
Auto-Compressing Networks

Vaggelis Dorovatas1,2
vdorovatas@hotmail.gr

Georgios Paraskevopoulos3
g.paraskevopoulos@athenarc.gr

Alexandros Potamianos1,2
potam@central.ntua.gr

1National Technical University of Athens
2Archimedes RU, Athena RC

3Institute of Language and Speech Processing, Athena RC

Abstract

Deep neural networks with short residual connections have demonstrated remark-
able success across domains, but increasing depth often introduces computational
redundancy without corresponding improvements in representation quality. We
introduce Auto-Compressing Networks (ACNs), an architectural variant where
additive long feedforward connections from each layer to the output replace tradi-
tional short residual connections. By analyzing the distinct dynamics induced by
this modification, we reveal a unique property we coin as auto-compression—the
ability of a network to organically compress information during training with
gradient descent, through architectural design alone. Through auto-compression,
information is dynamically "pushed" into early layers during training, enhancing
their representational quality and revealing potential redundancy in deeper ones.
We theoretically show that this property emerges from layer-wise training patterns
present in ACNs, where layers are dynamically utilized during training based on
task requirements. We also find that ACNs exhibit enhanced noise robustness com-
pared to residual networks, superior performance in low-data settings, improved
transfer learning capabilities, and mitigate catastrophic forgetting suggesting that
they learn representations that generalize better despite using fewer parameters.
Our results demonstrate up to 18% reduction in catastrophic forgetting and 30-80%
architectural compression while maintaining accuracy across vision transformers,
MLP-mixers, and BERT architectures. These findings establish ACNs as a practical
approach to developing efficient neural architectures that automatically adapt their
computational footprint to task complexity, while learning robust representations
suitable for noisy real-world tasks and continual learning scenarios.

1 Introduction

Deep learning has achieved significant breakthroughs across diverse tasks and domains [28, 30, 6];
however, it still lacks the flexibility, robustness, and efficiency of biological networks. Modern
models rely on deep architectures with billions of parameters, leading to high computational, storage,
and energy costs. Architecturally, these large models are primarily characterized by short residual
connections [20], a design initially developed to enable robust training of deep neural networks via
backpropagation by providing stable gradient flow through these exceptionally deep networks. These
skip connections establish a network topology where multiple information pathways are created [53],
resulting in an ensemble-like behavior that delivers more efficient training and superior generalization
compared to traditional feedforward networks.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Historically, since the emergence of Highway Networks [47], which first proposed additive skip con-
nections researchers have explored numerous architectural variations. Residual Networks (ResNets)
[20] removed learned gating functions and adopted direct identity skip connections becoming the
industry standard. DenseNets [22] utilized feature concatenation instead of addition, while Fractal-
Nets [29] introduced a recursive tree-like architecture combining subnetworks of multiple depths to
further enrich feature fusion. More recent works include learned weighted averaging across layer
outputs [37], application of attention mechanisms across block outputs [14] and denser connectivity
patterns between network nodes [63]. Other works have explored adding scalars to either the residual
or block stream to improve performance, training stability and representation learning [43, 3, 62, 16].
In neural machine translation, researchers have drawn inspiration from both vision and language do-
mains to combine information from different layers, enabling richer semantic and spatial propagation
throughout the network [11, 59].

Arch Connectivity Forward Propagation Backward (Gradient) Propagation

FFN yF =
∏L

i=1 wix0
∂yF
∂wi

=

 L∏
k=i+1

wk


︸ ︷︷ ︸

backward term

(
i−1∏
m=1

wm

)
︸ ︷︷ ︸

forward term

x0

ResNet yR =
∏L

i=1(1 + wi)x0
∂yR
∂wi

=

 L∏
k=i+1

(1 + wk)


︸ ︷︷ ︸

backward term

(
i−1∏
m=1

(1 + wm)

)
︸ ︷︷ ︸

forward term

x0

ACN yA =
(
1 +

∑L
i=1

∏i
j=1 wj

)
x0

∂yA
∂wi

=

1 +

L∑
j=i+1

j∏
k=i+1

wk


︸ ︷︷ ︸

backward term

(
i−1∏
m=1

wm

)
︸ ︷︷ ︸

forward term

x0

Table 1: Connectivity (2D case), Forward and Backward Propagation (1D linear case) for FFN,
ResNet, and ACN architectures.

While Residual Networks, as discussed, offer efficient and effective training especially in very deep
architectures, there are various works that explore behaviors of these architectures that may harm
generalization. In [53, 48] it is shown that these architectures exhibit a notable resilience to layer
dropping and permutation, which could indicate potential redundancy of some layers (i.e. removing
a layer does not affect the network). In [23], it was further observed that dropping subsets of
layers during training can reduce overfitting and improve generalization. In a related study [1], the
authors showed that introducing skip connections between layers can lead to parts of the network
being effectively bypassed and under-trained. In [62], they show that unscaled residual connections
can harm generalization capabilities in generative representation learning. Finally, more recently,
research has revealed substantial parameter redundancy and inefficient parameter usage in large-scale
foundation models, particularly within their deeper layers [18, 7]. All these observations can be
unified under the perspective that, although residual architectures facilitate training via multiple
signal pathways, these same pathways can sometimes act as shortcuts that cause certain components
to be either underutilized or prone to overfitting—ultimately limiting effective generalization.

Inspired by these observations, in this work we explore whether we can design alternative architectures
that preserve the key advantages of Residual Networks—such as multiple signal pathways and efficient
gradient flow—while addressing issues like redundancy and shortcut overuse, ultimately enabling
more efficient parameter utilization and improved representation learning. To this end, we propose
an architectural variant where additive long feedforward connections from each layer to the output
replace traditional short residual connections as shown in Table 1, introducing Auto-Compressing
Networks (ACNs). ACNs showcase a unique property we coin as auto-compression—the ability

2



of a network to organically compress information during training with gradient descent, through
architectural design alone, dynamically pushing information to bottom layers, enhancing their repre-
sentational quality, and naturally revealing redundant in deeper layers. We theoretically investigate
the emergence of this property by analyzing the gradient dynamics of networks with different connec-
tivity patterns. As illustrated in Figure 1, ACNs demonstrate layer-wise training patterns in which
early layers receive significantly stronger gradients during the initial stages of training, in contrast
to the more uniform gradient distribution observed in Residual Networks. Next, we empirically
demonstrate a broad range of advantages that ACN-learned representations offer compared to residual
or feedforward architectures, including: enhanced information compression, superior generalization,
reduced catastrophic forgetting, and efficient transferability. Our contributions can be summarized as:

• We introduce Auto-Compressing Networks (ACNs), an architecture that organically com-
presses information into a subset of the full network’s layers, through architectural design
alone.

• We provide a detailed analysis of the gradient dynamics of ACNs, along with residual
and feedforward networks, shedding light on their distinct behaviors and arguing that
different connectivity patterns result in unique training regimes that drive distinct learned
representations.

• We implement ACNs in fully connected and transformer-based architectures, finding that
they match or outperform residual baselines, while 30–80% of top layers effectively become
redundant as information concentrates in the lower layers. Notably, ACNs are hardware-
friendly and require no specialized software.

• We show that ACNs learn representations that are more robust against noise and generalize
better in low-data regimes compared to residual architectures.

