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Abstract

It is a long-term vision for Autonomous Driving (AD) community that the per-
ception models can learn from a large-scale point cloud dataset, to obtain unified
representations that can achieve promising results on different tasks or benchmarks.
Previous works mainly focus on the self-supervised pre-training pipeline, mean-
ing that they perform the pre-training and fine-tuning on the same benchmark,
which is difficult to attain the performance scalability and cross-dataset application
for the pre-training checkpoint. In this paper, for the first time, we are commit-
ted to building a large-scale pre-training point-cloud dataset with diverse data
distribution, and meanwhile learning generalizable representations from such a
diverse pre-training dataset. We formulate the point-cloud pre-training task as
a semi-supervised problem, which leverages the few-shot labeled and massive
unlabeled point-cloud data to generate the unified backbone representations that
can be directly applied to many baseline models and benchmarks, decoupling
the AD-related pre-training process and downstream fine-tuning task. During
the period of backbone pre-training, by enhancing the scene- and instance-level
distribution diversity and exploiting the backbone’s ability to learn from unknown
instances, we achieve significant performance gains on a series of downstream
perception benchmarks including Waymo, nuScenes, and KITTI, under differ-
ent baseline models like PV-RCNN++, SECOND, CenterPoint. Project page:
https://jiakangyuan.github.io/AD-PT.github.io/.

1 Introduction

LiDAR sensor plays a crucial role in the Autonomous Driving (AD) system due to its high quality for
modeling the depth and geometric information of the surroundings. As a result, a lot of studies aim
to achieve the AD scene perception via LIDAR-based 3D object detection baseline models, such as
CenterPoint [32], PV-RCNN [17], and PV-RCNN++ [19].

Although the 3D object detection models can help autonomous driving recognize the surrounding
environment, the existing baselines are hard to generalize to a new domain (such as different sensor
settings or unseen cities). A long-term vision of the autonomous driving community is to develop
a scene-generalizable pre-trained model, which can be widely applied to different downstream
tasks. To achieve this goal, researchers begin to leverage the Self-Supervised Pre-Training (SS-
PT) paradigm recently. For example, ProposalContrast [3 1] proposes a contrastive learning-based
approach to enhance region-level feature extraction capability. Voxel-MAE [6] designs a masking
and reconstructing task to obtain a stronger backbone network.
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(a) Previous pre-training paradigm. (b) AD-PT pre-training paradigm.
Figure 1: Differences between previous pre-training paradigm and the proposed AD-PT paradigm.

However, as illustrated in Fig.1, it should be pointed out that there is a crucial difference between the
above-mentioned SS-PT and the desired Autonomous Driving Pre-Training (AD-PT) paradigm. The
SS-PT aims to learn from a single set of unlabeled data to generate suitable representations for the
same dataset, while AD-PT is expected to learn unified representations from as large and diversified
data as possible, so that the learned features can be easily transferred to various downstream tasks.
As aresult, SS-PT may only perform well when the test and pre-training data are sampled from the
same single dataset (such as Waymo [20] or nuScenes [1]), while AD-PT presents better generalized
performance on different datasets, which can be continuously improved with the increase of the
number of the pre-training dataset.

Therefore, this paper is focused on achieving the AD-related pre-training which can be easily applied
to different baseline models and benchmarks. By conducting extensive experiments, we argue that
there are two key issues that need to be solved for achieving the real AD-PT: 1) how to build a unified
AD dataset with diverse data distribution, and 2) how to learn generalizable representations from
such a diverse dataset by designing an effective pre-training method.

For the first item, we use a large-scale point cloud dataset named ONCE [14], consisting of few-shot
labeled (e.g., ~0.5%) and massive unlabeled data. First, to get accurate pseudo labels of the massive
unlabeled data that can facilitate the subsequent pre-training task, we design a class-wise pseudo
labeling strategy that uses multiple models to annotate different semantic classes, and then adopt
semi-supervised methods (e.g., MeanTeacher [21]) to further improve the accuracy on the ONCE
validation set. Second, to get a unified dataset with diverse raw data distribution from both LiDAR
beam and object sizes, inspired by previous works [29, 24, 33, 34], we exploit point-to-beam playback
re-sampling and object re-scaling strategies to diversify both scene- and region-level distribution.

For the second item, we find that the taxonomy differences between the pre-training ONCE dataset
and different downstream datasets are quite large, resulting in that many hard samples with taxonomic
inconsistency are difficult to be accurately detected during the fine-tuning stage. As a result, taxonomy
differences between different benchmarks should be considered when performing the backbone pre-
training. Besides, our study also indicates that during the pre-training process, the backbone model
tends to fit with the semantic distribution of the ONCE dataset, impairing the perception ability on
downstream datasets having different semantics. To address this issue, we propose an unknown-aware
instance learning to ensure that some background regions on the pre-training dataset, which may be
important for downstream datasets, can be appropriately activated by the designed pre-training task.
Besides, to further mine representative instances during the pre-training, we design a consistency loss
to constrain the pre-training representations from different augmented views to be consistent.

Our contributions can be summarized as follows:

1. For the first time, we propose the AD-PT paradigm, which aims to learn unified representa-
tions by pre-training a general backbone and transfers knowledge to various benchmarks.

2. To enable the AD-PT paradigm, we propose a diversity-based pre-training data preparation
procedure and unknown-aware instance learning, which can be employed in the backbone
pre-training process to strengthen the representative capability of extracted features.

3. Our study provides a more unified approach, meaning that once the pre-trained checkpoint
is generated, it can be directly loaded into multiple perception baselines and benchmarks.
Results further verify that such an AD-PT paradigm achieves large accuracy gains on
different benchmarks (e.g., 3.41%, 8.45%, 4.25% on Waymo, nuScenes, and KITTI).
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Figure 2: The overview of the proposed AD-PT. By leveraging the proposed method to train on the
unified large-scale point cloud dataset, we can obtain well-generalized pre-training parameters that
can be applied to multiple datasets and support different baseline detectors.

