
Learning Markerless Robot-Depth Camera
Calibration and End-Effector Pose Estimation

Bugra C. Sefercik
CE Department / KUIS AI Center

Koc University, Turkiye
bsefercik@ku.edu.tr

Baris Akgun
CE Department / KUIS AI Center

Koc University, Turkiye
baakgun@ku.edu.tr

Abstract: Traditional approaches to extrinsic calibration use fiducial markers
and learning-based approaches rely heavily on simulation data. In this work, we
present a learning-based markerless extrinsic calibration system that uses a depth
camera and does not rely on simulation data. We learn models for end-effector
(EE) segmentation, single-frame rotation prediction and keypoint detection, from
automatically generated real-world data. We use a transformation trick to get EE
pose estimates from rotation predictions and a matching algorithm to get EE pose
estimates from keypoint predictions. We further utilize the iterative closest point
algorithm, multiple-frames, filtering and outlier detection to increase calibration
robustness. Our evaluations with training data from multiple camera poses and test
data from previously unseen poses give sub-centimeter and sub-deciradian aver-
age calibration and pose estimation errors. We also show that a carefully selected
single training pose gives comparable results.

Keywords: Camera Calibration, Pose Estimation, Perception

1 Introduction

Robot
Base

Figure 1: Top-left: experimental setup, top-
right: sample frame from Kinect V1, bottom:
segmentation, keypoints and pose prediction

Camera to robot calibration is an important step in
many robotic applications. Keeping the correct cal-
ibration is a challenge for robots in dynamic and
uncontrolled environments, even if the robot and
the camera are meant to be static. Multiple fac-
tors alter this calibration such as re-positioning the
robot/camera for better workspace coverage or for
different applications (e.g. research projects), inad-
vertently moving them for cleaning, people bumping
into them, wear-and-tear and backlash on low-cost
fixtures, etc. As such, calibration is a needed but
time-consuming process. At the very least, calibra-
tion needs to be checked before an application. This
is an all-too-real issue for robotics researchers and
is getting more widespread as cage-free robot arms
and mobile manipulators become more common.

Traditional extrinsic calibration approaches rely on
fiducial markers. Checkerboard patterns and aug-
mented reality (AR) tags are commonly used in re-
search settings. Adding markers is error-prone due
to intrinsic calibration errors, sensor noise, robot-to-
marker fixture quality (which introduces transforma-
tion errors), etc. High precision systems employ precision machined fixtures and active markers (e.g.
LEDs, reflectors+light-sources) which are costly. Thus, using markers is either noisy or expensive.

In this work, we develop a system that can handle the extrinsic calibration between a depth camera
and a robot arm without additional hardware, markers or simulation. We utilize recent developments

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

in deep learning models for point clouds in combination with the ICP algorithm. Our system collects
its own data, negating the need for manual labeling, only requiring an initial calibration effort. Two
side benefits of our system are that it provides high-quality semantic segmentation information about
the background, end-effector (EE) and the rest of the robot, and estimates the EE pose with low error.

There are other learning-based approaches for markerless calibration for both eye-to-hand calibra-
tion [1, 2, 3] and eye-in-hand calibration, [4] that utilize colored images and synthetic/simulation
data. Our work differs by exclusively using real-world data, negating the need for simulation, and
depth data which readily enables the usage of the ICP algorithm for high performance.

The main contributions of our system are; (1) high performance (average test errors of 0.74cm
and 1.69◦) markerless extrinsic calibration, (2) high performance (average test errors of 1.0cm and
2.74◦) EE pose estimation wrt. camera, and (3) automatic real-life data collection methodology.

2 Related Work

Calculating the transformation between a robot’s base and a camera, usually called extrinsic cali-
bration, is a decades old challenge [5]. Conventional techniques use fiducial markers to estimate
camera to robot transformations. Most popular approaches stick a marker on the robot’s EE [6, 7, 8]
or other relevant parts [9, 10, 11] and collect data from multiple robot joint angle configurations to
be used in offline calibration calculation. Major disadvantages of using such markers include wear-
and-tear, distance dependent camera noise [12], fixture backlash and build quality, etc. There are
also single frame methods that use fiducial markers to estimate the EE pose [13, 14] in real-time.
These methods start to fail when the reference objects are not as visible enough as anticipated. In
this work, we aim to develop a markerless approach to handle extrinsic calibration.