• ACNs reduce catastrophic forgetting by up to 18% compared to residual networks in
continual learning by preserving capacity for new unseen tasks.

• ACNs outperform regularization-based approaches at transfer learning without requiring
hyperparameter tuning.

2 Auto-Compressing Networks

In ACNs 1, residual short connections are replaced with long feedforward connections, as described
in Eq. 1 for a network of depth L, and shown 2 in Table 1:

xi = fi(xi−1), y =

L∑
i=0

xi (1)

In ACNs the output of each layer is directly connected to the output of the network, and thus is directly
optimized by the objective function during gradient descent training. Furthermore, the number of
possible shortcuts is equal to the number of layers, L. We find this simplification maintains the
improved signal flow that shortcut connections provide, while also introducing the ability to detect
potential parameter redundancy in the architecture3. We note that ACNs differ structurally from
other models employing long connections, such as DenseNets [22] and DenseFormer [37], which are
residual networks variants, as previously discussed. These models connect each layer to all preceding
layers whereas ACNs connect each layer only to the output, leading to a distinct structural design.
An overview of these models along with an extended literature review is provided in Appendix A.
For completeness, we also provide a direct, fair comparison against other residual variants, such as
DenseFormers and DenseNets, in Appendix E.

1Code for the paper is available here.
2The connections shown for ResNet (red) are implicit, resulting from the residual summation. A detailed

example is provided in Appendix D.
3Note that long connections are a strict subset of the 2L shortcut connections in residual networks.

3

https://github.com/vdorovatas/Auto_Compressing_Networks.git


2.1 Gradient Propagation Across Network Architectures

In this section, we examine and compare the forward and backward pass (gradient flow) dynamics
of three architectures: traditional feedforward networks (FFN), residual networks (ResNet), and the
proposed auto-compressing networks (ACN), based on the equations of Table 1. See Appendix C for
a detailed derivation of the gradient equations for 1D linear neural networks.

1 10 20 40 60 80 100
Epochs

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

La
ye

rs

Residual Networks

1 10 20 40 60 80 100
Epochs

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

La
ye

rs

Auto-Compressing Networks

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

Normalized Gradient Norm across layers during training

10 30 50 100 150 300
Epochs

12
11

10
9

8
7

6
5

4
3

2
1

La
ye

rs

Residual Networks

10 30 50 100 150 300
Epochs

12
11

10
9

8
7

6
5

4
3

2
1

La
ye

rs

Auto-Compressing Networks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Incremental Layer Performance Contribution during training

Figure 1: (left) ACNs vs Residual Networks gradient flow across layers during training for MLP-
Mixer architecture [50] on CIFAR-10 [27], showcasing implicit layer-wise training and information
concentration on the bottom layers for ACNs. (right) ACNs vs Residual Networks incremental
performance contribution across layers for ViT architecture [10] on ImageNet-1K, revealing auto-
compression by gradual layer-wise training in ACNs.

2.2 Emergent Gradient Paths

The forward and backward components: As shown in Table 1, each gradient wi (see ∂y∗
∂wi

in the
3rd column of the respective table) decomposes into forward and backward terms. The forward term
determines gradient and forward propagation stability (whether the signal vanishes or explodes),
while the backward term influences learning. For backward paths, 1D FFNs contain a single path,
while 1D ACNs have L− i+ 1: one direct path using the layer’s own long connection to the output,
plus L− i additional paths where gradient flows from each subsequent layer’s long connection and
back through the network. 1D ResNets have 2L−i paths since at each layer there are two options:
flow through the network or follow the residual connection. It is also worth observing that ACNs
feature a forward term identical to FFNs for intermediate layers (single path), while their backward
components is closer to ResNets since it consists of multiple paths.

The Backward component (Full Gradient - FG) can be further decomposed into a Network-mediated
Gradient (NG) component that is scaled by network weights and backpropagates information through
(a subset of) the network and a Direct Gradient (DG) component that directly connects from the
output to each layer, shown as the term "1" in the backpropagation equations of ACNs and ResNets
in Table 14 This direct path acts as an information super highway, especially early in training where
weights are typically initialized close to zero, informing each layer directly how to contribute towards
lowering the optimization objective. Finally, the DG contribution is more significant for ACNs
compared to ResNets, due to ACNs’ linear (rather than exponential) total gradient path count.

Unlike the symmetric forward and backward terms of ResNets and FFNs, ACNs gradients, as argued,
consist of a single forward path and multiple backward paths. This design creates an implicit layer-
wise training dynamic, where deeper layers are trained at a slower rate compared to earlier layers,
since they have a weaker forward component (assuming close-to-zero initialization) and a smaller
number of backward paths. Further, when compared to ResNets, ACNs have a stronger contribution
during backpropagations from the DG path (vs. NG) and this effect becomes more pronounced for
deeper networks and for the early layers. For example, when training the second layer of a 1D L = 12
layer network, DG is one of 11 ACN backward paths, while for ResNets the DG is competing with
another 127 paths (of the NG term). This further accelerates training of the early layers.

Thus, we postulate that: 1) a strong DG component coupled with a weaker feed-forward signal leads
implicitly to efficient layer-wise training, and 2) architecturally-induced layer-wise training results

4This backward path has been previously explored as an alternative to traditional backpropagation and is
typically referred to as Direct Feedback Alignment (DFA) in the literature [35, 40].

4



inadvertently in a form of structural learning where information is naturally pushed to early layers,
i.e., later layers will become redundant (effectively identity mappings) if the earlier layers can already
solve for the task. We refer to this new class of networks as auto-compressors since they naturally
“shed” their redundant layers during backpropagation simply via architectural design. These claims
are experimentally validated in the rest of the paper.

3 ACNs in Practice: Information Compression and Gradient Flow

Next, we implement auto-compressing networks on top of state-of-the-art neural architectures across
diverse tasks and datasets. We implement ACNs using variants of the Transformer [52] for language
and vision tasks and MLP-Mixer [50] for vision tasks. This allows us to evaluate our approach on
diverse benchmarks including image classification (CIFAR-10 [27], ImageNet-1K [41]), sentiment
analysis, and language understanding (BERT [9] on GLUE [54]).

In ACNs, for each input token, the final output vector yt is the sum of all intermediate layer represen-
tations plus the input embedding (Eq. 1). For classification, we apply pooling for images or use the
[CLS] token for text. For a network of depth L, predictions using k intermediate layers compute ytk
(sum of representations up to layer k) for each token, passed to a single shared classification head.
This yields L+1 sub-networks, from input-only to full-network. For residual network baselines, at
depth k, we take the output ytk of layer k as our k + 1 subnetwork’s output.

Our experiments begin by empirically validating the main claim established in the previous section,
i.e., the presence of a strong DG component coupled with implicit layer-wise training dynamics
drives auto-compression, a property that resembles a form of structural (layer-wise) learning.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Prediction Layer

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

ACN
FFN
Residual Network
ACN - only DG

1 10 20 40 60 80 100
Epochs

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

La
ye

rs

Residual Networks

1 10 20 40 60 80 100
Epochs

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

La
ye

rs

Auto-Compressing Networks

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

Direct Gradient (DG) to total gradient ratio during training

Figure 2: Results for the CIFAR-10 task using the MLM-Mixer base architecture: (left) ACN variants
achieve auto-compression needing only a few layers to achieve good performance. (right) The ratio
of direct gradient DG to the total gradient FG is significantly higher in early layers for ACNs.

