PROXY-FDA: PROXY-BASED FEATURE DISTRIBUTION ALIGNMENT FOR FINE-TUNING VISION FOUNDATION MODELS WITHOUT FORGETTING

Anonymous authors Paper under double-blind review

ABSTRACT

Vision foundation models pre-trained on massive data encode rich representations of real-world concepts, which can be adapted to downstream tasks by fine-tuning. However, fine-tuning foundation models on one task often leads to the issue of *concept forgetting* on other tasks, and this issue is exacerbated by the typically limited data for fine-tuning. Recent methods of robust fine-tuning aim to mitigate forgetting of prior knowledge without affecting the fine-tuning performance. Knowledge is often preserved by matching the original and fine-tuned model weights or feature pairs. However, such point-wise matching can be too strong, without explicit awareness of the feature neighborhood structures that encode rich knowledge as well. We propose a novel regularization method **Proxy-FDA** that explicitly preserves the structural knowledge in feature space. Proxy-FDA performs Feature Distribution Alignment (using nearest neighbor graphs) between the pre-trained and fine-tuned feature spaces, and the alignment is further improved by informative proxies that are generated dynamically to increase data diversity. We show in end-to-end finetuning experiments that Proxy-FDA significantly reduces concept forgetting, and we find a strong correlation between forgetting and a distributional distance metric (in comparison to L2 distance). We further demonstrate Proxy-FDA's utility in both few-shot (based on prompt tuning) and continual fine-tuning settings, where we achieve consistent gains over the corresponding baselines.

031 032

033

006

007

012 013

014

015

016

017

018

021

024

025

026

027

028

029

1 INTRODUCTION

034 Vision foundation models like CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2024) pretrained on large amounts of data demonstrate remarkable performance across various tasks and data distributions. Such foundation models are known to have learned vast knowledge on real-world 037 concepts that can serve as a useful prior for downstream task adaptation via fine-tuning. Existing fine-038 tuning methods include end-to-end finetuning, linear probing, prompt tuning (Zhou et al., 2022a;b), and adapter learning (Gao et al., 2021). While these methods prove effective, empirical evidence shows that they frequently suffer from an undesirable effect called *concept forgetting* (Mukhoti et al., 040 2024). Forgetting occurs when a fine-tuned model overfits on the downstream task, and unlike its 041 pre-trained counterpart, significantly loses the ability to recognize concepts on other tasks. The issue 042 is even more pronounced when limited data size and diversity are available for fine-tuning. 043

044 Concept forgetting has driven recent research on robust fine-tuning with the goal of preserving the 045 pre-trained knowledge and performing well on the downstream task. One simple approach is to ensemble models before and after fine-tuning (Wortsman et al., 2022b). Alternative methods are 046 based on regularization techniques to constrain the fine-tuned model to remain close to the original 047 foundation model in either weight space (Li et al., 2018) or feature space (Mukhoti et al., 2024). 048 Feature-space regularization by matching the pre-trained and fine-tuned features across samples shows a more promising effect in reducing forgetting, since it directly minimizes the change in input-output behaviour of the model. One key assumption behind such regularization is that the L2 051 feature-space distance is a good indicator of the similarity of encoded concepts in different models. 052

053 We argue that aligning individual feature points imposes too strong of a constraint. Without an explicit insight of feature neighborhoods, the concepts preserved *point-wise* are found to be limited, resulting

Figure 1: (a) Illustration of Proxy-based Feature Distribution Alignment (Proxy-FDA), where the pre-trained and fine-tuned feature distributions are aligned by their local neighborhood structures, which is further aided by proxies (*i.e.*, synthetic features). Proxy-FDA offers a structure-wise feature regularization to preserve the rich knowledge in neighborhood structures. We show Proxy-FDA 069 significantly outperforms point-wise feature regularization in alleviating concept forgetting during fine-tuning. (b) t-SNE visualization of the local feature neighborhood (circled) on ImageNet for the pre-trained CLIP ViT-B/16 model. In this neighborhood, we observe the same white color from two 072 dog breeds "French bulldog" and "Miniature poodle". Preserving CLIP's common-sense knowledge 073 (in this case the color attribute shared across different classes) using FDA maintains the generalizabil-074 ity of foundation models. On the other hand, the generated proxies include diverse information from both seen and unseen (e.g., "Malamute") classes that can regularize the neighborhood boundary and further improve FDA. The synthesized seen/unseen class data are illustrated by kNN retrieval from 076 the base/new class splits of ImageNet when fine-tuning on the base only.

075

066

067

068

071

in sub-optimal performance of forgetting reduction. Here we suggest that it is desirable to explicitly 079 inform the fine-tuning process of the local structure of feature neighborhoods. By preserving this neighborhood structure with a structure-wise regularization term, the rich knowledge encoded in the 081 local structure of the original feature space will be transferred to the fine-tuned one. As a result, the 082 fine-tuned model can forget significantly less while still maintaining its downstream performance. 083

The above idea motivates us to propose a new feature regularization term called Feature Distribution 084 Alignment (FDA). Specifically, we first model the structural relations of pre-trained features using a 085 nearest neighbor graph. Then we transfer the graph to the fine-tuned feature space, where feature neighbors are pulled together while non-neighbors are pushed away regardless of their labels. Such 087 FDA process enables sharing knowledge beyond class concepts in local feature neighborhoods, such 880 as visual attributes or co-occurring patterns. Fig. 1(b) provides an example of the white color attribute 089 (of two dog breeds) mined from a local neighborhood on ImageNet. This example represents the 090 common-sense prior knowledge embedded in a vision foundation model that is often richer than the 091 class labels on downstream datasets. Preserving such knowledge (e.g., about color) during fine-tuning 092 is important to maintain the generalizability of the foundation model, which can facilitate recognizing 093 unfamiliar classes from different tasks. What is harmful is to just specialize on the task at hand, since all information (e.g., color sensitivity) but its class label will be discarded. 094

Another key contribution of this paper is an improvement to FDA, with the introduction of a new 096 regularization called **Proxy-FDA**, which uses *proxies* as synthetic features. This full method is particularly useful on data-deficient fine-tuning tasks (such as few-shot ones), where the limited task 098 data do not allow sufficient alignment of complex feature distributions. To further increase data 099 diversity, Proxy-FDA learns to generate a set of instance-wise proxies both within and outside a target feature's local neighborhood. Fig. 1(b) exemplifies some proxies that synthesize informative unseen 100 data or unseen class concepts. We empirically show that the generated proxies improves FDA with 101 richer data/concepts, thereby further reducing concept forgetting. 102

103 We have conducted experiments of fine-tuning vision foundation models end-to-end on ten classi-104 fication tasks. Results show that Proxy-FDA significantly outperforms other fine-tuning baselines 105 in preventing concept forgetting, without hurting the downstream accuracy. We also find a strong correlation between concept forgetting and a distance metric OTDD - Optimal Transport Dataset 106 Distance (Alvarez-Melis & Fusi, 2020) which is ideal to measure the alignment quality for feature 107 distributions with local structures. Crucially, the correlation between concept forgetting and the

108 structure-aware OTDD metric indicates the need of structure-wise FDA in some form for better 109 forgetting mitigation. Our structure-wise Proxy-FDA is shown to indeed forget much less than point-110 wise feature regularization (Mukhoti et al., 2024). We further show Proxy-FDA can be plugged into 111 various prompt tuning methods to perform few-shot fine-tuning, where Proxy-FDA shows consistent 112 gains and superior data efficiency for lowering forgetting. Lastly, Proxy-FDA proves effective on continual fine-tuning tasks, outperforming specialized continual learning baselines as well. 113

- In summary, our main contributions include: 115
 - A novel regularization method, Proxy-FDA, that aligns the local structures of feature distributions with learned proxies, aiming to preserve concepts when fine-tuning vision foundation models;
 - Correlation analysis between concept forgetting and a structure-aware distributional distance metric, OTDD, which implicitly explains the success of our structure-wise FDA method;
 - State-of-the-art performance on reducing concept forgetting in three settings: end-to-end, fewshot (based on prompt tuning) and continual fine-tuning.
- 121 122 123

124

114

116

117

118

119

120

2 **RELATED WORK**

125 **Robust fine-tuning.** End-to-end fine-tuning often suffers from concept forgetting and degraded 126 out-of-distribution (OOD) performance. In the foundation model era, linear probing or that followed 127 by end-to-end tuning (Kumar et al., 2022) are common remedies to maintain the OOD robustness of a 128 pre-trained model. Alternative methods either ensemble the original and fine-tuned models (Wortsman 129 et al., 2022b;a) or use the contrastive pre-training loss directly for fine-tuning (Goyal et al., 2023). 130 More recently, Song et al. (2023) propose a method called FD-Align, which trains a spurious feature 131 classifier and maintains its output consistency during fine-tuning. As a result, FD-Align significantly improves the OOD accuracy. To prevent forgetting, regularization methods are often used to minimize 132 the model distance before and after fine-tuning in either weight space (Li et al., 2018) or feature 133 space (Mukhoti et al., 2024). In few-shot settings, regularization is even more important. For example, 134 the prompt learning method CLIPood (Shu et al., 2023) regularizes via temporal model ensembling, 135 while PromptSRC (Khattak et al., 2023b) directly regularizes the output features and logits between 136 pre-trained and prompt-tuned models. Nevertheless, all existing methods do not explicitly account 137 for feature neighborhood structures, which we show is key for robust fine-tuning.

138 139

Feature and data distribution alignment. These techniques have been explored in different 140 contexts. At the core of measuring distributional distances, Optimal Transport (OT) (Villani, 2008) 141 provides a principled approach to compare data distributions in a geometrically meaningful way. 142 Given the similar nature of our FDA method that aligns the "clustering" structures of distributions, 143 we use an OT-based distance metric OTDD (Alvarez-Melis & Fusi, 2020) to measure FDA quality. 144 Feature alignment is also key to Domain Adaptation (DA) (Wang & Deng, 2018). However, most 145 DA methods learn a separate domain-invariant feature subspace to align domains implicitly, which differs from our explicit FDA during fine-tuning. More related to our method is the Knowledge 146 Distillation (KD) field (Wang & Yoon, 2021), where traditional KD methods match features or 147 probability distributions between teacher and student models. Relation-based KD methods are 148 particularly similar to our high-level idea by distilling feature relations in form of kNNs (Zhu et al., 149 2022), feature similarities (Park et al., 2019; Passalis & Tefas, 2018; Tung & Mori, 2019; Peng et al., 150 2019) and relative ranks (Chen et al., 2018). Our Proxy-FDA can be seen as an alternative relational 151 KD method that distills both kNNs and similarities, and further improves with proxy learning.

152

153 **Proxy learning.** This approach is widely adopted in deep metric learning (Movshovitz-Attias et al., 154 2017; Kim et al., 2020; Roth et al., 2022) to reduce the sampling complexity of pure sample-based 155 methods. Proxies are learned as class prototypes to optimize sample-proxy distances in place of 156 sample-sample distances, resulting in faster convergence. By contrast, our proxy learning is different 157 in both implementation and motivation: we learn instance-wise proxies via adaptive pooling of true 158 samples; we also do not use the proxies as sample stand-ins, but as rich augmentations for improving 159 FDA. This makes our approach more related to those **feature augmentation** methods, such as by random linear interpolation (Verma et al., 2019) and outlier feature synthesis (Du et al., 2022; Tao 160 et al., 2023). Empirically, our method is more effective than these feature augmentation methods by 161 generating diverse augmented features from the entire feature neighborhood.

