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Abstract

Modern machine learning models are prone to over-reliance on spurious corre-
lations, which can often lead to poor performance on minority groups. In this
paper, we identify surprising and nuanced behavior of finetuned models on worst-
group accuracy via comprehensive experiments on four well-established bench-
marks across vision and language tasks. We first show that the commonly used
class-balancing techniques of mini-batch upsampling and loss upweighting can
induce a decrease in worst-group accuracy (WGA) with training epochs, leading
to performance no better than without class-balancing. While in some scenar-
ios, removing data to create a class-balanced subset is more effective, we show
this depends on group structure and propose a mixture method which can outper-
form both techniques. Next, we show that scaling pretrained models is generally
beneficial for worst-group accuracy, but only in conjunction with appropriate
class-balancing. Finally, we identify spectral imbalance in finetuning features
as a potential source of group disparities — minority group covariance matri-
ces incur a larger spectral norm than majority groups once conditioned on the
classes. Our results show more nuanced interactions of modern finetuned mod-
els with group robustness than was previously known. Our code is available at
https://github.com/tmlabonte/revisiting-finetuning.

1 Introduction

Classification performance in machine learning is sensitive to spurious correlations: patterns which
are predictive of the target class in the training dataset but not at test time. For example, in computer
vision tasks, neural networks are known to utilize the backgrounds of images as proxies for their
content [1, 50, 68]. Beyond simple settings, spurious correlations have been identified in high-
consequence applications such as criminal justice [8], medicine [70], and facial recognition [33].
In particular, a model’s reliance on spurious correlations disproportionately affects its accuracy on
minority groups which are under-represented in the training dataset; we therefore desire maximizing
the model’s group robustness, quantified by its minimum accuracy on any group [50].

The standard workflow in modern machine learning involves initializing from a pretrained model and
finetuning on the downstream dataset using empirical risk minimization (ERM) [62], which minimizes
the average training loss. When group annotations are available in the training dataset, practitioners
utilize a rich literature of techniques to improve worst-group accuracy (WGA) [50, 39, 26]. However,
group annotations are often unknown or problematic to obtain (e.g., due to financial, privacy, or
fairness concerns). While group robustness methods have been adapted to work without group
annotations [31, 72, 47, 29], they remain complex variants on the standard finetuning procedure.
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Hence, it is often unclear to what extent the WGA dynamics of these methods are attributable to
details of model finetuning.

In this paper, we take a complementary approach to the methodological literature by pursuing
a comprehensive understanding of the fundamental properties of model finetuning on four well-
established group robustness benchmarks across vision and language tasks. We focus especially
on the conjunction of model scaling and class-balancing — which was recently shown to greatly
improve robustness on some datasets [22] — on the worst-group accuracy of the ERM baseline. These
considerations enable us to isolate the impact of group disparities on worst-group accuracy, thereby
revealing more nuanced behaviors of finetuned models than previously known. In particular, we
challenge overarching narratives that “overparameterization helps or hurts distributional robustness”
and show striking differences in finetuning performance depending on class-balancing methodology.

In more detail, our main contributions include:
• Identifying two failure modes of common class-balancing techniques during fine-

tuning: (1) mini-batch upsampling and loss upweighting experience catastrophic
collapse with standard hyperparameters on benchmark datasets, and (2) removing
data to create a class-balanced subset can harm WGA for certain datasets.

• Proposing a mixture balancing method which combines the advantages of two
class-balancing techniques and can improve baseline WGA beyond either method.

• Showing that while overparameterization can harm WGA in certain cases, model
scaling is generally beneficial for robustness when applied in conjunction with
appropriate pretraining and class-balancing.

• Identifying a spectral imbalance in the top eigenvalues of the group covariances —
even when the classes are balanced — and showing that minority group covariance
matrices consistently have larger spectral norm conditioned on the classes.

1.1 Related work

Here we provide a brief summary of related work along three axes. Throughout the paper, we also
provide detailed contextualizations of our results with the most closely related work.

Spurious correlations. The proclivity of ERM to rely on spurious correlations has been widely
studied [12, 37]. Rectifying this weakness is an important challenge for real-world deployment
of machine learning algorithms, as spurious correlations can exacerbate unintended bias against
demographic minorities [20, 2, 57, 17, 5] or cause failure in high-consequence applications [33, 8,
70, 42]. Reliance on spurious correlations manifests in image datasets as the usage of visual shortcuts
including background [1, 50, 68], texture [11], and secondary objects [48, 52, 54], and in text datasets
as the usage of syntactic or statistical heuristics as a substitute for semantic understanding [14, 41, 36].

Class-balancing and group robustness. Group-balancing, or training with an equal number of
samples from each group, has been proposed as a simple yet effective method to improve robustness
to spurious correlations [17, 51, 6, 55]. However, group-balancing requires group annotations, which
are often unknown or problematic to obtain [31, 72, 47, 29]. On the other hand, class-balancing, or
training with an equal number of samples from each class, is a well-studied method in long-tailed
classification [24, 15, 4]. Recent work has shown that class-balancing is a surprisingly powerful
method for improving worst-group accuracy which does not require group annotations [22, 29, 7, 53].
In particular, [22] study the WGA dynamics of two common class-balancing methods: removing data
from the larger classes (which we call subsetting) and upsampling the smaller classes (which we call
upsampling). Our results complement those of [22] and show more nuanced effects of class-balancing
than previously known; we provide additional contextualization with [22] in Section 3.1. We show
similar nuanced behavior of upweighting smaller classes in the loss function, a popular method in the
group-balancing setting [31, 47, 55] which [22] did not study.

Overparameterization and distributional robustness. While the accepted empirical wisdom is
that overparameterization improves in-distribution test accuracy [40, 71], the relationship between
overparameterization and robustness is incompletely understood. [51] considered a class of ResNet-
18 architectures and showed that increasing model width reduces worst-group accuracy on the
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Waterbirds and CelebA datasets when trained with class-imbalanced ERM — this contrasts with
the improvement in average accuracy widely observed in practice (see, e.g., [38]). Conversely, [19]
showed a benefit of overparameterization in robustness to “natural” covariate shifts, which are
quite different from spurious correlations [27]. On the mathematical front, [59, 35] showed that
overparameterization in random feature models trained to completion improves robustness to a wide
class of covariate shifts.However, both the optimization trajectory and statistical properties of random
features are very different from neural networks (see, e.g., [13]). Closely related to our work, [46]
investigated pretrained ResNet, VGG, and BERT models, and showed that overparameterization
does not harm WGA. Our results complement those of [46] with a richer setup and show that
class-balancing — which they do not study — can greatly impact model scaling behavior.