0 2 4 6 8 10 12
Prediction Layer

0

10

20

30

40

50

60

70

B
es

t A
cc

ur
ac

y

AC-ViT
Residual ViT

Figure 3: Performance of inter-
mediate layers of AC vs Resid-
ual Vision Transformers trained on
Imagenet-1K.

To this end, We train feedfoward (FFN), residual and auto-
compressing variants incorporated in the MLP-Mixer architec-
ture on CIFAR-10 dataset for 100 epochs. To emphasize the
role of the DG gradient in auto-compression, we also train an
ACN variant receiving gradients only from the long connections
(ACN - only DG component). In Figure 2(left), we show clas-
sification accuracy plotted against network depth (layer probing)
and observe that among ACNs, FFNs, and Residual Networks,
only ACNs exhibit auto-compression. Moreover, ACNs uti-
lizing only the direct gradient (DG) still achieve significant
auto-compression, highlighting the importance of a strong DG
component to achieve this behavior5 and explaining why FFNs
do not exhibit auto-compression, as they lack a direct gradient
term (Equation 4). In the case of Residual Networks, we pre-
viously argued that the exponential number of gradient paths
substantially diminishes the influence of the direct gradient (DG)

5ACNs with only the DG component under-perform, underpinning the importance of the NG component for
maximizing performance.

5



on the overall gradient, a component crucial for auto-compression. To further illustrate this, Figure
2(right) presents the ratio of DG to the full gradient FG across layers during training for both AC and
Residual variants. The results indicate a significantly higher DG to FG ratio in ACNs, confirming
the increased contribution of direct gradients in the early layers of auto-compressing architectures
compared to residual networks and explaining the auto-compression property. Furthermore, from
Figure 1 we observe that ACNs demonstrate a concentrated gradient pattern with stronger signals
in early layers and stronger patterns of layer-wise learning. Residual Networks exhibit a more
"uniform layer learning" pattern, whereas deeper layers show increasing gradient contribution in
later epochs, suggesting task-specific adaptation as training progresses. Interestingly, the pattern
observed in Residual Networks indicates that high gradient norms are primarily concentrated in the
early and deep layers, while middle layers receive significantly lower gradients, suggesting potential
redundancy.

4 ACNs compress more

4.1 Auto-Compressing Vision Transformers and MLP-Mixers

Next, we evaluate ACNs in the context of transformer architectures by implementing an auto-
compressing variant of Vision Transformer (ViT) [10]. We train a Vision Transformer (ViT) with
long connections (AC-ViT) from scratch on the ILSVRC-2012 ImageNet-1K, following the training
setup in the original paper. For both models we use 256 batch size due to memory constraints.
AC-ViT converges at 700 epochs, while the Residual ViT converges at 300 epochs. As shown in
Fig. 3, AC-ViT reaches top performance at only 6 layers while the vanilla ViT needs all 12 layers to
reach similar performance, effectively suggesting that ACNs can improve inference time and memory
consumption without sacrificing performance. To gain more intuition about the training dynamics
and task learning of the two variants, in Figure 1(right) we plot the incremental layer performance
contribution (difference in accuracy of subnetwork i+ 1 to subnetwork i) to track the behavior of
intermediate layers throughout training. The key observation is that ACNs are trained in a layer-wise
fashion, while the residual variant performs task-learning in the last 2-3 layers, effectively utilizing
the full network to achieve top performance.

0 2 4 6 8 10 12 14 16
Prediction Layer

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

C = 10/10
C = 5/10
C = 2/10
C = 10/10
C = 5/10
C = 2/10

Solid: AC-Mixer
Dashed: Res-Mixer

Figure 4: Performance of the intermedi-
ate layers as the number of classes (and
examples) in the CIFAR-10 dataset in-
creases from 2, to 5 to 10 classes: (a)
Residual Mixer vs (b) AC-mixer (C de-
notes the number of classes in the sub-
set).

The effect of Task Difficulty Intuitively, overparameter-
ized networks trained on easier tasks should demonstrate
higher levels of redundancy. Therefore, ACNs should con-
verge to utilizing fewer layers as task difficulty decreases.
To verify this, we use the number of classes as a proxy for
task difficulty for image classification on the CIFAR-10
dataset [27]. Specifically, we create subsets of 2, 5, and
10 classes, the assumption being that binary classification
should be easier than 10-class classification. For this exper-
iment we utilize MLP-Mixer [50] and train two variants,
the original MLP-Mixer with residual connections and the
modified MLP-Mixer with long connections (AC-Mixer).
Results are presented in Fig 4. We observe that indeed AC-
Mixer converges to solutions with larger effective depth,
as the task “difficulty” increases. Specifically, in this ex-
periment, ACN needs 8, 10 and 12 layers for the 2, 5 and
10-class classification problem, respectively. In contrast,
the Residual Mixer converges to solutions where the full
depth of the network is utilized, irrespective of the task
difficulty 6.

4.2 Auto-Compressing Encoder Architectures for Language Modeling

In this section, we conduct a preliminary study on the effectiveness of the ACN architecture in general
pre-training (masked language modeling with a BERT architecture) followed by fine-tuning. The

6The Residual Mixer was trained for 300 epochs, while AC-Mixer for 420 epochs to reach the performance
of its residual counterpart.

6



results show that ACNs learn compact representations that: 1) achieve on-par performance with the
residual architecture on transfer learning tasks, while utilizing significantly fewer parameters, and 2)
complement post-training pruning techniques, enhancing their effectiveness.

4.2.1 Masked Language Modeling and Transfer Learning with ACNs

We compare the ACN and residual architectures in the standard BERT pre-training and fine-tuning
paradigm. Using the original BERT pretraining corpus (BooksCorpus [64] and English Wikipedia),
we train both architectures to equivalent loss values; the AC-BERT variant requires two epochs vs
one epoch for the residual baseline. Following pre-training, we fine-tune both models on three GLUE
benchmark datasets [54]: SST-2 sentiment analysis [45], QQP paraphrasing, and QNLI question
answering [38]. Figure 5(left) demonstrates a key advantage of the ACN architecture: it naturally
converges to using significantly fewer layers (approximately 75% less layers) while maintaining
performance comparable to the full residual network. These results suggest promising applications
for ACNs in large language models, where pre-training could be performed with long connections,
allowing downstream tasks to adaptively utilize only the necessary subset of layers during fine-tuning.
To further enhance compression, ACNs can be combined with standard pruning techniques—a
preliminary investigation of this approach is provided in Appendix G.

5 ACNs generalize better

0 2 4 6 8 10 12
Prediction Layer

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

QNLI, AC-BERT
QNLI, Residual BERT
SST-2, AC-BERT
SST-2, Residual BERT
QQP, AC-BERT
QQP, Residual BERT

Figure 5: Downstream performance of AC-
BERT vs residual BERT on three GLUE
tasks.

While ACNs demonstrate effective parameter reduction
through architectural compression, a key question re-
mains: do these compressed representations offer ad-
ditional benefits beyond parameter efficiency? In this
section, we investigate whether the concentrated infor-
mation in ACNs’ early layers leads to improved gener-
alization capabilities compared to traditional residual ar-
chitectures. Specifically, we explore robustness to input
noise as a proxy for generalization. Moreover, we com-
pare the inherent auto-compression of ACNs—achieved
through architectural design—to recent regularization-
based methods that rely on externally imposed interme-
diate losses.