2 Related Works

2.1 LiDAR-based 3D Object Detection

Current prevailing LiDAR-based 3D object detection works [1 1, 16, 17, 19, 27, 18, 4] can be roughly
divided into point-based methods, voxel-based methods, and point-voxel-based methods. Point-
based methods [16, 30] extract features and generate proposals directly from raw point clouds.
PointRCNN [16] is a prior work that generates 3D Rols with foreground segmentation and designs
an RCNN-style two-stage refinement. Unlike point-based methods, voxel-based methods [27, 32]
first transform unordered points into regular grids and then extract 3D features using 3D convolution.
As a pioneer, SECOND [27] utilizes sparse convolution as 3D backbone and greatly improves the
detection efficiency. CenterPoint [32] takes care of both accuracy and efficiency and proposes a
one-stage method. To take advantage of both point-based and voxel-based methods, PV-RCNN [17]
and PV-RCNN++ [19] propose a point-voxel set abstraction to fuse point and voxel features.

2.2 Autonomous Driving-related Self-Supervised Pre-Training

Inspired by the success of pre-training in 2D images, self-supervised learning methods have been
extended to LiDAR-based AD scenarios [0, 13, 12, 28, 26, 10, 31]. Previous methods mainly
focus on using contrastive learning or masked autoencoder (MAE) to enhance feature extraction.
Contrastive learning-based methods [12, 31, 7] use point clouds from different views or temporally-
correlated frames as input, and further construct positive and negative samples. STRL [7] proposes
a spatial-temporal representation learning that employs contrastive learning with two temporally-
correlated frames. GCC-3D [12] and ProposalContrast constructs a consistency map to find the
correspondence between different views, developing contrastive learning strategies at region-level.
CO3 [2] utilizes LiDAR point clouds from the vehicle- and infrastructure-side to build different
views. MAE-based [0, |0] methods utilize different mask strategies and try to reconstruct masked
points by a designed decoder. Voxel-MAE [6] introduces a voxel-level mask strategy and verifies
the effectiveness of MAE. BEV-MAE [13] designs a BEV-guided masking strategy. More recently,
GD-MAE [28] and MV-JAR [26] explore masking strategies in transformer architecture. Different
from the existing works that use a designed self-supervised approach to pre-train on unlabeled data
and then fine-tune on labeled data with the same dataset, AD-PT aims to pre-train on a large-scale
point cloud dataset and fine-tune on multiple different datasets (i.e., Waymo [20], nuScenes[!],
KITTI [5]).



Table 1: Performance using different detectors on  Table 2: Statistics on the number of pseudo-
ONCE validation set. We report mAP using ONCE labeled instances per frame. We compare it

evaluation metric. with ONCE labeled data set.
Detector Head Choice ~ Vehicle Pedestrian ~ Cyclist ONCE labeled set Pseudo label set
ONCE Benchmark (Best) ~ Center Head ~ 66.79 49.90 63.45 Vehicle Ped. Cyclist Vehicle Ped. Cyclist
CenterPoint (ours) Center Head - 56.01 -
PV-RCNN++ (ours) Anchor Head ~ 82.50 - 71.19 19.01 452 563 15.67 1.63 1.90
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Figure 3: Overall dataset preparation procedure. Figure 4: Statistics of object re-scaling.
3 Method

To better illustrate our AD-PT framework, we first briefly describe the problem definition and
overview of the proposed method in Sec. 3.1. Then, we detail the data preparation and model design
of AD-PT in Sec. 3.2 and Sec. 3.3, respectively.

3.1 Preliminary

Problem Formulation. Different from previous self-supervised pre-training methods, AD-PT
performs large-scale point cloud pre-training in a semi-supervised manner. Specifically, we have
access to N samples which are composed of a labeled set Dy, = {(z;,y:)}%4 and a unlabeled set
Dy = {x:}Y, where Ny, and Ny denote the number of labeled and unlabeled samples. Note that
Ny, can be much smaller than Ny (e.g., ~5K v.s. ~1M, about 0.5% labeled samples). The purpose of
our work is to pre-train on a large-scale point cloud dataset with few-shot Dy, and massive Dy, such
that the pre-trained backbone parameters can be used for many down-stream benchmark datasets or
3D detection models.

Overview of AD-PT. As shown in Fig. 2, AD-PT mainly consists of a large-scale point cloud dataset
preparation procedure and a unified AD-focused representation learning procedure. To initiate the
pre-training, a class-aware pseudo labels generator is first developed to generate the pseudo labels
of Dy. Then, to get more diverse samples, we propose a diversity-based pre-training processor.
Finally, in order to pre-train on these pseudo-labeled data to learn their generalizable representations
for AD purposes, an unknown-aware instance learning coupled with a consistency loss is designed.

3.2 Large-scale Point Cloud Dataset Preparation

In this section, we detail the preparation of the unified large-scale dataset for AD. As shown in Fig. 3,
our data creation consists of a class-aware pseudo label generator and a diversity-based pre-training
processor to be introduced below.

3.2.1 Class-aware Pseudo Labels Generator

It can be observed from Tab. 7 that, pseudo-labels with high accuracy on the pre-training dataset
are beneficial to enhance the detection accuracy on downstream datasets such as Waymo [20] and
nuScenes [1]. Therefore, to get more accurate pseudo labels, we design the following procedure.

Class-aware Pseudo Labeling. ONCE benchmark® is utilized to evaluate the pseudo labeling
accuracy and more results are shown in the supplementary material. We find that different baseline

3https://once-for-auto-driving.github.io/benchmark.html
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Figure 5: Visualization of point-to-beam playback re-sampling.

models have different biased perception abilities for different classes. For example, the center-based
method (i.e., CenterPoint [32]) tends to detect better for small-scale targets (e.g., Pedestrian), while
anchor-based methods perform better for other classes. According to the observation, we utilize the
PV-RCNN++ [19] with anchor-head to annotate Vehicle and Cyclist classes on ONCE, where the
accuracy on Vehicle and Cyclist is found to be much better than the methods listed in the ONCE
benchmark. On the other hand, CenterPoint [32] is employed to label the Pedestrian class on ONCE.
Finally, we use PV-RCNN++ and CenterPoint to perform a class-wise pseudo labeling process.