2 Preliminaries

Setting. We consider classification tasks with input domain Rn and target classes Y ⊂ N. Suppose
S is a set of spurious features such that each example x ∈ Rn is associated with exactly one feature
s(x) ∈ S. The dataset is then partitioned into groups G, defined by the Cartesian product of classes
and spurious features G = Y × S. Given a dataset of m training examples, we define the set of
indices of examples which belong to some group g ∈ G or class y ∈ Y by Ωg ⊆ {1, . . . ,m} and
Ωy ⊆ {1, . . . ,m}, respectively. Then, the majority group(s) is defined by the group(s) that maximize
|Ωg|. All other groups are designated as minority groups. Further, the worst group(s)3 is defined by
the group(s) which incur minimal test accuracy. We define majority and minority classes similarly.
Because groups are defined by the Cartesian product of classes and spurious features, all training
examples in a particular group are identically labeled, and therefore a group is a subset of a class.

We desire a model which, despite group imbalance in the training dataset, enjoys roughly uniform
performance over G. Therefore, we evaluate worst-group accuracy (WGA), i.e., the minimum
accuracy among all groups [50]. We will also be interested in the relative performance on groups
within the same class, and we thereby define the majority group within a class y ∈ Y as the group
which maximizes |Ωg| over all g ∈ {g ∈ G : y ∈ g}. Other groups are designated as the minority
groups within that class. For example, referring to the Waterbirds section of Table 2, groups 1 and 2
are the minority groups within classes 0 and 1, respectively.

Class-balancing. A dataset is considered to be class-balanced if it is composed of an equal number
of training examples from each class in expectation over the sampling probabilities. We compare
three class-balancing techniques: subsetting, upsampling, and upweighting. We describe each below:

• In subsetting, every class is set to the same size as the smallest class by removing the
appropriate amount of data from each larger class uniformly at random. This procedure is
performed only once, and the subset is fixed prior to training.

• In upsampling, the entire dataset is utilized for training with a typical stochastic optimization
algorithm, but the sampling probabilities of each class are adjusted so that mini-batches are
class-balanced in expectation. To draw a single example, we first sample y ∼ Unif(Y), then
sample x ∼ p̂(· | y) where p̂ is the empirical distribution on training examples.

• In upweighting, the minority class samples are directly upweighted in the loss function
according to the ratio of majority class data to minority class data, called the class-imbalance
ratio. Specifically, if the loss function is ℓ(f(x), y) for model f , example x, and class label
y, the upweighted loss function is γℓ(f(x), y) where γ is defined as the class-imbalance
ratio for minority class data and 1 for majority class data. It is worth noting that upweighting
is equivalent to upsampling in expectation over the sampling probabilities.

Note that the terminology for these class-balancing techniques is not consistent across the literature.
For example, [22] call subsetting subsampling (denoted SUBY) and upsampling reweighting (denoted
RWY). On the other hand, [55] call (group-wise) subsetting downsampling and use upweighting to
describe increasing the weight of minority group samples in the loss function.

3Note that, as is standard in the empirical literature on distributional robustness, majority, minority and
worst groups are defined with respect to the empirical training distribution, as this is all that we have access
to. Moreover, test accuracy is typically maximized by the majority group and minimized by a minority group,
though this is not always the case.

3



Datasets and models. We study four classification datasets, two in the vision domain and two in
the language domain, which are well-established as benchmarks for group robustness. We summarize
each dataset below and provide additional numerical details in Appendix A.1.

• Waterbirds [64, 63, 50] is an image dataset wherein birds are classified as land species
(“landbirds”) or water species (“waterbirds”). The spurious feature is the image background:
more landbirds are present on land backgrounds and vice versa.4

• CelebA [33, 50] is an image dataset classifying celebrities as blond or non-blond. The
spurious feature is gender, with more blond women than blond men in the training dataset.

• CivilComments [3, 27] is a language dataset wherein online comments are classified as toxic
or non-toxic. The spurious feature is the presence of one of the following categories: male,
female, LGBT, black, white, Christian, Muslim, or other religion.5 More toxic comments
contain one of these categories than non-toxic comments, and vice versa.

• MultiNLI [65, 50] is a language dataset wherein pairs of sentences are classified as a
contradiction, entailment, or neither. The spurious feature is a negation in the second
sentence — more contradictions have this property than entailments or neutral pairs.

Waterbirds is class-imbalanced with a majority/minority class ratio of 3.31:1, CelebA a ratio of 5.71:1,
and CivilComments a ratio of 7.85:1. MultiNLI is class-balanced a priori. Since the Waterbirds
dataset has a shift in group proportion from train to test, we weight the group accuracies by their
proportions in the training set when reporting the test average accuracy [50].

We utilize ResNet [18], ConvNeXt-V2 [67], and Swin Transformer [32] models pretrained on
ImageNet-1K [49] for Waterbirds and CelebA, and a BERT [9] model pretrained on Book Corpus [73]
and English Wikipedia for CivilComments and MultiNLI. We use the AdamW optimizer [34] for
finetuning on three independent seeds, randomizing both mini-batch order and any other stochastic
procedure such as subsetting, and we report error bars corresponding to one standard deviation. We
do not utilize early-stopping: instead, to consider the impact of overparameterization in a holistic
way, we train models to completion to properly measure the overfitting effect.6 This can result in
longer training than commonly seen in the literature (e.g., we finetune on CelebA for about 3× more
gradient steps than is standard). See Appendix A.2 for further training details.

3 Nuanced effects of class-balancing on group robustness

We now present our first set of results, which shows that the choice of class balancing method greatly
impacts the group robustness of the ERM baseline.

