Hits@1 MRR
4,8,5) PCA/MDS d=6 0.80£0.02 0.87+0.01

(
(4,8,5) H? (ours) R=320 0.98+0.01 0.99 =+ 0.00
(4,12,5)  H? (ours) R=480 0.96+0.01 0.98 4 0.00

Reporting. For Tables 4-5, confidence intervals follow the same Wilson/percentile-bootstrap
protocol as in §A.7.

B Additional Theory and Proof Details

B.1 Euclidean lower bounds

Key intuition. Following Sec. 3.1.1, fix an integer » > 1 and select a critical set S, of leaves whose
last  edges are pairwise edge-disjoint; write W,. := |S,.|. Any two such leaves must diverge above
depth h — r, so their tree distance is at least the sum of their length-r suffixes. Thus, an embedding
with distortion C' must place their images uniformly far apart in Euclidean space. However, since
the map is 1-Lipschitz, all images lie in a ball of radius O(h), creating a volumetric packing tension
between the W,. separated points and the ambient d-dimensional ball.

Formal analysis. For distinct u, v € S,, suffix disjointness gives

dr(u,v) > Z we + Z We > 2r wr(x:i)nv
eesuffix, (u) eesuffix, (v)
where wr(m)n is the minimum edge weight appearing on any of the selected suffixes. If 4/ has distortion
C, the co-Lipschitz condition yields a uniform separation

(r)
2rw,,
o) w2 p = T (Futves,).
Since v is 1-Lipschitz, every embedded point satisfies ||1)(x) — 1 (root)|| < dr(x,root) < wpaxh,
so after translation ¢ (V') C By(R) with R < wmaxh. Hence the disjoint balls { B(¢(u), p/2) : u €
S, } lie inside By(R + p/2), and

W, vold B(p/2)) < vold(B(R+p/2)) = W, < (1+2§>

Substituting R < wpyaxh and p = 2r w!” / C and absorbing the (data-dependent) ratio v, :=

min

max{w, : e on selected sufﬁxes} wﬁg

min{w, : e on selected suffixes} (")

* into constants gives the clean bound below.
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Theorem B.1 (Euclidean lower bound). Foranyr € {1,...,h—1} and any embedding 1) : T — R?
with distortion C > 1,

ho\d h—r WH -1
W, < (1—|—C'yT ﬁ) , equivalently C > . ! .

Here W, is the r-width (number of depth-r subtrees that contain at least one leaf below depth r),
and Y, := Wax/ wr(gl)n with wl(;)n the minimum edge length along any depth-r—to—leaf segment. In
the balanced case with constant weights and r = |h/2| this reduces to W, < (1 + 2Cv), i.e.

C> LW -).

Choosing the scale. Define beg := max,>1 W,/ and choose r* € arg max, W,/". Plugging r*
into our previous equation yields the strongest bound, and the quantity W,.« is the one that will appear
in our decision rule.

Balanced case as a corollary. For a balanced b-ary tree, W,. = b" and one can take r = |h/2],
while v, < ¥ 1= Wmax/Wmin. From the previous equation we get

1 1/d
L (et
¢ =5 ((b ) 1), ()

recovering the familiar exponential-polynomial barrier as a special case.

B.2 Tightness of weight dependence

To show the 1/ dependence is optimal, consider a weighted star .S}, of height 1 with b leaves,
where all edges have length wy,i,. Under 1-Lipschitz scaling, leaves embed within By(wmax) While
maintaining pairwise tree distance 2wy,i,. The packing argument directly gives:

b<(1+Cy)* = 02%(1)1“—1).

This star construction achieves the 1/ dependence, proving that (4) is tight up to constants.

B.3 Hyperbolic embedding with curvature-radius budget

We embed every vertex v as a point ¢p(v) € HZ2  ; the “sector” language only refers to disjoint
angular intervals, while ¢(v) is placed on the sector’s centerline at radius r,, = ﬁ Zeepath(v) We

(or 1, = kL/\/k in the unit-edge model).

Sector construction. Work in the hyperbolic plane H? , . Fix an angular budget o € (0, 7], a step
size L > 0, and a fan—out bound b¢,,, > 1 (take bg,,, = b for a balanced b—ary tree; for unbalanced
trees use the per—level maximum or beg, which is conservative). Assume

oL > 2hn (5)
o
Place the root at radius 0 and map each depth-k node to hyperbolic radius r, := k L/+/k. Assign to
every depth-k node a disjoint angular sector of width at least «v bf_aﬁ; embed each tree edge along its
radial geodesic of length L/+/k. Denote the embedding by ¢.

