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ABSTRACT

While zero-shot diffusion-based compression methods have seen significant
progress in recent years, they remain notoriously slow and computationally de-
manding. This paper presents an efficient zero-shot diffusion-based compres-
sion method that runs substantially faster than existing methods, while maintain-
ing performance that is on par with the state-of-the-art techniques. Our method
builds upon the recently proposed Denoising Diffusion Codebook Models (DD-
CMs) compression scheme. Specifically, DDCM compresses an image by se-
quentially choosing the diffusion noise vectors from reproducible random code-
books, guiding the denoiser’s output to reconstruct the target image. We modify
this framework with Turbo-DDCM, which efficiently combines a large number
of noise vectors at each denoising step, thereby significantly reducing the num-
ber of required denoising operations. This modification is also coupled with an
improved encoding protocol. Furthermore, we introduce two flexible variants of
Turbo-DDCM, a priority-aware variant that prioritizes user-specified regions and
a distortion-controlled variant that compresses an image based on a target PSNR
rather than a target BPP. Comprehensive experiments position Turbo-DDCM as a
compelling, practical, and flexible image compression scheme. Code is available
on our project’s webpage.

1 INTRODUCTION

The field of image compression has witnessed a shift towards neural-based approaches in recent
years (Ballé et al., 2017; Toderici et al., 2017; Li & Ji, 2020), and more recently to methods that rely
on diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). In particular,
diffusion models have been utilized for image compression by training dedicated models (Ghouse
et al., 2023; Yang & Mandt, 2023), by fine-tuning existing models (Careil et al., 2024), or by using
them in a zero-shot manner (Theis et al., 2022; Elata et al., 2024; Ohayon et al., 2025; Vonderfecht
& Liu, 2025). In principle, zero-shot methods are appealing because they enable the same diffusion
backbone to be shared across multiple tasks (such as compression, restoration, editing, generation,
etc.), thereby allowing all tasks to benefit simultaneously from improvements to the shared back-
bone. However, existing zero-shot diffusion compression methods remain impractical due to their
high computational demands, which result in slow inference. Ranging from approximately 10 sec-
onds (achieved using a custom CUDA kernel (Vonderfecht & Liu, 2025)) to several minutes (Elata
et al., 2024) for compressing and decompressing a single image, these slow inference times make
zero-shot diffusion compression methods less compelling compared to training-based methods that
operate much faster.

This work presents Turbo-DDCM, a fast and practical zero-shot diffusion-based compression
method. It achieves a round-trip compression-decompression time of 1.8 seconds per image without
custom hardware-specific optimizations, while maintaining competitive performance to state-of-the-
art approaches. Our method extends Denoising Diffusion Codebook Model (DDCM) (Ohayon et al.,
2025), a recently proposed zero-shot diffusion-based compression method that demonstrated state-
of-the-art results. Specifically, DDCM compresses a target image by carefully selecting noise vec-
tors during the generative diffusion process, in a manner that minimizes the denoising error between
the target image and the denoiser’s output at each step. Importantly, each noise vector is picked
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Original
0.095 BPP | > 300 sec

PSC
0.141 BPP | 78 sec

DDCM
0.138 BPP | 21 sec

DiffC
0.138 BPP | 2.5 sec

Turbo DDCM

0.0075 BPP | > 300 sec 0.0076 BPP | 37 sec 0.0075 BPP | 4 sec

baseline
Priority
Aware

0.0075 BPP | 1.3 sec

Figure 1: Turbo-DDCM: Our method provides reconstructions with equal or better fidelity com-
pared to previous methods, while being much faster. At the same BPP and runtime, the priority-
aware variant (bottom-right) better serves key regions of choice.

from a reproducible Gaussian codebook, implying that the final generated image can be efficiently
stored/transmitted by storing/transmitting the indices of the selected noise vectors. While such a
simple compression mechanism works surprisingly well, it requires hundreds of denoising steps
to achieve sufficient reconstruction quality, which results in an average round-trip compression-
decompression time of 65 seconds. Our proposed Turbo-DDCM compression method accelerates
this process by significantly reducing the required number of denoising steps to just a few dozen.
In particular, Turbo-DDCM combines a large number of noise vectors at each DDCM step by solv-
ing a sparse least-squares optimization problem in closed form, leveraging the near-orthogonality
of Gaussian codebook vectors in high-dimensional spaces. While Ohayon et al. (2025) proposed a
seemingly similar approach that utilizes a matching pursuit (MP) strategy (Mallat & Zhang, 1993),
their method relies on a greedy iterative process based on convex combinations and an exhaustive
search. As a result, the scalability of this approach is limited due to runtime constraints. In contrast,
our solution for combining codebook noise vectors is significantly faster and more computation-
ally efficient. Specifically, it achieves orders of magnitude faster runtime compared to the method
proposed by Ohayon et al. (2025), while producing equivalent results (see App. D for theoretical
justifications and empirical evaluations). Indeed, we show that the high scalability of our noise
combination strategy enables a 92% reduction in the number of required diffusion steps. Beyond
efficiency, we also propose a new bit-coding protocol for effective encoding of the indices of the
selected noise vectors. These contributions establish Turbo-DDCM as competitive with existing
zero-shot methods in terms of reconstruction quality, while achieving dramatically lower runtime
(see example in Fig. 1).

Finally, we introduce two flexible variants of Turbo-DDCM. The first supports priority-aware com-
pression (Li et al., 2023; Xu et al., 2025), which allows allocating more bits to arbitrarily shaped
user-specified regions in the target image to improve reconstruction quality in those regions (see
Fig. 1 for an example). The second variant targets a user-specified PSNR rather than a fixed bitrate.
This is useful since, at a fixed bitrate, Turbo-DDCM and alternative zero-shot methods yield highly
variable distortion across images. To the best of our knowledge, our work is the first to incorporate
such capabilities into a zero-shot diffusion-based compression method.

To summarize, this paper introduces Turbo-DDCM – a novel and highly efficient diffusion-based
image compression algorithm, with the following features:

• Zero-shot: Turbo-DDCM relies on a pre-trained latent diffusion generator, without any need for
further training or fine-tuning. As such, the backbone diffusion model can be replaced flexibly
to allow improved future versions.

• Performance: Turbo-DDCM has a competitive performance with the current state-of-the-art
methods in terms of the rate-distortion-perception tradeoff.
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• Speed: Turbo-DDCM is the fastest zero-shot method, achieving nearly an order of magnitude
speedup over the fastest existing approach. Our method operates without any custom hardware-
specific acceleration, maintaining nearly constant runtime across bitrates. This is achieved via
a better noise sampling mechanism, which in turn allows using a shallower diffusion process.
Coupled with a new bitstream protocol, performance is not compromised.

• Perfect bitrate control: Our method provides a predictable and constant bitrate across images,
which can be finely controlled via a single hyperparameter across a wide range of bitrates.

• Priority-aware: We introduce a variant of Turbo-DDCM that enables enhanced reconstruction
fidelity in user-selected regions of the image, with controllable prioritization levels.

• Distortion control: We present a distortion-geared Turbo-DDCM variant that targets a specific
PSNR for each image (instead of target bitrate), addressing the variable distortion in zero-shot
methods at fixed bitrate.

2 RELATED WORK

Non-Zero-Shot Diffusion-based Image Compression. Recent advances in diffusion-based com-
pression have demonstrated impressive rate-distortion-perception performance by training models
from scratch (Yang & Mandt, 2023; Ghouse et al., 2023; Iwai et al., 2024) or fine-tuning existing
diffusion models (Körber et al., 2024; Careil et al., 2024). More recently, several one-step meth-
ods (Park et al., 2025; Xue et al., 2025) have tried to bypass the computational cost of iterative
denoising by directly learning a mapping from the latent code to the clean signal in a single re-
verse step. However, all these approaches share the drawback of requiring training or fine-tuning
tailored for compression. In contrast, zero-shot methods preserve the diffusion model as a multi-
purpose backbone, which can also serve for generation (Ho et al., 2020; Song et al., 2020), restora-
tion (Kadkhodaie & Simoncelli, 2021; Kawar et al., 2022; Raphaeli et al., 2025; Man et al., 2025),
editing (Manor & Michaeli, 2024; Cohen et al., 2024), etc.

Zero-shot Diffusion-based Image Compression. Rather than training models or fine-tuning ex-
isting models, some recent methods use pretrained diffusion models in a zero-shot manner for
image compression. IPIC (Xu et al., 2024) adopts a compression method based on posterior-
sampling. PSC (Elata et al., 2024) and DiffC (Theis et al., 2022) harness ideas from compressed
sensing (Donoho, 2006) and reverse channel coding (RCC) (Theis & Yosri, 2022), respectively.
DDCM (Ohayon et al., 2025) changes the standard DDPM process (Ho et al., 2020) by sampling
from a quantized Gaussian space, offering a simpler approach. However, all existing methods suffer
from prohibitive computational demands, often requiring hundreds or even thousands of diffusion
steps to compress a single image, making them unsuitable for practical usage. Recently, the RCC
protocol used by DiffC was implemented on an optimized CUDA kernel (Vonderfecht & Liu, 2025),
which alleviates much of the computational demands. However, this method remains limited by
custom hardware-specific accelerations, large deviations from target bitrate across different input
images, and substantial runtime variation across different compression bitrates. In contrast, our pro-
posed method is the fastest by a wide margin, without custom hardware-dependent optimizations,
nearly constant runtime across all bitrates and a constant bitrate between different images given the
same target bitrate. At the same time, DiffC, DDCM, and our Turbo-DDCM share fundamental
concepts in their underlying design, but extend it in different directions, as detailed in App. H.

ROI (priority-aware) compression methods. Region-of-interest (ROI) compression (Li et al.,
2023; Jin et al., 2025) prioritizes user-specified regions of an image by allocating to them a larger
portion of the bits, resulting in higher fidelity in those regions on the expense of others. This
paradigm can be useful in medical imaging (Srivastava & Fujii, 2025), video conference calls and
more. Recently, it was demonstrated in diffusion-based compression (Xu et al., 2025). To the best of
our knowledge, we are the first to apply ROI compression to a zero-shot diffusion method. We do so
in a general way, enabling per-pixel prioritization, which we refer to as priority-aware compression.

Concurrent with our work, Su & Kasai (2025) investigate one of our main ideas, multiple choice
from a reproducible codebook, primarily in the context of inverse problems.