5.1 Robustness to Input Noise

Next, we present results assessing the robustness of ACNs versus residual transformer architectures to
input noise. The experiments are performed with the AC-ViT and residual ViT architectures trained
on ImageNet-1K. In this experiment, we inject increasing levels of additive Gaussian noise with
standard deviation σ = 0.1, 0.2, 0.4, and salt-and-pepper noise with percentage of altered pixels
p = 1%, 2%, 10%. Results (average accuracy) are shown in Table 2 (a) for Gaussian and (b) for salt-
and-pepper noise. We observe that ACNs display improved robustness to noise, and the performance
gap with the residual transformer increases as the noise levels increase. These results align with the
findings of [58], who showed that architectures with forward passes closer to feedforward networks
(like our ACNs) exhibit enhanced noise robustness. In residual architectures, short connections allow
noise to propagate and accumulate throughout the network, whereas the long-connection design of
ACNs helps mitigate this amplification effect.

Model Baseline Gaussian Noise Salt and Pepper Noise
w/o noise σ = 0.1 σ = 0.2 σ = 0.4 p = 0.01 p = 0.05 p = 0.1

Residual ViT 70.74 67.68 62.80 45.46 56.80 27.48 10.34
AC-ViT 70.76 69.50 64.54 51.89 59.80 36.35 19.98

Table 2: Robustness (average accuracy %) of ViT with long connections (AC-ViT) and with residual
connections (Residual ViT) to additive Gaussian noise and salt-and-pepper noise on ImageNet-1K
test set.

7



5.2 Robustness to Data Sparsity

0 20 40 60 80 100 120 140
Epochs

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

Lo
ss

Residual Mixer - Train Loss
Residual Mixer - Test Loss
AC-Mixer - Train Loss
AC-Mixer - Test Loss

Figure 6: Train and Test Loss of AC-
Mixer and Residual Mixer on CIFAR-
10 (100 samples per class).

Next, we experimentally compare the performance of residual
and long connections architectures in low-data scenarios. For
this purpose, we create a random subset of CIFAR-10 [27]
by retaining only 100 samples per class, resulting in a total
of 1000 examples. Using the same training settings and
models as described in Section 4.1 (MLP-Mixer on CIFAR-
10), we train both architectures for 150 epochs to assess
how fast the training and test loss decrease, as a proxy for
the generalization capabilities of each architecture. Results
shown in Fig. 6 reveal that ACNs achieve lower training
and test loss in fewer epochs compared to residual networks.
This faster convergence in loss metrics is a strong indication
that auto-compressing networks can be effectively utilized in
scenarios with limited data.

6 ACNs forget less

Continual learning involves training models on a sequence of tasks without access to past data,
aiming to retain performance on previous tasks while learning new ones [8, 55]. A central challenge
in CL is catastrophic forgetting—the tendency of neural networks to overwrite old knowledge
when updated with new data. Common approaches include data replay methods [39, 33] and
regularization techniques that penalize changes to important parameters [26, 61, 2]. We’ve already
demonstrated that ACNs, through implicit layer-wise training, dynamically allocate parameters based
on task demands while preserving redundant parameters for future tasks. Conversely, Residual
Networks optimized for efficient task learning risk overfitting and suboptimal parameter usage in
these sequential learning settings. To test our claims, we evaluate both architectures on the split
CIFAR-100 continual learning benchmark, comprising 20 sequential disjoint 5-class classification
tasks, focusing on task-incremental learning [51] where task identity is known. We utilize MLP-
Mixer architectures (hyperparameters in Appendix B) and we test two continual learning algorithms
trained for 10 epochs for each task: naive fine-tuning (Naive FT) and Synaptic Intelligence (SI) [61],
which adds a gradient-based regularizer to each parameter depending on how changes in it affect the
total loss in a task over the training trajectory. Across experiments, we report Average Forgetting,
defined as the mean difference between a task’s best performance (right after it is learned) and its
final performance after all tasks are learned, and Average Accuracy, defined as the mean accuracy
over all tasks at the end of training. We expect gradient-based regularization methods to perform
particularly well with ACNs since unused, redundant parameters receive small gradients, making their
detection easier compared to Residual Networks where gradients are more uniformly distributed (see
gradient heatmaps, Fig. 1(left)). Results in Table 3 confirm our intuition: ACNs consistently exhibit
significantly less forgetting (up to 18% improvement) compared to Residual Networks. Notably, with
SI, increasing ACN depth decreases forgetting—an ideal behavior for CL systems where increasing
network capacity reduces forgetting—while Residual Networks show the opposite pattern, indicating
potential overfitting. ACNs also achieve better average accuracy across all tasks, further establishing
them as a more suitable architecture for continual learning.

Avg. Accuracy (%) ↑ Avg. Forgetting (%) ↓

Method Arch L = 5 L = 10 L = 15 L = 5 L = 10 L = 15

Naive FT AC-Mixer 32.97 ± 2.4 32.94 ± 5.3 31.61 ± 2.2 46.55 ± 2.2 45.46 ± 5.8 46.91 ± 2.4
ResMixer 31.77 ± 1.8 28.16 ± 1 26.14 ± 2.3 52.76 ± 2.3 54.89 ± 1.6 54.49 ± 2.2

SI AC-Mixer 44.5 ± 2.2 46.1 ± 1.3 46.2 ± 0.8 35.7 ± 2.1 33.8 ± 0.4 32 ± 1.8
ResMixer 43.47 ± 3.1 36.1 ± 5 32.1 ± 0.8 42.4 ± 4.1 44.6 ± 3.7 50 ± 2.1

Table 3: Average accuracy and forgetting across layers, methods, and architectures on the Split
CIFAR-100 continual learning benchmark. Models are trained for 10 epochs per task, where each
task consists of classifying 5 out of 100 classes presented sequentially. L denotes the number of
layers in the architecture. ACNs consistently forget less and they also do not waste capacity.

8



7 ACNs transfer better

Parameter redundancy, and specifically potential layer redundancy, in residual architectures is a
phenomenon that has been well documented [1, 53, 23]. Recent works [13, 24] have attempted
to address this through regularization-based layer-wise compression techniques during training,
specifically by adding losses to all intermediate layers of the network and using a weighted sum
of them as the total loss, a technique formally introduced in [31] for improved training. Such loss-
based regularization methods rely heavily on precise tuning of intermediate loss weights, creating
practical challenges. If early-layer loss weights are set too high, the network risks overfitting and poor
generalization; if set too low, performance improves gradually across layers with no clear cutoff point,
reaching optimal results only at the final layer. This sensitivity to hyperparameter selection makes it
difficult to reliably identify an optimal depth for inference using loss-based regularization. ACNs
address this challenge through architectural design rather than regularization, naturally compressing
information without requiring complex hyperparameter tuning.

Method Accuracy (%)

AC-Mixer 85.38 ±0.7
Aligned 82.9 ±0.9
LayerSkip 79 ±1.2

Table 4: C-100 to C-10 transfer learning per-
formance of ACNs vs recent regularization-
based layer copression approaches.