3.1 Catastrophic collapse of class-balanced upsampling and upweighting

In a recent paper, [29] observed that contrary to the central hypothesis underlying the Just Train
Twice method [31], the worst-group accuracy of ERM decreases dramatically with training epochs
on CelebA and CivilComments; however, they provide no explanation for this phenomenon. In this
section, we show that this degradation of WGA is due to their choice of class-balancing method (i.e.,
upsampling). Specifically, ERM finetuned with upsampling experiences a catastrophic collapse in
test WGA over the course of training, a phenomenon that was previously only noticed in synthetic
datasets with a linear classifier [22]. Moreover, while [22] state that class-balanced subsetting is not
recommended in practice, we show that it can in fact improve WGA conditional on the lack of of a
small minority group within the majority class. Finally, we show that class-balanced upweighting —
a popular technique which [22] do not study — experiences a similar WGA collapse as upsampling.

We finetune a ConvNeXt-V2 Base on Waterbirds and CelebA and a BERT Base on CivilComments,
and we compare the subsetting, upsampling, and upweighting techniques to a class-imbalanced

4We note that the Waterbirds dataset is known to contain incorrect labels [56]. We report results on the
original, un-corrected version as is standard in the literature.

5This version of CivilComments has four groups, used in this work and by [50, 22, 23, 26, 29]. There is
another version where the identity categories are not collapsed into one spurious feature; that version is used
by [31, 72, 47]. Both versions use the WILDS split [27].

6To be more specific, we finetune ConvNeXt-V2 Base roughly to a training loss of 10−4 on Waterbirds and
10−3 on CelebA, and BERT Base roughly to a training loss of 10−3 on CivilComments and 10−2 on MultiNLI.
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(a) Waterbirds (b) CelebA (c) CivilComments

Figure 1: Class-balanced upsampling and upweighting experience catastrophic collapse. We
compare subsetting, wherein data is removed to set every class to the same size as the smallest class,
upsampling, wherein the sampling probabilities of each class are adjusted so that the mini-batches
are class-balanced in expectation, and upweighting, wherein the loss for the smaller classes is scaled
by the class-imbalance ratio. We observe a catastrophic collapse over the course of training of
upsampling and upweighting on CelebA and CivilComments, the more class-imbalanced datasets.
Subsetting reduces WGA on Waterbirds because it removes data from the small minority group
within the majority class. MultiNLI is class-balanced a priori, so we do not include it here.

baseline. Our results are displayed in Figure 1, with additional models in Appendix B. On CelebA and
CivilComments, the more class-imbalanced datasets, upsampling and upweighting both experience
catastrophic collapse over the course of training. We believe this collapse is caused by overfitting
to the minority group within the minority class; any individual point from this group is sampled far
more often during upsampling and weighted far more heavily during upweighting, causing overfitting
during long training runs. In fact, upsampling does even worse on CelebA than observed in [29]
because we train 3× longer to ensure convergence. With that said, optimally tuned early-stopping
appears to mitigate the collapse (as previously noticed by [22] in a toy setting).

Our experiments also highlight a previously unnoticed disadvantage of class-balanced subsetting: if
there is a small minority group in the majority class, subsetting will further reduce its proportion and
harm WGA. For example, in the Waterbirds dataset, the species (landbirds/waterbirds) is the class
label and the background (land/water) is the spurious feature; landbirds/water is a small minority
group within the majority class (landbirds). When landbirds is cut by 3.31×, the landbirds/water
group greatly suffers, harming WGA. On the other hand, in the CelebA dataset, the hair color
(non-blond/blond) is the class label and the gender (female/male) is the spurious feature; the only
small minority group is blond/male, while the groups are nearly balanced in the majority class. In
this case, subsetting preserves blond/male examples and increases their proportion, helping WGA.

Finally, while upsampling and upweighting have similar WGA dynamics – perhaps as expected,
as they are equivalent in expectation over the sampling mechanism — both differ greatly from
subsetting. Recently, [55] proved a theoretical equivalence between subsetting and upsampling of the
groups in the population setting, i.e., assuming access to the training distribution. The equivalence of
upsampling and upweighting would then imply that all three objectives are optimized by the same
solution. However, our results suggest this may not hold in the real-world empirical setting, where
subsetting has distinctly different behavior, and model parameters may outnumber training examples.
As previously mentioned, this may be due to overfitting to minority class data repeated often during
training; theoretically investigating this discrepancy is an important future direction.

Contextualization with previous work. Our observations explain the decrease in WGA of CelebA
and CivilComments noticed by [29], a phenomenon which they left unresolved. Our result implies
that group robustness methods which assume that WGA increases during training, such as Just Train
Twice [31], may only be justified with appropriate class-balancing. [22] show that upsampling can
cause catastrophic collapse in WGA, but only in a synthetic dataset with a linear classifier. In realistic
datasets, [22] perform extensive hyperparameter tuning (using group labels, which may be unrealistic)
to achieve good results with upsampling, while we show that catastrophic collapse can occur in the
same datasets when standard hyperparameters are used. Moreover, [22] state that class-balanced
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(a) Waterbirds (b) CelebA (c) CivilComments

Figure 2: Mixture balancing mitigates catastrophic collapse of upsampling and upweighting. We
propose a class-balanced mixture method, which combines subsetting and upsampling by first drawing
a class-imbalanced subset uniformly at random from the dataset, then adjusting sampling probabilities
so that mini-batches are balanced in expectation. Our method increases exposure to majority class
data without over-sampling the minority class. Remarkably, mixture balancing outperforms all
three class-balancing methods on Waterbirds and CivilComments, and while it does not outperform
subsetting on CelebA, it significantly alleviates the WGA collapse experienced by upsampling and
upweighting. MultiNLI is class-balanced a priori, so we do not include it here.

subsetting is not recommended in practice, but we show that subsetting can be effective except when
there is a small minority group within the majority class, a previously unnoticed nuance. Finally, we
show that subsetting experiences different WGA dynamics from upsampling and upweighting in the
empirical setting, suggesting additional complexity compared to the population setting results of [55].

Without extensive tuning, class-balanced upsampling and upweighting can induce WGA no
better than without class-balancing. While class-balanced subsetting can improve WGA,
practitioners should use caution if a small minority group is present within the majority class.