Semi-supervised Data Labeling. We further employ the semi-supervised learning method to
fully exploit the unlabeled data to boost the accuracy of the pseudo labels. As shown in ONCE
benchmark, MeanTeacher [21] can better improve the performance on ONCE, and therefore, we use
the MeanTeacher to further enhance the class-wise detection ability. Tab. 1 shows that the accuracy
on ONCE validation set can be improved after leveraging massive unlabeled data, significantly
surpassing all previous records.

Pseudo Labeling Threshold. To avoid labeling a large number of false positive instances, we set a
relatively high threshold. In detail, for Vehicle, Pedestrian, and Cyclist, we filter out bounding boxes
with confidence scores below 0.8, 0.7, and 0.7. As a result, it can be seen from Tab. 2 that, compared
with ONCE labeled data, some hard samples with relatively low prediction scores are not annotated.

3.2.2 Diversity-based Pre-training Processor

As mentioned in [15, 9], the diversity of data is crucial for pre-training, since highly diverse data
can greatly improve the generalization ability of the model. The same observation also holds in 3D
pre-training. However, the existing datasets are mostly collected by the same LiDAR sensor within
limited geographical regions, which impairs the data diversity. Inspired by [33, 34], discrepancies
between different datasets can be categorized into scene-level (e.g., LIDAR beam) and instance-level
(e.g., object size). Thus, we try to increase the diversity from the LiDAR beam and object size, and
propose a point-to-beam playback re-sampling and an object re-scaling strategy.

Data with More Beam-Diversity: Point-to-Beam Playback Re-sampling. To get beam-diverse
data, we use the range image as an intermediate variable for point data up-sampling and down-
sampling. Specifically, given a LiDAR point cloud with n beam (e.g., 40 beam for ONCE dataset)
and m points per ring, the range image R"*™ can be obtained by the following equation:

r=+va?+y?+ 22, 0=arctan(z/y), ¢ = arcsin(z/r), (1)

where ¢ and 6 are the inclination and azimuth of point clouds, respectively, and r denotes the range
of the point cloud. Each column and row of the range image corresponds to the same azimuth and
inclination of the point clouds, respectively. Then, we can interpolate or sample over rows of a range
image, which can also be seen as LIDAR beam re-sampling. Finally, we reconvert the range image to
point clouds as follows:

x = rcos(p)cos(0), y = rcos(¢)sin(0), z = rsin(e), )

where z, y, z denote the Cartesian coordinates of points, and Fig. 5 shows that point-to-beam playback
re-sampling can generate scenes with different point densities, improving the scene-level diversity.

Data with More Rol-Diversity: Object Re-scaling. According to the statement in [34, 29, 23] that
different 3D datasets were collected in different locations, the object size has inconsistent distributions.
As shown in Fig. 4, a single dataset such as ONCE cannot cover a variety of object-size distributions,



resulting in that the model cannot learn a unified representation. To overcome such a problem, we
propose an object re-scaling mechanism that can randomly re-scale the length, width and height
of each object. In detail, given a bounding box and points within it, we first transform the points
to the local coordinate and then multiply the point’s coordinates and the bounding box size by a
provided scaling factor. Finally, we transform the scaled points with the bounding box to the ego-car
coordinate. It can be seen from Fig. 4 that after object re-scaling, the produced dataset contains object
sizes with more diversified distributions, further strengthening the instance-level point diversity.

3.3 Learning Unified Representations under Large-scale Point Cloud Dataset

By obtaining a unified pre-training dataset using the above-mentioned method, the scene-level and
instance-level diversity can be improved. However, unlike 2D or vision-language pre-training datasets
which cover a lot of categories to be identified for downstream tasks, our pseudo dataset has limited
category labels (i.e., Vehicle, Pedestrian and Cyclist). Besides, as mentioned in Sec. 3.2.1, in order to
get accurate pseudo annotations, we set a high confidence threshold, which may inevitably ignore
some hard instances. As a result, these ignored instances, which are not concerned in the pre-training
dataset but may be seen as categories of interest in downstream datasets (e.g., Barrier in the nuScenes
dataset), will be suppressed during the pre-training process.

To mitigate such a problem, it is necessary that both pre-training-related instances and some unknown
instances with low scores can be considered when performing the backbone pre-training. From
a new perspective, we regard the pre-training as an open-set learning problem. Different from
traditional open-set detection [8] which aims at detecting unknown instances, our goal is to activate
as many foreground regions as possible during the pre-training stage. Thus, we propose a two-branch
unknown-aware instance learning head to avoid regarding potential foreground instances as the
background parts. Further, a consistency loss is utilized to ensure the consistency of the calculated
corresponding foreground regions.

Overall Model Structure. In this part, we briefly introduce our pre-training model structure.
Following the prevailing 3D detectors [17, 3, 27], as shown in Fig. 2, the designed pre-training model
consists of a voxel feature extractor, a 3D backbone with sparse convolution, a 2D backbone and
the proposed head. Specifically, given point clouds P € RY*G+% we first transform points into
different views through different data augmentation methods I'; and I';. Then, voxel features are
extracted by a 3D backbone and mapped to BEV space. After that, dense features generated by a 2D
backbone can be obtained, and finally, the dense features are fed into the proposed head.