The advent of deep learning brought developments in areas that are closely related to EE pose es-
timation such as 6-DoF object pose estimation [15, 16] and keypoint detection [17, 18]. Several
methods have produced successful results on robot pose estimation from a single frame. Lambrecht
[1] and Lee et al. [2] learn to estimate keypoints of the entire robot arm from RGB image trained
with newly created real world data and synthetic data, respectively, then to predict the robot pose
combining keypoint data with forward kinematics information. Similarly, Labbé et al. [3] learns
to predict robot pose and joint angles from RGB images via iterative CAD to image matching us-
ing a synthetic dataset [2]. Our system diverges from these methods in the following areas: (1)
they require majority of the robot arm to be visible while our only requirement is to see the EE
in the frame (2) our method uses depth data whereas others rely on Perspective-n-Point algorithm
to compute affine transformations since they utilize 2D images, (3) we can readily apply the ICP
algorithm to refine our pose estimates due to the depth data usage, and (4) we do not require any
synthetic/simulation data and only use real-world data. It can be argued that we are solving a simpler
problem (only EE and depth data) in exchange for higher calibration quality.

Hand-in-eye calibration, where the camera is mounted to the EE, is another example of camera to
robot calibration problem to which conventional solutions that we explained earlier are also appli-
cable. Partially similar to our system, a recent method works on hand-in-eye calibration via deep
learning [4]. This method uses synthetic data and 2D images, and a different robot-camera setup.

3 Method

Our system consists of two main stages; (1) single frame EE 6-DoF pose estimation and (2) multi-
frame extrinsic calibration. The output of the former along with forward kinematics is enough to get
a calibration estimate but multiple frames increases robustness. Fig. 2 shows our single frame EE
pose estimation and Fig. 3 shows our calibration workflows.

For EE pose estimation, we first segment the EE from a point cloud using a semantic segmentation
approach. Then we utilize two approaches to estimate the EE pose. The first one does EE rotation
prediction followed by a point cloud transformation step to get the EE translation. The second one
extracts keypoints from the EE and matches these with reference points to calculate the EE pose.
Both approaches are followed by an ICP step initialized with the EE pose estimates to match the EE
points and the EE CAD model. These steps are summarized in Fig. 2.

2

Initial
EE Pose

Cluster ing

M
inkU

net
E

ncoder

Translation
Calculation

Semantic
Segmentation

EE 6D Pose
wr t. Camera

Rotation

P
ointN

et++
E

ncoder

Rotation
Prediction

Key Points
Prediction

EE Point
Cloud

3D Rigid
Transform
between EE
& Camera

Model
Key Point
Matching

MinkUnet

ICP

ICP EE 6D Pose
wr t. Camera

Initial
EE Pose

Raw
Point Cloud

Figure 2: Single frame prediction architecture.

ProcessProcessProcess
EE 6D Pose
Predictions

wr t. Camera

Sanity
Check

Intra-configuration
Outlier Rejection

& AveragingConfiguration
Based
Group
Poses

Inter-configuration
Outlier Rejection

& AveragingAveraged
Group
Poses

Robot Base's
6D Pose

wr t. Camera

Figure 3: Calibration architecture.

For calibration, the system collects multiple frames and the corresponding EE pose estimates as
described above. To increase robustness, sanity check and outlier detection steps are employed. The
remaining poses are then averaged in the rigid-body transformation space (SO(3) for rotation and
R3 for position), to get the final extrinsic calibration result. These steps are summarized in Fig. 3.

3.1 Data Collection

Our EE segmentation and pose estimation rely on learning and require robot specific data. We
collect ground truth semantic segmentation labels, EE poses wrt. the depth camera and keypoint
information. We collect this data from a real world setup to eliminate the need for simulation.