3.2 Mixture balancing: interpolating between subsetting and upsampling

To mitigate the catastrophic collapse of class-balanced upsampling and upweighting, we propose a
simple mixture method which interpolates between subsetting and upsampling. Our method increases
exposure to majority class data without over-sampling the minority class, which can improve WGA
and mitigate overfitting to the minority group. We first create a data subset with a specified class-
imbalance ratio by removing data from the larger classes uniformly at random until the desired
(smaller) ratio is achieved. Next, we perform ERM finetuning on this subset by adjusting sampling
probabilities so that mini-batches are balanced in expectation. Using a class-imbalance ratio of 1:1
reduces to subsetting, and using the original class-imbalance ratio reduces to upsampling.

We finetune ConvNeXt-V2 Base on Waterbirds and CelebA and BERT Base on CivilComments,
and we compare our class-balanced mixture method to the subsetting, upsampling, and upweighting
techniques. The results of our experiments are displayed in Figure 2. We plot the performance of our
mixture method with the best class-imbalance ratio during validation; an ablation study varying the
ratio is included in Appendix B. Remarkably, mixture balancing outperforms all three class-balancing
methods on Waterbirds and CivilComments, and while it does not outperform subsetting on CelebA,
it significantly alleviates the WGA collapse experienced by upsampling.

Next, we perform an ablation of the necessity of subsetting in mixture balancing. We compare our
method with an implementation which eschews subsetting, instead adjusting sampling probabilities so
that the mini-batches have a particular class ratio in expectation. For example, instead of performing
upsampling on a 2:1 class-imbalanced subset, we upsample the majority class by a ratio of 2:1 on
the entire dataset. The results of our ablation are included in Appendix B; our mixture method
outperforms the alternative, which incompletely corrects for class imbalance.
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Table 1: Mixture balancing is robust to model selection without group annotations. We compare
the best class-balancing method during validation with and without group annotations. Both worst-
class accuracy [69] and the bias-unsupervised validation score of [60] are effective for model selection
without group annotations, often choosing the same method or mixture ratio as worst-group accuracy
(WGA) validation. We list the method maximizing each metric and its average WGA over 3 seeds.

Validation Metric Group Anns Waterbirds CelebA CivilComments

Bias-unsupervised Score ✗ Upsampling (79.9) Subsetting (74.1) Mixture 3:1 (77.6)
Worst-class Accuracy ✗ Mixture 2:1 (81.1) Subsetting (74.1) Mixture 3:1 (77.6)
Worst-group Accuracy ✓ Mixture 2:1 (81.1) Subsetting (74.1) Mixture 3:1 (77.6)

Note on validation. In Figure 2, we plot the best class-imbalance ratio achieved using validation on
a group annotated held-out set. While this is a common assumption in the literature [50, 31, 23, 26],
it is nevertheless unrealistic when the training set does not have any group annotations. Therefore,
we compare with both worst-class accuracy [69] and the bias-unsupervised validation score of [60],
which do not use any group annotations for model selection. In Table 1 we list the method which
maximizes each validation metric as well as its average WGA. Overall, we show both methods are
effective for model selection, often choosing the same method or mixture ratio as WGA validation.

Contextualization with previous work. Increasing exposure to majority class data without over-
sampling the minority class was previously explored by [26], who proposed averaging the weights of
logistic regression models trained on ten independent class-balanced subsets. However, this method
only works for linear models — as nonlinear models cannot be naively averaged — and requires
multiple training runs, which is computationally infeasible for neural networks. In comparison, our
mixture method is a simple and efficient alternative which extends easily to nonlinear models.

The catastrophic collapse of class-balanced upsampling and upweighting can be mitigated
by a mixture method. It increases exposure to majority class data without over-sampling the
minority class and can improve baseline WGA beyond either technique.

4 Model scaling improves WGA of class-balanced finetuning

The relationship between overparameterization and group robustness has been well-studied, with often
conflicting conclusions [51, 59]. In this section, we study the impact of model scaling on worst-group
accuracy in a new setting — finetuning pretrained models — which more closely resembles practical
use-cases. Importantly, we evaluate the impact of model scaling in conjunction with class-balancing
to isolate the impact of group inequities on WGA as a function of model size. We find that with
appropriate class-balancing, overparameterization can in fact significantly improve WGA over a very
wide range of parameter scales, including before and after the interpolation threshold. On the other
hand, scaling on imbalanced datasets or with the wrong balancing technique can harm robustness.

We take advantage of advancements in efficient architectures [61, 67] to finetune pretrained models in
a wide range of scales from 3.4M to 101M parameters. We study six different sizes of ImageNet1K-
pretrained ConvNeXt-V2 and five different sizes of Book Corpus/English Wikipedia pretrained
BERT; specifications for each model size are included in Appendix A.2. Our results are displayed in
Figure 3, and we include results for Swin Transformer in Appendix C.

We find that model scaling is beneficial for group robustness in conjunction with appropriate class-
balancing, with improvements of up to 12% WGA for interpolating models and 40% WGA for
non-interpolating models. This comes in stark contrast to scaling on class-imbalanced datasets
or with the wrong class-balancing technique, which shows either a neutral trend or decrease in
WGA — the most severe examples being on CivilComments. With respect to interpolating models,
CivilComments WGA decreases slightly after the interpolation threshold, while Waterbirds and
CelebA continue to improve well beyond interpolation; on the other hand, BERT never interpolates
MultiNLI, greatly increasing robustness at scale. It is unclear why Waterbirds and CelebA experience
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 3: Scaling class-balanced pretrained models can improve worst-group accuracy. We
finetune each model size starting from pretrained checkpoints and plot the test worst-group accuracy
(WGA) as well as the interpolation threshold, where model reaches 100% training accuracy. We find
model scaling is generally beneficial for WGA only in conjunction with appropriate class-balancing,
and scaling on imbalanced datasets or with the wrong method can harm robustness. Note MultiNLI
is class-balanced a priori and is not interpolated. See Appendix C for training accuracy plots.