3



Published as a conference paper at ICLR 2026

3 BACKGROUND

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) generate samples
from a data distribution p0 by learning to reverse a forward diffusion process. Specifically, for
t ∈ {1, . . . , T}, the forward process gradually corrupts the data x0 ∼ p0 with noise via

xt =
√
αtxt−1 +

√
1− αtϵt, ϵt ∼ N (0, I), (1)

where α1, . . . , αT > 0 are time-dependent constants controlling the signal-to-noise ratio. In
DDPM (Ho et al., 2020), the reverse diffusion process generates samples from the data distribu-
tion by gradually denoising a random noise sample xT ∼ N (0, I) via

xt−1 = µt(xt) + σtzt, zt ∼ N (0, I), (2)

where σt =
√
1− αt, and µt(xt) is the conditional mean of xt−1 given xt. µt(xt) can be expressed

in terms of the minimum mean-squared-error (MMSE) estimator x̂0|t of x0 given xt,

µt(xt) =

√
ᾱt−1 (1− αt)

1− ᾱt
x̂0|t +

√
αt (1− ᾱt−1)

1− ᾱt
xt, (3)

where ᾱ =
∏t

s=1 αs. The MMSE estimator x̂0|t plays a central role in the rest of this paper.

3.2 DENOISING DIFFUSION CODEBOOK MODELS (DDCM)

DDCM (Ohayon et al., 2025) modifies the reverse process of DDPM (eq. (2)) by replacing the ran-
dom Gaussian noise sampling with a selection of noises from reproducible codebooks Ct. Specif-
ically, each codebook Ct is an ordered set filled with K i.i.d. white Gaussian noise vectors, which
we refer to as atoms,

Ct =
[
z
(1)
t , z

(2)
t , . . . ,z

(K)
t

]
, t = 2, . . . , T + 1, (4)

where, as in DDPM, no noise is added at t = 1. The DDCM generation step then becomes

xt−1 = µt(xt) + σtCt(kt), (5)

where kt
i.i.d.∼ Unif({1, . . . ,K}). This modification yields a discrete yet highly expressive generated

distribution, as the number of possible distinct output samples grows exponentially with the number
of diffusion steps.

The primary property of DDCM is its ability to act as a zero-shot image compression algorithm,
achieved by creating all the codebooks once and keeping them constant for all subsequent applica-
tions of the model (e.g., by using a shared random seed). Specifically, a target image is compressed
by selecting, at each diffusion step, the fixed codebook atom that best matches the target image. For-
mally, to compress a target image x0, Ohayon et al. (2025) compute the denoising residual between
x0 and the MMSE estimation x̂0|t at each timestep t, and select the codebook entry that maximizes
the inner product with this residual:

kt = argmax
k∈{1,...,K}

⟨Ct(k),x0 − x̂0|t⟩, (6)

where kt is the selected codebook entry at timestep t. This sampling process results in an ordered
sequence of chosen indices (kt)

T
t=2, whose binary representation serves as the compressed form

of the image. Decompression then follows eq. (5), where instead of randomly sampling from the
codebooks, the stored indices are re-selected deterministically. Consequently, the bits-per-pixel
(BPP) of DDCM can easily be computed via

BPPDDCM =
(T − 1)⌈log2(K)⌉
number of pixels

. (7)

While this strategy leads to good results, it is practically limited only to the regime of extremely low
bitrates. Indeed, even when using T = 1000 diffusion steps and codebooks with K = 16,384 atoms,
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Figure 2: Turbo-DDCM overview: Building on DDCM, we replace its random noise sampling with
an effective and efficient closed-form selection rule that can quickly combine an arbitrary number of
noise vectors, enabling significantly fewer diffusion steps. The selected indices are encoded using
our new bit transmission protocol, which achieves substantially higher encoding efficiency than
DDCM’s protocol. The decoder reconstructs the image by running the generative diffusion process
while re-selecting the codebook noise vectors that correspond to the decoded indices. This results
in a zero-shot compression method that is both highly efficient and competitive in performance.

the bitrate for a 768 × 768 image is only about 0.024 BPP. Increasing T applies the denoiser more
times, which is computationally expensive, while increasing K increases the bitrate logarithmically
but makes searching for the correct noise much more demanding. To enable higher bitrates, the
authors propose a refinement strategy for noise selection based on matching pursuit (MP) (Mallat
& Zhang, 1993). Specifically, at each step t, the chosen noise is constructed as a convex combina-
tion of M elements from Ct, selected greedily to maximize correlation with the residual x0 − x̂0|i
(as in eq. (6)). This combination involves M − 1 quantized scalar coefficients, each drawn from
a set of 2C values within [0, 1] (where C is the number of bits needed to communicate each coef-
ficient). Transmitting the M selected noise indices requires ⌈log2(K)⌉M bits per timestep, along
with C(M − 1) bits for the quantized coefficients. When using this approach, the BPP becomes

BPPDDCM with MP =
(T − 1)

(
⌈log2(K)⌉M + C(M − 1)

)
number of pixels

. (8)

This MP strategy widens the bitrate range of DDCM. In practice, however, it incurs extremely high
runtime due to its iterative nature, as one MP process can take more than 0.1 seconds and must be
performed after each diffusion step, resulting in a total cost multiplied by T . Moreover, due to its
greedy design, increasing M alone provides only limited gains in correlation with the residual; C
must also be increased, while runtime grows exponentially with C, which further limits scalability.
See Apps. C and D for theoretical justifications and empirical demonstrations.

4 METHOD

We now turn to introduce Turbo-DDCM. This includes a new and highly efficient approach for com-
bining many codebook atoms at each of DDCM’s denoising steps. Our approach yields additional
advantages across multiple aspects of compression beyond the acceleration of DDCM’s matching
pursuit. We complement our new noise construction method with a novel encoding protocol. An
overview of our approach is shown in Fig. 2 and pseudo-code is provided in App. I.

4.1 EFFICIENT MULTI-ATOM SELECTION

We approximate the residual vector x0 − x̂0|t with a linear combination of exactly M atoms having
nonzero quantized coefficients from a fixed ordered set V . Formally, our optimization problem for
timestep t is a constrained least squares of the form

s∗t = argmin
st∈RK

∥∥Ctst − (x0 − x̂0|t)
∥∥2
2

s.t. ∥st∥0 = M, ∀i (st)i ∈ V ∪ {0}, (9)
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where (st)i denotes the i-th entry of the vector st. Using the solution s∗t , we define

z∗t =
Cts

∗
t

std(Cts∗t )
. (10)

Finally, the Turbo-DDCM sampling process is defined as

xt−1 = µt(xt) + σtz
∗
t . (11)

To solve the optimization problem in eq. (9), we use an efficient closed-form solution. The key in-
sight of our approach is that Gaussian random codebooks are nearly orthogonal in high-dimensional
spaces (see App. B for how this approximate orthogonality affects performance). Under this as-
sumption, the thresholding algorithm (Elad, 2010) provides a closed-form solution for sparse least
squares (eq. (9) without the quantization constraint):

(s∗t )i =

{
(ut)i/∥z(i)t ∥2, i ∈ TopM(|ut|)
0, otherwise

, (ut)i =
⟨z(i)t ,x0 − x̂0|t⟩
∥z(i)t ∥2

, i = 1, . . . ,K, (12)

where z
(i)
t is the i-th column of Ct and TopM(|u|) denotes the indices of the M largest entries

of |u|. We extend this solution to incorporate the quantization constraint. We then adapt it to our
specific setting of Gaussian i.i.d. codebooks and our characteristic configurations which share all
V = [−1,+1], resulting in the following algorithm:

(s∗t )i =

{
sign((ut)i), i ∈ TopM(|ut|)
0, otherwise

, (ut)i = ⟨z(i)t ,x0 − x̂0|t⟩, i = 1, . . . ,K. (13)

See App. C for the derivation and App. E for the rationale behind the chosen V .

Our approach fundamentally differs from DDCM’s MP strategy in four key aspects, leading to
enhanced capabilities and desirable properties.

Noise Construction Efficiency. Our closed-form algorithm is orders of magnitude faster than
DDCM MP, which relies on an iterative search with exhaustive evaluations. Consequently, we con-
struct the noise at each diffusion step much more efficiently.

Number of Required Diffusion Steps. Unlike DDCM, our method maintains a nearly constant
runtime as M increases (App. D). Thus, we can scale M to hundreds, whereas DDCM MP is prac-
tically limited to very small values. This enables a major reduction in diffusion steps, as selecting
many atoms per step leads to stronger residual estimations. Consequently, a few diffusion steps with
strong estimations can replace many steps with weak ones. Overall, the number of diffusion steps is
reduced by more than 92% for comparable compression quality.

Possible Quantization Levels. While DDCM’s MP is restricted to non-negative quantization lev-
els due to its reliance on convex combinations, our approach allows both positive and negative
coefficients. This effectively doubles the representational capacity, as allowing negative coefficients
enables pointing in opposite directions, thereby increasing the number of directions in latent space
available to approximate the residual and improving the solution to the optimization problem.

Hyperparameters. Both DDCM and Turbo-DDCM rely on four hyperparameters that influence
bitrate: T , K, M , and C. Controlling bitrate via T increases expensive denoiser calls; varying
K slows optimization in both methods; and varying C alone yields only marginal gains. In our
thresholding-based approach, increasing M enhances representational power with negligible run-
time cost and allows fine-grained bitrate control. Consequently, Turbo-DDCM can adjust bitrate
using M alone, ensuring runtime stability across bitrates and avoiding inefficient hyperparameter
combinations. DDCM, however, cannot benefit from increasing M in isolation and must simulta-
neously increase C. As it is not computationally efficient in both, it must also increase K and T ,
resulting in significant runtime variation across bitrates. Moreover, DDCM is highly sensitive to
inefficient hyperparameter combinations, which can further degrade performance. Detailed justifi-
cations and demonstrations are provided in Apps. C, D and E.

Due to the large reduction in T described above, we replace the synthesized noise z∗t in the final
steps with DDIM sampling to improve perceptual quality at low bitrates. The number of DDIM
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steps, N , is determined heuristically and decreases with increasing bitrate. Specifically, for a T -
steps scheduler, the encoder transmits z∗t for the first T −N steps, which the decoder reconstructs,
followed by N DDIM steps executed only at the decoder. See App. A for exact details.

4.2 EFFICIENT BIT PROTOCOL FOR LARGE-M COMBINATIONS

When large M values are employed, using the DDCM’s bit protocol leads to poor compression due
to redundancies. Specifically, DDCM encodes atom selections with ⌈log2(K)⌉M bits per diffusion
step, preserving the order in which the atoms were selected, which is crucial for the noise constric-
tion on the decoder. However, in our thresholding-based approach, atom ordering is semantically
meaningless and only identity matters. Thus, a naive encoding of M indices creates M ! equivalent
representations per step, yielding (M !)T−1 identical compressed representations. For extremely
modest parameters of M = 5 and T = 30, this results in 12029 ≈ 2200 equivalent representations,
underscoring the need for a more efficient encoding protocol.