The first step is to perform an initial calibration. This can be done by existing approaches. We use
a combination of markers, manual tuning on RViz [19] and ICP [20] towards this end. This is the
only manual step that is needed and is only required for data collection. This is only done once per
camera pose we want to collect data for. Once our system is up and running, no manual tuning is
needed. This calibration information gives us the robot poses with respect to the camera frame.

The second step is to collect semantic segmentation data. We label points as background, EE and
the rest of the robot automatically. Background points are obtained by utilizing frames without the
robot. Then, the robot is moved to multiple visible positions to collect more frames. Semantic
segmentation data for the robot arm is generated by subtracting the background points from every
frame [21]. The EE points are further obtained by transforming the EE bounding box using the
calibration information and taking the points inside this box1.

The third step is to generate keypoint information. We extract a total of six keypoints; four are
located at each corner of the EE and two are located at the tip of the gripper fingers as shown in
Fig. 4. During training, we have access to the calibration. As such, we know the pose of the EE in
the camera frame. We also know the reference keypoint locations with respect to the EE as they are

1When subtracting the background points is not possible, the CAD model of the robot, joint positions and
the calibration information can be used to get the arm and EE points, and consequently background points.

3

fixed and use this information to get reference points in the camera frame. The EE points closest to
these reference points are selected as keypoints, as long as their distances are below a threshold.

3.2 End-Effector Segmentation

The EE pose estimation starts by extracting the semantic segmentation information from an input
point cloud. The outputs of this step are the EE, rest of the arm and the background labels for the
points as shown in Fig. 1. For this step, we utilize a sparse version of the Unet architecture named
the Minkowski Unet network [22, 23, 24], specifically the MinkUNet18D [22] architecture trained
with the raw point clouds as the input and the collected semantic segmentation data as the target. We
then apply linkage clustering [25] to points classified as EE in order to reject superfluous predictions.

3.3 Pose Estimation with Rotation Prediction and Transform Calculation: RPT

Y

Z

X

Figure 4: End-effector segmentation
(yellow), end-effector frame, and key-
points (colored hexagons).

We first predict the EE rotation from EE points by utiliz-
ing the encoder part of another MinkUNet18D backbone
with the same configuration. We train this with the seg-
mented EE points as input and the EE rotation wrt. cam-
era as target, using the loss of the PoseCNN model [15].

To calculate the EE translation, we use the output of the
learned rotation prediction model and the geometric rela-
tionship between the EE frame and certain EE points on
the bounding box, assuming that the EE is not occluded.
We use the predicted rotation to rotate the EE points back
to their non-rotated pose wrt. the camera. This is done by
applying the Eq. 1 on each EE point, where REE is the
rotation prediction of the model, PEE is the translation of
an EE point and the P̄EE is the resulting rotated position.
Both PEE and P̄EE are in the camera frame.

P̄EE = (REE)−1 × PEE (1)

The EE points are along the surface of the EE. If we assume that the EE is fully visible, we can use
the geometric relationship between the EE surface and the EE frame to get the EE translation. In
the non-rotated pose wrt. the camera frame, the EE frame is 0.015m inside the surface along the
x-axis, centered along the y-axis and closest to the camera along the z-axis (see Fig. 4). We use the
following equations to capture this relationship where t̄EE and P̄EE denote the axes positions of
the EE frame and EE points in the rotated frame, all in the camera frame.

t̄EE
x = max (P̄EE

x) − 0.015 (2)

t̄EE
y =

max (P̄EE
y) − min (P̄EE

y)

2
(3)

t̄EE
z = min (P̄EE

z) (4)

We finally rotate t̄EE back to get the EE translation, tEE , wrt. the camera using Eq. 5.

tEE = REE × t̄EE (5)

Calculating the EE translation with such an approach is efficient and accurate given that the rotation
predictions are accurate and that the EE is visible. However, full EE visibility is not a given for all
the frames and as such, this method cannot be trusted for single frame pose estimation by itself.