Curvature normalization (—x vs. —1). All hyperbolic planes of constant negative curvature are
scaled copies:

(B2, d) = (B2, oda),  da(oy) = S da(ey)
Consequently every step length and radius in our construction scales by 1/1/k:

— 1 (=r) — L (=) — hL
L_,.= \/EL_l, Ty =Ty Th = e
We keep « explicit only to expose the curvature—radius budget: for fixed h and per-level step L,
increasing x (more negative curvature) reduces the required radius linearly as 1/+/k. Implementation:
we compute positions and distances in the —1 model for numerical stability and then multiply all
hyperbolic distances by 1/4/k.
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Distortion guarantee.
Proposition B.2 (Constant-distortion hyperbolic embedding). Under (5), there exists

Clow 1= min{l, 2;’};(“1} (6)
such that for all nodes u, v,
L L
Clow 7= dr(u,v) < dg (p(u),¢(v)) < NG dr(u,v). (7

Hence dist(¢) < 1/ciow, independent of h and &, and the maximal radius used is rp, = h L/+/k.

Proof sketch (geometric lower bound). Every path between two leaves must traverse dr(u, v)
levels. At each level either (i) it moves radially and pays L/+/k, or (ii) it switches angular sectors. By
(5), annulus—crossing/chord—arc comparisons imply an angular switch costs at least (o/(27btan)) -
L/+/k. Taking the minimum per level yields (6) and summing gives the left inequality in (7). The
right inequality is by construction (edges mapped to radial geodesics).

Meeting a target separation. To match a Euclidean target separation s = h/Cy, it suffices that
L 1 L

e —— < Clow —=- 8
VE T aowCo vk S a Co ®
If the radius budget is R, we also require 7, = hL/\/E < R, i.e.
hL L h C
= < VE < Clow o so feasibility holds whenever R > 0 )
0 Clow

A practical default is o = 7, L = In(2bg,y /7), and /k = hL/R.

Remark (unbalanced trees and products). Using b,y = byax (max branching over levels) or
bfan = begt from Sec. 3.1.1 preserves the guarantee with a conservative cjoy. The sector scheme
extends to products (HZ )™ by distributing levels across factors; the bound (7) holds factorwise with
the same cjoy, allowing shallower radius per factor.

Proposition B.3 (Calibrating the hyperbolic constant). Let bg,, := max, deg™ (v) be the maximum
out-degree (fanout) of the observed tree. Fix any o € (0, 7] and L > 0 with e® > 2 bg,,, /v. Then the
sector construction of Sec. B.3 with these («, L) has bi-Lipschitz distortion at most 1/¢{ | where

low?

cgal = min{ L o }
Consequently, the radius budget sufficient to achieve any target separation h/Cy can be tightened to
peal hCy < hCo
min T cal — )
Clow Clow

i.e., replacing b by the empirical fanout bg,,, < b never worsens the requirement.

Proof sketch. In the lower-bound part of Sec. B.3, the only place b appears is in lower-bounding
the per-level angular switch cost. Replacing b by the actual fanout bound bg,,, leaves the argument
unchanged, giving the claimed ¢ and radius formula. O
Practical calibration. Compute bs,,, from the tree (or an effective width beg, e.g., the 95th percentile
of deg™). Sweep a small grid a € {n/2,3n/4, 7} and set L = ln(2bfan/a) (so el =2b¢,, /). For
each candidate, evaluate R = h(j / ¢ and pick the smallest feasible value. This calibrated ccal

: . min . low low
is a drop-in replacement for ¢,y in Sec. B.4.

B.4 Design Rule

Inputs and outputs. User provides: (i) tree statistics—either (b, i) for balanced trees or an effective
width profile {W,.},>1 (Sec. B.1) together with the relevant weight spread -, on the selected suffix
set; (ii) a Euclidean dimension budget d and/or a hyperbolic radius budget R (plus optional sector
parameters «, L); and (iii) a target distortion Cj and, if applicable, perturbation level ¢.
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Exact decision rule (deterministic). Inverting the bound in Theorem 3.1 gives the per-r require-
ment

1
%t (1) = nff/r ,ddt = min g9t (r). (10)
ln(l + s CO fYr) 1<r<h
In the balanced case, |
W,
A% = min ——— " 11
min = TN (1 + 2Co7) an
Balanced corollary. If W, = b", ~,. < ~, and we take = |h/2], (11) reduces to
h/2| Inb
doin = & (12)