Each diffusion step requires communicating a combination of M indices from a codebook of size K
(without repetition and order-invariant) along with quantized coefficients (C bits each). The number
of distinct choices is

(
K
M

)
· (2C)M , requiring⌈

log2

((
K

M

)
· (2C)M

)⌉
=

⌈
log2

((
K

M

))⌉
+MC (14)

bits per step. This gives the worst-case lower bound on the bits needed to encode this information.

We propose an encoding protocol that achieves this bound. Our protocol transmits the lexico-
graphical index of the selected M -atom combination from within the set

{
1, . . . ,

(
K
M

)}
of possi-

ble indices, followed by the selected M quantized coefficients in canonical order. This approach
eliminates the observed factorial redundancy while transmitting effectively the same information.
Consequently, Turbo-DDCM’s BPP is

BPPTurbo-DDCM =
(T −N − 1)

(⌈
log2

((
K
M

))⌉
+MC

)
number of pixels

. (15)

As shown in App. F, our protocol reduces BPP by∼ 40% for typical Turbo-DDCM configurations.

5 EXPERIMENTS

We evaluate our compression method on the Kodak24 (Franzen, 1999) and DIV2K (Agustsson &
Timofte, 2017) datasets, center-cropping to 512× 512. We compare to existing zero-shot diffusion-
based methods, including PSC (Elata et al., 2024), DDCM (Ohayon et al., 2025), and DiffC (Theis
et al., 2022), using the custom CUDA kernel implementation of DiffC (Vonderfecht & Liu, 2025).
Additionally, we compare to non-neural, fine-tuning-based and training-based approaches, including
BPG (Bellard, 2018), PerCo (SD) (Körber et al., 2024; Careil et al., 2024), ILLM (Muckley et al.,
2023), two CRDR (Iwai et al., 2024) configurations, HiFiC (Mentzer et al., 2020), DiffEIC (Li
et al., 2025) and StableCodec (Zhang et al., 2025). All zero-shot methods use the same pre-trained
diffusion model, SD 2.1 Base. For Turbo-DDCM we use T = 30, K = 16,384, C = 1 and vary
M from 45 to 300 to control the bitrate. Distortion is measured using PSNR and LPIPS (Zhang
et al., 2018), while perceptual quality is evaluated with FID (Bińkowski et al., 2018), computed on
64 × 64 patches following Mentzer et al. (2020). Runtime is measured based on process time for a
round-trip compression-decompression on an NVIDIA A40 GPU.

Compression Quality. As shown in Figs. 3 and 4, Turbo-DDCM achieves competitive results
against both zero-shot and non-zero-shot methods. Among zero-shot approaches, Turbo-DDCM
surpasses PSC both in terms of distortion and perceptual quality. Compared to DDCM, Turbo-
DDCM achieves equal or better distortion and perceptual quality. At low bitrates, DiffC yields better
perceptual quality than Turbo-DDCM, with equal distortion. At high bitrates, DiffC and Turbo-
DDCM present nearly the same distortion and perceptual quality. Compared to the other methods
(non-neural, fine-tuning-based and training-based approaches), Turbo-DDCM surpasses all prior
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Original
0.095 BPP | > 300 sec

PSC
0.095 BPP | 79 sec

DDCM
0.093 BPP | 16 sec

DiffC
0.085 BPP | 2.2 sec

Turbo DDCM

0.025 BPP | > 300 sec 0.027 BPP | 73 sec 0.034 BPP | 9 sec 0.031 BPP | 1.6 sec

Figure 3: Qualitative results: The presented images are taken from the Kodak24 (512 × 512)
dataset. Our method produces highly realistic reconstructions while achieving over a 5× speedup
compared to previous approaches, depending on the bitrate.

methods on the rate–distortion–perception plane (Blau & Michaeli, 2019), except for StableCodec,
which is specialized for each individual bitrate. Yet, at low bitrates, Turbo-DDCM still achieves
better distortion compared to other perceptual-quality-oriented approaches, such as PerCo (SD) and
DiffEIC, despite being a zero-shot method. However, for high bitrates, our method underperforms
in distortion due to the encoder-decoder distortion bound imposed by SD 2.1. When using a latent
diffusion model such as SD, compression is applied in the latent representation space rather than
in the image pixel space. Since the encoder–decoder already introduces distortion, the maximum
attainable quality of any latent-based method is bounded by this reconstruction error, forming a
natural upper limit (Körber et al., 2024; Elata et al., 2024). Accordingly, Fig. 4 reports this bound.
See App. A for additional evaluations.

Runtime Performance. As shown in Figs. 3 and 4, among zero-shot methods, Turbo-DDCM
achieves state-of-the-art runtime by a significant margin. It outperforms DDCM by more than an
order of magnitude, achieving over 34× speedup at high bitrates. Turbo-DDCM also outperforms
DiffC, with a 3× acceleration at low bitrates and nearly an order of magnitude at high bitrates.
Importantly, this performance advantage is achieved even though DiffC employs a custom CUDA
kernel. As runtime might be implementation-dependent, we also compare the number of neural-
function-evaluations (NFEs), which correspond to denoiser activations in this case. Even though
NFE is implementation independent, it is imperfect, since it ignores operations performed between
denoiser activations, which might also be computationally demanding. Nevertheless, the trends and
differences in NFEs closely follow those observed for runtime, as detailed in App. A, along with
additional evaluations. Among other methods, Turbo-DDCM is faster than HiFiC, DiffEIC, CRDR,
and PerCo (SD). However, it is slower than BPG (non-neural), ILLM (non-diffusion-based), and
StableCodec (non-zero-shot).

6 TURBO-DDCM VARIANTS

While traditional diffusion-based methods allocate bits uniformly across the image, some applica-
tions (e.g. medical imaging) benefit from prioritizing important regions. This paradigm, commonly
referred to as ROI (region-of-interest) compression (Li et al., 2023; Srivastava & Fujii, 2025), im-
proves fidelity in specified areas at the expense of others by non-uniform bit allocation. We introduce
a variant of Turbo-DDCM that supports ROI compression through per-pixel prioritization, which we
term priority-aware compression.

Our adaptation is based on a latent priority mask w ∈ Rd
+, where each entry specifies the relative

weight of the corresponding latent coordinate, obtained by down-sampling a pixel-space prioritiza-
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Figure 4: Quantitative evaluation of rate-distortion-perception and runtime performance: We
compare Turbo-DDCM against zero-shot diffusion-based compression methods (top two rows) and
other methods (bottom two rows), by evaluating distortion (PSNR or LPIPS), perceptual quality
(FID), and runtime (round-trip compression–decompression time, in seconds). PSC’s runtime is
omitted due to its extreme complexity (>300 seconds/image). Overall, Turbo-DDCM achieves su-
perior or competitive rate-distortion-perception performance compared to previous zero-shot meth-
ods, but with a significantly faster runtime (nearly an order of magnitude faster or more at high
bitrates). The dashed vertical line in each subplot corresponds to the encoder-decoder distortion
bound imposed by SD 2.1, attained by passing the clean images through this encoder-decoder with-
out any compression. Since all the compared zero-shot methods and PerCo (SD) rely on SD 2.1,
they all suffer from this distortion bound.

tion map. We then extend the optimization problem in eq. (9) to

s∗t = argmin
st∈RK

∥Ctst −w ⊙ (x0 − x̂0|t)∥22 s.t. ∥st∥0 = M, ∀i (st)i ∈ V ∪ {0}. (16)

Here, the residual vector (x0 − x̂0|t) is weighted by w, scaling each error according to its corre-
sponding pixel priority. The M codebook atoms and their quantized coefficients are then chosen
accordingly. Importantly, w is not transmitted to the decoder, leaving both the encoding protocol
and the BPP unchanged. Additionally, this modification has a negligible impact on runtime. As
demonstrated in App. A, this adaptation generalizes naturally to both DDCM and DiffC methods.

We evaluate our variant on the Kodak24 (512×512) dataset and compare to the other zero-shot meth-
ods, including the baseline Turbo-DDCM. Figure 5 shows that, unlike regular zero-shot methods,
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Figure 5: Qualitative results of the priority-aware (PA) variant: Regular methods fail to recon-
struct key regions, whereas our PA variant reconstructs them faithfully according to the prioritization
mask. In the second row, the first two lines of the sign that are highly prioritized, are fully recon-
structed, while the third line, medium prioritized, is only partially reconstructed. These results are
better viewed when zoomed in.

our priority-aware variant successfully reconstructs regions that would otherwise be poorly recov-
ered, adapting fidelity according to the prioritization mask while keeping the same BPP. Additional
details and results can be found in App. A.

Our second variant of Turbo-DDCM addresses the significant distortion variation across images at
fixed target bitrates – see Fig. S19. We present a simple and efficient method to address this problem,
substantially reducing this variation while targeting a given distortion level. See App. G for more
details on this variant of the algorithm.

7 CONCLUSION AND DISCUSSION

This paper introduces Turbo-DDCM, an efficient and flexible zero-shot diffusion-based compression
method. It achieves state-of-the-art runtime, reducing round-trip compression-decompression time
by nearly an order of magnitude compared to the fastest prior zero-shot method, while maintaining
competitive compression quality compared to state-of-the-art techniques. It also offers favorable
properties, such as a constant bitrate across images for a given target bitrate. Moreover, we extend
Turbo-DDCM with two variants: the first supports priority-aware compression for spatially-varying
fidelity, and the second is a distortion-targeted mode that fixes PSNR instead of bitrate.

While our method significantly advances zero-shot compression speed, training-based methods
can achieve similar reconstruction quality in a single forward pass. A one-step zero-shot method
could provide significant additional speedup while preserving zero-shot flexibility. Moreover, some
non-zero-shot methods demonstrate superior rate-distortion-perception trade-off compared to our
method, suggesting potential room for improvement. Finally, establishing a comprehensive theory
for DDCM-based compression remains an open problem that could guide future improvements.
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APPENDIX

A EXPERIMENTAL CONFIGURATIONS AND ADDITIONAL EVALUATIONS

All distortion and perceptual quality metrics are computed using Torch Metrics, which is built on
Torch Fidelity (Obukhov et al., 2020).

A.1 CONFIGURATIONS

The following outlines the experimental configurations used for the evaluations in Section 5.

Zero-Shot Methods. For all methods we use Stable Diffusion 2.1 Base1, based on the official
stabilityai/stable-diffusion-2-1-base checkpoint from Hugging Face, using float16 precision. The
remaining hyperparameters are determined as follows:

• For Turbo-DDCM we use T = 30, K = 16,384, C = 1 and M values in the range [45, 300].
To determine N , we initially assume N = 0 and calculate a preliminary value BPP0 using
eq. (15). Then we partition the interval [0.01, 0.15] into 70 logarithmically spaced bins and set

N = max(min(70− bin(BPP0)− 1, T − 2), 0), (S1)

where bin(BPP0) denotes the index of the logarithmic bin containing BPP0. The scheduler we
use is based on the optimized scheduler from Vonderfecht & Liu (2025), adapted to our setting
by selecting evenly spaced indices from the timestep list for our T . See App. E for the rationale
behind the chosen hyperparameters.