To evaluate whether different layer compression ap-
proaches learn generalizable representations, we con-
duct a transfer learning experiment from CIFAR-100
to CIFAR-10 [27] using MLP-Mixer architectures
(for hyperparameter choices we refer to Appendix
B). This setup allows us to assess how well each
model’s learned representations transfer to a similar
task. In regularization-based layer compression meth-
ods, explicitly training all layers to directly minimize
a task loss through intermediate supervision can lead
to overfitting on the base task, which can further re-
sult in weaker transfer capabilities on downstream tasks. In contrast, ACNs’ implicit compression
mechanism naturally balances generalizability and task performance without imposing external
constraints. To ensure fair comparison, we train all models to achieve comparable performance
on the CIFAR-100 pre-training task, enabling direct assessment of their transfer capabilities to
CIFAR-10. The results in Table 4 confirm our analysis: ACNs demonstrate superior performance
on the downstream CIFAR-10 task compared to regularization-based methods, even when upstream
CIFAR-100 task performance is similar. This confirms our claim that the representations learned by
ACNs are more generalizable and thus exhibit greater transferability.

8 Conclusion

In this work, we introduced Auto-Compressing Networks (ACNs), an architectural design that
organically compresses information into early layers of a neural network during training via long
skip connections from each layer to the output, a property we coined as auto-compression. Unlike
residual networks, ACNs do not require explicit compression objectives or regularization; instead,
they leverage architectural design and gradient-based optimization to induce implicit layer-wise
training dynamics that drive auto-compression.

Our theoretical and empirical analyses demonstrate that ACNs alter gradient flow, imposing implicit
layer-wise training dynamics and resulting in distinct representations compared to feedforward and
residual architectures. In practice, this leads to 30–80% of upper layers becoming effectively redun-
dant, enabling faster inference and reduced memory usage without sacrificing accuracy. Experiments
across diverse modalities (vision, language) and architectures (ViTs, Mixers, BERT) further show that
ACNs match or outperform residual baselines, while offering greater robustness to noise and low-data
regimes, excelling in transfer learning, and reducing catastrophic forgetting by up to 18%—all
without specialized tuning, overall suggesting that they learn better representations despite using
fewer parameters. A summary of the main results is shown in Table 6. Another practical advantage of
the auto-compression property of ACNs is its potential to enhance or complement other compression
and efficient inference techniques. Preliminary results demonstrating this synergy are presented in
Appendices G and H.

Concluding, ACNs highlight the potential of architectural design as implicit regularization and pave
the way toward self-adapting neural networks that allocate depth and capacity dynamically. Future

9



work may extend ACNs to self-supervised, multi-task, and generative settings, as well as explore
per-sample adaptive inference and other short vs long architectural variants. Some initial

9 Limitations and Broader Impact

Due to resource constraints, our evaluation of ACNs was limited to relatively small-scale tasks,
though the architecture consistently performed well across modalities, datasets, and state-of-the-art
baselines. Broader validation—including large-scale, self-supervised, and multi-task settings (e.g.,
language or multimodal models)—is essential to fully understand its capabilities and boundaries.
A notable limitation is the increased training time compared to residual architectures. While this
may contribute to stronger representations, optimizing training efficiency remains an open challenge,
warranting further exploration of scheduling and initialization strategies.

By enabling implicit layer pruning, ACNs aim to reduce inference-time resource use, supporting
more sustainable AI. Long-term, this could inspire adaptive architectures with System 1 / System 2
behavior [25], dynamically adjusting depth based on task complexity. However, like all efficiency
advances, broader deployment may introduce ethical concerns—such as misuse in low-regulation
environments or privacy-sensitive applications—highlighting the need for responsible development
and oversight.

10 Acknowledgments and funding disclosure

This work has been partially supported by project MIS-5154714 of the National Recovery and
Resilience Plan Greece 2.0 funded by the EU under the NextGenerationEU Program. We acknowledge
EuroHPC JU project ID EHPC-AI-2024-A04-051 for use of the supercomputer LEONARDO@
CINECA, Italy.

G. Paraskevopoulos was funded by the European Union’s Horizon Europe research and innovation
programme under the AIXPERT project (Grant Agreement No. 101214389).

References
[1] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier

probes. arXiv preprint arXiv:1610.01644, 2016.

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
conference on computer vision (ECCV), pages 139–154, 2018.

[3] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial
Intelligence, pages 1352–1361. PMLR, 2021.

[4] Yu Bai, J. Zico Kolter, and Vladlen Koltun. Understanding the low-rank bias of deep neural
networks. In International Conference on Learning Representations, 2021.

[5] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian
McWilliams. The shattered gradients problem: If resnets are the answer, then what is the
question? In International conference on machine learning, pages 342–350. PMLR, 2017.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[7] Róbert Csordás, Christopher D Manning, and Christopher Potts. Do language models use their
depth efficiently? arXiv preprint arXiv:2505.13898, 2025.

10



[8] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in
classification tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–
3385, 2021.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[11] Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and Tong Zhang. Exploiting deep
representations for neural machine translation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 4253–4262, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics.

[12] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), page 12622–12642. Association for Computational Linguistics, 2024.

[13] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling
early exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

[14] Muhammad ElNokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A
layer fusion method for data-efficient classification. arXiv preprint arXiv:2209.15168, 2022.

[15] Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances
in neural information processing systems, 2, 1989.

[16] Kirsten Fischer, David Dahmen, and Moritz Helias. Field theory for optimal signal propagation
in resnets. arXiv preprint arXiv:2305.07715, 2023.

[17] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

[18] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The
unreasonable ineffectiveness of the deeper layers. In The Thirteenth International Conference
on Learning Representations, 2025.

[19] Suriya Gunasekar, Jason Lee, Tong Zhang, and Behnam Neyshabur. Implicit bias of gradient
descent on wide deep networks. In Advances in Neural Information Processing Systems, 2018.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Multi-scale dense networks for resource efficient image classification. In International
Conference on Learning Representations, 2017.

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[23] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 646–661. Springer, 2016.

11



[24] Jiachen Jiang, Jinxin Zhou, and Zhihui Zhu. Tracing representation progression: Analyzing
and enhancing layer-wise similarity. In The Thirteenth International Conference on Learning
Representations, 2025.

[25] Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

[26] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[29] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural
networks without residuals. In International Conference on Learning Representations, 2017.

[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[31] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial intelligence and statistics, pages 562–570. Pmlr, 2015.

[32] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[33] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[35] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances
in neural information processing systems, 29, 2016.

[36] Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. In International
Conference on Learning Representations, 2018.

[37] Matteo Pagliardini, Amirkeivan Mohtashami, François Fleuret, and Martin Jaggi. Denseformer:
Enhancing information flow in transformers via depth weighted averaging. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[38] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras,
editors, Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, Austin, Texas, November 2016. Association for Computational
Linguistics.

[39] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[40] Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise:
the dynamics of learning with feedback alignment. In International Conference on Machine
Learning, pages 8925–8935. PMLR, 2021.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[42] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Advances in neural information processing systems, 33:20378–20389, 2020.

12



[43] Pedro HP Savarese, Leonardo O Mazza, and Daniel R Figueiredo. Learning identity mappings
with residual gates. arXiv preprint arXiv:1611.01260, 2016.