Unknown-aware Instance Learning Head. Inspired by previous open-set detection works [8, 35],
we consider background region proposals with relatively high objectness scores to be unknown
instances that are ignored during the pre-training stage but may be crucial to downstream tasks, where
the objectness scores are obtained from the Region Proposal Network (RPN). However, due to that
these unknown instances contain a lot of background regions, directly treating these instances as
the foreground instances during the pre-training will cause the backbone network to activate a large
number of background regions. To overcome such a problem, we utilize a two-branch head as a
committee to discover which regions can be effectively presented as foreground instances. Specifically,
given the Rol features F' = [f'; fa';...; fa'] € RVXCF™2 = [£12; £32; . f2] € RV*C and their
corresponding bounding boxes B't € RY*7, B'2 ¢ RV*7 where N is the number of Rol features
and C denotes the dimension of features, we first select M features F' ' € RM*C F'? ¢ RM*C and
its corresponding bounding boxes B' ' € RY¥*7, B'> € RV*7 with the highest scores. Then, to obtain
the positional relationship corresponding to the activation regions of the two branches, we calculate

the distance of the box center between B * and ﬁrz, and the feature correspondence can be obtained
by the following equation:

~T

1 T AT
FF) = (L s - d2ge e (e e (-2 <r), )

el ey and (72,02, ch2) denote i-th and j-th box center of B'' and B'?, 7 is a
threshold. Once the correspondence features from different input views are obtained, these unknown
instances will be updated as the foreground instances that can be fed into their original class head.

where (c} ! cit cit

Consistency Loss. After obtaining the corresponding activation features of different branches, a
consistency loss is utilized to ensure the consistency of the corresponding features as follows:



Table 3: Fine-tuning performance on Waymo benchmark (LEVEL_2 metric). Note that we only use a
single checkpoint parameter to initialize all downstream baselines including SECOND, CenterPoint,
PV-RCNN++. Semi denotes the semi-supervised method training on unlabeled ONCE split.

Method ‘ Paradigm ‘ Data ‘ L2 AP/ APH

| | amount | Overall |  Vehicle Pedestrian Cyclist
From scratch (SECOND) - 3% 52.00/37.70 | 58.11/57.44 51.34/27.38 46.57/28.28
From scratch (SECOND) - 20% 60.62/56.86 | 64.26/63.73 59.72/50.38 57.87/56.48
ProposalContrast (SECOND) [31] SS-PT 20% 60.91/57.16 | 64.50/63.90 60.33/51.00 57.90/56.60
BEV-MAE (SECOND) [13] SS-PT 20% 61.03/57.30 | 64.42/63.87 59.97/50.65 58.69/57.39
MeanTeacher (SECOND) [21] Semi 20% 60.93/57.31 | 64.22/63.73 59.54/50.80 58.66/57.41
Ours (SECOND) AD-PT 3% 55.41/51.78 60.53/59.93 54.91/45.78 50.79/49.65
Ours (SECOND) AD-PT 20% 61.26/57.69 64.54/64.00 60.25/51.21 59.00/57.86
From scratch (CenterPoint) - 3% 59.00/56.29 | 57.12/56.57 58.66/52.44 61.24/59.89
From scratch (CenterPoint) - 20% 66.47/64.01 | 6491/64.42 66.03/60.34 68.49/67.28
GCC-3D (CenterPoint) [12] SS-PT 20% 65.29/62.79 | 63.97/63.47 64.23/5847 67.68/66.44
ProposalContrast (CenterPoint) [31] SS-PT 20% 66.67/64.20 | 65.22/64.80 66.40/60.49 68.48/67.38
BEV-MAE (CenterPoint) [13] SS-PT 20% 66.92/64.45 | 64.78/64.29 66.25/60.53 69.73/68.52
MeanTeacher (CenterPoint) [21] Semi 20% 66.66/64.23 | 64.94/64.43 66.35/60.61 68.69/67.65
Ours (CenterPoint) AD-PT 3% 61.21/5846 60.35/59.79 60.57/54.02 62.73/61.57
Ours (CenterPoint) AD-PT 20% 67.17/64.65 65.33/64.83 67.16/61.20 69.39/68.25
From scratch (PV-RCNN++) - 3% 63.81/61.10 | 64.42/63.93 64.33/57.79 62.69/61.59

From scratch (PV-RCNN++) - 20% 69.97/67.58 | 69.18/68.75 70.88/65.21 69.84/68.77
ProposalContrast (PV-RCNN++) [31] SS-PT 20% 70.30/67.78 | 69.45/69.00 71.42/65.68 70.04/69.05

BEV-MAE (PV-RCNN++) [13] SS-PT 20% 70.54/68.11 | 69.53/69.07 71.50/65.69 70.60/69.56
MeanTeacher (PV-RCNN++) [21] Semi 20% 70.62/68.14 | 69.21/68.81 71.96/66.42 70.17/69.21
Ours (PV-RCNN++) AD-PT 3% 68.33/65.69 68.17/67.70 68.82/62.39 68.00/67.00
Ours (PV-RCNN++) AD-PT 20% 71.55/69.23 70.62/70.19 72.36/66.82 71.69/70.70

1 K

RN £T'5\2
Econsist:ﬁzz:(fjl_fj2) ) (4)
=1 j=1

where B is the batch size and K is the number of the corresponding activation features.
Overall Function. The overall loss function can be formulated as:

»Ctotal = »Ccls + ['reg + »Cconsista (5)

where L. and L, represent classification loss and regression loss of the dense head, respectively,
and L., sist 1S the activation consistent loss as shown in Eq. 4.

4 Experiments

4.1 Experimental Setup

Pre-training Dataset. ONCE [14] is a large-scale dataset collected in many scenes and weather
conditions. ONCE contains 581 sequences composed of 20 labeled (~19k frames) and 561 unlabeled
sequences(~1M frames). The labeled set divides into a train set with 6 sequences (~5K samples), a
validation set with 4 sequences (~3k frames), and a test set with 10 sequences (~8k frames). We
merge Car, Bus, Truck into a unified category (i.e., Vehicle) when performing the pre-training. Our
main results are based on ONCE small split and use a larger split to verify the pre-training scalability.

Description of Downstream Datasets. 1) Waymo Open Dataset [20] contains ~150k frames. 2)
nuScenes Dataset [ 1] provides point cloud data from a 32-beam LiDAR consisting of 28130 training
samples and 6019 validation samples. 3) KITTI Dataset [5] includes 7481 training samples and is
divided into a train set with 3712 samples and a validation set with 3769 samples.

Description of Selected Baselines. In this paper, we compare our method with several baseline
methods including both Self-Supervised Pre-Training (SS-PT) and semi-supervised learning methods.
SS-PT methods: as mentioned in Sec. 2.2, We mainly compare with contrastive learning-based (i.e.,
GCC-3D [12], ProposalContrast [31]) and MAE-based SS-PT methods (i.e., Voxel-MAE [6], BEV-
MAE [13]). All these methods are pre-trained and fine-tuned on the same dataset. Semi-supervised
learning methods: to verify the effectiveness of our method under the same experimental setting, we
also compare with commonly-used semi-supervised technique (i.e., MeanTeacher [21]).