• For PSC we use the hyperparameters that the author described (Elata et al., 2024), setting the
number of measurements to 12 · 2i for i = 0, ..., 8.

• For DDCM we use T ∈ {500, 1000}, K ∈ {64, 128, . . . , 8192}, M ∈ {1, 2, ..., 6} and
C ∈ {2, 3} which aligns with the spirit of the hyperparameter configurations described by
the authors (Ohayon et al., 2025).

• For DiffC we use the schedulers, DKL values and reconstruction timesteps suggested by the
authors (Vonderfecht & Liu, 2025).

Non-Zero-Shot Methods. The hyperparameters for the non-zero-shot methods are as follows:

• For CRDR-R and CRDR-D we use the quality factors of {0, 1, 2, 3, 4}, where CRDR-D uses
β = 0 and CRDR-R uses β = 3.84, as recommended by the authors (Iwai et al., 2024).

• For ILLM we use the MS-ILLM pre-trained models available in the Official GitHub repository.
We use msillm quality X for X = 2,3 and msillm quality vloY for Y = 1,2.

• For BPG we use quality factors q ∈ {51, 50, 48, 46, 42, 40, 29, 36, 34, 32}.
• For PerCo (SD) we use the three publicly available Stabe Diffusion 2.1 fine-tuned checkpoints

from the Official GitHub repository, with the default hyperparameters.

• For HiFiC we test the low quality regime, using the checkpoint available in the official GitHub
repository.

• For StableCodec we use the checkpoints stablecodec ftX for X = 2,4,8,16,32.

• For DiffEIC we test the 1 2 X pre-trained weights for X = 1,2,4,8,16.

Turbo-DDCM Priority-Aware Variant Configuration. To achieve extremely low bitrates, we
modify the Turbo-DDCM configuration above by setting T = 20. In addition, we use a linear
scheduler.

1Recent models such as FLUX are trained using optimal transport–based flow matching (FM) (Lipman
et al., 2023). To apply Turbo-DDCM, we translate between DDPM and OT flow model parameterizations,
following an approach similar to Vonderfecht & Liu (2025). This extension is available in our code.
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Original
0.095 BPP | > 300 sec

PSC
0.149 BPP | 88 sec

DDCM
0.154 BPP | 19 sec

DiffC
0.148 BPP | 2.6 sec

Turbo DDCM

0.095 BPP | > 300 sec 0.095 BPP | 79 sec 0.097 BPP | 16 sec 0.094 BPP | 2.3 sec

0.095 BPP | > 300 sec 0.091 BPP | 96 sec 0.091 BPP | 16 sec 0.085 BPP | 2.2 sec

0.095 BPP | > 300 sec 0.076 BPP | 72 sec 0.058 BPP | 12 sec 0.058 BPP | 2.0 sec

0.049 BPP | > 300 sec 0.030 BPP | 72 sec 0.027 BPP | 7 sec 0.027 BPP | 1.6 sec

0.025 BPP | > 300 sec 0.019 BPP | 36 sec 0.018 BPP | 6 sec 0.012 BPP | 1.4 sec

0.0134 BPP | > 300 sec 0.0133 BPP | 36 sec 0.0131 BPP | 4 sec 0.0123 BPP | 1.4 sec

Figure S1: Qualitative results compared to zero-shot methods: The images are taken from the
Kodak24 dataset, center-cropped to 512 × 512 pixels. Our compression method generates highly
realistic reconstructions, matching or surpassing prior approaches in fidelity to the original images,
while consistently offering significant runtime improvements.
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Original
0.111 BPP

ILLM
0.131 BPP

BPG
0.125 BPP

PerCo (SD)
0.117 BPP

Turbo DDCM

0.093 BPP 0.120 BPP 0.125 BPP 0.117 BPP

0.074 BPP 0.125 BPP 0.125 BPP 0.117 BPP

0.110 BPP 0.142 BPP 0.125 BPP 0.117 BPP

0.011 BPP 0.035 BPP 0.031 BPP 0.012 BPP

0.012 BPP 0.044 BPP 0.031 BPP 0.012 BPP

0.017 BPP 0.060 BPP 0.031 BPP 0.012 BPP

Figure S2: Qualitative results compared to non-zero-shot methods: The images are taken from
the Kodak24 and DIV2K datasets, center-cropped to 512 × 512 pixels. Our compression method
produces highly realistic reconstructions and preserves better fidelity to the original images com-
pared to previous methods.
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A.2 ADDITIONAL EFFICIENCY EVALUATION

Figure S3 decomposes the round-trip time results from Fig. 4 into compression and decompression
components. The results demonstrate that our method’s runtime advantage arises from balanced
improvements in both processes, yielding faster performance for both the encoder and the decoder.

As discussed in Section 5, runtime measurements can be biased by implementation details. We
therefore compare the number of neural function evaluations (NFEs) (Fig. S4), corresponding to
denoiser activations, across the zero-shot methods. While NFEs are implementation-independent,
they do not capture costs from other components, such as the RCC in DiffC, the MP process in
DDCM and the thresholding-based process in Turbo-DDCM. The alignment between NFEs and
runtime trends suggest that our efficiency is not attributable to implementation details.

A.3 ADDITIONAL RECONSTRUCTION QUALITY EVALUATION

Figures S1 and S2 provide additional qualitative comparisons on the Kodak24 (512 × 512) and
DIV2K (512×512) datasets, against both zero-shot and non-zero-shot methods. Figure S5 provides
additional quantitative results. Tables 1, 2, 3 and 4 report the results presented in Fig. 4. Tables 5, 6
and 7 report BD-PSNR (Bjøntegaard, 2001).

A.4 ADDITIONAL EVALUATIONS FOR THE PRIORITY-AWARE VARIANT

Figure S6 illustrates how the priority-aware variant improves the fidelity of prioritized regions as
the prioritization level increases. Figures S7 and S8 highlight the advantage of priority-aware com-
pression in reconstructing complex image regions at extremely low bitrates. Depending on the
prioritization level, our method successfully reconstructs these regions, while other methods fail to
reconstruct them at all. In addition, our priority-aware compression method can also be applied to
DDCM and DiffC, owing to the shared foundations of these approaches (see App. H). Figure S9
illustrates this generalization.

A.5 GPU MEMORY CONSIDERATIONS

At first glance, Turbo-DDCM may appear to be a GPU-memory-bound algorithm. However, the
only substantial memory overhead beyond the diffusion model itself comes from storing the code-
books. Using float16 precision, Stable Diffusion 2.1-Base occupies approximately 2.5GB of
GPU memory. Turbo-DDCM requires only a single codebook to be resident in memory at any given
time. Each codebook contains 16k atoms, each of dimensionality 16k (SD 2.1-Base latent space
dimensionality), stored in float16:

codebook memory = 16k× 16k× 2 bytes = 229 bytes = 0.5 GB.

Thus, the total expected peak memory for Turbo-DDCM is

2.5 GB (model) + 0.5 GB (codebook) ≈ 3.0 GB.

This matches our empirical measurements, which show a peak memory usage of approximately
3.05GB. In practice, Turbo-DDCM introduces only about a 20% memory overhead relative to the
diffusion model alone.
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PSNR LPIPS FID Roundtrip Time (sec)
method bpp

DDCM 0.010 19.31 0.46 60.17 35.89
0.013 20.46 0.36 48.84 35.74
0.019 21.38 0.28 38.53 36.50
0.025 21.92 0.23 33.53 35.92
0.034 22.33 0.20 30.67 71.20
0.046 22.84 0.17 26.87 73.37
0.080 23.23 0.15 25.35 75.48
0.114 23.48 0.14 25.21 74.27
0.126 23.70 0.13 23.67 75.45
0.149 24.04 0.12 22.59 87.95
0.263 24.36 0.12 22.43 86.66

DiffC 0.007 18.66 0.41 40.49 3.57
0.012 20.19 0.32 36.67 4.52
0.019 21.26 0.25 32.98 5.58
0.029 22.42 0.20 29.87 7.18
0.050 23.73 0.15 26.69 10.19
0.053 23.92 0.14 25.96 10.80
0.057 24.08 0.13 26.39 11.23
0.061 24.27 0.13 25.97 11.91
0.066 24.44 0.12 25.46 12.43
0.073 24.67 0.12 24.56 13.15
0.081 24.89 0.11 24.00 14.38
0.092 25.11 0.10 23.45 15.63
0.109 25.42 0.09 22.69 17.09
0.141 25.81 0.08 22.06 19.38

PSC 0.025 18.52 0.47 47.34 -
0.048 20.08 0.37 40.70 -
0.095 21.68 0.27 35.32 -

Turbo-DDCM 0.007 19.01 0.42 45.92 1.26
0.012 20.16 0.33 38.92 1.36
0.018 21.04 0.28 36.62 1.43
0.031 22.33 0.21 30.83 1.63
0.044 23.14 0.17 27.41 1.78
0.058 23.82 0.14 25.75 1.97
0.071 24.21 0.13 24.19 2.01
0.085 24.58 0.12 23.15 2.19
0.117 25.19 0.10 22.44 2.34
0.148 25.55 0.09 22.07 2.53

Table 1: Quantitative comparison on Kodak24512 dataset between zero-shot methods.
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PSNR LPIPS FID Roundtrip Time (sec)
method bpp

DDCM 0.010 17.09 0.45 64.94 36.62
0.013 18.01 0.37 52.43 35.96
0.019 19.02 0.30 42.25 36.23
0.025 19.64 0.25 36.97 36.86
0.034 20.11 0.22 34.19 70.66
0.046 20.71 0.19 31.61 73.59
0.080 21.13 0.17 30.06 75.01
0.114 21.41 0.16 29.54 77.24
0.126 21.68 0.15 29.02 78.45
0.149 22.10 0.13 28.26 87.17
0.263 22.47 0.12 27.67 85.15

DiffC 0.008 16.68 0.39 43.84 3.52
0.013 17.95 0.31 38.56 4.52
0.020 19.07 0.26 35.86 5.57
0.031 20.25 0.21 33.20 7.15
0.053 21.76 0.15 29.58 10.21
0.056 21.92 0.15 29.52 10.69
0.060 22.12 0.14 28.73 11.22
0.065 22.32 0.14 28.70 11.79
0.070 22.54 0.13 28.24 12.39
0.077 22.78 0.12 27.51 13.22
0.086 23.05 0.12 27.23 14.24
0.097 23.35 0.11 26.62 15.62
0.115 23.71 0.10 25.92 17.12
0.148 24.17 0.09 24.95 19.36