[44] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling, 2022.

[45] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and
Steven Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

[47] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

[48] Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 25219–25227,
2025.

[49] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition (ICPR), pages 2464–2469. IEEE, 2016.

[50] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-
mixer: An all-mlp architecture for vision. Advances in neural information processing systems,
34:24261–24272, 2021.

[51] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[52] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[53] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles
of relatively shallow networks. Advances in neural information processing systems, 29, 2016.

[54] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Tal Linzen, Grzegorz Chrupała, and Afra Alishahi, editors, Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
Brussels, Belgium, November 2018. Association for Computational Linguistics.

[55] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[56] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet: Learning
dynamic routing in convolutional networks. In The European Conference on Computer Vision
(ECCV), September 2018.

[57] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen
Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[58] Zonghan Yang, Yang Liu, Chenglong Bao, and Zuoqiang Shi. Interpolation between residual and
non-residual networks. In International Conference on Machine Learning, pages 10736–10745.
PMLR, 2020.

13



[59] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2403–
2412, 2018.

[60] Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak Shah. Norm-preservation: Why residual
networks can become extremely deep? IEEE transactions on pattern analysis and machine
intelligence, 43(11):3980–3990, 2020.

[61] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International conference on machine learning, pages 3987–3995. PMLR, 2017.

[62] Xiao Zhang, Ruoxi Jiang, William Gao, Rebecca Willett, and Michael Maire. Residual connec-
tions harm generative representation learning. arXiv preprint arXiv:2404.10947, 2024.

[63] Defa Zhu, Hongzhi Huang, Zihao Huang, Yutao Zeng, Yunyao Mao, Banggu Wu, Qiyang Min,
and Xun Zhou. Hyper-connections. In The Thirteenth International Conference on Learning
Representations, 2025.

[64] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main scope/contribution of the paper that is stated in the abstract and intro-
duction is the introduction of an alternative to residual networks architecture, theoretically
and empirically analyzed throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a "Limitations" Section in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

14



• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: In our theoretical results we provide assumptions (aka 1d linear analysis of
gradient equations) and analytical derivations can be found in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly describe experiments and evaluation setup and we further provide
all experimental details in the Appendix. Moreover, we provide an anonymous link where
code for the paper will be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may

15



be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an anonymous link where code for the paper will be released.
Datasets used in the paper are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Justification: In the main paper we discuss core details regarding experiments and in the
Appendix we report detailed choices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: We report average accuracy where applicable (e.g., noise experiments), and
include mean metrics with standard deviation in continual learning settings where variability
is significant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments are small-scale but we consistently report training epochs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

17



Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

We conform to the NeurIPS Code of Ethics. We clearly describe our methods, include
details to reproduce them and plan to release our code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a "Broader Impact" section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[Yes]

Justification: We do not release new data and we train small-scale discriminative models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

18

https://neurips.cc/public/EthicsGuidelines


• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We check the license and cite models and datasets we use in the experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We train small reproducible models with public data and explain in detail our
setups. We do not introduce major assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: not invloved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets


• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: not involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used for grammar and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


Technical Appendices and Supplementary Material

A Extended Literature Review

We present here an extended literature review across four key areas relevant to our work: 1) residual
connections and their role in training stability, 2) architectural variants with longer/denser residual
connections, 3) methods that employ intermediate layer losses to learn better representations and exit
early, and 4) neural architectures that induce regularization and better representations. Our work is
more closely related to research area 4, but it is important to note that training stability, efficiency,
performance, and representation learning are related goals, which can be achieved either through
architectural choices (1, 2, 4) and / or through additional optimization criteria (3).

Residual Connections and Training Stability: Training deep neural networks with gradient descent
becomes increasingly difficult as network depth increases. Multipath network architectures date
back to the 1980s, with early work exploring cascade structures in fully connected networks trained
layer by layer to improve training stability [15]. Highway networks [47] introduced gated bypass
paths that allowed for effective training of networks with hundreds of layers. [20] found that deeper
convolutional neural networks (CNNs) not only suffer from a decrease in generalization performance,
often due to overfitting, but also experience a decrease in training performance. To address this, they
introduced residual connections (or identity mappings), proposing that learning residual functions
relative to identity mappings simplifies optimization. These skip connections improve the training
process and often improve performance ([5], [36], [60], [32]). [53] further argued that a residual
network with n layers can be viewed as a collection of 2n paths of varying length. At each layer,
the signal either skips the layer or passes through it, creating 2n possible paths. Despite sharing
weights, these paths function as an ensemble of networks, as confirmed by experiments. In contrast, a
traditional deep feedforward network has only one path, so removing any random layer significantly
degrades performance. Additionally, the authors showed that these paths are typically shallow, with
backward gradients often vanishing after passing through only a small fraction of the total layers.

Residual Variants: Following the success of residual networks various architectural modifications
were proposed to improve efficiency and performance. In DenseNets [22], each layer is connected to
all subsequent layers enabling for more efficient feature reuse; fusion is achieved through concatena-
tion rather than addition. More recently, DenseFormer [37] introduced learned weighted averaging
across layer outputs, while Depth-Wise Attention [14] applies attention mechanisms across block
outputs.

Intermediate Supervision and Early Exit: In deeply supervised nets [31], complementary objec-
tives are added to all intermediate layers to encourage hidden layers to learn more discriminative
representations. In this approach, each intermediate objective i is a loss function that captures the
classification error of an SVM trained on the output features of layer i. The overall loss is the
sum of the intermediate and final objectives. This idea evolved in several directions: Graves [17]
proposed adaptive computation time, while more recent work like MSDNet [21] and CALM [44]
introduced dedicated prediction heads. Other approaches employ trainable routing mechanisms
[56, 57] to determine layer usage. Concurrent to our work, LayerSkip [12] proposes an architecture
similar to ACNs, focusing primarily on inference acceleration through layer dropout and early exit
mechanisms. Additionally, [24] also incorporates intermediate losses with a common head and a
linearly increasing weight curriculum, justifying it through the lens of representational similarity
between intermediate layers. While these approaches rely on explicit auxiliary objectives or dedicated
components, our work achieves similar benefits through architectural design alone, enabling natural
depth determination through gradient-based optimization.

Architecturally-induced regularization and representation learning: Stochastic regularization
methods like Dropout [46] and its variants demonstrated that randomly dropping connections during
training can lead to more robust feature learning. This insight was extended to other structural
approaches like Stochastic Depth [23] where randomly dropping entire layers improved generalization.
Residual connections initially proposed to address the vanishing gradient problem [20] have been
shown to contribute to smoother loss landscapes and improved generalization [32]. These findings
align with theoretical work showing that architectural choices impose implicit biases that influence the
solutions found during training [19]. Recent work on transformers shows that architectural choices
like attention patterns and layer normalization can also induce implicit regularization effects, e.g., the
combination of skip connections and layer normalization can bias the model toward low-rank solutions

21



[4]. The proposed long connection approach builds on these insights, using architectural design
to naturally encourage the learning of robust representation while enabling automatic information
compression allowing for early exit.

B Experimental Details and Setup

CIFAR-10 - MLP Mixer: The MLP Mixers have 16 layers with a hidden size of 128. The patch
size is 4 (the input is 32x32, 3 channels). The MLP dimension DC is 512, while DS is 64. We are
using the AdamW optimizer [34] with a maximum learning rate of 0.001 and a Cosine Scheduler
with Warmup. The batch size is 64.