Table 4: Fine-tuning performance on nuScenes benchmark. C.P. denotes that CenterPoint is employed
as the baseline detector and D.A. represents the Data Amount. We fine-tune on 5% and 100% data for
20 epochs. Compared with other works [12, 13], our pre-training process is performed on a unified
dataset rather than nuScenes.

Method | Setting | D.A. | mAP NDS | Car Truck CV. Bus Trailer Barrier Motor. Bicycle Ped. TC.

From scratch (SECOND) - 5% |29.24 39.74|67.69 33.02 7.15 4591 17.67 2523 1192 0.00 53.00 30.74
From scratch (SECOND) - 100% | 50.59 62.29| - - - - - - - - - -
Ours (SECOND) AD-PT| 5% |37.69 47.95|74.89 41.82 12.05 54.77 2891 3441 23.63 3.19 63.61 39.54
Ours (SECOND) AD-PT | 100% | 52.23 63.04 | 83.12 52.86 15.24 68.58 37.54 59.48 46.01 20.44 78.96 60.05

From scratch (C.P.) - 5% |42.68 50.41|77.82 43.61 10.65 44.01 1871 5295 3626 16.76 67.62 54.52
From scratch (C.P.) - 100% | 56.2 64.5 | 84.8 539 168 670 359 648 558 364 831 634
GCC-3D (C.P) [12] SS-PT | 100% | 57.3 65.0 | 85.0 54.7 17.6 672 357 650 562 360 829 637
BEV-MAE (C.P) [I13] | SS-PT |100% | 57.2 65.1 | 849 549 165 672 359 652 560 362 832 635
Ours (C.P.) AD-PT| 5% |44.99 5299|7890 43.82 11.13 55.16 21.22 55.10 39.03 17.76 72.28 55.43
Ours (C.P.) AD-PT | 100% | 57.17 65.48 | 84.86 54.37 16.09 67.34 36.06 6431 58.50 40.58 83.53 66.05

Table 5: Fine-tuning performance (AP3;p) on KITTI benchmark.

Method | Setting | Data amount | mAP | Car | Pedestrian | Cyclist
| | | Mod.) | Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard
From scratch (SECOND) - 20% 61.70 | 89.78 78.83 7621 | 52.08 47.23 43.37 | 7635 59.06 5524
From scratch (SECOND) - 100% 66.70 | 89.63 80.78 7821 | 58.05 52.61 48.24 | 8425 66.71 62.50
Ours (SECOND) AD-PT 20% 6595 | 9023 80.70 7829 | 55.63 49.67 45.12 | 8378 67.50 63.40
Ours (SECOND) AD-PT 100% 67.58 | 90.36 81.39 7841 | 5830 53.58 48.72 | 86.04 67.78 63.95
From scratch (PV-RCNN) - 20% 66.71 | 91.81 8252 80.11 | 58.78 53.33 47.61 | 86.74 6428 59.53
ProposalContrast (PV-RCNN) [31] | SS-PT 20% 68.13 | 91.96 8265 80.15 | 62.58 55.05 50.06 | 838.58 66.68 62.32
From scratch (PV-RCNN) - 100% 70.57 - 84.50 - - 57.06 - - 70.14 -
GCC-3D (PV-RCNN) [12] SS-PT 100% 71.26 - - - - - - - - -
STRL (PV-RCNN) [7] SS-PT 100% 71.46 - 84.70 - - 57.80 - - 71.88 -
PointContrast (PV-RCNN) [25] SS-PT 100% 7155 | 9140 84.18 8225 | 6573 57.74 5246 | 9147 7272 6795
ProposalContrast (PV-RCNN) [31] | SS-PT 100% 7292 | 9245 8472 8247 | 6843 6036 55.01 | 92.77 73.69 69.51
Ours (PV-RCNN) AD-PT 20% 69.43 | 92.18 8275 8212 | 6550 57.59 51.84 | 84.15 6796 64.73
Ours (PV-RCNN) AD-PT 100% 73.01 | 9196 84.75 8253 | 68.87 60.79 5542 | 9181 7349 69.21

Implementation Details. We fine-tune the model on several different detectors including SEC-
OND [27], CenterPoint [32] and PV-RCNN++ [19]. Note that the transformer-based detectors are not
used, since we consider directly applying the pre-trained backbone parameters to the most commonly
used downstream baselines. For different views generation, we consider 3 types of data augmentation
methods, including random rotation ([-180°, 180°]), random scaling ([0.7, 1.2]), and random flipping
along X-axis and Y-axis. We use Adam optimizer with one-cycle learning rate schedule and the
maximum learning rate is set to 0.003. We pre-train for 30 epochs on ONCE small split and large
split using 8 NVIDIA Tesla A100 GPUs. The number of selected Rol features is set to 256 and the
cross-view matching threshold 7 is set to 0.3. Our code is based on 3DTrans [22].

Evaluation Metric. We use dataset-specific evaluation metrics to evaluate fine-tuning performance
on each downstream dataset. For Waymo, average precision (AP) and average precision with heading
(APH) are utilized for three classes (i.e., Vehicle, Pedestrian, Cyclist). Following [13, 31], we mainly
focus on the more difficult LEVEL_2 metric. For nuScenes, we report mean average precision
(mAP) and NuScenes Detection Score (NDS). For KITTI, we use mean average precision (mAP)
with 40 recall to evaluate the detection performance and report APsp results.

Table 6: Ablation study on data preparation.