PSC 0.008 13.66 0.59 56.50 -
0.013 14.91 0.53 51.51 -
0.025 15.87 0.47 48.36 -
0.048 17.47 0.39 44.27 -
0.095 19.22 0.28 38.41 -

Turbo-DDCM 0.007 16.70 0.42 50.95 1.26
0.012 17.83 0.34 44.41 1.34
0.018 18.69 0.30 40.23 1.45
0.031 20.10 0.23 36.22 1.65
0.044 20.96 0.19 33.04 1.82
0.065 21.96 0.15 29.54 2.03
0.085 22.63 0.13 28.06 2.21
0.117 23.33 0.11 26.68 2.42
0.148 23.81 0.10 25.97 2.62
0.194 24.11 0.09 24.98 2.66
0.272 24.35 0.08 24.43 2.81

Table 2: Quantitative comparison on DIV2K512 dataset between zero-shot methods.
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PSNR LPIPS FID Roundtrip Time (sec)
method bpp

BPG 0.037 24.21 0.54 148.31 0.16
0.044 24.64 0.51 141.58 0.17
0.062 25.54 0.46 128.09 0.18
0.088 26.49 0.41 114.26 0.19
0.121 27.38 0.36 104.29 0.21
0.167 28.35 0.31 92.42 0.22
0.227 29.36 0.26 82.18 0.24

CRDR-D 0.114 27.99 0.26 94.50 3.88
0.210 30.07 0.17 76.04 3.89

CRDR-R 0.114 27.31 0.09 35.69 3.89
0.210 29.37 0.06 28.40 3.89

DiffEIC 0.023 18.83 0.34 41.68 5.25
0.043 20.27 0.25 35.61 5.25
0.067 22.01 0.18 30.52 5.26
0.098 23.63 0.13 26.54 5.26
0.130 23.40 0.11 24.11 5.27

HiFiC 0.191 27.38 0.07 31.71 19.99
ILLM 0.009 20.27 0.50 128.40 0.32

0.014 21.43 0.40 93.67 0.32
0.100 25.68 0.11 36.08 0.32
0.182 27.30 0.07 28.56 0.32

PerCo (SD) 0.031 19.02 0.31 37.02 2.68
0.125 22.32 0.14 26.42 2.76

StableCodec 0.008 19.94 0.32 43.36 0.37
0.013 20.98 0.25 37.91 0.37
0.020 21.71 0.21 34.93 0.37
0.029 22.34 0.18 32.91 0.37
0.038 22.69 0.17 31.94 0.37

Turbo-DDCM 0.007 19.01 0.42 45.92 1.26
0.012 20.16 0.33 38.92 1.36
0.018 21.04 0.28 36.62 1.43
0.031 22.33 0.21 30.83 1.63
0.044 23.14 0.17 27.41 1.78
0.058 23.82 0.14 25.75 1.97
0.071 24.21 0.13 24.19 2.01
0.085 24.58 0.12 23.15 2.19
0.117 25.19 0.10 22.44 2.34
0.148 25.55 0.09 22.07 2.53

Table 3: Quantitative comparison on Kodak24512 dataset between non-zero-shot methods.
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PSNR LPIPS FID Roundtrip Time (sec)
method bpp

BPG 0.058 22.79 0.49 152.62 0.19
0.068 23.22 0.46 146.22 0.19
0.096 24.12 0.41 134.03 0.20
0.134 25.09 0.35 122.90 0.22
0.181 26.03 0.29 110.13 0.23
0.245 27.01 0.24 98.93 0.25

CRDR-D 0.153 26.62 0.20 89.78 3.86
0.274 28.76 0.12 69.48 3.85

CRDR-R 0.153 26.11 0.08 39.30 3.84
0.274 28.27 0.05 31.43 3.85

DiffEIC 0.023 16.75 0.33 42.77 5.21
0.043 18.43 0.24 38.23 5.21
0.067 20.26 0.18 33.03 5.23
0.098 21.94 0.13 28.88 5.21
0.130 21.84 0.11 27.68 5.19

HiFiC 0.226 26.14 0.07 39.83 20.26
ILLM 0.009 18.56 0.49 119.83 0.30

0.014 19.74 0.38 96.94 0.30
0.100 24.58 0.11 42.59 0.30
0.182 26.21 0.07 34.10 0.30

PerCo (SD) 0.031 16.52 0.33 40.95 2.69
0.125 20.48 0.16 29.52 2.71

StableCodec 0.008 17.95 0.32 45.98 0.35
0.013 18.97 0.26 39.85 0.35
0.020 19.70 0.22 36.72 0.35
0.029 20.33 0.20 35.05 0.35
0.038 20.72 0.18 33.95 0.35

Turbo-DDCM 0.007 16.70 0.42 50.95 1.26
0.012 17.83 0.34 44.41 1.34
0.018 18.69 0.30 40.23 1.45
0.031 20.10 0.23 36.22 1.65
0.044 20.96 0.19 33.04 1.82
0.065 21.96 0.15 29.54 2.03
0.085 22.63 0.13 28.06 2.21
0.117 23.33 0.11 26.68 2.42
0.148 23.81 0.10 25.97 2.62

Table 4: Quantitative comparison on DIV2K512 dataset between non-zero-shot methods.
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A DDCM DiffC PSC Turbo-DDCM
B

DDCM 0.00 -0.98 2.69 -0.76
DiffC 0.98 0.00 3.61 0.07
PSC -2.69 -3.61 0.00 -3.35
Turbo-DDCM 0.76 -0.07 3.35 0.00

A BPG
CRDR-

D
CRDR-

R DiffEIC HiFiC ILLM
PerCo
(SD)

Stable-
Codec

Turbo-
DDCM

B

BPG 0.00 -0.99 -0.22 3.75 1.67 1.02 4.95 1.58 1.76
CRDR-D 0.99 0.00 0.76 4.66 2.70 2.12 5.93 3.51 3.06
CRDR-R 0.22 -0.76 0.00 3.98 1.96 1.43 5.25 3.03 2.37
DiffEIC -3.75 -4.66 -3.98 0.00 -4.64 -3.15 0.91 -3.30 -2.36
HiFiC -1.67 -2.70 -1.96 4.64 0.00 -0.03 4.54 8.66 1.56
ILLM -1.02 -2.12 -1.43 3.15 0.03 0.00 4.05 0.52 0.86
PerCo (SD) -4.95 -5.93 -5.25 -0.91 -4.54 -4.05 0.00 -3.56 -3.16
StableCodec -1.58 -3.51 -3.03 3.30 -8.66 -0.52 3.56 0.00 0.46
Turbo-DDCM -1.76 -3.06 -2.37 2.36 -1.56 -0.86 3.16 -0.46 0.00

Table 5: BD-PSNR evaluation on Kodak24512 dataset

A DDCM DiffC PSC Turbo-DDCM
B

DDCM 0.00 -0.85 3.24 -0.84
DiffC 0.85 0.00 3.41 0.27
PSC -3.24 -3.41 0.00 -3.53
Turbo-DDCM 0.84 -0.27 3.53 0.00

A BPG
CRDR-

D
CRDR-

R DiffEIC HiFiC ILLM
PerCo
(SD)

Stable-
Codec

Turbo-
DDCM

B

BPG 0.00 -1.41 -0.88 2.60 NaN -0.33 3.81 1.33 1.25
CRDR-D 1.41 0.00 0.52 4.62 NaN 0.96 5.79 3.46 2.72
CRDR-R 0.88 -0.52 0.00 4.12 NaN 0.46 5.28 2.97 2.22
DiffEIC -2.60 -4.62 -4.12 0.00 -13.98 -3.67 0.85 -3.26 -2.07
HiFiC NaN NaN NaN 13.98 NaN 2.71 15.00 44.03 8.28
ILLM 0.33 -0.96 -0.46 3.67 -2.71 0.00 4.34 0.92 1.62
PerCo (SD) -3.81 -5.79 -5.28 -0.85 -15.00 -4.34 0.00 -3.57 -2.76
StableCodec -1.33 -3.46 -2.97 3.26 -44.03 -0.92 3.57 0.00 0.77
Turbo-DDCM -1.25 -2.72 -2.22 2.07 -8.28 -1.62 2.76 -0.77 0.00

Table 6: BD-PSNR evaluation on DIV2K512 dataset
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Figure S3: Compression & Decompression runtime comparison.
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Figure S4: Round-trip compression-decompression NFEs comparison: Our method maintains
its advantage over others, with margins similar to those observed in runtime.
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Figure S5: Additional Quantitative Results.
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A DDCM DiffC PSC Turbo-DDCM
B

DDCM 0.00 -0.84 3.71 -0.84
DiffC 0.84 0.00 4.07 0.14
PSC -3.71 -4.07 0.00 -3.88
Turbo-DDCM 0.84 -0.14 3.88 0.00

A BPG
CRDR-

D
CRDR-

R DiffEIC HiFiC ILLM
PerCo
(SD)

Stable-
Codec

Turbo-
DDCM

B

BPG 0.00 -1.53 -0.87 3.60 NaN -0.08 5.08 1.27 1.40
CRDR-D 1.53 0.00 0.66 5.42 NaN 1.36 6.83 3.37 3.04
CRDR-R 0.87 -0.66 0.00 4.83 NaN 0.76 6.24 3.02 2.44
DiffEIC -3.60 -5.42 -4.83 0.00 -11.59 -4.35 1.35 -4.14 -2.84
HiFiC NaN NaN NaN 11.59 NaN 2.10 10.78 33.29 3.93
ILLM 0.08 -1.36 -0.76 4.35 -2.10 0.00 5.32 0.91 1.55
PerCo (SD) -5.08 -6.83 -6.24 -1.35 -10.78 -5.32 0.00 -4.68 -3.86
StableCodec -1.27 -3.37 -3.02 4.14 -33.29 -0.91 4.68 0.00 0.76
Turbo-DDCM -1.40 -3.04 -2.44 2.84 -3.93 -1.55 3.86 -0.76 0.00

Table 7: BD-PSNR evaluation on CLIC2020512

Figure S6: Priority-Aware results: p stands for the prioritization level, such that the values in w
(Section 6) are 1 for the deprioritized pixels and 1+p for the prioritized ones. Reconstruction of the
prioritized regions shows better fidelity to the original image as the prioritization level increases.
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Figure S7: Priority-Aware results: With our priority-aware (PA) variant, specific objects in the
image can be reconstructed at extremely low BPPs, with fidelity depending on the prioritization
level. These objects are not reconstructed by other methods at the same BPP.
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Figure S8: Priority-Aware results: With our priority-aware (PA) variant, specific objects in the
image can be reconstructed at extremely low BPPs, with fidelity depending on the prioritization
level. These objects are barely reconstructed, if at all, by other methods at the same BPP.
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Figure S9: Priority-Aware results in DDCM and DiffC: Our method for priority-aware can be
extended to DDCM and DiffC. Turbo-DDCM preserves its superiority in runtime.
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Figure S10: Effect of the orthogonality assumption: The codebook size used is 16k × 16k. Ap-
plying Gram-Schmidt orthogonalization to the codebook does not improve rate-distortion compared
to the unmodified version, which does not apply Gram-Schmidt.