BERT post-training pruning: For Magnitude pruning, we consider the setting where the pruning
happens after fine-tuning on the downstream task. For Movement pruning, we follow a gradual
fine-tune and prune curriculum, where in setting (I): 20% of the parameters are pruned after each
epoch, whereas in setting (II): we prune 40% of the parameters after an epoch.

Continual Learning Experiments: We are using the same MLP-Mixer setup with the CIFAR-10
experiment (see above). We train for 10 epochs in each task, using AdamW with learning rate of
0.001 and a batch size of 64. For Synaptic Intelligence we use a coefficient λ = 1.

Transfer Learning experiment Hyperparameter Choices: In our main paper experiment we
compare: 1) our proposed AC-Mixer, 2) a Residual Mixer with the setup of [24] (Aligned) and 3)
a Residual Mixer with the setup of [13] (LayerSkip), with the rotational early exit curriculum with
pmax = 0.1, escale = 0.2.

C Gradient Propagation equations derivation

Notation: xi is the output of layer i, wi is the weight of layer i (the weight used to construct xi),
x0 is the input (after a potential initial embedding operation) and yF , yR, yA is the output for each
architecture.

FFN forward pass

yF (= xL) =

L∏
i=1

wix0 (2)

FFN backward pass for weight i

∂yF
∂wi

=
∂yF
∂xi

∂xi

∂wi
(3)

∂yF
∂wi

=

(
L∏

k=i+1

wk

)
︸ ︷︷ ︸

backward term

(
i−1∏
m=1

wm

)
︸ ︷︷ ︸

forward term

x0 (4)

ResNet forward pass

xi = wixi−1 + xi−1 = (1 + wi)xi−1 (5)

yR =

L∏
i=1

(1 + wi)x0 (6)

ResNet backward pass for weight i

∂yR
∂wi

=
∂yR
∂xi

∂xi

∂wi
=

(
L∏

k=i+1

(1 + wk)

) (
i−1∏
m=1

(1 + wm)

)
x0 (7)

22



∂yR
∂wi

=

1 +

L∑
k=i+1

wk +
∑

i+1≤k<j≤L

wkwj + · · ·+
L∏

k=i+1

wk


︸ ︷︷ ︸

backward term

(
i−1∏
m=1

(1 + wm)

)
︸ ︷︷ ︸

forward term

x0 (8)

or equivalently:

∂yR
∂wi

=

(
1 +

L−i+1∑
k=1

sum of
(
L− i+ 1

k

)
w k-tuples

)
︸ ︷︷ ︸

backward term

(
i−1∏
m=1

(1 + wm)

)
︸ ︷︷ ︸

forward term

x0 (9)

ACN forward pass

yA = x0 +

L∑
i=1

xi = x0 +

L∑
i=1

i∏
j=1

wjx0 (10)

ACN backward pass for weight i

∂yA
∂wi

=
∂yA
∂xi

∂xi

∂wi
=

(
1 +

L∑
k=i+1

∂xk

∂xi

)
xi−1 (11)

∂yA
∂wi

=

1 +

L∑
j=i+1

j∏
k=i+1

wk


︸ ︷︷ ︸

backward term

(
i−1∏
m=1

wm

)
︸ ︷︷ ︸

forward term

x0 (12)

D Analysis of the Connectivity across architectures

Here, we further clarify the shown connections on Table 1. The red connections shown for ResNet
connectivity, show the implicit direct connections (paths) that are formed in the architecture through
the residual summation. Specifically, we denote:

• z0 = x0

• zi−1: input to layer i (for i > 0), which is multiplied with wi to get:

• xi = wi · zi−1: output of layer i before residual summation

• zi = zi−1 + xi: output of layer i after residual summation, or equivalently, input to layer
i+ 1

In our case, we want to express the input to the final layer z2, which is:

z0 = x0

z1 = x1 + z0 = x1 + x0

z2 = x2 + z1 = x2 + x1 + x0

Thus, we see that the residual summation zi = zi−1 + xi effectively results in each layer i receiving
as input (zi) a cumulative sum of all previous layer outputs (x∗). In standard feedforward networks
(FFNs), each layer directly receives input only from the immediate previous layer. In contrast, in
ACNs, intermediate layers behave like those in FFNs, but the final layer receives as input the outputs
of all preceding layers.

23



E Comparisons with Other Residual Architectures

To address concerns of overfitting and ensure fair comparisons in terms of training time, we hypoth-
esize that ACNs tend to train longer due to a reduced number of information pathways compared
to residual architectures (which scale linearly vs. exponentially in terms of connectivity). However,
rather than overfitting, we argue that ACNs utilize this extended training period to learn more robust
and generalizable representations.

To verify this, we conducted a controlled experiment using various architectures in the MLP-Mixer
setting on CIFAR-10, training all models for 700 epochs to ensure fair comparison. The evaluated
models include:

• AC-Mixer: An auto-compressing (ACN-style) Mixer,
• Res-Mixer: A vanilla residual Mixer,
• DenseNet-Mixer: A DenseNet-style variant [22], where each layer receives as input the

concatenation of all previous layers’ outputs, projected back to the hidden dimension via
a learnable projection matrix. In order to have similar parameter count with the other
architectures (since this architecture introduces additional parameters growing with depth),
we reduce the number of layers to 10 (compared to 16 in the other models), and

• DenseFormer-Mixer: A DenseFormer-style variant [37], where each layer receives a
learnable linear combination of all previous layers’ outputs, with one scalar weight per
previous layer (O(L2) extra parameters).

We report: (1) Accuracy, (2) Best Acc. Epoch — the epoch at which this peak accuracy was reached;
and (3) Cutoff Layer — the earliest layer whose output reaches comparable performance to the final
output, to measure auto-compression.

Model Accuracy %Network used Best Acc. Epoch
Res-Mixer 90.3 ± 0.09 100% 615
DenseNet-Mixer 90.3 ± 0.10 100% 600
DenseFormer-Mixer 90.4 ± 0.09 100% 637
AC-Mixer 92.0 ± 0.08 75% 695

Table 5: Performance comparison across AC and residual variants on the MLP-Mixer/CIFAR-10
experiment. AC-Mixer converges slower but achieves the highest accuracy (improved generalization)
with an earlier cutoff layer, showcasing stronger auto-compression.

The results in Table 5 show that AC-Mixer converges more slowly than residual variants but leverages
the extended training to learn more compact and generalizable representations. Unlike residual
and densely connected variants, which reach peak performance earlier, AC-Mixer achieves higher
accuracy with fewer effective layers (earlier cutoff) and without signs of overfitting but rather stronger
generalization, supporting our hypothesis.

F Summary of Results

Table 6 presents the main results comparing residual (Res-) and auto-compressing (AC-) variants
across both vision and language tasks. We observe that ACN variants consistently achieve comparable
or superior accuracy while requiring significantly fewer parameters, lower computational cost at
inference, and reduced storage requirements. These findings highlight the efficiency and scalability
of the AC design, making it a strong alternative to traditional residual architectures.