Method | Enhancement | Waymo L2 AP/APH | nuScenes
| | Overall | Vehicle Pedestrian Cyclist | mAP  NDS
Baseline None 67.12/64.55 | 67.45/66.97 67.74/61.15 66.19/65.24 | 36.26 45.04
Baseline+re-scaling Object-size | 67.39/64.68 | 67.52/67.03 67.82/61.24 66.83/65.79 | 39.72 49.93
Baseline+re-sampling LiDAR-beam | 67.37/64.70 | 67.70/67.21 68.21/61.71 66.15/65.18 | 41.35 51.03
Baseline+re-scaling+re-sampling Both 67.77/65.09 | 68.01/67.61 68.32/61.69 66.99/6598 | 43.11 52.41

4.2 Main Results

Results on Waymo. Results on Waymo validation set are shown in Tab. 3. We first compare the
proposed method with previous SS-PT methods. It can be seen that all three detectors achieve the
best results using AD-PT initialization, surpassing previous SS-PT methods even using a smaller
pre-training dataset (i.e., ~100k frames on ONCE small split). For example, the improvement
achieved by PV-RCNN++ is 1.58% / 1.65% in terms of L2 AP / APH. Note that the compared SS-PT



Table 7: The impact of pseudo-labeling methods on downstream datasets.

Pseudo-labeling Method | ONCE | Waymo L2 AP/APH |  nuScenes
| Overall |  Overall |  Vehicle Pedestrian Cyclist | mAP NDS
SECOND (Low Performance) 57.10 | 65.96/63.29 | 65.95/65.46 66.87/60.36 65.07/64.06 | 41.49 50.82

60.84
69.90

66.79 / 64.10
67.77 / 65.09

67.09/66.60 67.79/61.16 65.51/64.55 | 4191 51.64
68.01/67.61 68.32/61.69 66.99/65.98 | 43.11 52.41

CenterPoint (Middle Performance)
Ours (High Performance)

Table 8: The performance scalability using KITTI and ONCE.

Qa7
B
= 6!
g ) Pre-training dataset ‘ Waymo L2 AP/APH
v PR = AP (from scratch) | Overall | Vehicle Pedestrian Cyclist
g . m
Tesp =7 T ety KITTI (~4k) | 64.28/63.16 | 64.73/64.19 64.43/57.30 63.69/62.60
- APH (AD-PT) ONCE (~4k) | 64.28/61.36 | 66.11/65.64 66.26/59.51 65.39/64.35
o ” o e ONCE (~10k) | 66.94/6424 | 67.41/6691 67.97/61.39 6545/64.43
Number of fine-tuning data ONCE (~100K) | 6833/65.69 | 68.17/67.70 68.82/6239 68.00/67.00

ONCE (~500k) 69.04/66.52 | 68.69/68.23 69.81/63.74 68.61/67.60

Figure 6: Different budgets

methods are pre-trained on Waymo 100% unlabeled train set (~150k frames), which has a smaller
domain gap with fine-tuning data. Further, to verify the effectiveness of fine-tuning with a small
number of samples, we conduct experiments of fine-tuning on 3% Waymo train set (~5K frames).
We can observe that, with the help of pre-trained prior knowledge, fine-tuning with a small amount of
data can achieve much better performance than training from scratch (e.g., 3.41% / 14.08% in L2
using SECOND as baseline). In addition, to ensure the fairness of the experiments, we compare our
method with semi-supervised learning methods which are identical to our pre-training setup.

Results on nuScenes. Due to the huge domain discrepancies, few works can transfer the knowledge
obtained by pre-training on other datasets to nuScenes dataset. Thanks to constructing a unified
large-scale dataset and considering taxonomic differences in the pre-training stage, our methods can
also significantly improve the performance on nuScenes. As shown in Tab. 4, AD-PT improves the
performance of training from scratch by 0.93% and 0.98% in mAP and NDS.

Results on KITTI. As shown in Tab. 5, we further fine-tune on a relatively small dataset (i.e., KITTI).
Note that previous methods often use models pre-trained on Waymo as an initialization since the
domain gap is quite small. It can be observed that using AD-PT initialization can further improve the
accuracy when fine-tuning on both 20% and 100% KITTI training data under different detectors. For
instance, the AP3;p in moderate level can improve 2.72% and 1.75% when fine-tuning on 20% and
100% KITTI data using PV-RCNN++ as the baseline detector.

4.3 Insight Analyses

In this part, we further discuss the 3D pre-training. Note that in ablation studies, we fine-tune on 3%
Waymo data and 5% nuScenes data under the PV-RCNN++ and CenterPoint baseline setting.

4.3.1 Insight Analyses on the Data Preparation

Discussion on Diversity-based Pre-training Processor. From Tab. 6, we observe that both beam
re-sampling and object re-scaling during the pre-training stage can improve the performance for
other downstream datasets. For example, the overall performance can be improved by 0.65% / 0.54%
on Waymo and 7.37% on nuScenes. Note that when pre-training without our data processor, the
fine-tuning performance on nuScenes will drop sharply compared with training from scratch, due
to the large domain discrepancy. Since our constructed unified dataset can cover diversified data
distributions, the backbone can learn more general representations.

Pseudo-labeling Performance. Tab. 7 indicates the impact of pseudo-labeling operation on the
downstream perception performance. We use three types of pseudo-labeling methods to observe the
low, middle, and high performance on ONCE. We find that the performance of fine-tuning is positively
correlated with the accuracy of pseudo-labeling on ONCE. This is mainly due to that pseudo labels
with relatively high accuracy can guide the backbone to activate more precise foreground features
and meanwhile suppress background regions.



Scalability. To verify the scaling ability of the AD-PT paradigm, we conduct experiments in Tab 8 to
show the Waymo performance initialized by different pre-trained checkpoints, which are obtained
using pre-training datasets with different scales. Please refer to Appendix for more results.

4.3.2 Insight Analyses on the Unified Representations Learning

Discussion on Unknown-aware Instance Learning Head. It can be seen from Tab. 9 that, Unknown-
aware Instance Learning (UIL) head and Consistency Loss (CL) can further boost the perception
accuracy on multiple datasets. It can be observed that the gains are larger on the Pedestrian and
Cyclist categories. The reason is that the UIL head can better capture downstream-sensitive instances,
which are hard to be detected during the pseudo-labeling pre-training process.

Table 9: Ablation study on the designed UIL and CL.