B CODEBOOKS NEAR-ORTHOGONALITY

As described in Section 4, we assume that the codebook in each diffusion step Ct is orthogonal to
build on the efficient and closed-form thresholding algorithm. However, since the codebook consists
of i.i.d. Gaussian noise vectors, it is not necessarily orthogonal. Thus, in this short appendix, we
evaluate how much this approximation degrades the quality of the solution. We do so by applying
Gram-Schmidt (GS) orthogonalization to all the codebooks and comparing the results to the base-
line, which does not use GS. Notably, if GS is performed in the encoder, it should be done in the
decoder as well. On the one hand, GS requires substantial computation, since we may use large
codebooks with more than K = 16k atoms, this results in codebooks larger than 16k × 16k in the
SD-2.1-Base latent space. On the other hand, GS makes the orthogonality assumption valid and
might yield better solutions that could enable better compression capabilities.

Figure S10 shows that for our chosen codebook size of K = 16,384 atoms, the rate-distortion
without GS is almost identical to the rate-distortion with GS.
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C THRESHOLDING-BASED STRATEGY CORRECTNESS

As explained in Section 4, Turbo-DDCM employs a fundamentally different approach to combin-
ing codebook atoms compared to DDCM. Our method builds on the thresholding algorithm (Elad,
2010), which solves sparse least squares, with modifications tailored to our problem, such as the
quantization constraint. To present our considerations clearly, we derive the solution from scratch.
We also compare our approach to DDCM MP.

C.1 PROBLEM SETUP

Inputs. For diffusion timestep t:

• Original image: x0

• Prediction of the original image: x̂0|t

• Codebook of i.i.d. Gaussian atoms: Ct ∈ Rd×K , where d is the dimensionality and K is
the codebook size

• Sparsity parameter: M
• Quantization ordered set: V = [q0, ..., q2C ] (communication cost is log2 |V| = C bits).

We define the residual at timestep t as

rt := x0 − x̂0|t. (S2)

Objective: Find a linear combination of codebook atoms that best approximates the residual, subject
to a sparsity constraint and a quantization constraint. Formally, the optimization problem is

s∗t = argmin
st∈RK

∥Ctst − rt∥22 s.t. ∥st∥0 = M, ∀i (st)i ∈ V ∪ {0}. (S3)

Assumption: Ct is nearly-orthogonal. See App. B for the impact of this assumption.

C.2 APPROXIMATED CLOSED-FORM DERIVATION

Let projt be the orthogonal projection of rt onto the column space of Ct. By the Pythagorean
theorem,

∥Ctst − rt∥22 = ∥Ctst − projt∥22 + ∥projt − rt∥22. (S4)

Since ∥projt − rt∥22 is independent of st, the objective reduces to

argmin
st

∥Ctst − projt∥22, (S5)

subject to the same constraints.

Because projt lies in the column space of Ct, there exists sproj such that projt = Ctsproj , yielding

argmin
st

∥Ct(st − sproj)∥22. (S6)

Under the near-orthogonality assumption

sproj,i ≈
⟨z(i)

t , rt⟩
∥z(i)

t ∥22
, (S7)

where z
(i)
t is the i-th column of Ct. Since the atoms are high-dimensional i.i.d. Gaussian vectors,

their norms are approximately equal. Hence, the optimization is approximated by

argmin
st

∥∥∥∥∥
K∑
i=1

(st,i − ⟨z(i)
t , rt⟩)zi

∥∥∥∥∥
2

2

. (S8)

Using the near-orthogonality and the Pythagorean theorem the problem reduces to

argmin
st

K∑
i=1

(st,i − ⟨z(i)
t , rt⟩)2∥zi∥22 ≈ argmin

st

K∑
i=1

(st,i − ⟨z(i)
t , rt⟩)2. (S9)
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Sparsity only constraint. If we ignore quantization constraint and enforce only the sparsity con-
straint, then for any support S ⊂ {1, . . . ,K} with |S| = M the optimal coefficients are

st,i =

αi := ⟨z(i)
t , rt⟩, i ∈ S,

0, i /∈ S.
(S10)

The corresponding error is

E(S) =
∑
i/∈S

α2
i . (S11)

Thus, the best support is obtained by selecting the M indices with the largest values of α2
i .

Adding the quantization constraint. Now coefficients must lie in the finite set V . For a fixed
index i, the best quantized value is the nearest element of V to αi. Thus, we define

q⋆i := argmin
q∈V
|q − αi|. (S12)

If we select index i and quantize to q⋆i , the error contribution of index i becomes

Equant
i = (q⋆i − αi)

2. (S13)

Compared to leaving index i out (which yields error of α2
i ), the net reduction in error by selecting-

and-quantizing i is

∆i = α2
i − (q⋆i − αi)

2. (S14)

As a result, the best support in that case is obtained by selecting the M indices with the largest
values of (α2

i − (q⋆i − αi)
2).

Turbo-DDCM Characteristic Quantization Levels. In Turbo-DDCM we use the quantization
set V = [−1, 1], corresponding to C = 1 (see App. E for the rationale). Thus, for each atom, the
nearest quantized value is q⋆i = sign(αi), yielding a net error reduction

∆i = 2|αi| − 1 = 2|⟨z(i)
t , rt⟩| − 1. (S15)

Thus, the support can be chosen simply by selecting the M indices with the largest |⟨z(i)
t , rt⟩| values

with correspondence quantized coefficients of sign(⟨z(i)
t , rt⟩).

C.3 APPROXIMATION QUALITY AND HYPERPARAMETER: TURBO-DDCM VS. DDCM MP

Both DDCM MP and our thresholding-based strategy aim to combine codebook atoms to improve
the approximation of the residual vector. Although their approaches fundamentally differ, their
underlying goal is the same. This becomes evident when evaluating the final constructed noise
z∗ from each method within their respective optimization problems for M = 1, assuming z∗ is
the selected noise. In DDCM, the objective reduces to maximizing the inner product between the
noise and the residual vector, while in Turbo-DDCM it reduces to minimizing the L2 norm of their
difference (eq. (6) and eq. (9)). Importantly, ∥z∗∥2 is approximately constant across both methods,
due to normalization to unit standard deviation and the approximate zero mean of z∗. Under this
condition, the objectives are closely related:

argmin
z∗

∥z∗ − r∥22 = argmin
z∗

(
∥z∗∥22 + ∥r∥22 − 2⟨z∗, r⟩

)
(S16)

≈ argmax
z∗

⟨z∗, r⟩. (S17)

Moreover, since ⟨z∗, r⟩ = ∥z∗∥2∥r∥2 cos θ, with θ ∈ [0, π] denoting the unsigned angle between
the two vectors, we obtain

argmax
z∗

⟨z∗, r⟩ = argmax
z∗

∥z∗∥2∥r∥2 cos θ (S18)

≈ argmin
z∗

θ (∥z∗∥2∥r∥2 ≈ const > 0). (S19)
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Figure S11: Effect of hyperparameters on Turbo-DDCM Thresholding and DDCM MP: Met-
rics are shown for compression of the Kodak24 (512×512) dataset using DDCM and Turbo-DDCM
with T = 100 and K = 1024, while varying M and C. Turbo-DDCM consistently approximates the
residual at least as well as DDCM MP and continues to improve the approximation with increased
M , whereas DDCM MP does not improve the approximation beyond a certain point if C is fixed,
which results in constant distortion and perceptual performance. Notably, Turbo-DDCM does not
scale with C; see App. E for details. The C values used differ from our typical value of 1, since
DDCM performs MP with C ≥ 2.

The left plot in Fig. S11 measures θ during image compression with both methods. It confirms our
derivation and shows that Turbo-DDCM consistently provides a solution at least as good as DDCM
MP. Moreover, while Turbo-DDCM scales with M and continues to improve the approximation as
M increases within the presented range, DDCM MP does not benefit from increasing M alone be-
yond a certain point; it also requires increasing C. This hyperparameter interdependency in DDCM
MP can lead to suboptimal configurations and limits fine-grained control over the bitrate, since
both hyperparameters must be adjusted simultaneously. In addition, it negatively affects runtime
efficiency, as discussed in App. D.

The middle and right plots in Fig. S11 further confirm that the ability to produce a z∗ with a small
angle to the residual translates into improved compression performance, both in terms of distortion
and perceptual quality. The lack of improvement in the DDCM MP angle is reflected in constant
distortion and perceptual quality.

C.4 INJECTED NOISE DISTRIBUTION

The noise z∗ that we inject into the denoiser is computed using the method described above. In this
subsection, we provide a characterization of this random variable.

First, z∗t has zero mean, since

E[z∗t ] = E
[

Cts
∗
t

std(Cts∗)

]
(S20)

=
1

std(Cts∗t )
E[Cts

∗] (S21)

=
1

std(Cts∗t )
E

[
d∑

i=0

z
(i)
t (s∗t )i

]
(S22)

=
1

std(Cts∗t )

d∑
i=0

(s∗t )iE[z
(i)
t ] = 0, (S23)

where z
(i)
t is the i-th column of Ct.

Second, we estimate the covariance matrix of z∗. Figure S12 shows several patches extracted from
this matrix for M ∈ [10, 150]. We observe that the entries within these patches are uncorrelated,
and each entry exhibits unit standard deviation.
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Figure S12: Patches of the covariance matrix of z∗: Each subplot shows the empirical covariance
of a patch, with the bounds indicated in its subtitle. All entries have unit standard deviation, and
different entries appear to be uncorrelated.
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D THRESHOLDING-BASED STRATEGY EFFICIENCY

This appendix quantifies the computational efficiency of Turbo-DDCM’s thresholding strategy rel-
ative to DDCM’s matching pursuit (MP). As described in Sections 3 and 4, both strategies combine
multiple atoms from the codebook to obtain improved solutions to the optimization problems. We
provide both a theoretical complexity analysis and empirical results. Importantly, both procedures
are performed after each diffusion step (except the last one). As a result, in image compression, the
total runtime of these algorithms corresponds to the runtime presented in this appendix multiplied
by the number of diffusion steps minus one.