¹⁶² 3 METHOD

We aim for forgetting-free fine-tuning of vision foundation models (*e.g.*, CLIP and DINOv2), using feature-space regularization based on *Feature Distribution Alignment* (FDA). Specifically, given a pre-trained model $f_{\hat{\theta}}$, we use the downstream dataset \mathcal{D}_{ft} to fine-tune the model into f_{θ} . Our goal is to specialize the fine-tuned model on \mathcal{D}_{ft} with low task loss \mathcal{L}_{task} (*e.g.*, cross-entropy loss for classification), whilst preventing concept forgetting on any target dataset $\mathcal{D} \neq \mathcal{D}_{ft}$. To prevent forgetting, we introduce an FDA-based regularization term to the downstream task loss, which gives:

$$\mathcal{L} = \frac{1}{B} \sum_{i=1}^{B} \left(\mathcal{L}_{\text{task}}^{i} + \lambda \mathcal{L}_{\text{FDA}}^{i} \right), \tag{1}$$

where $\mathcal{L}_{\text{FDA}}^i$ is the FDA loss for each sample *i* in a mini-batch $\{i\}_{i=1}^B$ of size *B*, and λ is a weighting parameter.

176 177

178

171

172 173

3.1 FEATURE DISTRIBUTION ALIGNMENT (FDA)

Having defined the learning problem and its general loss function, we now present our FDA method in detail. During fine-tuning on \mathcal{D}_{ft} , we first use the pre-trained model $f_{\hat{\theta}}$ and fine-tuned f_{θ} to extract batch features $\hat{X} \in \mathbb{R}^{d \times B}$ and $X \in \mathbb{R}^{d \times B}$, respectively. Note $\hat{X} = [\hat{x}_1, \dots, \hat{x}_B]$ are the pre-trained batch features with $\hat{x}_i \in \mathbb{R}^d$, while $X = [x_1, \dots, x_B]$ are the features currently being fine-tuned with $x_i \in \mathbb{R}^d$. To transfer the structural knowledge in \hat{X} into X, we align the structural relations of \hat{X} and X based on their nearest neighbor graphs.

Concretely, for each pre-trained feature point \hat{x}_i , we maintain its k-nearest neighbor set $R_i = \{j | \hat{x}_j \in kNN(\hat{x}_i)\}$ within the batch. Note $|R_i| = K$, and we will detail later how to construct batches to facilitate the kNN search. This way, we obtain an instance-wise batch partition from the pre-trained model's perspective, leading to the positive set of neighbors $\hat{X}_i^+ = \hat{X}(R_i) \in \mathbb{R}^{d \times K}$ and negative set of non-neighbors $\hat{X}_i^- \in \mathbb{R}^{d \times (B-K-1)}$. To form the complete nearest neighbor graph, we further compute the cosine similarities between pre-trained features $\hat{w}_{ij} = \cos(\hat{x}_i, \hat{x}_j)$ for $j \in \{1, \dots, B\}$ and $j \neq i$. Accordingly, we organize them into similarity vectors for neighbors $\hat{w}_i^+ \in \mathbb{R}^K$ and non-neighbors $\hat{w}_i^- \in \mathbb{R}^{B-K-1}$.

For efficient graph matching between \dot{X} and X, we choose to simply transfer the neighbor indices 194 R_i and similarities $\{\hat{w}_i^+, \hat{w}_i^-\}$ from X to X. This means neighbors in the pre-trained feature space 195 should remain neighbors in the fine-tuned feature space. Hence among X, we similarly have a positive 196 set $X_i^+ = X(R_i) \in \mathbb{R}^{d \times K}$ where the identified neighbors are pulled together in the fine-tuned feature space, and a negative set $X_i^- \in \mathbb{R}^{d \times (B-K-1)}$ where non-neighbors are pushed away. On the 197 other hand, we associate the pre-trained feature similarities $\{\hat{w}_i^+, \hat{w}_i^-\}$ with $\{X_i^+, X_i^-\}$ to preserve 199 fine-grained feature neighborhood structures. We will show that transferring both the neighbor indices 200 and similarities works better than only transferring the former, *i.e.*, binary partitioning of neighbors 201 vs. non-neighbors. Fig. 2(a) and (c) – the FDA parts – visualize the high-level idea. 202

To capture the desired structures, we use the Sigmoid loss, which is shown by (Zhai et al., 2023) to be a noise-resistant objective to handle a variable number of positives and negatives per batch:

$$\mathcal{L}_{\text{FDA}}^{i}\left(\{\boldsymbol{X}_{i}^{+}, \boldsymbol{X}_{i}^{-}\}, \{\hat{\boldsymbol{w}}_{i}^{+}, \hat{\boldsymbol{w}}_{i}^{-}\}\right) = \frac{1}{(|\boldsymbol{X}| - 1)} \sum_{\boldsymbol{x}_{j} \in \boldsymbol{X}, j \neq i} \log\left(1 + e^{w_{ij}\left(-\frac{\cos(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})}{\tau} + b\right)}\right), \quad (2)$$

where w_{ij} is a weighting parameter. w_{ij} equals \hat{w}_{ij} if $j \in R_i$ (*i.e.*, weighting by \hat{w}_i^+ for neighbors), and $-\hat{w}_{ij}$ if $j \notin R_i$ (*i.e.*, weighting by $-\hat{w}_i^-$ for non-neighbors). τ and b are learnable parameters which are initialized in a similar way as in (Zhai et al., 2023). The above FDA loss helps to preserve local neighborhood structures in the fine-tuned feature space, without involving class labels.

Batch construction and neighborhood size K. To have a meaningful characterization *and* alignment of local neighborhood structures, we need to ensure that each mini-batch has diverse class distributions that may overlap locally in the feature space, and that a sufficient number of neighbors $|R_i| = K$ are identified for each sample in a batch.

Figure 2: (a) Overview of our batch construction, transfer of the nearest neighbor graph of pre-trained model $f_{\hat{\theta}}$ (with neighbor indices and similarities), and proxy generator. (b) Efficient architecture of the proxy generator that generates dynamic proxies or synthetic features (details in Appendix B). (c) (Proxy-) FDA loss penalizes local distribution overlap between the similarity-weighted positive X_i^+ and negative features X_i^- , (with) and without using proxies $\{P_i^+, P_i^-\}$.

To meet the above-mentioned requirements, we sample batch data in a class-balanced manner, with n samples for each of the m classes. For a fixed batch size $B = m \cdot n$ that best fits in the available GPU memory, we choose a high value of m to increase the diversity of class concepts in batch, but at the cost of reducing the number of examples per class n. By default, m = 16 and n = 4. More critically, we perform **hard class mining** to construct batches where samples from different classes are similar (details in Appendix A). This enables meaningful kNN search within a batch.

239 For the neighborhood size K, we choose K > n to guarantee that there is more than one class in 240 any identified local feature neighborhood R_i . This way, each neighborhood includes an adaptive 241 selection of "small clusters" from related classes. FDA between such neighborhoods will encourage 242 transferring high-level knowledge beyond class concepts. Fig. 1(b) exemplifies a common color 243 attribute mined locally for two similar dog classes. Preserving this knowledge that is embedded in 244 foundation models is important to prevent forgetting during fine-tuning. Note it is possible that the 245 inter-class similarity is not high enough in R_i (thus relatively low \hat{w}_{ii} for inter-class samples and no shared properties between classes), then FDA reverts back to aligning class semantics. 246

247 248

249

228

229

230

231

232

3.2 Proxy-FDA

One challenge with FDA is that the downstream dataset \mathcal{D}_{ft} can be limited in both data size and 250 diversity. In this case \mathcal{D}_{ft} does not allow adequate FDA, thereby preserving only limited concepts 251 from those learned during pre-training. To address the data challenge, one could retrieve external data 252 assuming the pre-training dataset is often inaccessible. However, using external data will inevitably 253 suffer from higher compute/memory cost as well as various levels of distributional shift. Here we 254 propose a compute- and data-efficient approach to improve downstream data diversity and eventually 255 improve FDA quality. Our approach involves generating synthetic features or *proxies* on-the-fly from 256 observed fine-tuning data. Such generated proxies have no distributional shift since they adapt to the 257 considered feature distribution. We leave sampling suitable external data for FDA to future work.

Before diving into the details of Proxy-FDA, we highlight two points. First, for each feature point x_i in a batch, both its positive set X_i^+ and negative set X_i^- could lack diversity. Second, the semi-hard nature of X_i^- (due to hard class mining) alleviates the "limited diversity" issue. This is because semi-hard negatives can provide the most informative signal for shaping the decision boundary, without sampling the vast space of negative features.

To further increase data diversity, we learn to generate two-sets of proxies $P_i^+ = [p_1^+, \dots, p_{n^{p+1}}^+] \in \mathbb{R}^{d \times n^{p^+}}$ and $P_i^- = [p_1^-, \dots, p_{n^{p-1}}^-] \in \mathbb{R}^{d \times n^{p^-}}$ out of $X_i^+ \in \mathbb{R}^{d \times K}$ and $X_i^- \in \mathbb{R}^{d \times (B-K-1)}$ respectively. n^{p^+} and n^{p^-} are made proportional to the size of X_i^+ and X_i^- using a scalar *s*, see details in Appendix D. The proxies are learned to be as diverse as possible but still lie in the corresponding true feature manifold. This way P_i^- is still semi-hard, just as X_i^- . Fig. 1(b) shows that both P_i^+ and P_i^- can synthesize unseen data/concepts. Such unseen information will provide fine-grained regularization of the neighborhood boundary, and will improve FDA with richer concepts.

Following the above intuitions, we define our proxy learning loss $\mathcal{L}_{\text{proxy}}^i = \mathcal{L}_{P_i^+} + \mathcal{L}_{P_i^-}$, where:

$$\mathcal{L}_{\boldsymbol{P}_{i}^{+}} = \frac{1}{n^{p+}} \sum_{j=1}^{n^{p+}} \frac{1}{|\boldsymbol{X}|} \sum_{\boldsymbol{x}_{l} \in \boldsymbol{X}} \log \left(1 + e^{w_{l} \left(-\frac{\cos(\boldsymbol{p}_{j}^{+}, \boldsymbol{x}_{l})}{\tau} + b \right)} \right) + \alpha \cdot \mathcal{L}_{\text{var}}(\boldsymbol{P}_{i}^{+}), \tag{3}$$

274 275 276

277 278

272 273

$$\mathcal{L}_{\boldsymbol{P}_{i}^{-}} = \frac{1}{n^{p-}} \sum_{j=1}^{n^{p-}} \frac{1}{|\boldsymbol{X}|} \sum_{\boldsymbol{x}_{l} \in \boldsymbol{X}} \log \left(1 + e^{w_{l} \left(-\frac{\cos(\boldsymbol{p}_{j}^{-}, \boldsymbol{x}_{l})}{\tau} + b \right)} \right) + \alpha \cdot \mathcal{L}_{\text{var}}(\boldsymbol{P}_{i}^{-}).$$
(4)

The first loss term constrains proxies P_i^+ and P_i^- towards the feature manifolds X_i^+ and X_i^- . This is achieved using the binary label w_l which, in case of $\mathcal{L}_{P_i^+}$, equals 1 if $x_l \in X_i^+$ and -1 if $x_l \in X_i^-$; while in case of $\mathcal{L}_{P_i^-}$, is the opposite. The variance loss $\mathcal{L}_{var}(P)$ maximizes proxy diversity in form of $1/d \sum_{j=1}^d \max(0, 1 - \sqrt{\operatorname{Var}(P_{j,:}) + \epsilon})$ with ϵ being a small scalar. α is a weighting parameter.