3.4 End-Effector Pose Estimation via Keypoint Matching: KPM

In this approach, we first predict keypoints among the EE points. We use a dense point cloud
encoder, PointNet++ [26] trained with segmented EE points as input and the collected ground truth
keypoints as target. We then use a version of the least-squares fitting [27] algorithm to find the rigid
transformation between predicted keypoints and the reference points, which gives us the EE pose
wrt. the camera. This is only possible when there are at least four high quality keypoint predictions.

4

3.5 Pose Estimation Refinement via the Iterative Closest Point Algorithm

We use the ICP algorithm [20, 28] to improve the pose estimation performance. This algorithm
requires three inputs; the initial pose estimate (needs to be fairly accurate), a source point cloud, and
a target point cloud. The initial pose estimate comes from either the RPT or the KPM methods, and
the target point cloud comes from the EE segmentation. To generate the source points, we convert the
CAD model of the robot’s EE, provided by the manufacturer [29], to a point cloud, and transform
the points based on the current EE configuration. The ICP algorithm outputs the transformation
needed to match the source and target points which we use to refine the pose estimates.

3.6 Camera to Robot Base Calibration

A single EE pose with respect to the camera frame can be used to calculate the transformation
between the camera and the robot using Eq. 6, where TY

X represents the homogeneous transformation
between frames X and Y , and the letters B, C, and EE correspond to the robot base, camera and
the EE respectively. The EE in the base frame, TEE

B , is obtained by forward kinematics and the EE
in the camera frame, TEE

C , is estimated by either the RPT or the KPM methods.

TB
C = TEE

C (TEE
B)−1 (6)

However, a single frame is not robust enough to get a good calibration. We move the robot around
and capture multiple frames at each robot pose to get more accurate estimates. We first run the
semantic segmentation model and perform a sanity check on the output. If the number of EE points
or the size of the EE bounding box are below their respective thresholds, we remove the frame. This
is done to eliminate frames where the EE is not visible enough for accurate pose estimation.

After the sanity check, we group the predictions based on the robot configuration (we capture mul-
tiple frames per robot pose). We use a Z-score outlier detection algorithm using the absolute devi-
ations about the median [30] for each translation axis of the camera to robot base predictions, per
group. For rotation prediction outlier detection, we apply outlier detection on the rotational distances
of every prediction to a reference unit quaternion. We remove predictions that are marked as out-
liers. Then, the remaining camera to base transformations are averaged by computing the arithmetic
average for translation predictions and utilizing quaternion averaging [31] for rotation predictions.
This gives us individual calibration estimations for each robot configuration.

Lastly, we employ the same outlier detection and averaging steps to the calibration estimates of each
robot configuration to get the final estimate.

4 Evaluation

We evaluate the semantic segmentation, single pose estimation and camera calibration performances
of our system when trained with three camera poses. We test our approach with ground truth seg-
mentation labels as well to gauge the effects of the accuracy of the segmentation model on the pose
and calibration estimation. We also provide results without the ICP step to highlight its benefits and
compare to a AR-tag based classical baseline. Lastly, we perform evaluations with models trained
on data from individual camera poses.

We use the translation error (εt), rotation error (εR) and the average distance (ADD) metrics to
measure the pose estimation and calibration performances. The εt is the Euclidean distance between
the ground truth translation and the predicted translation. The εR is the minimum rotation between
the ground truth rotation and the predicted rotation. ADD is the average of point-to-point Euclidean
distances between the EE points transformed with the ground truth pose and the predicted pose [32].
To measure the accuracy of our semantic segmentation model, we use accuracy, precision and recall.

4.1 Collected Data

Our hardware setup only includes a Kinect V1 and a Franka Emika Panda robot arm as shown in
Fig. 1. We collect around 7000 frames from 3 different camera poses. The cameras are placed
on three sides of the robot setup, as shown in Fig. 5. We reserve 1000 frames for validation to
control overfitting. To increase generalization, we apply 3D data augmentation methods such as
elastic distortion, noise injection and point dropouts during training. We also collect test data from

5

Training
Test

P3

P1

P2

Figure 5: Visualization of Kinect camera positions during training and test data collection.