In(1+2Cy7)"
High-probability rule under noise. Using Proposition 3.3 (i.i.d.) and its L-dependent / a-mixing
variants, write for general r:
(1=9)r
(1+e)h’
with a = §2/(2¢2) for the bounded i.i.d. model; replace B, by x B, for L-dependence (k = k1) or

mixing (k = k,, & — ). Inverting,

In(k B, W) HP . JHP
W(i+Co/dy)’ O TR min(7) (19

Co > A, ((BT W,)1/d — 1), A, = B.i=1(1—¢"),

doin (1) =

>1

(1—e/2)r

Default choice. Setting § = /2 yields A, = a1

W, = b" and r = | h/2], (13) simplifies to
ap _ 0/2] b+ In(5(1 - elh/2])g)
min 7 (Ltooh

tn(1+ =57z Co)

Ignoring the O(1) logarithmic term in the numerator and consolidating constants recovers the rule of
thumb with A, = (1 +¢)/(1 —/2).

and o = £2/8. Balanced corollary. With

d (14)

Hyperbolic feasibility. Our previous proposition shows that our explicit embedding of the tree into
the hyperbolic plane H? , is bi-Lipschitz with distortion at most 1/cjo,,, where

. 1 «
e = ming 1, ——— ;,
low o bfan

and this constant depends only on the local branching fanout bg,, (via the available angular budget «).
Importantly, this distortion bound does not grow with depth h or depend on the curvature parameter
K.

For deployment, we often also need an absolute minimum separation between distinct nodes (e.g.,
siblings should not collapse numerically). Let Sy > 0 denote this required per-sibling hyperbolic
distance. This is an application-driven margin and is not the same as the Euclidean distortion target
Cy above.

In our construction, depth-k nodes lie on a circle of hyperbolic radius

kL
Tk = ﬁ’
so the deepest nodes (depth h) occupy radius
_hL
rh = ﬁ
If the model only allows hyperbolic radius budget R, feasibility requires
VE > % (HD)
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Table 6: Deploy-time budget summary. bg,: bytes/float; R,.,: numeric-stability cap.

Geometry Feasible if Memory Per-query

R? db > dumin ndybyp  O(dy)

H2 Rb 2 Rmin A Rmin < Rmax 2n bfp 6(1)
Clow L

Siblings are separated by on the order of . Enforcing a margin of at least Sy gives

Clow L ClowL

> 5 = < : H2

N VE < Sy (H2)

Combining (H1)—~(H2), a curvature—radius pair (x, R) is feasible iff
hL C]OWL

— < < H3
R S VIS S (H3)
Equivalently, the minimum radius budget compatible with margin .Sy is
h S
Rpin = —2. 15)
Clow

In summary, Euclidean feasibility is governed by the distortion target Cy, which yields the required
Euclidean dimension d,,;,(Cp). Hyperbolic feasibility is governed by a margin target Sy and
branching geometry (cjow), which together determine whether a given (k, R) satisfies (H3) and
whether R > R,i,. We then choose the cheaper viable option: Euclidean if d > dyin, or hyperbolic
if R > Rnlir1~

Algorithm. Given tree stats ({W,.,~,-}) or (b, h, ), noise level ¢, target Cy, and budgets (d, R):

1. Euclidean check. Compute dd¢t

d > dpin (or diP)), choose Euclidean.

min

via (11); if using noise, compute d'i¥ via (13). If

min

2. Hyperbolic check. Compute R,,;,, with a chosen bgy;, (€.8., b Or byax OF begr). If R > Ryin,
choose hyperbolic and set («, L, ).

3. Otherwise, use the hyperbolic construction with parameters satisfying the feasibility con-
straints (Sec. B.3); prefer the calibrated constant ¢{*! (Prop. B.3) to reduce the required
radius.

Operational cost model. Given dy,i, (T, Co) and Ry,in (7', Cp), we translate geometry to deploy-
time budgets. Euclidean is feasible if dyydget > dmin; memory = 1 dpudget brp bytes and per-query cost
O (dpudger) (dot/ls). Hyperbolic (our H? construction) is feasible if Ryudget > Rimin and Rin < Riax;
memory = 2n bg, and per-query cost ©(1) (transcendentals). If both are feasible, use Euclidean
when dy,;, is small (ANN-friendly, cheap dot products); otherwise use H? provided Ruin < Rimax.
Lemma B.4 (Constant-distortion for sector construction). Fix b > 2, o € (0,7, and L > 0 with
el > %b. InH2 ., the sector construction in §B.3 satisfies, for all u, v,

Clow%dT(’uﬂv) S d]HLm(¢(’U’)’¢(U)) S %dT(u’U)’ Clow Z mln{l’%}

In particular, dist(¢) < 1/ciow, a constant depending only on (b, o).