In practice, we use Eq. (3-4) to train our proxy generator online during the model fine-tuning process. This ensures the generated proxies always adapt to the current feature distribution. Appendix B details the **network architecture of the proxy generator**, which only incurs a small compute cost as shown in Appendix D. At high level, conditioned on X_i^+ and X_i^- , our proxy generator is trained to predict the instance-wise proxies $\{P_i^+, P_i^-\}$ and their similarity estimates $\{\hat{w}_i^{p+}, \hat{w}_i^{p-}\}$ all at once. Finally, we use all the predictions to augment the true features $\{X_i^+, X_i^-\}$ and similarities $\{\hat{w}_i^+, \hat{w}_i^-\}$, arriving at our Proxy-FDA loss for feature-space regularization:

$$\mathcal{L}_{\text{Proxy-FDA}}^{i} = \mathcal{L}_{\text{FDA}}^{i} \left(\left\{ [\boldsymbol{X}_{i}^{+}, \boldsymbol{P}_{i}^{+}], [\boldsymbol{X}_{i}^{-}, \boldsymbol{P}_{i}^{-}] \right\}, \left\{ [\hat{\boldsymbol{w}}_{i}^{+}, \hat{\boldsymbol{w}}_{i}^{p+}], [\hat{\boldsymbol{w}}_{i}^{-}, \hat{\boldsymbol{w}}_{i}^{p-}] \right\} \right),$$

$$\mathcal{L} = \frac{1}{B} \sum_{i=1}^{B} \left(\mathcal{L}_{\text{task}}^{i} + \lambda \mathcal{L}_{\text{Proxy-FDA}}^{i} \right).$$
(5)

295 296

297 298

299

300

301

302

303

304 305

306

292 293

4 EXPERIMENTS

In this section, we benchmark concept forgetting and methods addressing it. Appendix D includes analysis of the hyper-parameters of our Proxy-FDA method, and Appendix E ablates the key components of Proxy-FDA. Here we perform three groups of experiments: 1) End-to-end fine-tuning of different vision foundation models on 10 image classification datasets, 2) Parameter-efficient fine-tuning via prompt tuning on 11 classification datasets in few-shot settings, often with severe forgetting issues, 3) Continual fine-tuning on a sequence of classification tasks as another stress test.

4.1 END-TO-END FINE-TUNING

Datasets. We follow (Mukhoti et al., 2024) to use 10 image classification datasets: Stanford
Cars (Krause et al., 2013), CIFAR-10/100 (Krizhevsky, 2009), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2012), MNIST (LeCun et al., 2010), RESISC45 (Cheng et al., 2017), SVHN (Netzer et al., 2011) and ImageNet (Deng et al., 2009). These datasets include various semantic concepts, thus are perfect to benchmark forgetting of the rich concepts that may have already been learned during pre-training.

313 Setting and baselines. The image encoder of CLIP model (ViT-B/32) is fine-tuned end-to-end on 314 the 10 datasets. We compare with popular end-to-end fine-tuning methods all using the cross-entropy 315 loss as \mathcal{L}_{task} . The baselines include naive fine-tuning and LP-FT methods (Kumar et al., 2022). They 316 differ in the linear head initialization, with zero-shot weights (text encodings of class name) and 317 Linear Probe (LP) weights respectively. While L2SP (Li et al., 2018) and LDIFS (Mukhoti et al., 318 2024) add a point-wise regularization between the original and fine-tuned models in weight- and 319 feature-space respectively. By contrast, our (Proxy-)FDA imposes a structure-wise regularization in 320 feature space. Note except for the naive fine-tuning baseline, LP initialization is used for all methods including ours for a fair comparison of different regularization techniques. 321

- 322
- Metrics. When fine-tuning on dataset \mathcal{D}_{ft} , we report two evaluation metrics: LP accuracy \mathcal{A}_{LP} on the test set of \mathcal{D}_{ft} (*i.e.*, the fine-tuning performance itself), and the change Δ_{LP} in \mathcal{A}_{LP} between

Table 1: Test accuracy A_{LP} of end-to-end fine-tuned model on each dataset and its average Δ_{LP} computed over other datasets. The image encoder of CLIP ViT-B/32 is used here. Δ_{LP} denotes the change in \mathcal{A}_{LP} between pre-trained and fine-tuned models on target dataset \mathcal{D} , quantifying the level of concept forgetting. Higher Δ_{LP} shows lower forgetting or positive forward transfer ($\Delta_{LP} > 0$).

Dataset		Naive E	Ind-to-End	LP-	·FT	L2	SP	LD	IFS	FDA (ours)	Proxy-F	FDA (ours)
		\mathcal{A}_{LP}	$\Delta_{\rm LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{\text{LP}}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	$\mathcal{A}_{ ext{LP}}$	$\Delta_{\text{LP}}\uparrow$
Cars		83.48	-1.56	84.95	-0.63	83.87	0.47	85.26	-0.18	85.36	1.02	84.69	1.26
CIFAR10		97.73	-1.60	97.71	-0.81	97.66	1.16	97.24	1.18	97.53	1.55	97.61	1.63
CIFAR10	0	88.60	-0.96	88.41	-0.11	86.94	1.03	88.99	0.86	88.21	1.44	88.33	1.51
DTD		77.18	-3.01	72.18	-1.76	74.63	0.01	75.27	0.53	77.22	1.04	77.28	1.19
EuroSAT		98.76	-5.72	98.87	-3.75	98.20	-0.85	98.22	1.32	98.53	1.61	98.63	1.74
GTSRB		98.52	-5.90	98.53	-0.94	95.00	1.18	97.81	1.27	98.16	1.58	97.79	1.69
MNIST		99.67	-8.76	99.68	-6.02	99.18	1.49	99.52	2.64	99.43	2.76	99.49	2.81
RESISC4	5	95.76	-3.79	95.56	-2.27	94.13	0.66	95.13	0.90	95.31	1.18	95.63	1.43
SVHN		97.30	-11.12	97.50	-8.73	96.54	-2.11	96.95	-0.29	96.96	0.67	96.65	0.92
ImageNet	t	82.02	-1.26	82.12	-0.87	80.78	-0.10	82.21	0.35	81.93	1.05	82.16	1.22
Mean acr	oss	01.00	4.27	01.55	2.50	00.00	0.20	01.00	0.96	01.96	1 20	01.92	1 5 4
10 dataset	ts	91.90	-4.37	91.55	-2.59	90.69	0.29	91.66	0.86	91.80	1.39	91.82	1.54

Figure 3: Three metrics computed over the course of model fine-tuning (CLIP ViT-B/32) on EuroSAT: Δ_{LP} (**Top row**), L2 feature-space distance (**Middle row**) and distributional distance metric OTDD 360 (Bottom row), all between pre-trained and fine-tuned models. Our (Proxy-)FDA achieves the best 361 results in preventing concept forgetting on other datasets (highest positive Δ_{LP}) without hurting the 362 downstream performance on EuroSAT. We also observe that concept forgetting measured by $\Delta_{\rm LP}$ is more correlated to OTDD than L2 feature distance (see text for details).

324

325

326

327

334

365 pre-trained and fine-tuned models on a different dataset $\mathcal{D} \neq \mathcal{D}_{ft}$. Negative Δ_{LP} indicates **concept** 366 forgetting on \mathcal{D} , while a positive value indicates positive forward transfer. Clearly, the higher Δ_{LP} the better. When $\mathcal{D} = \mathcal{D}_{ft}$, Δ_{LP} on \mathcal{D} simply denotes the change of downstream performance, and we 367 expect Δ_{LP} to increase over the course of fine-tuning. 368

369 To gain insights on what impacts the concept forgetting performance, we further monitor two distance 370 metrics for distribution alignment during fine-tuning: point-wise L2 distance between pre-trained 371 and fine-tuned feature pairs without using any distributional information, and Optimal Transport 372 Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020) that takes feature distribution structures into 373 consideration (details in Appendix C). Between the two distance metrics, OTDD is generally more suited to measure the alignment quality for feature distributions with local structures as in our case. 374 375

Results. Table 1 compares A_{LP} on each fine-tuning dataset and the Δ_{LP} averaged over other 376 datasets. We observe that FDA obtains a positive average Δ_{LP} for all fine-tuning tasks, thereby 377 achieving a positive forward transfer. Proxy-FDA further improves the average Δ_{LP} consistently. This is not the case for naive fine-tuning and LP-FT where the average Δ_{LP} is all negative indicating concept forgetting. Point-wise regularization methods L2SP and LDIFS obtain mostly positive Δ_{LP} but significantly lower than our results, highlighting the benefits of our structure-wise feature regularization and proxy feature generation.

We also observe that our good performance on forgetting prevention does not compromise (much) the downstream fine-tuning accuracy \mathcal{A}_{LP} . The mean \mathcal{A}_{LP} (across 10 datasets) of (Proxy-)FDA is (91.82) 91.86, which is only slightly lower than that of naive fine-tuning 91.90 but outperforms all other results. Overall, our structure-wise regularization method achieves the best trade-off between concept forgetting and downstream performance. Fig. 3 (top row) exemplifies the fine-tuning task on EuroSAT, where (Proxy-)FDA consistently outperforms other baselines in forgetting prevention during fine-tuning (higher Δ_{LP}), but has similar performance on EuroSAT in the meantime.

389 Fig. 3 (middle and bottom rows) shows how L2 feature distance and OTDD change as we fine-tune 390 EuroSAT using different methods. Overall, both the distance metrics are correlated to concept 391 forgetting — fine-tuning methods with smaller L2 distance/OTDD forget less with higher Δ_{LP} , while 392 methods with a larger distance suffer more from forgetting with lower Δ_{LP} . The only exception to 393 the overall trend is when we use L2 feature distance to compare (Proxy-)FDA with LDIFS. We see 394 that (Proxy-)FDA, while having larger L2 distance than LDIFS, still forgets less. On the contrary, 395 (Proxy-)FDA consistently gets lower OTDD. This suggests that the structure-aware OTDD is a better indicator of concept forgetting compared to the point-wise L2 distance. More crucially, the 396 fact that OTDD is more correlated to forgetting than L2 distance reaffirms that having some form of 397 structure-wise FDA can mitigate forgetting better. Finally, we note our (Proxy-)FDA is only applied 398 on EuroSAT samples, but the mitigation of forgetting extends to all other datasets. This indicates the 399 generalizing effect of our feature regularization method, which can preserve pre-trained knowledge 400 without requiring third party datasets during fine-tuning. 401

Table 4 in Appendix shows that our benefits still hold when end-to-end fine-tuning happens with different architectures of CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022), DINOv2 (Oquab et al., 2024) and MAE (He et al., 2022). Proxy-FDA consistently provides the highest Δ_{LP} values across foundation models and architectures, achieving positive forward transfer in all cases. Proxy-FDA also achieves the best A_{LP} in many cases, which is encouraging.