P1 Test P2 Test P3 Test
∆t [cm] ∆R [◦] ∆t [cm] ∆R [◦] ∆t [cm] ∆R [◦]

P1 Training 5.15 14 95.12 71.33 173.49 119.07
P2 Training 102.7 96.32 5.88 18.31 88.12 95.37
P3 Training 175.35 170.16 86.44 112.66 6.2 42.5

Table 1: Relative translation and rotation differences between camera pose pairs.

additional 3 cameras poses (see Fig. 5), 6 locations per pose and 10 frames per location for a total
of 180 frames. The translation and rotation differences between training and test camera poses are
given in Tab. 1. We additionally collect test data using an ArUco tag attached to the EE in the same
test poses. We chose a relatively large marker to be robust to camera distance as shown in Fig. 6.

The training data is collected with an initial calibration. As we do not have access to high-quality
markers (e.g. a motion capture system), this may suffer from all the issues laid out in this paper. The
ADD of the training data is calculated as 0.75cm, which implies a relatively high quality data set.

Class Precision Recall Accuracy
EE 0.96 0.99 1.00
Arm 0.87 0.99 0.99
BG 1.00 0.99 0.99
All 0.94 0.99 0.99
Table 2: Semantic segmentation res.

Semantic segmentation performance is important as it is
the first step and its EE segmentation output is used as in-
put to the following steps. We use precision, recall and ac-
curacy to assess the performance of segmentation. Tab. 2
presents these results. Overall, the segmentation model
performs well. The recall ratio for EE segmentation is
∼ 100%, i.e., the model is able to catch all the EE points.

The pose estimation and extrinsic calibration performances are calculated with both the model and
ground truth segmentation labels (Table 3). Tab. 4 shows that there is around 0.05cm and 0.5◦

differences between the average errors. These are negligible when the camera noise is taken into ac-
count [12]. Combining this with the segmentation performance, we conclude that the segmentation
model performs well enough to generate reliable inputs for the subsequent steps.

4.2 Single Frame Pose Prediction and Multi-Frame Calibration

Tab. 3 shows the pose estimation performances of the RPT and KPM approaches with and without
the ICP post-processing step and with ground truth and predicted semantic segmentation labels.

ICP step provides considerable improvement for pose estimation: The addition of the ICP step
improves both algorithms in all metrics in both segmentation input cases. In addition, the absolute
performance is very impressive with about 1cm translation and less than 3◦ rotation errors.

εt [cm] εR [◦] ADD [cm]
Method GT Model GT Model GT Model
RPT 2.36±0.36 2.49±0.77 7.75±5.05 7.18±4.62 2.47±0.52 2.58±0.90
RPT+ICP 0.87±0.20 1.01±0.32 3.20±2.42 3.47±2.75 0.97±0.30 1.07±0.35
KPM 1.35±0.37 1.43±0.48 7.46±1.54 7.44±1.44 1.53±0.33 1.60±0.47
KPM+ICP 0.96±0.27 1.00±0.27 2.42±0.98 2.74±1.59 0.99±0.26 1.04±0.27

Table 3: EE pose estimation results with ground truth (GT) and predicted (Model) semantic labels.

6

εt [cm] εR [◦]

AR-Tag 1.83 3.26
Ours 2.35 3.37
Ours + ICP 0.74 1.69
GT + ICP 0.77 1.19
Table 4: Calibration results.

High Performance Multi-Frame Calibration: The calibration
results are given in Tab. 4. The average translation and rotation er-
ror between the predicted calibration and the ground truth calibra-
tion are εt = 0.74cm and εR = 1.69◦, respectively. As expected,
the ICP step significantly improves performance, and semantic seg-
mentation and ground truth inputs perform similarly. This absolute
performance would allow for most manipulation applications out-

side of assembly or high precision tasks. These results are affected by the sensor noise, and poten-
tially the intrinsic calibration and the initial extrinsic calibration errors. We argue that a less noisy
camera and/or an active marker system for initial calibration is needed to go beyond these values.