D.1 THEORETICAL COMPLEXITY COMPARISON

Given a codebook, the MP strategy of DDCM employs a greedy iterative search over M iterations,
starting by selecting the atom with the maximum inner product with the residual vector (x0 − x̂0|t).
This step requires an exhaustive search over all K atoms, with a computational cost of Θ(Kd),
where d is the latent space dimensionality. In each of the subsequent M −1 iterations, the algorithm
searches for an additional atom and a quantized coefficient that, together with the current combi-
nation, form a convex combination most correlated with the residual. This search is performed via
exhaustive search, and after selecting the atom and coefficient, the combination is normalized to
unit standard deviation. The process incurs an additional cost of Θ((M − 1)2CKd). Therefore,
DDCM’s MP complexity is

Θ(M2CKd). (S24)

In contrast, our approach solves an approximate least squares problem under sparsity and quantiza-
tion constraints (see App. C for the mathematical foundations). We begin by computing the inner
products between all atoms and the residual vector, which requires a computational cost of Θ(Kd).
Next, we efficiently select the top-M most correlated atoms, which can be implemented using a
heap-based selection algorithm with a cost of Θ(K logM). Finally, quantization is performed using
the previously computed inner products by finding the nearest quantized coefficient for each of the
M selected atoms, with a complexity of Θ(2CM). Hence, the overall complexity of our method is

Θ(Kd+K logM + 2CM) ≈ Θ(Kd), (S25)

since M ≤ K and in our typical configurations M ≪ d and C = 1.

Our algorithm eliminates the dependency on M and C presented in DDCM MP, allowing large
values of these parameters to be used without significant additional computational cost. As explained
in Section 4, the ability to increase M is critical in our approach for achieving a substantial reduction
in the number of diffusion steps, as well as for tuning the bitrate using a single hyperparameter.

D.2 EMPIRICAL RUNTIME COMPARISON

To quantify the difference between the algorithms and assess the impact of the constants hidden in
the Θ notation, we measure the runtime of both algorithms while varying one parameter at a time
among K, M , and C (with d fixed). Figure S13 confirms our theory and supplies a glimpse for the
overall speedup, which passes two orders of magnitude.

Figure S14 shows the acceleration achieved across different combinations of K and M . In the con-
figurations that characterize Turbo-DDCM, our thresholding approach achieves two to four orders
of magnitude runtime speedup over DDCM approach.
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Figure S13: Impact of hyperparameters on the efficiency of DDCM MP vs. Turbo-DDCM
thresholding: While DDCM MP scales linearly with K and M and exponentially with C, our
method scales linearly with K and remains nearly constant in M and C, achieving over two orders
of magnitude speedup.
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Figure S14: Relative speedup of Turbo-DDCM thresholding over DDCM MP: The heatmap
shows the speedup using C = 2 for both methods, as DDCM MP does not support C = 1. The or-
ange box shows DDCM’s typical configurations, and the green box shows Turbo-DDCM’s. Our
method achieves up to four orders of magnitude speedup in the configurations used by Turbo-
DDCM, highlighting the difficulty of using DDCM MP in these regions.
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and runtime. T = 30 gives minimum runtime without sacrificing performance.

E HYPERPARAMETERS

Turbo-DDCM has five hyperparameters:

• T : number of diffusion steps.
• K: codebook size at each diffusion step.
• M : number of selected atoms from the codebook at each step (M ≤ K).
• C: number of bits per quantization coefficient, yielding 2C quantization levels.
• N : number of DDIM steps performed at the end without requiring bits.

In this appendix, we discuss the trade-offs between these parameters and shed light on our choice for
the base configuration: T = 30, K = 16,384, C = 1, varying M to control bitrate and N ranging
from T − 2 to 0 depending on the bitrate (see App. A).

We found that T = 30 provides the best trade-off between performance and runtime, as presented in
Fig. S15. We set K = 16,384 because this value is large enough to span a substantial subspace and,
in Stable Diffusion 2.1 Base, the entire latent space. At the same time, this K remains small enough
to avoid overcompleteness, ensuring a reasonable approximation of orthogonality (see App. B). With
T and K fixed, the bitrate is determined primarily by M and C.

The hyperparameters M and C directly affect our ability to obtain a high-quality solution to the
optimization problem in eq. (9). To understand their marginal impact, we analyze the sources of
approximation error in reconstructing the target residual (x0 − x̂t|0). The approximation error

∥z∗ − (x0 − x̂t|0)∥22, (S26)

can be decomposed into several components. First, setting constraints aside momentarily, the code-
book span may not cover the entire space. Consequently, the best achievable solution is the projec-
tion onto the codebook span. If the codebook spans the whole space, this error becomes zero under
the assumption that the codebook atoms are linearly independent. Second, we require a sparse solu-
tion, so we cannot use the full projection but must find a sparse approximation, which increases the
error. Finally, we cannot use this sparse projection directly, but must quantize it, further increasing
the approximation error.

Figure S16 illustrates our solutions to the objective with and without the quantization constraint,
comparing the sparse projection to the quantized sparse projection with C = 1. Notably, C = 1,
corresponding to quantization coefficients of ±1, does not introduce traditional quantization levels.
Instead, it allows selection of either the codebook noise vector or its opposite, effectively doubling
the codebook size. Using C = 1, we achieve solutions very close to those of the sparse projection.
This behavior can be explained by the fact that the real coefficients are similar in magnitude, making
quantization to exact values unnecessary. As a result, we set C = 1 to our base configuration.

Finally, we use DDIM steps at low bitrates to improve perceptual quality, but at high bitrates where
perceptual quality is already good enough, additional DDIM steps may damage distortion. As a
result, N decreases with bitrate. See App. A for exact details on N .
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Figure S16: Quantization impact on objective approximation: The figure illustrates the dif-
ference in approximating our per-diffusion-step objective defined in eq. (9) with and without the
quantization constraint. Since we normalize our solutions (eq. (10)), the angle between z∗ and the
residual r is proportional to the norm of their difference. The quantized projection is computed
with C = 1, and we observe that it yields nearly the same solution as the sparse projection, which
corresponds to the solution obtained without the quantization constraint.
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F BITSTREAM PROTOCOL

As described in Sec. 4, we propose an alternative protocol for bitstream transmission, distinct from
that used in DDCM. In this appendix, we primarily show that our protocol achieves relative bit
savings exceeding 40% and affects our rate-distortion-perception performance. The BPP formulas
for both protocols are given in eq. (8) and eq. (15), with the differences arising from how the selected
M atom indices are encoded.

The analyses below are performed for a single diffusion step. Since bits are encoded identically for
each step in both protocols, the relative differences similarly apply to the total bit count.

Relative Bit Saving. Let Bold and Bnew denote the number of bits required per diffusion step for
the original DDCM protocol and our proposed protocol, respectively. Thus,

Bold = M⌈log2 K⌉+MC and Bnew =

⌈
log2

((
K

M

))⌉
+MC. (S27)

The relative saving ratio is therefore

∆ =
Bold −Bnew

Bold
. (S28)

Using the Stirling approximation

log2

((
K

M

))
≈M log2

K

M
+O(M). (S29)

Assuming C is small (see App. E), we can express the saving ratio as

∆ ≈
M log2 K −M log2

K
M

M log2 K
=

M log2 M

M log2 K
=

log2 M

log2 K
. (S30)

Thus, the relative savings depend logarithmically on the ratio of M to K, becoming more significant
as M increases relative to K. For example, with K = 16,384 and M = 100, which yields a BPP
of 0.01 in the new protocol for T = 30, N = 0, C = 1, and an image resolution of 512 × 512, the
relative reduction is approximately

log2 100

log2 16384
≈ 47%. (S31)

Empirical Evaluation We evaluate the relative bit savings by focusing on the transmission of the
selected indices, which constitutes the dominant portion of the rate when C is small. As shown
in Fig. S17, the empirical results align with the theoretical analysis, demonstrating a substantial
reduction in rate (>40%). Moreover, Fig. S18 shows that without the new bit protocol, Turbo-
DDCM underperforms in rate-distortion-perception metrics compared to DDCM, whereas with the
protocol it outperforms DDCM.

Lexicographical Combination Encoding and Decoding. Each combination c = [c1, . . . , cM ]
drawn from {0, . . . ,K − 1} can be uniquely represented by its lexicographical rank:

rank(c) =

M∑
i=1

ci−1∑
x=ci−1+1

(
K − x− 1

M − i

)
, with c0 = −1.

This provides a mapping between combinations and integers in [0,
(
K
M

)
).

Decoding is performed by iteratively subtracting binomial coefficients:

while
(
K − x− 1

M − i− 1

)
≤ rank, rank← rank−

(
K − x− 1

M − i− 1

)
, x← x+ 1,

which recovers each element ci in order. This yields an efficient and reversible mapping between
combinations and their lexicographical indices.

Implementation Details. The lexicographic index of each combination is computed efficiently by
precomputing binomial coefficients and summing the relevant terms during runtime.
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Figure S17: Relative bit saving: Percentage of bits saved when transmitting the selected atom
indices using our protocol compared to the original DDCM protocol. To illustrate a continuous trend,
the plot omits the ceiling operator in the bitrate expressions, which does not affect the asymptotic
behavior. For the Turbo-DDCM configuration with K = 16,384, bitrate savings can exceed 40%.
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Figure S19: Distortion variance between images at a fixed bitrate: All zero-shot methods exhibit
high distortion variability across images when evaluated at the same bitrate. In addition, the same
images tend to have similar deviations from the mean under both PSC and Turbo-DDCM, despite the
fundamental differences between the two methods. Both plots use the DIV2K (512×512) dataset.
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Figure S20: Correlation between JPEG file size and distortion in zero-shot compression: Linear
regressions are shown between JPEG file size (at different quality levels) and PSNR obtained by
each method, for BPPs in the range 0.04-0.07. All methods exhibit a strong inverse correlation.
Experiments are conducted on the DIV2K dataset, center-cropped to 512× 512 images.

G TURBO-DDCM DISTORTION-CONTROLLED VARIANT

Current diffusion-based image compression algorithms generally take an image and a target bitrate,
specified via hyperparameters, as input. However, for a fixed bitrate, the resulting distortion can
vary significantly across images. The left plot in Fig. S19 illustrates this for zero-shot diffusion-
based methods, showing that PSNR values at a given bitrate can deviate from the mean by more
than 2 dB. To improve the predictability of the outputs, it may therefore be preferable to target
distortion rather than bitrate.

In this appendix, we propose an efficient method based on Turbo-DDCM, which can also be adapted
to other methods, that takes an image and a target distortion as input and predicts the appropriate
bitrate to achieve it. We observe that, for a given image, its PSNR deviation from the dataset mean at
a fixed bitrate is highly correlated across different methods. For example, the right plot in Fig. S19
demonstrates a strong correlation between PSC and Turbo-DDCM, despite their fundamentally dif-
ferent designs. This observation motivates us to investigate correlations with simple, non-neural
methods such as JPEG, which offer ultra-fast compression.

In Fig. S20, we compress images using JPEG at various quality levels and compared the resulting file
sizes to PSNR values obtained with zero-shot diffusion-based methods at a specific bitrate. A strong
correlation is observed in all quality levels, which may reflect common compression challenges
across all methods, such as the difficulty of compressing images with many objects.
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Figure S21: Distortion control evaluation: Our method brings the actual distortion much closer to
the target, reducing RMSE by over 40% for most target PSNRs. Results in both plots are reported
on the test set.