407 408 4.2 Few-shot Prompt Tuning

Datasets. We follow (Zhou et al., 2022b) to use 11 datasets, again with a wide range of visual concepts and domains: ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), Oxford-Pets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), FGVC-Aircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019) and UCF101 (Soomro et al., 2012).

414

Settings and metrics. Prompt tuning is adopted for parameter-efficient fine-tuning in the few-shot 415 scenario. We consider the two settings introduced in (Zhou et al., 2022b): 1) Base-to-new class 416 generalization within each dataset, *i.e.*, prompt tuning on the base class split as \mathcal{D}_{ft} , and evaluating 417 on the disjoint base and new class splits to obtain A_{Base} and A_{New} . To quantify concept forgetting 418 on the unseen new class split, we further report Δ_{New} as the change in \mathcal{A}_{New} between pre-trained 419 and prompt-tuned models – the higher Δ_{New} the lower forgetting. 2) Cross-dataset generalization 420 with ImageNet for prompt tuning and other 10 datasets for evaluation. Similarly, we report both the 421 test accuracy \mathcal{A} and accuracy change $\Delta_{\mathcal{A}}$ on each dataset to quantify forgetting. The cross-dataset 422 setting is more challenging due to the presence of both domain- and class-incremental distribution 423 shifts, e.g., from fine-grained flowers classification to satellite imagery recognition on EuroSAT. For 424 all experiments, we report results as an average over three random seeds.

425

Implementation. We apply our Proxy-FDA regularization to different prompt tuning baselines.
For fair comparisons, we use the same implementation details of each baseline, including the prompt length, learning rate schedule and tuning epochs for each dataset. By default, all methods use 16 shots per class to prompt tune the CLIP model (Radford et al., 2021) with ViT-B/16.

430

Results. In Table 2, we report results in the base-to-new setting. Proxy-FDA is applied to two categories of methods: 1) regularization-free prompt tuning baselines, which learn text prompts

Table 2: Few-shot prompt tuning in the base-to-new class generalization setting (16 shots per class). $A_{\rm H}$ denotes the Harmonic mean of $A_{\rm Base}$ and $A_{\rm New}$. $\Delta_{\rm New}$ denotes the change in $A_{\rm New}$ between pre-trained and prompt-tuned CLIP models. Higher $\Delta_{\rm New}$ shows lower level of concept forgetting on the new class split of the considered dataset. On average, our Proxy-FDA consistently improves $\Delta_{\rm New}$ for all prompt tuning methods, with competitive $A_{\rm Base}$ at the same time. Full results in Table 5.

Figure 4: (a-b) The average Δ_{New} with varying number of shots per class for prompt tuning in the base-to-new setting. FDA achieves higher gains over the baselines in low-data regime, and our proxy learning further improves data efficiency. (c) PromptSRC+Proxy-FDA scales better with data than end-to-end fine-tuning and its improved variants (FD-Align and WiSE-FT) in the few-shot setting.

(CoOp (Zhou et al., 2022a), CoCoOp (Zhou et al., 2022b)), image prompts (VPT (Jia et al., 2022))
or both (MaPLe (Khattak et al., 2023a)). 2) regularization-based prompt learners. CLIPood (Shu et al., 2023) maintains a weighted ensemble of the pre-trained and fine-tuned models. State-of-the-art PromptSRC (Khattak et al., 2023b) combines the ensembling strategy with both feature- and logit-level regularization between the original and fine-tuned models (but in a point-wise manner).

We can see from Table 2 that, averaged across 11 datasets, Proxy-FDA consistently improves the 462 A_{New} of all regularization-free baselines, sometimes by a large margin (10.45 for CoOp), with 463 competitive A_{Base} at the same time. The gains in A_{New} translate to gains in Δ_{New} , indicating the 464 utility of Proxy-FDA in lowering forgetting for few-shot settings. The per-dataset results in Table 5 465 (in Appendix) show that Δ_{New} sees particularly large gains on 3 semantically distant datasets (DTD, 466 EuroSAT and UCF101), thanks to our strong capability of preserving pre-trained knowledge. Overall, 467 Proxy-FDA boosts the $A_{\rm H}$ of MaPLe to 79.84, being already better than or on par with that of the 468 regularization methods CLIPood (78.93) and PromptSRC (79.97). Encouragingly, Proxy-FDA is 469 complementary to the two regularization methods and can further improve them in all metrics.

470 Apart from the above observations, recall that one of our motivations for Proxy-FDA is to help data-471 scarce downstream tasks, where even parameter-efficient prompt tuning can suffer from significant 472 overfitting and forgetting. In Fig. 4(a-b), we vary the amount of data for prompt tuning and find that 473 the Δ_{New} gain of FDA increases with less data. Meanwhile, our proxy learning component further 474 improves data efficiency, often matching the FDA performance on half the data. Fig. 4(c) also shows 475 the benefits of (Proxy-)FDA over end-to-end fine-tuning and its improved variants — FD-Align (Song 476 et al., 2023) and WiSE-FT (Wortsman et al., 2022b) — in data-limited regimes.

Table 6 in Appendix compares results under the cross-dataset generalization setting. We plug Proxy-FDA into 3 representative baselines with and without regularization. Proxy-FDA is shown to prevent concept forgetting for all the 3 baselines, with uniformly increased Δ_A on target datasets and a good trade-off with A on the source dataset.

481

432

433

434

435

436 437

438

439

440

441

442 443

444

445

446

447

448

449

450

451

452

453

454

455

482 4.3 CONTINUAL FINE-TUNING 483

Finally, we apply our approach to continual fine-tuning and see whether we can learn a sequence of
 downstream tasks without forgetting concepts. We follow the setup in (Mukhoti et al., 2024) to train
 on three task sequences: SVHN→CIFAR10→RESISC45, SVHN→CIFAR100→RESISC45 and

50	averaged on	o ounci u	atasets.											
39	Fine-tune	Evaluation	Naive E	nd-to-End	LP	-FT	L2	SP	LD	IFS	FDA ((ours)	Proxy-F	DA (ours)
90	dataset	dataset	$\mathcal{A}_{ ext{LP}}$	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	$\mathcal{A}_{\mathrm{LP}}$	$\Delta_{\text{LP}} \uparrow$
1 2	$SVHN \rightarrow CIFAR10 \rightarrow RESISC45$	SVHN CIFAR10 RESISC45	90.29 95.25 95.30	-7.13 -2.31 4.00	90.97 96.31 94.29	-6.46 -1.57 2.98	91.93 97.26 93.44	-4.53 -0.25 2.16	96.68 97.41 95.00	-0.41 -0.21 3.70	96.77 97.13 95.22	0.61 0.57 4.14	96.72 97.29 95.38	0.93 1.02 4.22
3		Others	80.91	-5.08	82.13	-4.24	86.89	-0.01	87.08	0.10	87.21	0.76	86.95	1.08
4 5	$SVHN \rightarrow CIFAR100 \rightarrow RESISC45$	SVHN CIFAR100 RESISC45	90.05 81.08 95.40	-7.28 -7.18 4.13	94.42 82.63 93.81	-2.73 -3.04 2.51	90.42 85.72 93.21	-6.12 -0.88 1.90	96.32 86.54 95.11	-0.65 -0.30 3.83	96.18 86.33 95.32	0.63 0.72 3.95	96.43 86.14 95.46	0.71 0.85 4.01
)		Others	83.76	-4.65	85.14	-4.02	89.04	-0.37	89.12	-0.23	89.02	0.68	89.09	0.96
	$SVHN \rightarrow Cars \rightarrow RESISC45$	SVHN Cars RESISC45	95.93 76.96 95.17	-1.45 -4.18 3.89	96.58 71.60 94.35	-0.76 -8.36 3.00	95.98 81.82 93.43	-0.44 -0.40 2.13	96.90 84.23 95.27	-0.17 0.47 3.73	96.74 84.38 95.12	0.79 1.14 3.92	96.91 84.32 95.23	0.94 1.36 4.07
1 6		Others	83.38	-4.93	84.39	-4.51	87.15	-1.67	89.39	0.23	89.54	0.96	89.67	1.17

486 Table 3: Continual fine-tuning: test accuracy A_{LP} and Δ_{LP} for models fine-tuned on three task 487 sequences. The first 3 rows show performance on fine-tuned tasks and the 4th row shows performance 488 averaged on 6 other datasets

SVHN→Cars→RESISC45. Table 3 shows our FDA and Proxy-FDA methods progressively improve the Δ_{LP} for each task sequence, both achieving positive forward transfer with all positive Δ_{LP} values. Proxy-FDA always attains the highest Δ_{LP} values (except on RESISC45 in the second sequence), while still remaining competitive in A_{LP} . Table 8 and 9 in Appendix also show our benefits over popular continual learning baselines for both the 3-task setup and the classic class-incremental setting on Split ImageNet-R (Wang et al., 2022a).

5 CONCLUSION

511 This paper introduces Proxy-FDA, a novel feature-space regularization method that preserves concepts 512 during fine-tuning. The core idea is to align the local structures of pre-trained and fine-tuned feature 513 distributions with learned proxies. A structure-aware distributional distance metric is used to assess 514 the feature alignment quality, demonstrating a strong correlation with concept forgetting. Our 515 approach achieves state-of-the-art results in mitigating concept forgetting across end-to-end, few-shot, 516 and continual fine-tuning settings.

517

526

501 502

504

505

506

507

508 509

510

518 **Limitations and future work.** We mainly study the forgetting of "concepts" at the granularity 519 of categorical class labels. The class concepts are used for both method development (e.g., class-520 balanced batch construction, and FDA across classes) and performance evaluation (on downstream 521 classification datasets). To explore concepts beyond class labels, we could use natural language texts that have rich concepts at varying granularity. This requires different design choices for FDA-style 522 methods to tackle the fine-grained concepts. As another line of future works, we plan to investigate 523 whether Proxy-FDA can reduce forgetting when fine-tuning for other foundation model families like 524 Large Language Models, or across different types of tasks like image segmentation and detection. 525

- 527 REFERENCES
- 528 David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. In NeurIPS, 529 2020. 530
- 531 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-532 nents with random forests. In ECCV, 2014.
- 533 Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Darkrank: Accelerating deep metric learning via 534 cross sample similarities transfer. In AAAI, 2018.
- Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark 537 and state of the art. *Proceedings of the IEEE*, 105:1865–1883, 2017. 538
- Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In CVPR, 2014.