Method | Waymo L2 AP/APH |  nuScenes
| Overall |  Vehicle Pedestrian Cyclist | mAP  NDS
Baseline 67.77/65.09 | 68.01/67.61 68.32/61.69 66.99/6598 | 43.11 52.41
Baseline+UIL 67.97/65.35 | 67.99/67.58 68.62/62.12 67.32/66.35 | 43.92 52.65
Baseline+UIL+CL | 68.33/65.69 | 68.17/67.70 68.82/62.39 68.00/67.00 | 44.99 52.99

Training-efficient Method. In the main results, we verify that our methods can bring performance
gains under different amounts of fine-tuning data (e.g., 1%, 5%, 10% budgets). As shown in Fig. 6,
results demonstrate that our method can consistently improve performance under different budgets.

4.3.3 Insight Analysis on Different Types of Baseline Detectors

To verify the generalization of our proposed method, we further conduct experiments on different
types of 3D object detection backbones (i.e., pillar-based and point-based). As shown in Tab. 10
and Tab. 11, the performance of multiple types of detectors can improve when initialized by AD-PT
pre-trained checkpoints which further shows that AD-PT is a general pre-training pipeline that can be
used on various types of 3D detectors.

Table 10: Ablation study on the pillar-based backbone. We conduct experiments on Waymo dataset.

Method ‘ Data amount ‘ Waymo L2 AP/APH
| | Overall |  Vehicle Pedestrian Cyclist
From scratch (PointPillar) 20% 48.56/39.30 | 54.28/53.51 47.11/25.50 44.29/38.89
AD-PT (PointPillar) 20% 52.01/43.99 | 58.51/57.85 50.22/32.52 47.31/41.59
From scratch (PointPillar) 100% 57.85/7/50.69 | 62.18/61.64 58.18/40.64 53.18/49.80
AD-PT (PointPillar) 100% 59.71/53.49 | 64.10/63.54 59.00/43.13 56.04/53.80

Table 11: Ablation study on the point-based backbone. We conduct experiments on KITTI dataset.

Method \ Data amount | mAP | Car \ Pedestrian \ Cyclist
\ | Mod.) | Easy Mod. Hard | Easy Mod. Hard | Basy Mod. Hard
From scratch (PointRCNN) 20% 64.12 - 75.30 - - 52.52 - - 69.55 -
AD-PT (PointRCNN) 20% 67.67 88.75 77.20 75.18 | 64.58 54.16 48.24 | 84.25 71.86 62.50
From scratch (PointRCNN) 100% 68.40 - 78.70 - - 54.41 - - 72.11 -
AD-PT (PointRCNN) 100% 7047 | 9090 80.25 78.05 | 64.80 57.13 50.37 | 9245 74.04 69.45

5 Conclusion

In this work, we have proposed the AD-PT paradigm, aiming to pre-train on a unified dataset and
transfer the pre-trained checkpoint to multiple downstream datasets. We comprehensively verify the
generalization ability of the built unified dataset and the proposed method by testing the pre-trained
model on different downstream datasets including Waymo, nuScenes, and KITTI, and different 3D
detectors including PV-RCNN, PV-RCNN++, CenterPoint, and SECOND.

6 Limitation
Although the AD-PT pre-trained backbone can improve the performance on multiple downstream

datasets, it needs to be verified in more actual road scenarios. Meanwhile, training a backbone with
more generalization capabilities through data from different sensors is also a future direction.
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Supplementary Material

In this supplementary material, we provide more details and experimental results not included in our
main text.

Outlines:

* Sec. A: More details about large-scale pre-training dataset preparation.

Sec. A.1: Preliminary experiments on class-aware pseudo label generator.
Sec. A.2: Analysis on pseudo label threshold on different classes.

Sec. A.3: Visualization results of pseudo labels.

Sec. A.4: Details of object re-scaling.

Sec. A.5: Taxonomy difference between different datasets.

 Sec. B: Detailed dataset description and evaluation metrics.

Sec. B.1: Dataset description.
Sec. B.2: Evaluation metrics.

 Sec. C: More implementation details.
* Sec. D: More experimental results.

Sec. D.1: Ablation studies on unknown-aware instance learning head.
Sec. D.2: More results of pre-training scalability.

Sec. D.3: Results of fine-tuning on ONCE.

Sec. D.4: Visualization results.

A More Details about Large-scale Pre-training Dataset Preparation.

In this section, we give some preliminary experimental results and analysis on large-scale pre-training
dataset preparation.

A.1 Preliminary Experiments on Class-aware Pseudo Label Generator

As mentioned in Sec. 3.2.1 in our submission, we explore how to improve the performance on
ONCE. We first analyze the results in the ONCE benchmark and find that CenterPoint reaches the
SOTA performance on pedestrian and cyclist while PV-RCNN achieves the best performance on
vehicle. To use a stronger baseline to further improve the performance, we conduct experiments using
PV-RCNN-++ as the baseline detector. As shown in Tab. 12, PV-RCNN++ with center head can not
obtain a satisfactory performance on ONCE while PV-RCNN++ with anchor head can achieve better
accuracy on vehicle and pedestrian.

Further, to obtain more accurate pseudo labels, we use a semi-supervised learning method to further
improve the performance as shown in Tab. 13. Finally, we individually train pedestrian using
CenterPoint and other classes using PV-RCNN++.

Table 12: Effects of using different heads on PV-RCNN++. We report mAP using the ONCE
evaluation metric.

Detector Head Choice  Vehicle Pedestrian Cyclist

PV-RCNN++  Center Head 71.61 45.27 61.15
PV-RCNN++ Anchor Head  81.72 43.86 66.17

A.2 Analysis on Pseudo Label Threshold on Different Classes

Fig. 7 shows the precision under different IoU thresholds. The precision can be calculated by
Precision = TP/(FP + TP), where FP and TP denote false positive and true positive, respectively.
We can observe that when IoU thresholds are more than 0.8, 0.7, 0.7 for vehicle, pedestrian and
cyclist, the number of TP instances is significantly more than that of FP instances.
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Table 13: Effects of using MeanTeacher. We report mAP using the ONCE evaluation metric.