Leveraging this observation, we propose a method for PSNR control with Turbo-DDCM. First, given
a training set, compress all images using high-quality JPEG. Next, compress the same images with
Turbo-DDCM at various bitrates and learn the correlation between JPEG file size and Turbo-DDCM
PSNR for each bitrate via linear regression. To compress a new image to a target PSNR, we first
compress it with JPEG and, based on its JPEG file size, predict its Turbo-DDCM PSNR at each
bitrate using the learned linear regressions. Finally, we select the bitrate whose predicted PSNR is
closest to, but not below, the target. If no such bitrate exists, we choose the highest available bitrate.

To evaluate our approach, we use a large dataset - CLIC2020 (Toderici et al., 2020), with images
center-cropped to 512×512. We first filter out highly difficult images whose JPEG file size at quality
100 exceeds 300 KB, which constitute less than 4% of the dataset. These images are excluded
because achieving high PSNR values on them is difficult, almost regardless of the used bitrate. The
remaining dataset is split into training and test sets, with 80% of the images used for training and
20% for testing. Both sets are then compressed with JPEG at quality 100. We train a linear regression
model for each bitrate on the training set. Finally, for each image in the test set and target PSNR, we
determine the bitrate via the above method and evaluate the actual PSNR. The naive approach we
compare against selects, for each image, the bitrate whose mean PSNR is closest to the target PSNR.
As shown in Fig. S21, our method achieves over a 40% RMSE reduction on the test set across most
target PSNR target values compared to the naive approach.
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H DDCM AND TURBO-DDCM VS. DIFFC

DDCM, Turbo-DDCM, and DiffC are all state-of-the-art zero-shot compression methods, achiev-
ing comparable compression quality (Fig. 4). While DiffC is based on the reverse-channel-coding
(RCC) principle introduced by Theis & Yosri (2022), Turbo-DDCM builds on DDCM (Ohayon
et al., 2025), which is not motivated from a solid theoretical foundation. Interestingly, both DDCM-
based methods and DiffC optimize the same core objective, yet extend it in fundamentally different
ways. In this appendix, we first illustrate DiffC and its underlying motivation, and then highlight its
similarities and differences from DDCM and Turbo-DDCM.

H.1 SHARED CORE OPTIMIZATION OBJECTIVE

All three methods are based on solving optimization problems. The optimization problem of DDCM
is presented in Section 3, that of Turbo-DDCM in Section 4, and we now turn to the optimization
process of DiffC which is based on RCC. In each diffusion step, DiffC aims to communicate the
forward diffusion distribution q(xt−1 | x0,xt) to the decoder, assuming both can sample from the
reverse distribution pθ(xt−1 | xt). This communication is performed only for a specific number of
initial diffusion steps, which depends on the target bitrate, similar to Turbo-DDCM. The broadcasted
information is then used to steer the diffusion process toward the target image via a strategically
chosen diffusion noise vector, similar to the approach in Turbo-DDCM.

Vonderfecht & Liu (2025) implement DiffC by applying RCC using the Poisson-Functional-
Representation (PFR) approach presented by Theis & Yosri (2022). In their implementation, the
PFR algorithm iteratively samples i.i.d. Gaussian noise vectors, selecting the noise zi that mini-
mizes pθ(zi)/q(zi). Exploiting the isotropy of both distributions, they simplify this deviation to

hi := exp

(
− (µq − µpθ

)Tzi
σpθ

)
, (S32)

where µq and µpθ
are the means of q and pθ, respectively, and σpθ

is the standard deviation of
pθ. The iterations for searching the best noise are prioritized, favoring early iterations through
an increasing multiplicative weight wi =

∑i
j=1 ej for the i-th iteration, where ej ∼ exp(1) are

i.i.d. exponential random variables. The noise with the minimum weighted score, computed as the
product of wi and hi, replaces the randomly sampled noise in the DDPM reverse process (eq. (2)).

Temporarily ignoring prioritization, DiffC optimization can be formulated as

argmin
zi

exp

(
− (µq − µpθ

)Tzi
σpθ

)
= argmax

zi

(µq − µpθ
)Tzi. (S33)

Placing the values of the means, it simplifies to

argmax
zi

(((c1x0 + c2xt)− (c1x̂0|t + c2xt))
Tzi) = argmax

zi

⟨zi,x0 − x̂0|t⟩, (S34)

where c1 and c2 are time-dependent constants. This objective is actually the original DDCM objec-
tive for the case of M = 1, meaning no matching pursuit is performed (eq. (6)). Since ∥x0 − x̂0|t∥2
is constant regardless of zi, and ∥zi∥2 is approximately constant in high dimensions, eq. (S34) can
be written as

argmin
zi

∥zt − (x0 − x̂0|t)∥22, (S35)

which is equivalent to Turbo-DDCM’s objective for the case of M = 1 (eq. (9)). Thus, all three
methods steer the diffusion process towards the target image based on the same core objective.

H.2 DIFFERENCES BETWEEN METHODS

Although these methods share the same core objective, they differ in several key aspects.

Sampled Noise Prioritization. As mentioned above, DiffC weights the sampled noises by their
sampling iteration number, whereas DDCM and Turbo-DDCM treat all noises equally, without pri-
oritization. While noise prioritization can improve compression on average using variable-length
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Figure S22: Actual BPP variance in DiffC across images: DiffC exhibits variable BPP, which can
deviate from the mean by more than 25% under the same BPP target. tfinal is the final timestep up to
which the encoder performs RCC and communicates the result to the decoder. This hyperparameter
controls the target BPP.

encoding such as Zipf coding used by DiffC, DDCM and Turbo-DDCM provide a constant and pre-
dictable bitrate across images. Figure S22 illustrates that DiffC’s bitrate varies significantly between
images, with deviations exceeding 25% from the mean, even when using the same target bitrate
hyperparameters.

Increase of the Effective Search Space Turbo-DDCM and DiffC employ different strategies to
effectively explore a large space of sampled noise vectors. DiffC achieves this by partitioning both
zi and µq − µpθ

into chunks and independently solving each optimization problem via exhaustive
search. If the search is performed over x iterations per chunk across c independent chunks, this
effectively explores xc possible noise maps with only x× c exhaustive search iterations. In contrast,
Turbo-DDCM performs effective multiple-atom selection. This explores

(
K
M

)
× 2M×C combina-

tions, where K is the codebook size, M is the number of chosen atoms, and 2C denotes the number
of possible non-zero quantization coefficients.

Search Space Size along Diffusion Steps. Supported by theoretical justifications, DiffC progres-
sively increases both the number of chunks and the number of search iterations as the reverse dif-
fusion process advances. In contrast, DDCM and Turbo-DDCM maintain a fixed codebook size
and a fixed number of selected atoms across all diffusion steps. Importantly, while DiffC requires a
custom CUDA kernel due to performing 216 = 65,536 evaluations per chunk across more than 400
chunks in later diffusion steps, Turbo-DDCM achieves multiple atom selection through an efficient
closed-form solution without requiring custom hardware-specific acceleration. The progressively
increasing search complexity in DiffC is a major factor behind its growing runtime with bitrate, as
shown in Figure 4. As the bitrate increases, the encoder performs more intensive optimization across
a greater number of diffusion steps.

H.3 TURBO-DDCM VS. ACCELERATED DIFFC

Vonderfecht & Liu (2025) mention the option to reduce DiffC runtime by decreasing the number
of inference steps. To evaluate both methods under comparable runtimes, we create a faster variant
of DiffC using this approach. Since DiffC’s runtime varies significantly across bitrates, we reduce
the number of diffusion steps to approximately match Turbo-DDCM’s runtime at DiffC’s minimum
runtime. This results in just a few encoding steps for DiffC at low bitrates, increasing up to 10 steps
at high bitrates. We refer to this new configuration as Fast-DiffC.

Figure S23 shows that Fast-DiffC maintains comparable distortion to the original DiffC across all
bitrates, but its perceptual quality is notably inferior to both DiffC and Turbo-DDCM except at the
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Figure S23: Fast-DiffC evaluation: Fast-DiffC maintains the equivalent distortion to DiffC. How-
ever, it has much worse perception. The evaluation uses the Kodak24 (512× 512) dataset.

highest bitrate. One possible explanation for this phenomenon is that RCC is computationally de-
manding due to the large number of evaluations required, even with custom CUDA kernel. Thus,
Fast-DiffC is forced to perform fewer diffusion steps than Turbo-DDCM, whose inter-step mecha-
nism is more efficient, in order to achieve comparable runtime.
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I TURBO-DDCM PSEUDO-CODE

Algorithm S1 Turbo-DDCM – Compression
1: Input: Image to compress x0, T , K, M , C.
2: Output: Compressed representation E(x0).

3: Calculate N . ▷ Simple thresholds for N are described in App. A.
4: E ← 0 ▷ Initialize the compressed representation
5: xt ← rand normal(s) ▷ xT generation. The random seed s is shared with decoder
6: for t = T, . . . , N + 1 do
7: x̂0|t ← D(xt, t) ▷ Denoiser activation
8: Ct ← rand normal(s+ t, K). ▷ codebook sampling with K i.i.d. gaussian latent vectors
9: s∗t ← opt(Ct,x0, x̂0|t,M,C) ▷ Solving eq. (9) optimization with eq. (13) closed-form

10: z∗t ← Cts
∗
t / std(Cts

∗
t ). ▷ eq. (10)

11: calculate xt−1 ▷ DDPM step
12: encodedt ← pack(s∗t ) ▷ Lexicographic index & quantized coefficients encoding; App. F
13: E ← E∥encodedt ▷ Concatenate step encoding to the compressed representation
14: end for
15: return E(x0)

Algorithm S2 Turbo-DDCM – Decompression
1: Input: Compressed representation E(x0), T , K, M , C.
2: Output: decompressed image x̃0

3: Calculate N . ▷ Simple thresholds for N are described in App. A
4: x̃t ← rand normal(s). ▷ Sampling xT . Identical to the sampled xT in the encoder
5: for t = T, . . . , N + 1 do
6: x̂0|t ← D(xt, t) ▷ Denoiser activation
7: Ct ← rand normal(s+ t, K). ▷ codebook sampling. Identical to the encoder codebook
8: s∗t ← unpack(E)
9: z∗t ← Cts

∗
t / std(Cts

∗
t ). ▷ eq. (10)

10: calculate x̃t−1 ▷ DDPM step
11: end for
12: perform N + 1 DDIM steps from x̃N

13: return x̃0

See App. A for typical hyperparameters.
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J LLM USAGE

Large language models (LLMs) were used for minor text polishing and readability improvements.
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