547

548

552

553

554

- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In *CVPR*, 2009.
- 543 Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don't know by virtual
 544 outlier synthesis. In *ICLR*, 2022.
 - Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In *CVPR workshop*, 2004.
- Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao. CLIP-Adapter: Better vision-language models with feature adapters. *arXiv preprint arXiv:2110.04544*, 2021.
 - S. Goyal, A. Kumar, S. Garg, Z. Kolter, and A. Raghunathan. Finetune like you pretrain: Improved finetuning of zero-shot vision models. In *CVPR*, 2023.
- 555 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 556 recognition. In *CVPR*, 2016.
- Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders are scalable vision learners. In *CVPR*, 2022.
- Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 2019.
- Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 analysis of out-of-distribution generalization. In *ICCV*, 2021a.
- Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 examples. In *CVPR*, 2021b.
- Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via progressive distillation and retrospection. In *ECCV*, 2018.
- Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for
 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.
- Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger teacher. In *NeurIPS*, 2022.
- Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 Ser-Nam Lim. Visual prompt tuning. In *ECCV*, 2022.
- Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep neural networks. *arXiv preprint arXiv:1607.00122*, 2016.
- Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
 Khan. MaPLe: Multi-modal prompt learning. In *CVPR*, 2023a.
- Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan
 Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without
 forgetting. In *ICCV*, 2023b.
- Muhammad Uzair khattak, Muhammad Ferjad, Naseer Muzzamal, Luc Van Gool, and Federico Tombari. Learning to prompt with text only supervision for vision-language models. *arXiv preprint arXiv:2401.02418*, 2024.
- 593 Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning. In *CVPR*, 2020.

594 595	Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In <i>ICCV workshops</i> , 2013.
597 598	Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
599 600	Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. In <i>ICLR</i> , 2022.
602 603 604	Samuel Lavoie, Polina Kirichenko, Mark Ibrahim, Mahmoud Assran, Andrew Gordon Wildon, Aaron Courville, and Nicolas Ballas. Modeling caption diversity in contrastive vision-language pretraining. <i>arXiv preprint arXiv:2405.00740</i> , 2024.
605 606	Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.
608 609	Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with convolutional networks. In <i>ICML</i> , 2018.
610 611	Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 2017.
612 613	Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. <i>arXiv preprint arXiv:1306.5151</i> , 2013.
614 615	Roy Miles, Adrian Lopez-Rodriguez, and Krystian Mikolajczyk. Information theoretic representation distillation. In <i>BMVC</i> , 2022.
617 618	Yair Movshovitz-Attias, Alexander Toshev, Thomas Leung, Sergey Ioffe, and Saurabh Singh. No fuss distance metric learning using proxies. In <i>ICCV</i> , 2017.
619 620 621	Jishnu Mukhoti, Yarin Gal, Philip Torr, and Puneet K. Dokania. Fine-tuning can cripple your foundation model; preserving features may be the solution. <i>TMLR</i> , 2024. ISSN 2835-8856.
622 623	Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural images with unsupervised feature learning. In <i>NIPS Workshop</i> , 2011.
624 625 626	Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In <i>ICVGIP</i> , 2008.
627 628 629 630 631 632	Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar- mand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision. <i>TMLR</i> , 2024. ISSN 2835-8856.
633 634	Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In CVPR, 2019.
635 636 637	Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In <i>CVPR</i> , 2012.
638 639	Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge transfer. In <i>ECCV</i> , 2018.
640 641 642	Baoyun Peng, Xiao Jin, Dongsheng li, Shunfeng Zhou, Yichao Wu, Jiaheng Liu, Zhaoning Zhang, and Yu Liu. Correlation congruence for knowledge distillation. In <i>ICCV</i> , 2019.
643 644 645	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In <i>ICML</i> , 2021.
647	Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In <i>CVPR</i> , 2017.

662

672

673

676

680

684

685

686

687

- Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to imagenet? In *ICML*, 2019.
- K. Roth, O. Vinyals, and Z. Akata. Non-isotropy regularization for proxy-based deep metric learning.
 In *CVPR*, 2022.
- Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, and Mingsheng Long. CLIPood:
 Generalizing clip to out-of-distributions. In *ICML*, 2023.
- Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
 Rohrbach, and Douwe Kiela. FLAVA: A foundational language and vision alignment model. In
 CVPR, 2022.
- James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 attention-based prompting for rehearsal-free continual learning. In *CVPR*, 2023.
- Kun Song, Huimin Ma, Bochao Zou, Huishuai Zhang, and Weiran Huang. FD-align: Feature discrimination alignment for fine-tuning pre-trained models in few-shot learning. In *NeurIPS*, 2023.
- Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.
- Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. *Neural Networks*, 32:323–332, 2012.
 - Leitian Tao, Xuefeng Du, Jerry Zhu, and Yixuan Li. Non-parametric outlier synthesis. In *ICLR*, 2023.
- Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient continual learner. *arXiv preprint arXiv:2210.03114*, 2022.
- Kinyu Tian, Shu Zou, Zhaoyuan Yang, and Jing Zhang. ArGue: Attribute-Guided Prompt Tuning
 for Vision-Language Models . In *CVPR*, 2024.
- ⁶⁷⁹ Fred Tung and Greg Mori. Similarity-preserving knowledge distillation. In *ICCV*, 2019.
- Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In *ICML*, 2019.
 - C. Villani. *Optimal Transport: Old and New*. Springer Berlin Heidelberg, 2008. ISBN 9783540710509.
 - Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing local predictive power. In *NeurIPS*, 2019.
- Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual intelli gence: A review and new outlooks. *TPAMI*, 44:3048–3068, 2021.
- Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. *Neurocomput.*, 312(C): 135–153, 2018.
- Yuzhu Wang, Lechao Cheng, Manni Duan, Yongheng Wang, Zunlei Feng, and Shu Kong. Improving knowledge distillation via regularizing feature norm and direction. *arXiv preprint* arXiv:2305.17007, 2023.
- ⁶⁹⁷
 ⁶⁹⁸
 ⁶⁹⁸
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁰
 ⁷⁰⁰
 ⁶⁹¹
 ⁶⁹²
 ⁶⁹³
 ⁶⁹³
 ⁶⁹⁴
 ⁶⁹⁴
 ⁶⁹⁵
 ⁶⁹⁵
 ⁶⁹⁶
 ⁶⁹⁶
 ⁶⁹⁷
 ⁶⁹⁷
 ⁶⁹⁷
 ⁶⁹⁸
 ⁶⁹⁸
 ⁶⁹⁸
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹¹
 ⁶⁹¹
 ⁶⁹²
 ⁶⁹³
 ⁶⁹³
 ⁶⁹⁴
 ⁶⁹⁴
 ⁶⁹⁵
 ⁶⁹⁵
 ⁶⁹⁵
 ⁶⁹⁶
 ⁶⁹⁷
 ⁶⁹⁷
 ⁶⁹⁸
 ⁶⁹⁸
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹⁹
 ⁶⁹¹
 ⁶⁹²
 ⁶⁹³
 ⁶⁹³
 ⁶⁹⁴
 ⁶⁹⁵
 ⁶⁹⁵
 ⁶⁹⁵
 ⁶⁹⁵
 ⁶⁹⁶
 ⁶⁹⁷
 ⁶⁹⁷
 ⁶⁹⁸
 ⁶⁹⁸
 ⁶⁹⁹
 ⁶⁹⁹
- 701 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In CVPR, 2022b.

bes, vig acy
ofs, vig
ise:
of
age
ner
ing.
ing 3.
on-
for
and

A HARD CLASS MINING

As mentioned in the main text (Section 3.1), we perform hard class mining in the mini-batch to facilitate the modeling and alignment of local neighborhood structures. The high-level idea of hard class mining is to greedily select class distributions that are close to one another. More specifically, we construct our mini-batch in the following way:

- 1. Randomly choose a large number of classes $C \gg m$; for each class, randomly sample n examples to extract their feature embeddings using both $f_{\hat{\theta}}$ and f_{θ} .
- 2. Sample a seed class randomly from the C classes. Then greedily add a new class that has the largest class-wise loss $\sum_{i=1}^{n} \mathcal{L}_{FDA}^{i}$ (Eq. (2)) w.r.t. the selected classes till we reach m classes. Note in this greedy process, we set the neighborhood size K = n when computing \mathcal{L}_{FDA}^{i} .

3. Construct batch with the selected m classes, each with n examples.

B EFFICIENT ARCHITECTURE OF INSTANCE-WISE PROXY GENERATOR

Fig. 2(b) shows the network architecture of our proxy generator that is trained online using Eq. (3-4). The input X_i^+ and X_i^- first go through an attention layer to model the global context within each set and fuse features thoroughly. Attention mask is used to ensure the independence between the two sets. Next, we dynamically pool the intermediate features $\dot{X}_i^+ \in \mathbb{R}^{d \times K}$ and $\dot{X}_i^- \in \mathbb{R}^{d \times (B-K-1)}$ via learned pooling functions, as summarized below. Through such pooling, we can predict proxies $\{P_i^+, P_i^-\}$ and their similarity estimates $\{\hat{w}_i^{p+}, \hat{w}_i^{p-}\}$ all at once.

Predict pooling weights:
$$S_i^+ = h^+(\dot{X}_i^+) \in \mathbb{R}^{K \times n^{p+}}, \quad S_i^- = h^-(\dot{X}_i^-) \in \mathbb{R}^{(B-K-1) \times n^{p-}}$$

Pooling in matrix form: $P_i^+ = \dot{X}_i^+ \cdot S_i^+ \in \mathbb{R}^{d \times n^{p+}}, \quad P_i^- = \dot{X}_i^- \cdot S_i^- \in \mathbb{R}^{d \times n^{p-}},$

779

777

778

781

782 783

784

785

786

762

763

764

765

766 767

768 769

770

$$\begin{array}{ll} \text{form:} & \boldsymbol{P}_{i}^{+} = \boldsymbol{X}_{i}^{+} \cdot \boldsymbol{S}_{i}^{+} \in \mathbb{R}^{d \times n^{p^{+}}}, \quad \boldsymbol{P}_{i}^{-} = \boldsymbol{X}_{i}^{-} \cdot \boldsymbol{S}_{i}^{-} \in \mathbb{R}^{d \times n^{p^{-}}}, \qquad (7) \\ & \hat{\boldsymbol{w}}_{i}^{p+} = \boldsymbol{S}_{i}^{+T} \cdot \hat{\boldsymbol{w}}_{i}^{+} \in \mathbb{R}^{n^{p^{+}}}, \quad \hat{\boldsymbol{w}}_{i}^{p-} = \boldsymbol{S}_{i}^{-T} \cdot \hat{\boldsymbol{w}}_{i}^{-} \in \mathbb{R}^{n^{p^{-}}}, \qquad (8) \\ & \text{where} \qquad & \hat{\boldsymbol{w}}_{i}^{+} \in \mathbb{R}^{K}, \qquad & \hat{\boldsymbol{w}}_{i}^{-} \in \mathbb{R}^{B-K-1}. \end{array}$$

(6)

Note both $h^+(\cdot)$ and $h^-(\cdot)$ are implemented by two convolutional layers, but with different output channel sizes $(n^{p+} \text{ and } n^{p-} \text{ respectively})$. The output pooling weights S_i^+ and S_i^- are softmax-normalized, leading to convex combinations of features and feature similarities during the pooling stage. This eases training of pooling functions and makes sure the pooled results are valid (especially

787 788 789

790 791

806

C DISTRIBUTIONAL DISTANCE METRIC: OTDD

the pooled similarity estimates).