Figure 6: EE with the AR-tag attached

We also compare our system with an AR-tag based
baseline. The AR-tag results in Tab. 4 are with out-
lier detection but without the ICP step. These results
show that the AR-tag baseline holds 0.5cm advantage
in translation and is on par in rotation compared to our
base method. We chose a relatively large marker to
be robust to distance and large orientation changes.
This alters the EE shape considerably (see Fig. 6),
and makes ICP infeasible. A smaller tag degrades the
performance considerably with distance to camera. If
the ICP algorithm was feasible with the large marker,
the final calibration results would be on-par. Thus,
our method can achieve similar results to a classical
marker based method while being easier to use and re-
quiring much less manual effort down the line (a large
marker needs to be removed for work and re-attached for calibration). Our system would have better
performance than an AR-tag based approach with a smaller marker that is more practical to use.

Discussion Pertaining to Existing Work: It is difficult to conduct an apples-to-apples comparison
between our work and the existing learning-based methods since the setups are significantly differ-
ent. This is due to simulation requirements, lack of point cloud data in existing datasets and the
difference in predicted outputs (e.g. full arm vs EE). However, a qualitative discussion can be made
over the common ADD object pose estimation metric.

RPT and KPM approaches outperform state-of-the-art object pose detection methods [15, 16]. The
performance gets much better when the ICP step is included. We also outperform a similar single
frame pose estimation method [2]. With an ADD threshold of 2.0cm, we get 100% pose estimation
accuracy whereas they get less than 40% for Kinect V1. However, the generic object pose detection
methods deal with multiple objects [33] and Lee et al. [2]’s result is for the entire robot arm, whereas
we are only looking at the EE.

4.3 Training with Data from Individual Camera Poses

The results we presented so far were obtained from data collected from each training camera location
(see Fig. 5). These locations cover either side and the front of the robot. They also cover a range of
distances to robot base where P1 is closest and P3 is the farthest. However, this raises the question
of calibration performance without such coverage.

To answer this, we train different models using data from each training camera location and test it
on all the test data (e.g. train with P2-training, test on P1-test, P2-test and P3-test). As given in
Table. 1, there are significant translation and rotation differences between the poses with the only
similarity being the pitch axis. Tab. 5 shows the calibration results with the full system.

The results show that, the closer the train-test locations, the better the performance with an exception
for P1-train and P1-test. The reason is that the P1-train pose is very close to the setup, and as such, its
training set lacks data from farther EE poses. System trained with P2 data achieves the best overall
results, as expected, since it is in the middle both translation-wise and rotation-wise. Furthermore,
its performance is not too far from the system trained with data from three camera poses.

The results imply that, a careful selection of the training camera pose is important but a single
camera is enough with a slight sacrifice in performance while reducing the initial calibration effort.

7

P1 Test P2 Test P3 Test Average
εt [cm] εR [◦] εt [cm] εR [◦] εt [cm] εR [◦] εt [cm] εR [◦]

P1 Training 1.32 0.64 1.64 2.81 4.21 5.63 2.39 3.03
P2 Training 0.84 0.60 0.70 1.82 1.61 2.32 1.05 1.58
P3 Training 1.82 1.20 2.28 2.12 0.93 1.89 1.68 1.74

Table 5: Calibration prediction results for respective training and test sets.

5 Limitations and Future Work

The quality of the training data depends on the initial calibration, RGBD sensor noise and forward
kinematics error (e.g. due to gear backlash, joint sensor calibration, etc.). A careful calibration is
needed for any robotics task so there is no extra manual effort to use our system. However, this
should be performed carefully. We used a relatively noisy RGBD camera [12]. We expect a better
camera to yield better results. The user should be aware of the forward kinematics errors and, if they
are severe, should take this into consideration. In such cases, training data should be processed with
ICP and only single EE frame pose estimations should be used. This affects any type of calibration.

Our system requires that the EE is not occluded during calibration. The RPT method would not be
able to calculate accurate translations otherwise. The KPM method is more robust against occlusions
as it can work with four keypoints. If occlusions are expected, more keypoints should be selected
and RPT should be disabled.