(a) Waterbirds (last layer only) (b) Waterbirds (finetuning) (c) CelebA (finetuning)

Figure 4: Class-balancing greatly affects ResNet scaling results of [46]. We contrast the ResNet
scaling behavior of [46] — who do not use class-balancing — to the scaling of class-balanced
ResNets. We finetune each model size starting from pretrained checkpoints and plot the test worst-
group accuracy (WGA), as well as the interpolation threshold, where the model reaches 100% training
accuracy. On Waterbirds, we find that class-balancing enables a much more beneficial trend during
model scaling. On CelebA, class-balancing greatly increases baseline WGA but does not affect
scaling behavior (in contrast to the ConvNeXt-V2 plots in Figure 3). We use SGD for last-layer
training and AdamW for full finetuning. See Appendix C for training accuracy plots.

different behavior from CivilComments interpolation — the toy linear model of [51] suggests a
benign “spurious-core information ratio”, but a complete understanding is left to future investigation.

The most closely related work to ours is [46], who study the impact of scaling pretrained ResNet
models on group robustness. However, because their experiments do not employ any form of
class-balancing, their conclusions may be overly pessimistic. We replicate their experiments with
our hyperparameters and contrast with our results using class-balancing in Figure 4. We find that
class-balancing greatly affects their results: on Waterbirds, class-balancing enables a much more
beneficial trend during model scaling regardless of whether a linear probe or the entire model is
trained. Moreover, while class-balancing increases baseline WGA on CelebA but does not affect
scaling behavior, we observe a more positive WGA trend when scaling ConvNeXt-V2 in Figure 3.

Contextualization with previous work. While previous work has primarily studied either linear
probing of pretrained weights or training small models from scratch [51, 59], we study full finetuning
of large-scale pretrained models and show that class-balancing can have a major impact on scaling
behavior. We compare directly with the most closely related work, [46], and show that class-balancing
can either induce strikingly different scaling behavior or greatly increase baseline WGA. Overall,
training with class-balancing allows us to isolate the impact of group inequities on robustness and
more precisely observe the often-beneficial trend of model scaling for worst-group accuracy.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 5: Group disparities are visible in the top eigenvalues of the group covariance matrices.
We visualize the mean, across 3 experimental trials, of the top 10 eigenvalues of the group covariance
matrices for a ConvNeXt-V2 Nano finetuned on Waterbirds and CelebA and a BERT Small finetuned
on CivilComments and MultiNLI. The standard deviations are omitted for clarity. The models are
finetuned using the best class-balancing method from Section 3 for each dataset. The group numbers
are detailed in Table 2 and the minority groups within each class are denoted with an asterisk. The
largest λ1 in each case belongs to a minority group, though it may not be the worst group, and
minority group eigenvalues are overall larger than majority group eigenvalues within the same class.

While overparameterization can sometimes harm WGA, pretraining and appropriate class-
balancing make scaling generally beneficial. Moreover, modern language datasets are com-
plex enough that standard models do not interpolate, greatly improving robustness at scale.

5 Spectral imbalance may exacerbate group disparities

In a recent paper, [25] propose spectral imbalance of class covariance matrices, or differences in
their eigenspectrum, as a source of disparities in accuracy across classes even when balanced. Here,
we examine whether similar insights hold in the group robustness setting. Our observations reveal
surprising nuances in the behavior of group-wise spectral imbalance; nevertheless, we conclude that
spectral imbalance may play a similar role in modulating WGA after class-balancing is applied.

Let us denote by zi the feature vector corresponding to a sample xi (i.e., the vectorized output of
the penultimate layer). Recall from Section 2 that Ωg is the set of indices of samples which belong
to group g. We further define z̄g to be the empirical mean of features with group g. To obtain the
estimated eigenspectrum, we first compute the empirical covariance matrix for group g ∈ G by

Σg =
1

|Ωg|
∑
i∈Ωg

(zi − z̄g)(zi − z̄g)
⊤.

We then compute the eigenvalue decomposition Σg = VgΛgV
−1
g , where Λg is a diagonal matrix

with non-negative entries λ(g)
i and the columns of Vg are the eigenvectors of Σg. Without loss of

generality, we assume λ
(g)
1 ≥ λ

(g)
2 ≥ · · · ≥ λ

(g)
m where m is the rank of Σg .

We compute the group covariance matrices using a ConvNeXt-V2 Nano model for Waterbirds and
CelebA, and a BERT Small model for CivilComments and MultiNLI.We plot the top 10 eigenvalues
of each group covariance matrix in Figure 5. Even though we finetune with class-balancing, disparities
in eigenvalues across groups are clearly visualized in Figure 5, especially for the largest eigenvalues.
We include extensions to the top 50 eigenvalues and class covariance matrices in Appendix D.

Close observation of Figure 5 yields interesting findings. First, the group g∗ that maximizes λ(g)
1 in

each case belongs to a minority group; though, importantly, it may not belong to the worst group.
This is different from the findings of [25], who showed that the largest eigenvalues typically belong
to the worst-performing class. Second, we find that minority group eigenvalues are overall larger than
majority group eigenvalues, but only when conditioned on the class. A majority group belonging to
one class may have larger eigenvalues than a minority group belonging to another class, but there
exists a consistent spectral imbalance between majority and minority groups within the same class.7

7For example, in Figure 5c, the spectrum for group 3 (the majority group within class 1) is larger than the
spectrum for group 1 (the minority group within class 0). However, conditioning on the class, we find that the
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 6: Group-wise spectral imbalance is apparent once conditioned on the classes. We plot
the mean and standard deviation, across 3 experimental trials, of the intra-class spectral norm ratio
ρ(y), or the ratio of the top eigenvalues of the minority and majority group covariance matrices, for
each class y ∈ Y . We compute this metric using a finetuned ConvNeXt-V2 Nano on Waterbirds
and CelebA and a finetuned BERT Small on CivilComments and MultiNLI, each using the best
class-balancing method from Section 3 for each dataset. The key observation is that ρ(y) is at least
one for all classes y ∈ Y (except a single seed for class 0 on CelebA), illustrating a group disparity
captured by the eigenspectrum once we condition on the classes.

To quantify this group-wise spectral imbalance, we introduce a new metric called the intra-class
spectral norm ratio. Suppose gmin(y) and gmaj(y) are the minority and majority groups within a par-
ticular class y ∈ Y . Then, we define the intra-class spectral norm ratio by ρ(y) := λ

(gmin(y))
1 /λ

(gmaj(y))
1 .