To measure FDA quality, there are many distance metrics for distribution alignment. Here we choose the distributional distance metric based on Optimal Transport Dataset Distance (OTDD) (Alvarez-Melis & Fusi, 2020). OTDD is especially suited to measure the alignment quality of feature distributions with local structures, because this distance metric takes both the label distribution and clustering structure of the feature distributions into consideration.

Specifically, OTDD uses the feature and label distributions $(x, y)|_{x \in \mathcal{X}, y \in \mathcal{Y}}$ to compute the distance between two datasets. Given that the source and target datasets may have different label sets, the 798 high-level idea of OTDD is to represent each class label as a distribution over the in-class features. 799 This transforms the source and target label sets into the shared space of feature distributions over 800 \mathcal{X} . In our context of model fine-tuning, we have pre-trained features \hat{x} and fine-tuned features x801 that are likely shifted from \hat{x} . They form the source and target feature distributions respectively, and 802 have different labels \hat{y} and y (details later). Then we can define the label distance $D_{\mathcal{Y}}(\hat{y}, y)$ using the 803 *p*-Wasserstein distance associated with the L2 distance $\|\hat{x} - x\|_2^2$ in \mathcal{X} . This enables one to measure 804 the distributional difference in $\mathcal{X} \times \mathcal{Y}$: 805

$$D_{\mathcal{X}\times\mathcal{Y}}\left((\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}),(\boldsymbol{x},\boldsymbol{y})\right) = \left(D_{\mathcal{X}}(\hat{\boldsymbol{x}}-\boldsymbol{x})^p + D_{\mathcal{Y}}(\hat{\boldsymbol{y}},\boldsymbol{y})^p\right)^{1/p}.$$
(9)

Please refer to (Alvarez-Melis & Fusi, 2020) for the exact formulation. To capture the clustering structure of both the pre-trained and fine-tuned feature distributions, we perform K-Means clustering per class on each feature distribution. This results in pseudolabels \hat{y} and y that are more fine-grained than class labels for OTDD computation.

Figure 5: Sensitivity analysis for hyper-parameters: (a) batch size B, (b) neighborhood size Kthat is fixed across datasets, (c) optimal K per dataset, and (d) scalar s that decides the percent number of generated proxies compared to that of real samples. Analysis is performed for few-shot prompt tuning in the base-to-new setting (16 shots per class). We report the $A_{\rm H}$ averaged across 11 datasets, when applying Proxy-FDA to two representative baselines CoOp and PromptSRC. Note $A_{\rm H}$ is the Harmonic mean of $A_{\rm Base}$ (representing prompt-tuning accuracy itself) and $A_{\rm New}$ (representing generalization and can derive $\Delta_{\rm New}$). Hence $A_{\rm H}$ is ideal for hyper-parameter sweeping since $A_{\rm H}$ denotes a trade-off between downstream accuracy and concept forgetting ($\Delta_{\rm New}$).

849 850

851

852

853

854

D ANALYSIS OF HYPER-PARAMETERS AND COMPUTE COST

Hyper-parameters. Fig. 5(a) shows our Proxy-FDA approach benefits from a relatively large batch size B to preserve meaningful structures of feature neighborhoods. Performance decreases when B < 64; when B grows larger than 64, performance seems quite robust to varying batch size. By default, we set B = 64 that best fits in our GPU memory.

Based on the hard class mining strategy (Section A), we construct a mini-batch with m = 16 hardmined classes, each with n = 4 class samples. Note in few-shot settings, each class may not have enough data (< 4) for sampling, *e.g.*, only 1 or 2 shots are available per class. In this case, we perform random data augmentation to guarantee n = 4 samples per class. On the other hand, a relatively large m ensures diverse class distributions in a batch, which allows better characterization of local feature neighborhoods. Diverse classes also allow pooling rich proxies from them, resulting in unseen data variations or new class concepts to further improve FDA.

862 Our Proxy-FDA method has two key hyper-parameters: the neighborhood size K > n and a scalar s. 863 The latter makes the number of positive proxies $n^{p+} = s \cdot K$ and negative proxies $n^{p-} = s \cdot (B-K-1)$ proportional to the set size of the true positives $X_i^+ \in \mathbb{R}^{d \times K}$ and true negatives $X_i^- \in \mathbb{R}^{d \times (B-K-1)}$.

Figure 6: Ablating the Proxy-FDA components based on few-shot prompt tuning in the base-to-new setting (16 shots per class). We report the $A_{\rm H}$ averaged across 11 datasets, when applying Proxy-FDA to two representative baselines CoOp and PromptSRC. Note $A_{\rm H}$ is the Harmonic mean of $A_{\rm Base}$ (representing prompt-tuning accuracy itself) and $A_{\rm New}$ (representing generalization and can derive $\Delta_{\rm New}$). Hence $A_{\rm H}$ is ideal for ablation studies since $A_{\rm H}$ denotes a trade-off between downstream accuracy and concept forgetting ($\Delta_{\rm New}$). For the proxy generation strategy, we compare with random linear interpolation (Verma et al., 2019) and outlier feature synthesis methods VOS (Du et al., 2022) and NPOS (Tao et al., 2023).

The intuition of setting K > n is to identify sufficient neighbors from more than one class, for meaningful FDA between similar clusters of related classes. Nevertheless, the exact value of K is varied as a function of dataset distribution, as each dataset has different levels of intra- and inter-class variation. In practice, we pick the best K per dataset from $\{n, 2n, 3n, 4n\}$. Fig. 5(b) shows how performance generally varies with K when K is fixed across 11 datasets. We see that K = 2n works best, while it noticeably hurts performance when K < n, confirming our intuition above. Hence we stick to the constraint of K > n for per-dataset K selection (Fig. 5(c)).

890 On the other hand, the scalar s is set to 0.4 by default. This leads to a virtual batch size of around 90 (increased from 64). The virtual batch now consists of true and synthetic features for FDA. Fig. 5(d) shows the sensitivity analysis for s.

Lastly, the weighting parameter for \mathcal{L}_{var} (Eq. (4)) is fixed at $\alpha = 5$ for all experiments. We observe no meaningful improvements via more careful tuning of α . The weighting parameter λ is used to balance the task loss against our regularization loss (Eq. (1) and (5)). We tune λ on a held-out validation set of each dataset.

897

Compute cost. Our Proxy-FDA mainly involves FDA and proxy generation. The proxy generator is lightweight with only one attention and two convolutional layers (totalling 23.6k parameters), which is negligible in comparison to the foundation model size. Here we show our feature regularization process only incurs a decent compute cost (on Nvidia A100 GPU). For end-to-end fine-tuning and few-shot prompt tuning tasks, averaged across the corresponding datasets, Proxy-FDA increases the fine-tuning time by 17% and 21% respectively, while FDA increases by 7% and 9%. Note Proxy-FDA does not impact the inference stage, hence we maintain the same FPS at the test time.

905 906

E ABLATING PROXY-FDA COMPONENTS

907

908 Fig. 6 includes ablation studies on the key components of Proxy-FDA, in the few-shot prompt tuning 909 setting. We start with the batch construction strategy, comparing the default hard class mining method with random class sampling for a batch. Their considerable performance difference shows that 910 hard class mining is crucial. Indeed, one can better model the nearest neighbor graphs from close 911 class samples, which facilitates the following stage of graph alignment. Then what if we only align 912 the neighbor indices between graphs, without considering the neighbor similarities (*i.e.*, keeping 913 $\hat{w}_{ij} = 1$? We see that this baseline leads to large performance drop as well, demonstrating that both 914 neighbor indices and similarities are indispensable for FDA purpose. 915

916 Next, we isolate the impact of our proxy generator, in terms of both its architecture and training 917 algorithm. For the architecture, we first note that our proxy generator is learned to produce unseen data out of diverse feature combinations within the positive set X_i^+ or negative set X_i^- . The attention 918 Table 4: Test accuracy A_{LP} of end-to-end fine-tuned model on ImageNet and its average Δ_{LP} 919 computed over 5 datasets (DTD, EuroSAT, GTSRB, RESISC45 and SVHN). We study different 920 architectures of CLIP (Radford et al., 2021), FLAVA (Singh et al., 2022), DINOv2 (Oquab et al., 2024) and MAE (He et al., 2022). Δ_{LP} denotes the change in \mathcal{A}_{LP} between pre-trained and fine-tuned 921 models on target dataset, quantifying the level of concept forgetting. Higher Δ_{LP} shows lower 922 forgetting or even positive forward transfer ($\Delta_{LP} > 0$). Note we initialize the model's linear head 923 with zero-shot weights for naive fine-tuning, and with Linear Probe (LP) weights for all other methods 924 including ours. The initialized zero-shot weights are the text encodings of class name for CLIP and 925 FLAVA, and random weights for DINOv2 and MAE. 926

Model	Architecture	Architecture Naive End-to-End		LP	LP-FT		SP	LD	IFS	FDA	(ours)	Proxy-F	FDA (ours)
		\mathcal{A}_{LP}	$\Delta_{\mathrm{LP}}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{\rm LP}$ \uparrow	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{\rm LP}\uparrow$
CLIP	ResNet-50	78.39	-4.01	78.45	-3.40	76.13	-1.54	78.16	-0.11	78.43	0.62	78.58	0.89
	ViT-B/32	82.02	-3.02	82.12	-2.17	80.78	-0.88	82.21	0.10	81.93	0.81	82.16	1.15
	ViT-B/16	85.21	-2.92	85.36	-1.73	82.19	-0.74	85.31	0.16	85.41	0.92	85.40	1.03
	ViT-L/14	87.88	-2.33	87.91	-1.52	86.87	-0.43	87.85	0.22	87.99	1.02	87.96	1.28
FLAVA	ViT-B/16	81.18	-3.94	81.36	-3.04	80.11	-1.10	81.61	0.04	81.47	0.61	81.59	0.96
DINOv2	ViT-B/14	85.32	-2.71	85.48	-1.86	84.50	-0.66	86.02	0.06	86.23	0.68	86.34	0.85
	ViT-L/14	87.60	-1.92	87.90	-1.40	87.02	-0.19	87.91	0.13	87.87	0.77	87.71	0.94
MAE	ViT-B/16	83.57	-5.10	83.81	-4.36	82.84	-3.03	83.76	-0.94	83.73	-0.08	83.94	0.39
	ViT-L/16	85.86	-4.26	86.04	-3.59	85.10	-1.82	85.90	-0.12	85.86	0.79	85.67	0.94

layer helps to achieve this goal by modeling the global context among all input features with pairwise
attention. Convolutional layers, however, only have local receptive fields and have to rely on pooling
operations to capture long-range dependencies. Here we compare with an attention-free architecture
that has the attention layer replaced with convolutional plus pooling layers – the resulting proxy
generator maintains a similar parameter count. The attention-free architecture is observed to achieve
consistently lower performance, likely due to the lower quality of generated proxies.