We collect data with the robot arm in different joint configurations for the calibration operation.
These joint configurations should be diverse for a better calibration estimate. The test set in this
work is collected from manually selected joint configurations. A fully automated system should
choose these by itself while keeping the EE in the camera frame.

Our system assumes that there are no objects in the camera view during calibration since we do not
collect object data. We use a relatively high-capacity model, MinkUnet18D [22], for the semantic
segmentation task involving only three classes. As such, it is prone to overfitting. An out of sample
input (i.e. a point cloud with objects) would be difficult to handle. Using lower capacity models
such as MinkUNet101 and MinkUNet14A deteriorated our semantic segmentation performance.
Superimposing object point clouds as a data augmentation approach is possible in to circumvent this
limitation. However, this is a mild assumption to handle extrinsic calibration prior to any application.

Currently, we provide the desired keypoints by hand. Even though it is enough to do this once for
each EE, it is not the most ideal approach since the user may not be familiar enough with robotics to
do so or the selected keypoints may not be easily distinguishable. An automated keypoint selection
algorithm can be added in the future to remove this burden from the user.

We are not combining the outputs of the RPT and KPM methods to get a single frame EE pose
estimation and only average them during calibration. A future work is to investigate the potential
of using them together, for example to have them share a backbone, feed the output of the rotation
network into the KP network, etc.

6 Conclusion

We presented a learning-based extrinsic calibration system that does not require fiducial markers,
additional hardware or simulation. Our system collects and labels its own data. The only manual
steps are initial calibration for data collection and keypoint selection. Our system performs extrinsic
calibration from multiple frames and employs steps to increase its robustness. In addition to extrinsic
calibration, our system outputs high quality arm and EE segmentation information and camera-to-
EE pose estimation. The extrinsic calibration challenge is never-ending, especially for low cost or
multi-user setups and with our system, the user needs to manually calibrate only once.

We tested our approach in different camera configurations then the ones used for training. Our re-
sults showed that the ICP algorithm significantly improves estimation performance and the absolute
calibration results are close to the limit of what is possible with the used depth camera. We also
showed that a carefully selected single camera training pose is enough. The main limitations of our
approach are the lack of object consideration, which is mild if the only aim is extrinsic calibration,
and manual keypoint selection.

8

Acknowledgments

This work was supported by KUIS AI Center computational resources. The authors would also
like to thank Onur Berk Töre and Farzin Negahbani for their infrastructure support and work on an
earlier version of the system.

References
[1] J. Lambrecht. Robust few-shot pose estimation of articulated robots using monocular cameras

and deep-learning-based keypoint detection. In 2019 7th International Conference on Robot
Intelligence Technology and Applications (RiTA), pages 136–141. IEEE, 2019.

[2] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and S. Birchfield.
Camera-to-robot pose estimation from a single image. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 9426–9432. IEEE, 2020.

[3] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic. Single-view robot pose and joint angle estima-
tion via render & compare. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1654–1663, 2021.

[4] E. Valassakis, K. Dreczkowski, and E. Johns. Learning eye-in-hand camera calibration from a
single image. In Conference on Robot Learning, pages 1336–1346. PMLR, 2022.

[5] R. Y. Tsai and R. K. Lenz. A new technique for fully autonomous and efficient 3d robotics
hand-eye calibration. In Proceedings of the 4th international symposium on Robotics Research,
pages 287–297, 1988.

[6] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-Jiménez. Auto-
matic generation and detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280–2292, 2014.

[7] M. Fiala. Artag, a fiducial marker system using digital techniques. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages
590–596. IEEE, 2005.

[8] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international
conference on robotics and automation, pages 3400–3407. IEEE, 2011.

[9] Q. Zhan and X. Wang. Hand–eye calibration and positioning for a robot drilling system. The
International Journal of Advanced Manufacturing Technology, 61(5):691–701, 2012.

[10] X. Liu, H. Madhusudanan, W. Chen, D. Li, J. Ge, C. Ru, and Y. Sun. Fast eye-in-hand 3-d
scanner-robot calibration for low stitching errors. IEEE Transactions on Industrial Electronics,
68(9):8422–8432, 2020.