G Post-Training Pruning with AC-Encoders

ACN’s primary advantage lies in its inherent compression capabilities during training, suggesting
that when combined with pruning techniques, it should significantly outperform traditional residual
architectures. To provide validation for this hypothesis, we conducted experiments using magnitude

24



Model Accuracy ↑ #Params ↓ GFLOPs ↓ Size (MB) ↓
Res-ViT on ImageNet 70.74 ± 0.09 86M 33.7 330
AC-ViT on ImageNet 70.76 ± 0.12 51M 19.7 195

Res-BERT on SST-2 86.63 ± 0.09 110M 21.72 418
AC-BERT on SST-2 86.68 ± 0.06 46M 5.44 174

Res-BERT on QNLI 83.14 ± 0.07 110M 21.72 418
AC-BERT on QNLI 83.07 ± 0.10 46M 5.44 174

Res-BERT on QQP 87.20 ± 0.09 110M 21.72 418
AC-BERT on QQP 87.30 ± 0.07 46M 5.44 174

Table 6: Comparison of residual (Res-) and auto-compressing (AC-) variants across both vision and
language tasks.

and movement pruning [42], two commonly employed baseline pruning techniques. Results are
shown when fine-tuning of the SST-2 dataset sentiment analysis task. We refer to Appendix B for
details regarding the experimental setup. Figure 7(right) confirms our hypothesis: ACNs consistently
demonstrate superior compression-performance trade-offs compared to standard architectures, with
their advantage becoming more pronounced at higher compression rates. This indicates that ACNs’
architectural design naturally leads to more efficient parameter utilization, creating representations
that are inherently more amenable to further pruning. While these preliminary results validate our
approach to addressing parameter redundancy, they also point toward promising future directions. We
anticipate that combining pre-trained ACN architectures with state-of-the-art pruning methods will
result in extremely efficient, high-performing models, though rigorous validation of this hypothesis
requires further investigation.

40 50 60 70 80 90 100 110
#Params (M)

55

60

65

70

75

80

85

Ac
cu

ra
cy

MagPrun - AC-BERT
MagPrun - Residual BERT
MovPrun (I) - AC-BERT
MovPrun (I) - Residual BERT
MovPrun (II) - AC-BERT
MovPrun (II) - Residual BERT

Figure 7: Accuracy vs model size of AC-BERT and Residual BERT on SST-2 when pruned with
Magnitude and Movement Pruning (with two different settings, refer to Appendix B for details).

H Relation to Early Exit (EE) Methods

In this section, we explore the relationship between ACNs and Early Exit (EE) methods. While
both aim to improve computational efficiency, ACNs are fundamentally different in their approach.
Traditional EE methods are training-time strategies that rely on explicit intermediate supervision,
whereas ACNs are architectural designs that achieve similar benefits implicitly, without auxiliary

25



losses or supervision. Importantly, these approaches are complementary: ACNs can be combined
with EE techniques to further enhance both efficiency and flexibility.

Overview of EE Methods. Early Exit methods (e.g., BranchyNet [49]) typically:

1. Introduce explicit losses at intermediate layers to encourage early discriminative features.
2. Train using a weighted combination of intermediate and final losses.
3. Use confidence-based criteria (e.g., entropy) at inference to decide whether to exit early.

This line of work, originating from Deep Supervision [31], introduces several hyperparameters—such
as loss weights—that require careful tuning. This tuning is crucial for the final behavior of the
network since overemphasizing early-layer losses can lead to overfitting, as early layers are pushed to
achieve low training loss.

In contrast, ACNs do not use any intermediate losses or auxiliary heads. They are trained end-to-
end like standard feedforward or residual networks. Nevertheless, ACNs naturally produce more
informative intermediate representations due to their implicit layer-wise compression dynamics.
As demonstrated in Section 7, adding intermediate supervision to residual networks requires deli-
cate balancing to avoid overfitting, while ACNs generalize more robustly—particularly in transfer
settings—without any such tuning, thanks to their architectural regularization.

ACNs complement EE methods. Given that ACNs naturally concentrate discriminative information
in earlier layers, they are well-suited for integration with EE mechanisms. To validate this, we
conducted experiments on CIFAR-10 using MLP-Mixer variants, comparing six configurations:

• Res-Mixer: Standard residual MLP-Mixer,
• AC-Mixer: auto-compressing MLP-Mixer,
• Res-Mixer w/ Branches: Explicit early-exit branches at layers 4, 8, and 12, each with a

dedicated MLP classifier,
• AC-Mixer w/ Branches: Same branching structure applied to the AC-Mixer,
• Res-Mixer w/ Shared EE Head: All layers connect to a shared classifier head, following

recent works [24, 13], allowing exit decisions without additional parameters, and
• AC-Mixer w/ Shared EE Head: Same shared-head mechanism applied to the AC-Mixer.

For the Branches method, we use fixed weights [0.8, 0.6, 0.4] for the three intermediate branches.
In contrast, the Shared EE Head employs a linearly increasing layer weighting scheme, as in [24],
defined by:

wl =
2(l + 1)

L(L+ 1)
, for l = 0, 1, . . . , L− 1.

During inference, we compute the entropy of the logits at each potential exit point. If the entropy falls
below a pre-defined threshold (τ = 0.7 for the results below), the model exits at that layer. Inference
speedup is measured in terms of FLOPs, normalized to the baseline Res-Mixer.

Model Speedup (FLOPs)
Res-Mixer 1.0×
AC-Mixer (global cutoff at L = 12) 1.5×
Res-Mixer w/ Branches 2.2×
AC-Mixer w/ Branches 2.6×
Res-Mixer w/ Shared EE Head 2.4×
AC-Mixer w/ Shared EE Head 3.3×

Table 7: Inference speedup (measured in FLOPs) of various Early Exit configurations on CIFAR-10
using MLP-Mixer variants. All values are normalized to the FLOPs of the full Res-Mixer.

The results (Table 7) confirm that ACNs substantially improve the effectiveness of EE methods. When
combined with a shared early-exit head, the AC-Mixer achieves the highest speedup—more than

26



3×—benefiting from both implicit compression and confident early exits. This synergy highlights
the strength of ACNs as a foundation for efficient inference.

We also draw a parallel between this behavior and the compatibility of ACNs with pruning methods
(see Appendix G): in both cases, the compact representations of ACNs, through auto-compression,
facilitate downstream efficiency techniques. Developing new early-exit strategies tailored to ACNs is
a promising direction for future work.

27


	Introduction
	Auto-Compressing Networks
	Gradient Propagation Across Network Architectures
	Emergent Gradient Paths

	ACNs in Practice: Information Compression and Gradient Flow
	ACNs compress more
	Auto-Compressing Vision Transformers and MLP-Mixers
	Auto-Compressing Encoder Architectures for Language Modeling
	Masked Language Modeling and Transfer Learning with ACNs


	ACNs generalize better
	Robustness to Input Noise
	Robustness to Data Sparsity

	ACNs forget less
	ACNs transfer better
	Conclusion
	Limitations and Broader Impact
	Acknowledgments and funding disclosure
	Extended Literature Review
	Experimental Details and Setup 
	Gradient Propagation equations derivation
	Analysis of the Connectivity across architectures
	Comparisons with Other Residual Architectures
	Summary of Results
	Post-Training Pruning with AC-Encoders
	Relation to Early Exit (EE) Methods