945 Regarding the proxy generation algorithm, we compare with three baselines. One simple method is 946 based on linear interpolation between random feature pairs from both X_i^+ and X_i^- . Feature similarity 947 estimates are interpolated in the same way. Despite the simplicity, random interpolation obtains 948 inferior performance than our learning-based approach — our approach can learn to synthesize more 949 informative features to better help FDA. On the other hand, the parametric VOS and non-parametric NPOS methods learn to synthesize outlier features in low-likelihood regions (often around decision 950 boundaries between classes). The two methods are observed to achieve even worse results than 951 random interpolation. We conjecture that this is because outliers in low-likelihood regions are not 952 able to encode diverse unseen data/concepts that are crucial for improving FDA. 953

To further quantify the effect of proxy learning that virtually increases the batch size B from 64 to around 90, we compare with FDA simply on a larger batch with a similar number of true feature points. Specifically, we construct the batch with m = 22 hard-mined classes, each with n = 4examples. Hence the batch size is comparable to that of Proxy-FDA, but without proxies. We observe from Fig. 6 that simply using a larger batch size does not perform as well. Instead, it is worth using our proxy generator to increase data diversity with only a small overhead.

960 961

F MORE RESULTS

962

End-to-end fine-tuning. Table 4 shows the results of ImageNet fine-tuning with different foundation models and architectures. We see that both FDA and Proxy-FDA consistently improve the Δ_{LP} over other baselines, with Proxy-FDA offering the highest Δ_{LP} values. This comes with competitive downstream accuracy \mathcal{A}_{LP} on ImageNet. Notably, our obtained Δ_{LP} values are mostly positive, with a

downstream accuracy A_{LP} on ImageNet. Notably, our obtained Δ_{LP} values are mostly positive, with a sole exception of MAE model (ViT-B/16 architecture) when fine-tuned using FDA. This indicates that we can achieve positive forward transfer in most cases and otherwise minimized concept forgetting.

969

Few-shot prompt-tuning. Table 5 lists the full results of prompt tuning on each of the 11 datasets
 under the base-to-new class generalization setting. Table 6 shows results under the cross-dataset
 generalization setting, *i.e.*, quantifying generalization from ImageNet to 10 target datasets. In both

settings, Proxy-FDA is plugged into different prompt tuning baselines. Proxy-FDA is observed to reduce concept forgetting consistently on unseen data with comparable performance on seen data.

We further compare with more recent prompt tuning methods in Table 7. Comparisons are conducted 975 under the base-to-new class generalization setting, and an additional domain generalization setting. In 976 the latter setting, we prompt tune on ImageNet (16 shots per class) and evaluate OOD generalization 977 on ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks 978 et al., 2021b) and ImageNet-R (Hendrycks et al., 2021a) with different types of domain shift. The 979 compared methods include ProText (khattak et al., 2024) and ArGue-N (Tian et al., 2024) that use 980 LLMs to distill language priors into the learned prompts, as well as more related regularization 981 methods OGEN (Zang et al., 2024) and CLAP (Lavoie et al., 2024). OGEN regularizes the prediction 982 probabilities with an improved Mean Teacher, while CLAP regularizes the class prototypes (i.e., classwise feature means) for linear probing. 983

Table 7 shows that our structure-wise feature regularization method Proxy-FDA outperforms OGEN and CLAP in all metrics under the considered settings. Proxy-FDA achieves particularly large gains in generalization performance on the new classes or new domains, maximizing the positive forward transfer with higher Δ_{New} . When compared to ProText and ArGue-N using external LLMs, our approach is LLM-free but achieves on-par or even better performance for both prompt-tuning and OOD generalization.

990

Continual fine-tuning. Table 8 compares our method with 5 classic continual learning methods in the 3-task setting: LwF (Li & Hoiem, 2017), LFL (Jung et al., 2016), iCaRL (Rebuffi et al., 2017), Distillation + Retrospection (D+R) (Hou et al., 2018) and ZSCL (Zheng et al., 2023).

994 Table 9 compares our method with recent continual learning methods on the class-incremental learning 995 benchmark Split ImageNet-R. This benchmark divides the 200 classes from ImageNet-R into 10 tasks 996 with 20 classes per task. The compared methods include LDIFS as well as L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a), CODA-Prompt (Smith et al., 2023), Continual-CLIP (Thengane 997 et al., 2022) and SLCA (Zhang et al., 2023). All methods use the same training (24,000) and testing 998 (6,000) images. To further ensure fair comparisons, we follow the widely-adopted implementation: 999 fine-tuning for 50 epochs using the Adam optimizer with $\beta_1 = 0.9$ and $\beta_2 = 0.999$. The initial 1000 learning rate is $1e^{-4}$, and we use a cosine learning rate scheduler as in (Mukhoti et al., 2024). 1001

In both Table 8 and 9, our (Proxy-)FDA method outperforms all other methods in preventing forgetting.
At the same time, (Proxy-)FDA is able to achieve the best fine-tuning performance.

1004

Knowledge distillation. As metioned in the Related Work section, the high-level idea of our
 method resembles Knowledge Distillation (KD), epseically those relational KD methods that distill
 feature relations between models.

1008 Table 10 shows our method is directly applicable to KD and quite performant. We follow the standard 1009 KD settings in (Zheng & Yang, 2024), and test teacher-student pairs using the same or different architectures of ResNet (He et al., 2016) and MobileNet (Howard et al., 2017) on ImageNet. We 1010 compare with state-of-the-art logits matching methods KD++ (Wang et al., 2023), DIST (Huang et al., 1011 2022) and WTTM (Zheng & Yang, 2024). Note DIST can be viewed as a relational KD method at 1012 the logit level. We further compare with KD methods that match feature relations in form of kNNs 1013 (CNA (Zhu et al., 2022)) and feature similarities (ITRD (Miles et al., 2022)). CNA and ITRD are 1014 more related to our FDA method, but FDA differs in that both neighbor indices and similarities are 1015 distilled in the feature space. We see from the table that FDA consistently outperforms CNA and 1016 ITRD, and is competitive or better than logits-based DIST. Our proxy learning further improves 1017 performance, and Proxy-FDA is on par with the best prior work WTTM.

- 1018 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025

1082Table 5: Few-shot prompt tuning in the base-to-new class generalization setting (16 shots per1083class). \mathcal{A}_{H} denotes the Harmonic mean of \mathcal{A}_{Base} and \mathcal{A}_{New} . Δ_{New} denotes the change in \mathcal{A}_{New} between1084pre-trained and prompt-tuned CLIP models. Higher Δ_{New} shows lower level of concept forgetting on1085the new class split of the considered dataset.

			Pro	mpt tun	ing with	iout reg	ularizat	ion		Regularization-based				
		Co	Op	CoC	oOp	VI	PT	Ma	PLe	CLI	Pood	Prom	ptSRC	
	+Proxy-FDA	×	1	X	1	X	1	×	1	×	1	×	1	
	$\mathcal{A}_{\text{Base}}$	82.69	83.16	80.47	80.36	81.61	81.55	82.28	82.74	83.91	84.33	84.26	84.4	
Avg across	$\mathcal{A}_{ m New}$	63.22	73.67	71.69	76.44	69.61	73.89	75.14	77.13	74.50	76.54	76.10	77.4	
11 datasets	$\Delta_{\text{New}} \uparrow$	-10.99	-0.55	-2.53	2.22	-4.61	-0.33	0.92	2.91	0.28	2.33	1.88	3.23	
	\mathcal{A}_{H}	71.66	78.13	75.83	78.35	75.14	77.53	78.55	79.84	78.93	80.25	79.97	80.8	
	$\mathcal{A}_{\text{Base}}$	76.47	76.22	75.98	76.95	75.96	75.26	76.66	77.35	77.50	78.47	77.60	77.8	
ImageNet	\mathcal{A}_{New}	67.88	72.97	70.43	73.48	67.32	71.25	70.54	71.51	70.30	72.07	70.73	71.5	
e	$\Delta_{\text{New}} \uparrow$	-0.26	4.83	2.29	5.34	-0.82	3.11	2.40	3.37	2.16	3.93	2.59	3.41	
	A _H	/1.92	/4.50	/3.10	/5.1/	/1.38	/3.20	/3.4/	74.32	13.12	/5.13	/4.01	/4.5	
	$\mathcal{A}_{\mathrm{Base}}$	98.00	96.84	97.96	97.21	97.50	96.14	97.74	98.71	98.70	99.08	98.10	98.4	
Caltech101	\mathcal{A}_{New}	89.81	97.45	93.81	97.15	94.10	95.93	94.36	95.42	94.60	95.01	94.03	95.3	
	Δ_{New}	-4.19	5.45 07.14	-0.19	3.15 07.19	0.10	1.93	0.30	1.42	0.60	1.01	0.03	1.34	
	AH	93.13	97.14	95.64	97.18	93.11	90.05	90.02	97.04	90.01	97.00	90.02	90.8	
	$\mathcal{A}_{\text{Base}}$	93.67	95.01	95.20	96.96	96.05	95.32	95.43	95.42	95.70	97.63	95.33	96.3	
OxfordPets	\mathcal{A}_{New}	95.29	98.97	97.69	98.64	95.84	98.42	97.76	98.09	96.40	98.21	97.30	98.0	
	Δ_{New}	-1.97	1./1	0.45	07 70	-1.42	96.85	96.58	0.85	96.05	0.95	0.04	0.82	
	- Лн 	74.47	70.75	70.4 5	51.15	75.74	70.05	1 70.50	70.74	0.05	71.72	0.50	77.1	
G(C 1	$\mathcal{A}_{\text{Base}}$	78.12	78.33	70.49	69.53	75.00	74.16	72.94	74.01	78.60	78.07	78.27	77.9	
Cars	\mathcal{A}_{New}	14 40	5.02	1 30	/8.95	03.45	2.17	/4.00	/5.15	1 30	/0.12	0.08	15.1	
Curs	Δ_{New} Δ_{II}	68 13	-3.02 73.86	72.01	73 94	68 74	73 15	73.47	74 58	75.96	77.08	76 58	76.8	
	3 th	07.60	07.01	04.07	04.50		07.11		06.05	02.50	07.01	00.07	07.0	
Flowers102	$\mathcal{A}_{\text{Base}}$	97.60 50.67	97.21	94.87	94.52	96.89	97.11	95.92	96.85	93.50	97.91	98.07	97.6	
	Δ_{New}	-18 13	-5 44	-6.05	-0.26	-7.78	-4 31	-5 34	-2.21	-3 30	-1.21	-1 30	0.4	
	\mathcal{A}_{H}	74.06	82.96	81.71	85.19	81.29	83.66	82.56	84.91	82.93	85.95	85.95	87.0	
	4-	88.33	88 50		01.33	0000	00.35	00.71	01.40		02.04	00.67	01.0	
	ABase	82.25	90.12	91.29	94.79	88.95	92 27	92.05	93.12	91.70	92.94	91.53	92.2	
Food101	Δ_{New} \uparrow	-8.96	-1.10	0.07	3.57	-2.27	1.05	0.83	1.90	0.48	1.54	0.31	1.03	
	\mathcal{A}_{H}	85.19	89.35	90.99	93.03	88.91	91.30	91.38	92.25	91.20	92.85	91.10	91.6	
	ABase	40.44	41.24	33.41	35.12	38.33	38.75	37.44	37.41	43.30	42.26	42.73	41.6	
FGVC	\mathcal{A}_{New}	22.30	33.83	23.71	36.36	25.27	31.36	35.61	37.79	37.20	37.54	37.87	40.6	
Aircraft	$\Delta_{\text{New}} \uparrow$	-13.99	-2.46	-12.58	0.07	-11.02	-4.93	-0.68	1.50	0.91	1.25	1.58	4.32	
	$\mathcal{A}_{ ext{H}}$	28.75	37.17	27.74	35.73	30.46	34.67	36.50	37.60	40.02	39.76	40.15	41.1	
	$\mathcal{A}_{\text{Base}}$	80.60	80.63	79.74	80.36	80.27	79.54	80.82	81.24	81.00	83.04	82.67	82.7	
SUN397	$\mathcal{A}_{\mathrm{New}}$	65.89	72.11	76.86	78.97	74.36	76.11	78.70	82.15	79.30	79.92	78.47	79.7	
501.071	$\Delta_{\text{New}} \uparrow$	-9.46	-3.24	1.51	3.62	-0.99	0.76	3.35	6.80	3.95	4.57	3.12	4.38	
	\mathcal{A}_{H}	72.51	76.13	78.27	79.66	77.20	77.79	79.75	81.69	80.14	81.45	80.52	81.1	
	$\mathcal{A}_{\mathrm{Base}}$	79.44	79.51	77.01	75.92	77.08	76.68	80.36	80.05	80.80	80.14	83.37	84.0	
DTD	\mathcal{A}_{New}	41.18	54.24	56.00	59.84	53.62	59.97	59.18	63.13	58.60	63.32	62.97	63.0	
	$\Delta_{\text{New}} \uparrow$	-18.72	-5.66	-3.90	-0.06	-6.28	0.07	-0.72	3.23	-1.3	3.42	3.07	3.10	
	\mathcal{A}_{H}	54.24	64.49	64.85	66.93	63.24	67.30	68.16	/0.59	67.93	/0./4	/1./5	72.0	
	$\mathcal{A}_{\mathrm{Base}}$	92.19	91.98	87.49	81.24	91.67	90.42	94.07	94.27	97.50	92.18	92.90	93.6	
EuroSAT	\mathcal{A}_{New}	54.74	78.29	60.04	66.87	58.31	67.02	73.23	75.11	64.10	71.01	73.90	77.1	
	$\Delta_{\text{New}} \uparrow$	-9.31 68.60	14.24	-4.01	2.82	-5.74	2.97	9.18	11.06 83.61	0.05	6.96 80.22	9.85	13.0	
	AH	00.09	04.30	/1.21	15.50	/1.20	/0.98	02.33	03.01	11.55	00.22	02.32	04.3	
	$\mathcal{A}_{\text{Base}}$	84.69	89.15	82.33	84.86	80.07	83.37	83.00	83.43	85.70	85.95	87.10	87.7	
UCF101	\mathcal{A}_{New}	56.05	70.16	73.45	78.23	74.50	74.77	78.66	81.40	79.30	79.44	78.80	79.9	
	$\Delta_{\text{New}} \uparrow$	-21.45	-1.34	-4.05	0.73	-5.00	-2.13	1.10	5.90	1.80	1.94	1.30	2.45	
	\mathcal{A}_{H}	07.40	18.52	//.04	81.41	//.18	/8.84	80.77	82.40	82.38	82.37	82.14	85.0	