While ρ(y) only considers the top eigenvalue and not the entire spectrum, the absolute magnitude of
individual eigenvalues was found in [25] to correlate best with worst-class accuracy. We note that
ρ(y) considers only the top eigenvalue and not the entire spectrum, since the magnitude of the top
eigenvalues was found in [25] to correlate best with worst-class accuracy. We plot the intra-class
spectral norm ratios for each dataset in Figure 6; notably, they are always at least one (except for a
single seed on CelebA), showing the group disparity captured by the eigenspectrum.

Finally, in Table 5 (deferred to Appendix D), we compare the class with the largest ρ(y) to the class
with the largest disparity in group test accuracies, i.e., Acc(gmaj(y)) − Acc(gmin(y)). We see that
in most cases these classes correspond, suggesting an explanatory power of the intra-class spectral
norm ratio. In particular, this correspondence is consistent throughout all trials of CelebA and
CivilComments, the most class-imbalanced datasets we study.

Contextualization with previous work. Our spectral analysis of the group covariance matrices
is inspired by [25]. We both study class-balanced settings, with the key difference that they study
class disparities instead of group disparities. However, we show a more nuanced impact of spectral
imbalance across both classes and groups, i.e., spectral imbalance is more prevalent between majority
and minority groups within to the same class, rather than across groups globally.

Spectral imbalance in the group covariance matrices may exacerbate group disparities even
when the classes are balanced. While the worst-group covariance may not have largest
spectral norm, the minority group spectra are consistently larger conditioned on the class.

6 Discussion

In this paper, we identified nuanced impacts of class-balancing and model scaling on worst-group
accuracy, as well as a spectral imbalance in the group covariance matrices. Overall, our work calls
for a more thorough investigation of generalization in the presence of spurious correlations to unify
the sometimes contradictory perspectives in the literature. We hope that, as the community continues
to develop group robustness methods with increasing performance and complexity, researchers and
practitioners alike remain cognizant of the disproportionate impact of the details.

spectrum for group 2 (the minority group within class 1) is larger than that of group 3, and the spectrum of group
1 is larger than that of group 0 (the majority group within class 0).
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A Additional Details for Section 2

A.1 Dataset Composition

Table 2: Dataset composition. We study four well-established benchmarks for group robustness
across vision and language tasks. The class probabilities change dramatically when conditioned
on the spurious feature. Note that Waterbirds is the only dataset that has a distribution shift and
MultiNLI is the only dataset which is class-balanced a priori. The minority groups within each class
are denoted by an asterisk in the “Num” column. Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p̂ Data quantity

Num Class y Spurious s p̂(y) p̂(g) p̂(y|s) Train Val Test

Waterbirds

0 landbird land
.768

.730 .984 3498 467 2225
1* landbird water .038 .148 184 466 2225
2* waterbird land

.232
.012 .016 56 133 642

3 waterbird water .220 .852 1057 133 642

CelebA

0 non-blond female
.851

.440 .758 71629 8535 9767
1* non-blond male .411 .980 66874 8276 7535
2 blond female

.149
.141 .242 22880 2874 2480

3* blond male .009 .020 1387 182 180

CivilComments

0 neutral no identity
.887

.551 .921 148186 25159 74780
1* neutral identity .336 .836 90337 14966 43778
2* toxic no identity

.113
.047 .079 12731 2111 6455

3 toxic identity .066 .164 17784 2944 8769

MultiNLI

0 contradiction no negation
.333

.279 .300 57498 22814 34597
1* contradiction negation .054 .761 11158 4634 6655
2 entailment no negation

.334
.327 .352 67376 26949 40496

3* entailment negation .007 .104 1521 613 886
4 neither no negation

.333
.323 .348 66630 26655 39930

5* neither negation .010 .136 1992 797 1148

A.2 Training details

We utilize ResNet [18], ConvNeXt-V2 [67], and Swin Transformer [32] models pretrained on
ImageNet-1K [49] for Waterbirds and CelebA, and a BERT [9] model pretrained on Book Cor-
pus [73] and English Wikipedia for CivilComments and MultiNLI. These pretrained models are used
as the initialization for ERM finetuning under the cross-entropy loss. We use standard ImageNet
normalization with standard flip and crop data augmentation for the vision tasks and BERT tok-
enization for the language tasks [23]. Our implementation uses the following packages: NumPy [16],
PyTorch [44, 45], Lightning [10], TorchVision [58], Matplotlib [21], Transformers [66],
and Milkshake [28].

To our knowledge, the licenses of Waterbirds and CelebA are unknown. CivilComments is released
under the CC0 license, and information about MultiNLI’s license may be found in [65].

Our experiments were conducted on four Google Cloud Platform (GCP) 16GB Nvidia Tesla P100
GPUs and two local 24GB Nvidia RTX A5000 GPUs. The spectral imbalance experiments in Section
5 were conducted on a GCP system with a 16-core CPU and 128GB of RAM. We believe our work
could be reproduced for under $5000 in GCP compute credits, with a majority of that compute going
towards running experiments over multiple random seeds.

We list model scaling parameters in Table 3 and hyperparameters used for each dataset in Table 4.
ConvNeXt-V2, ResNet and Swin Transformers are composed of four separate “stages”, and we list
the depths of these stages individually in Table 3. All of these configurations are standard in the
literature. The smaller BERT models were introduced by [61]. We perform model selection only for
our mixture balancing method (see Table 1) and not for the ERM finetuning hyperparameters, most
of which are standard in the literature [50, 22, 23]. For the last-layer training experiments in Figure 4
and Figure 11, we use SGD with learning rate 10−3 and train for 20 epochs. Different from previous
work, we train CelebA for about 3× more gradient steps than usual to ensure convergence, and we
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double the batch size for CivilComments and MultiNLI to increase training stability (we also double
the epochs to hold the number of gradient steps constant).

Table 3: Model scaling parameters.

(a) ConvNeXt-V2 parameters.

Size Width Depth (4 stages) Params

Atto 40 (2, 2, 6, 2) 3.4M
Femto 48 (2, 2, 6, 2) 4.8M
Pico 64 (2, 2, 6, 2) 8.6M
Nano 80 (2, 2, 8, 2) 15.0M
Tiny 96 (3, 3, 9, 3) 27.9M
Base 128 (3, 3, 27, 3) 87.7M

(b) BERT parameters.