Sketch. The upper bound concatenates radial segments. The lower bound accumulates per-level cost
from (i) radial motion (L//k) and (ii) angular “switch” across annulus A;; using the hyperbolic

polar metric and sinh 2 > ¥ /2, one obtains a uniform switching cost ﬁ - L whenever eX > 20 /a
T VK

take the minimum per level and sum. See Egs. (4)—(6) in the main text. O]
Corollary B.5 (Matching a Euclidean target and a radius budget). Let Cy > 1 and so = h/Cy. If
VK satisfies

hL L

< K < Clow —
R _\/>_ 10w007
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then for all leaf pairs whose LCA lies above depth r, the constructive H? embedding achieves
du_.(p(u),d(v)) > so. In particular, feasibility holds whenever R > hCy/clow. (Compare
Egs. (7)—(8) in the main text.)

Remark (Concrete constants for experiments). With & = 7 and b = 4, ¢}y, > 7/(87) = 1/8. The
feasibility bound reduces to R > 8h(Cj.

Proof (geometric lower bound). Upper bound. Each tree edge maps to a radial segment of length
L/\/k; concatenating along the two rays down to the LCA and back up gives the desired

< (L//w) dr(u,v).

Lower bound: two additive mechanisms. Let t be the depth of LCA(u,v) and assume, for clarity,
both nodes lie at depth h so dr(u,v) = 2(h — t); the general case is analogous.

(1) Radial cost. Moving one level radially costs exactly L/+/x along either ray. Summing over the
2(h — t) levels gives a trivial contribution (L/+/k) dr(u,v), implying cjow < 1 and already yielding

a levelwise lower bound of L//k whenever the geodesic stays on a fixed ray.

(2) Angular (switching) cost. Beyond depth ¢, the images of « and v lie on distinct radial geodesics
(“rays”). In the hyperbolic polar metric,

ds?® = dr? + M do?.
K
Any curve that changes the polar angle by A¢ while crossing an annulus A; := [r;_1, ;] has length

at least - -
sinh(y/k ) o] > ( inf M) N}
A, \/E rEA; \/E
At level j the two rays are separated by at least Af; = ab™/, and inf,ca, sinh(y/k7) =
sinh(y/k7;_1) = sinh((j — 1)L). Thus any cross-annulus “switch” between the two rays costs at
least

sinh((j — 1)L) eli=1EL , a (eL)j—l 1 (16)

A, > S ab = ()

VE =2k “ 26 \ b VE
using sinhz > e* /2 for > 0. To compare this angular cost to the radial scale L/+/k, average the
angular metric over the annulus:

1 " sinh(y/kr)  cosh(jL) — cosh((j —1)L) sinh((j — $)L)
el Lk S

and combine with the fact that the geodesic must accumulate total angle change Af; across the
annulus. Using sin(z) > 2z for z € [0, 3] and the hyperbolic law-of-cosines lower bound for the
chord on a circle, one obtains the uniform per-level switching cost
L 2b
(crossing Aj) > % - ﬁ whenever el > =, a7

T«

Indeed, (16) together with eZ > 2b/« implies (%)j s 2 and the chord-arc comparison gives
the additional % factor converting arc scale to geodesic scale.

For each level beyond the LCA, the geodesic must pay at least the minimum of the two mechanisms,
namely
. { L o L } . { 1 « } L
mimy ——, — - —— ¢ = mim1l, — - —.
VE 21h VK “27nb) /K

Summing over the dr(u, v) levels gives the claimed lower bound with ¢}y, > min{1, «/(27b)}. O

C Reproducibility checklist and seeds

We release code to reproduce figures/tables; each run logs: RNG seed, (b, h,~,¢), r, sampler
(uniform vs. PPS), m, construction parameters («, L, R) or learned hyperparameters, and hardware.
All plots/tables report either mean+95% CI or median [IQR] with k=30 seeds.
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Code and reproducibility: The full code for reproducing results is available at:
https://drive.google.com/file/d/1QoSpHEGQLEYMt1H2Ci-ktpZydK23gjmj/view?usp=
sharing

18