Table 6: Few-shot cross-dataset generalization where CLIP is prompt-tuned on the source dataset
ImageNet (16 shots per class) and tested on both ImageNet and 10 target datasets. We compare
the test set accuracy A and the accuracy change Δ_A (higher is better) between pre-trained and
prompt-tuned models to quantify generalization and concept forgetting on each target dataset.

			Co	Op	CoC	CoOp	Prom	otSRC
		+Proxy-FDA	X	1	×	1	×	✓
Source	ImageNet	$\begin{array}{c} \mathcal{A} \\ \Delta_{\mathcal{A}} \uparrow \end{array}$	71.51 4.78	71.36 4.63	71.02 4.29	71.24 4.51	71.27 4.54	71.32 4.59
	Avg across 10 datasets	$\left. \begin{array}{c} \mathcal{A} \\ \Delta_{\mathcal{A}} \uparrow \end{array} \right $	63.88 -1.20	66.09 1.01	65.74 0.66	66.48 1.40	65.81 0.72	66.86 1.78
	Caltech101	$\left. \begin{array}{c} \mathcal{A} \\ \Delta_{\mathcal{A}} \uparrow \end{array} \right $	93.70 0.76	94.35 1.41	94.43 1.49	94.51 1.57	93.60 0.66	94.42 1.48
	OxfordPets	$egin{array}{c} \mathcal{A} \ \Delta_{\mathcal{A}} \uparrow \end{array}$	89.14 -0.07	90.53 1.32	90.14 0.93	90.62 1.41	90.25 1.04	90.78 1.57
	Stanford Cars	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	64.51 -0.81	66.18 0.86	65.32 0.00	66.22 0.90	65.70 0.38	66.55 1.23
Target	Flowers102	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	68.71 -2.63	71.54 0.20	71.88 0.54	72.32 0.98	70.25	72.04 0.70
	Food101	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	85.30 -0.76	86.86 0.80	86.06 0.00	86.91 0.85	86.15 0.09	87.38 1.32
	FGVC Aircraft	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	18.47 -6.25	22.09 -2.63	22.94 -1.78	23.49 -1.23	23.90 -0.82	24.79 0.07
	SUN397	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	64.15 1.65	66.12 3.62	67.36 4.86	67.62 5.12	67.10 4.60	67.53 5.03
	DTD	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	41.92 -2.47	45.13 0.74	45.73 1.34	46.15 1.76	46.87 2.48	47.31 2.92
	EuroSAT	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}\uparrow}$	46.39 -1.21	49.08 1.48	45.37 -2.23	47.89 0.29	45.50 -2.10	48.37 0.77
	UCF101	$\stackrel{\mathcal{A}}{\Delta_{\mathcal{A}}}\uparrow$	66.55 -0.20	69.01 2.26	68.21 1.46	69.10 2.35	68.75 2.00	69.42 2.67

1171Table 7: Few-shot prompt tuning in both base-to-new class generalization and domain general-
ization settings. Here we compare with more recent prompt tuning methods. Note both OGEN and
our Proxy-FDA are plugged into the PromptSRC baseline. For fair comparison with CLAP, we obtain
its base-to-new generalization results by re-running its official codes with the ViT-B/16 backbone
used by all other methods. The domain generalization results of CLAP are directly extracted from
the CLAP paper. $\mathcal{A}_{\rm H}$ denotes the Harmonic mean of $\mathcal{A}_{\rm Base}$ and $\mathcal{A}_{\rm New}$.

		Base-te	o-New C	lass Gener	alization	Domain Generalization					
			Avg acro	oss 11 datas	ets	$\mathcal{A}_{\mathrm{Source}}$	$\mathcal{A}_{\mathrm{Target}}$				
		$\mathcal{A}_{\text{Base}}$	\mathcal{A}_{New}	$\Delta_{\rm New}\uparrow$	\mathcal{A}_{H}	ImageNet	-V2	-Sketch	-A		
Fext Knowledge from LLM	ProText ArGue-N	72.95 83.77	76.98 78.74	2.76 4.52	74.91 81.18	70.22 71.84	63.54 65.02	49.45 49.25	51.47 51.47	7	
Regularization method	OGEN CLAP Proxy-FDA	84.17 84.34 84.47	76.86 76.62 77.45	2.64 2.40 3.23	80.34 80.29 80.81	73.13 73.38 73.44	65.37 65.00 65.79	48.96 48.35 49.83	50.75 49.53 51.54	7 7 7	

Table 8: Continual fine-tuning: test accuracy A_{LP} and Δ_{LP} for models fine-tuned on three task sequences. The first 3 rows show performance on fine-tuned tasks and the 4th row shows performance averaged on 6 other datasets, comparing our method with 5 classic continual learning methods.

Fine-tune	Evaluation	Lv	vF	LF	L	iCa	RL	D	⊦R	ZS	CL	FDA	(ours)	Proxy-F	DA (ours)
dataset	dataset	\mathcal{A}_{LP}	$\Delta_{LP}\uparrow$	\mathcal{A}_{LP}	$\Delta_{\rm LP}\uparrow$	$ \mathcal{A}_{LP} $	$\Delta_{\rm LP}\uparrow$								
$SVHN \rightarrow CIFAR10 \rightarrow RESISC45$	SVHN CIFAR10 RESISC45	90.48 93.90 94.22	-3.81 -2.90 3.10	91.90 94.88 93.90	-3.21 -2.32 2.98	91.62 95.17 93.72	-3.67 -2.10 2.83	93.30 95.41 94.94	-2.78 -1.90 3.68	92.70 95.82 94.89	-3.23 -1.60 3.62	96.77 97.13 95.22	0.61 0.57 4.14	96.72 97.29 95.38	0.93 1.02 4.22
	Others	80.73	-4.20	81.31	-3.76	80.78	-4.11	81.86	-3.20	83.10	-2.80	87.21	0.76	86.95	1.08
$SVHN \rightarrow CIFAR100 \rightarrow RESISC45$	SVHN CIFAR100 RESISC45	89.48 83.24 93.80	-4.34 -3.25 3.21	90.29 83.95 94.91	-4.08 -3.01 3.62	90.97 84.06 94.87	-4.31 -3.13 3.54	92.30 84.82 95.08	-3.23 -2.60 3.71	91.81 85.07 94.96	-3.92 -2.13 3.65	96.18 86.33 95.32	0.63 0.72 3.95	96.43 86.14 95.46	0.71 0.85 4.01
	Others	81.73	-4.11	82.04	-3.80	81.62	-4.02	82.17	-3.43	82.86	-3.11	89.02	0.68	89.09	0.96
$SVHN \rightarrow Cars \rightarrow RESISC45$	SVHN Cars RESISC45	91.43 81.69 93.92	-3.64 -2.79 3.34	92.74 81.82 94.96	-2.92 -2.64 3.55	91.75 81.70 94.97	-3.13 -2.80 3.58	92.86 82.11 95.19	-2.84 -2.12 3.72	92.98 82.68 95.04	-2.72 -1.84 3.63	96.74 84.38 95.12	0.79 1.14 3.92	96.91 84.32 95.23	0.94 1.36 4.07
	Others	81.63	-4.07	82.24	-3.60	81.88	-3.89	82.73	-3.12	83.10	-2.80	89.54	0.96	89.67	1.17

Table 9: Continual fine-tuning: comparing the average accuracy on Split ImageNet-R.

L2P	DualPrompt CODA-Prompt		Continual-CLIP	SLCA	LDIFS	FDA (ours)	Proxy-FDA (ours)
74.60±1.21	77.24±1.27	78.13±1.18	76.23±1.18	81.22±1.23	83.62±1.16	85.97±1.05	86.71±1.24

Table 10: Knowledge distillation: comparing the top-1 accuracy on ImageNet.

		L	ogits-ba	sed	Feature-based					
Teacher	Student	KD++	DIST	WTTM	CNA	ITRD	FDA (ours)	Proxy-FDA (ours)		
ResNet-34 (73.3 ResNet-50 (76.1	 ResNet-18 (69.76) MobileNet (68.87) 	71.98 72.77	72.07 73.24	72.19 73.09	71.38 72.39	71.68 -	72.02 73.31	72.17 73.45		
× *	, , ,	1								