Size Width Depth Params

Tiny 2 128 4.4M
Mini 4 256 11.2M
Small 4 512 28.8M
Medium 8 512 41.4M
Base 12 768 109M

(c) ResNet parameters.

Size Width (4 stages) Depth (4 stages) Params

18 (64, 128, 256, 512) (2, 2, 2, 2) 11.2M
34 (64, 128, 256, 512) (3, 4, 6, 3) 21.3M
50 (256, 512, 1024, 2048) (3, 4, 6, 3) 23.5M
101 (256, 512, 1024, 2048) (3, 4, 23, 3) 42.5M
152 (256, 512, 1024, 2048) (3, 8, 36, 3) 58.1M

(d) Swin Transformer parameters.

Size Width Depth (4 stages) Params

Tiny 96 (2, 2, 6, 2) 29M
Small 96 (2, 2, 18, 2) 50M
Base 128 (2, 2, 18, 2) 88M

Table 4: ERM finetuning hyperparameters.
Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs

Waterbirds AdamW 1× 10−5 Cosine 32 1× 10−4 100
CelebA AdamW 1× 10−5 Cosine 32 1× 10−4 20
CivilComments AdamW 1× 10−5 Linear 32 1× 10−4 20
MultiNLI AdamW 1× 10−5 Linear 32 1× 10−4 20
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B Additional Experiments for Section 3

(a) Waterbirds (b) CelebA (c) CivilComments

Figure 7: Mixture balancing ablation studies. We perform two ablation studies on our mixture
balancing method. First, we vary the class-imbalance ratio across the x axis. On the left-hand side,
using a class-imbalance ratio of 1:1 reduces to the subsetting technique; on the right-hand side, using
the original class-imbalance ratio in the dataset reduces to upsampling. Second, we perform an
ablation of whether subsetting is essential in mixture balancing. We plot our proposed method (which
takes a subset of data based on the class-imbalance ratio, then performs upsampling) against the same
method without subsetting, instead adjusting the class probabilities on the entire dataset as specified
by the class-imbalance ratio. MultiNLI is class-balanced a priori, so we do not include it here.

(a) Waterbirds (b) CelebA

Figure 8: Balancing behavior is consistent with Swin Transformer. We demonstrate the effec-
tiveness of our class-balanced mixture method when used in conjunction with a Swin Transformer
(compare to the ConvNeXt-V2 results in Figure 2). Overall, we find our results are consistent across
pretrained model families, with the model affecting the raw accuracies but typically not the relative
performance of class-balancing techniques. We also corroborate the poor performance of subsetting
on Waterbirds and the catastrophic collapse of upsampling and upweighting on Celeba from Figure 1.
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(a) Waterbirds (b) CelebA

Figure 9: Balancing behavior is consistent with ResNet model family. We demonstrate the
effectiveness of our class-balanced mixture method on another model family, ResNet (compare to
the ConvNeXt-V2 results in Figure 2). Again, we find that our results are consistent and that the
model architecture affects the raw accuracies but typically not the relative performance of class-
balancing techniques. We also corroborate the poor performance of subsetting on Waterbirds and the
catastrophic collapse of upsampling and upweighting on Celeba from Figure 1.
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C Additional Experiments for Section 4

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 10: Average accuracy of scaled models. We finetune each model size starting from pretrained
checkpoints and plot the train average accuracy (AA) as well as the interpolation threshold, where
at least one seed of the non-class-balanced model reaches 100% training accuracy. (For example,
CelebA does not interpolate with all three seeds). Average accuracy consistently increases with
model size regardless of class-balancing, implying the scaling dynamics for AA and WGA are starkly
different. Note that MultiNLI is class-balanced a priori and does not interpolate at any size.

(a) Waterbirds (last layer only) (b) Waterbirds (finetuning) (c) CelebA (finetuning)

Figure 11: Average accuracy of scaled ResNets. We contrast the ResNet scaling behavior of [46]
— who do not use class-balancing — to the scaling of class-balanced ResNets. We finetune each
model size starting from pretrained checkpoints and plot the train average accuracy (AA) as well as
the interpolation threshold, where the model reaches 100% training accuracy. Similarly to Figure
10, average accuracy consistently increases with model size. We use SGD for last-layer training and
AdamW for full finetuning.
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(a) Waterbirds (b) CelebA

Figure 12: Scaling behavior is consistent with Swin Transformer. We exhibit the model scaling
behaviour of a Swin Transformer, and compare it to that of a ConvNeXt-V2 (shown in Figure 3). We
see that the scaling behaviour is consistent across pretrained model families, with the model affecting
the raw accuracies but not the relative performance of class-balancing techniques.
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D Additional Experiments for Section 5

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 13: Additional eigenvalues of the group covariance matrices. In contrast to Figure 5, we
visualize the top 50 eigenvalues of the group covariance matrices for a ConvNeXt-V2 Nano finetuned
on Waterbirds and CelebA and a BERT Small finetuned on CivilComments and MultiNLI. The
models are finetuned using the best class-balancing method from Section 3 for each dataset. The
group numbers are detailed in Table 2 and minority groups are marked with an asterisk. It becomes
difficult to distinguish patterns between the groups in the lower eigenvalues, which is why we focus
only on local properties of the top eigenvalues (e.g., the spectral norm and the relative ordering of
the groups). With that said, it would be interesting to explore power-law decay metrics [25], which
characterize relatively global properties of the eigenspectrum, in future work.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 14: Class disparities are visible in the top eigenvalues of the class covariance matrices.
We visualize the mean, across 3 experimental trials, of the top 10 eigenvalues of the class covariance
matrices for a ConvNeXt-V2 Nano finetuned on Waterbirds and CelebA and a BERT Small finetuned
on CivilComments and MultiNLI. The standard deviations are omitted for clarity. The models are
finetuned using the best class-balancing method from Section 3 for each dataset. The class numbers
are detailed in Table 2. The minority class eigenvalues for CelebA and CivilComments are overall
larger, while the reverse is true for Waterbirds, a slightly different conclusion than [25].