[11] O. Kroeger, J. Huegle, and C. A. Niebuhr. An automatic calibration approach for a multi-
camera-robot system. In 2019 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1515–1518. IEEE, 2019.

[12] O. Wasenmüller and D. Stricker. Comparison of kinect v1 and v2 depth images in terms of
accuracy and precision. In Asian Conference on Computer Vision, pages 34–45. Springer,
2016.

[13] H. Peng, X. Yang, Y.-H. Su, and B. Hannaford. Real-time data driven precision estimator
for raven-ii surgical robot end effector position. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 350–356. IEEE, 2020.

[14] K. Pauwels and D. Kragic. Integrated on-line robot-camera calibration and object pose esti-
mation. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
2332–2339. IEEE, 2016.

[15] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. 06 2018. doi:10.15607/RSS.2018.XIV.019.

9

http://dx.doi.org/10.15607/RSS.2018.XIV.019

[16] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. Deepim: Deep iterative matching for 6d pose
estimation. In Proceedings of the European Conference on Computer Vision (ECCV), pages
683–698, 2018.

[17] Y. You, Y. Lou, C. Li, Z. Cheng, L. Li, L. Ma, C. Lu, and W. Wang. Keypointnet: A large-
scale 3d keypoint dataset aggregated from numerous human annotations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13647–13656,
2020.

[18] T. Jakab, R. Tucker, A. Makadia, J. Wu, N. Snavely, and A. Kanazawa. Keypointdeformer:
Unsupervised 3d keypoint discovery for shape control. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 12783–12792, 2021.

[19] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim. Rviz: a toolkit for real domain data visualiza-
tion. Telecommunication Systems, 60(2):337–345, 2015.

[20] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. Interna-
tional journal of computer vision, 13(2):119–152, 1994.

[21] H. Sankoh, A. Ishikawa, S. Naito, and S. Sakazawa. Robust background subtraction method
based on 3d model projections with likelihood. In 2010 IEEE International Workshop on
Multimedia Signal Processing, pages 171–176. IEEE, 2010.

[22] C. Choy, J. Gwak, and S. Savarese. 4d spatio-temporal convnets: Minkowski convolutional
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3075–3084, 2019.

[23] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural net-
works. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 806–814, 2015.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

[25] J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

[26] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[27] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point sets. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5):698–700, 1987. doi:
10.1109/TPAMI.1987.4767965.

[28] Q.-Y. Zhou, J. Park, and V. Koltun. Open3d: A modern library for 3d data processing. arXiv
preprint arXiv:1801.09847, 2018.

[29] Franka Emika. Franka Emika ROS. https://github.com/frankaemika/libfranka,
2022. [Online; accessed 9-June-2022].

[30] B. Iglewicz and D. Hoaglin. Volume 16: how to detect and handle outliers, The ASQC basic
references in quality control: statistical techniques, Edward F. Mykytka. PhD thesis, Ph. D.,
Editor, 1993.

[31] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman. Averaging quaternions. Journal of
Guidance, Control, and Dynamics, 30(4):1193–1197, 2007.

[32] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab. Model
based training, detection and pose estimation of texture-less 3d objects in heavily cluttered
scenes. In Asian conference on computer vision, pages 548–562. Springer, 2012.

[33] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In 2015 international
conference on advanced robotics (ICAR), pages 510–517. IEEE, 2015.

10

http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://dx.doi.org/10.1109/TPAMI.1987.4767965
https://github.com/frankaemika/libfranka

	Introduction
	Related Work
	Method
	Data Collection
	End-Effector Segmentation
	Pose Estimation with Rotation Prediction and Transform Calculation: RPT
	End-Effector Pose Estimation via Keypoint Matching: KPM
	Pose Estimation Refinement via the Iterative Closest Point Algorithm
	Camera to Robot Base Calibration

	Evaluation
	Collected Data
	Single Frame Pose Prediction and Multi-Frame Calibration
	Training with Data from Individual Camera Poses

	Limitations and Future Work
	Conclusion