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 15: Additional eigenvalues of the class covariance matrices. In contrast to Figure 14, we
visualize the top 50 eigenvalues of the class covariance matrices for a ConvNeXt-V2 Nano finetuned
on Waterbirds and CelebA and a BERT Small finetuned on CivilComments and MultiNLI. The
models are finetuned using the best class-balancing method from Section 3 for each dataset. The class
numbers are detailed in Table 2. Similar to the groups, it becomes difficult to distinguish patterns
between the classes in the lower eigenvalues, which is why we again focus only on local properties of
the top eigenvalues (e.g., the spectral norm and the relative ordering of the classes).
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(a) No Class Balancing (b) Subsetting (c) Upsampling (d) Mixture

Figure 16: Group eigenvalue decay is consistent across balancing methods. We visualize the
mean, across 3 experimental trials, of the top 10 eigenvalues of the group covariance matrices for
a ConvNeXt-V2 Nano finetuned on Waterbirds across all class-balancing methods. The standard
deviations are omitted for clarity. Overall, we found that the magnitude of the eigenvalues is
significantly affected by the chosen class-balancing method. However, the relative ordering of
minority/majority group eigenvalues is consistent across class-balancing techniques. We note that
the most drastic changes in the spectrum are induced by the subsetting method, which has the worst
WGA by far for the Waterbirds dataset. These results suggest that optimal class-balancing may bring
about additional stability in the representation.

(a) No Class Balancing (b) Subsetting (c) Upsampling (d) Mixture

Figure 17: Class eigenvalue decay is consistent across balancing methods. We visualize the mean,
across 3 experimental trials, of the top 10 eigenvalues of the class covariance matrices for a ConvNeXt-
V2 Nano finetuned on Waterbirds across all class-balancing methods. The standard deviations are
omitted for clarity. Overall, we found that the magnitude of the eigenvalues is significantly affected
by the chosen class-balancing method. However, the relative ordering of minority/majority group
eigenvalues is consistent across class-balancing techniques. We note that the most drastic changes
in the spectrum are induced by the subsetting method, which has the worst WGA by far for the
Waterbirds dataset. These results suggest that optimal class-balancing may bring about additional
stability in the representation.

Table 5: Correspondence between ρ(y) and intra-class group accuracy disparity. We compare
ρ(y), the intra-class spectral norm ratio, to the difference in intra-class group accuracy. Each row
represents a different experimental seed. Each cell contains a tuple with the class label for the
class with largest value of ρ(y) paired with the class label for the class with the largest intra-class
group test accuracy disparity, i.e., Acc(gmaj(y)) − Acc(gmin(y)). We see that in most cases these
classes correspond, suggesting an explanatory power of the spectral norm ratio. In particular, this
correspondence is consistent throughout all trials of CelebA and CivilComments, the most class-
imbalanced datasets we study.

Seed Waterbirds CelebA CivilComments MultiNLI

1 (1, 1) (1, 1) (0, 0) (0, 0)
2 (1, 1) (1, 1) (0, 0) (0, 1)
3 (0, 1) (1, 1) (0, 0) (2, 0)
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(a) No Class Balancing (b) Subsetting (c) Upsampling (d) Mixture

Figure 18: Spectral imbalance is consistent across balancing methods. We plot the mean and
standard deviation, across 3 experimental trials, of the intra-class spectral norm ratio ρ(y), or the ratio
of the top eigenvalues of the minority and majority group covariance matrices, for each class y ∈ Y .
We compute this metric using a finetuned ConvNeXt-V2 Nano on Waterbirds. Overall, we found that
the relative magnitudes of ρ(y) are consistent across class-balancing methods. We note that the most
drastic change in the relative magnitudes of ρ(y) is induced by the subsetting method, which has the
worst WGA by far for the Waterbirds dataset. These results suggest that optimal class-balancing may
bring about additional stability in the representation.
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E Broader impacts, limitations, and compute

Broader impacts. We hope our work contributes to the safe and equitable application of machine
learning and motivates further research in ML fairness. With that said, a potential negative outcome
may arise if practitioners simply apply our techniques in place of conducting rigorous bias studies.
Indeed, while our methods show improved fairness with respect to the worst-group accuracy metric,
it is necessary to perform comprehensive evaluations with respect to multiple additional fairness
criteria prior to model deployment.

Limitations. Our methods take advantage of the structure of spurious correlations; our insights
would likely not transfer over to datasets which exhibit a more extreme complete correlation (i.e.,
contain zero minority group data) [43, 30] or to more generic out-of-distribution generalization
settings. A limitation of our mixture balancing method is that to achieve optimal performance, it
requires a validation set with group annotations for selection of the best class-imbalance ratio [50, 31,
23, 26]. With that said, we show in Table 1 that worst-class accuracy [69] and the bias-unsupervised
validation score of [60] are sufficient for model selection in the benchmarks we study.

Compute. Our experiments were conducted on two Google Cloud Platform (GCP) 16GB Nvidia
Tesla P100 GPUs and two local 24GB Nvidia RTX A5000 GPUs. The spectral imbalance experiments
in Section 5 were conducted on a GCP system with a 16-core CPU and 128GB of RAM. We believe
our work could be reproduced for under $5000 in GCP compute credits, with a majority of that
compute going towards running experiments over multiple random seeds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims are stated clearly and supported by empirical evidence. Several rigorous
benchmarks are considered across vision and language tasks using state-of-the-art models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of limitations in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results are included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiments are performed with fixed seeds for reproducibility and we
have released the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our experiments are performed with fixed seeds for reproducibility and we
have released the code. Our datasets are open benchmarks provided by the community.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the main experimental setting in Section 2 and additional model
configuration information is located in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars representing one standard deviation over three indepen-
dent seeds. We state factors of variability captured by the error bars in Section 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a compute statement in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics and confirm that our work follows them
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a discussion of broader impacts in Appendix E.

Guidelines: The experiments in the paper are aimed at understanding modern machine learn-
ing algorithms and promoting their fair and equitable use. We have included a discussion of
social impacts in Appendix E.

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The experiments in the paper are aimed at understanding modern machine
learning algorithms and promoting their fair and equitable use. We believe the methodologies
described in the paper do not have high risk for misuse, but nevertheless have included a
discussion of social impacts in Appendix E.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit creators of datasets and models used in the paper via citation and
additionally in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have released the code and license information with additional documenta-
tion located in the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not perform experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

31

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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