Detector MeanTeacher Vehicle Pedestrian Cyclist

CenterPoint X - 46.22 -
CenterPoint v - 56.01 -
PV-RCNN++ X 81.72 - 66.17
PV-RCNN++ v 82.50 - 71.19
Vehicle . Pedestrian . Cyclist
0.8 0.8 0.8
c c c
O 06 O 06 Oos
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Figure 7: The Precision under different IoU thresholds.

The visualization of the pseudo label results under different thresholds in Fig. 8, we can see that
some FP pseudo labels will be annotated when setting low thresholds, while some TP instances can
not be annotated when the thresholds are relatively high. To more intuitively see the impact of the
threshold on pseudo labeling, we use the model to annotate the samples of the ONCE validation set
for comparison with ground-truths.

A.3 Visualization Results of Pseudo Labels

Fig. 9 shows the visualization results of our final pseudo label results.

A.4 Details of Object Re-scaling
In detail, given a bounding box b = (c¢s, ¢y, ¢z, [, w, h, 0;) and point clouds (pf, p?, p;) within it, where

(cz,cy,cz), (I,w, k) and @, denote the center, size and heading angle of the bounding box. We first
transform points into the local coordinate with the following formula:

(pi7p;ﬂ7p?) = (plz - Ciapg - C@hpf - CZ) . Ra

cosf, —sinf, 0 (6)
R = |sinf, cosOp, 0],
0 0 1

where - is matrix multiplication. Then, to derive the scaled object, the point coordinates inside the
box and the bounding box size are scaled to be a(pl, p, p*) and « (I, w, h), where « is the scaling
factor. Finally, the points inside the scaled box are transformed back to the ego-car coordinate system
and shifted to the center (¢, ¢y, c.) as

Di :oz(pi,p;““,pf) 'RT+(CCC7CZ/’CZ)' @

A.5 Taxonomy difference between different datasets

As shown in Tab. 14, there exists a huge taxonomy difference between some fine-tuning datasets and
the pre-training dataset. As a result, some foreground instances may be regarded as background if
only using pseudo label as supervision.
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Figure 8: Visualization results under different pseudo label thresholds. (a-c): annotations with low
thresholds (i.e., 0.6, 0.5, 0.5 for vehicle, pedestrian and cyclist, respectively). (d-f): the thresholds
used in our methods. (g-i): high thresholds (i.e., 0.9, 0.8, 0.8 for vehicle, pedestrian and cyclist,

respectively). The green and red bounding boxes represent ground-truths and detector predictions,
respectively.

(a) (b) (©
(\w z 7 ?::]-f / }f’ ¥
(d (e) ®

Figure 9: Pseudo-labeled annotation results on unlabeled set.

B Detailed Dataset Description and Evaluation Metrics
B.1 Dataset Description

ONCE dataset. ONCE dataset [14] is a large-scale dataset that is built to encourage the exploration
of self-supervised and semi-supervised learning in the autonomous driving scenario. ONCE is
collected by a 40-beam LiDAR in multiple cities in China and contains diverse weather conditions
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Table 14: Taxonomy difference between different datasets.

Dataset classes
ONCE (Pre-train) Car, Truck, Bus, Pedestrian, Cyclist
‘Waymo (Fine-tune) Vehicle, Pedestrian, Cyclist

Car, Truck, Construction vehicle, Bus, Trailer, Barrier, Motorcycle, Bicycle,
Pedestrian, Traffic cone
KITTI (Fine-tune) Car, Pedestrian, Cyclist

nuScenes (Fine-tune)

(e.g., sunny, cloudy, rainy), traffic conditions, time periods (e.g., morning, noon, afternoon, night) and
areas (e.g., downtown, suburbs, highway, tunnel, bridge).

Waymo Open Dataset. Waymo Open Dataset [20] is a widely-used large-scale autonomous driving
dataset that is composed of 1000 sequences and divided into a train set with 798 sequences (~150k
samples) and a validation set with 202 sequences (~40k samples). The Waymo dataset is gathered in
the USA by a 64-beam LiDAR and 4 200-beam short-range LiDAR with annotations in full 360°.
We use the 1.0 version of Waymo Open Dataset.

nuScenes Dataset. NuScnenes dataset [ 1] provides point cloud data from 32-beam LiDAR collected
from Singapore and Boston, USA. It consists of 28130 training samples and 6019 validation samples.
The data is obtained during different times in the day, different weather conditions and a diverse set
of locations (e.g., urban, residential, nature and industrial).

KITTI Dataset. KITTI dataset [5] is a common-used autonomous driving dataset that contains
7481 training samples and is divided into a train set with 3712 samples and a validation set with 3769
samples. The point cloud data is collected by a 64-beam LiDAR in Germany. KITTI dataset only
provides the annotations for the objects within the field of view of the front RGB camera.

B.2 [Evaluation Metrics

ONCE evaluation metric. Following ONCE official evaluation metric, we merge the car, bus and
truck class into a super-class (i.e., vehicle). APgoD” is used to evaluate the performance of the ONCE

dataset, which can be obtained by the following formula:
1
APSE =100 / maz{p(r'|r’ > r)}dr, ®
0

where r is recall rates from 0.02 to 1.00 at step 0.02 and p(r) denotes the precision-recall curve.
Mean average precision (mAP) is the average of the scores of the three categories. The Intersection
over Union (IoU) thresholds are set to 0.7, 0.3 and 0.5 for vehicle, pedestrian and cyclist, respectively.

Waymo evaluation metric. Two difficulty levels (i.e., LEVEL 1 and LEVEL 2) are utilized
to evaluate the detection accuracy of Waymo dataset and we mainly focus on more difficult L2
performance. Among each difficulty level, we report AP and APH which can be formulated as:

1 1
AP =100 [ max{p(r’)|r" > r}dr, AP =100 [ max{h(r")|r" > r}dr, )
0 0

where the different between h(r) and p(r) is h(r) is weighted by the accuracy of heading accuracy.

nuScenes evaluation metric. Following the official NuScenes Evaluation Metric, we report mAP
and nuScenes detection score (NDS). AP is defined as matches by thresholding the 2D center distance
d on the ground plane and the mAP can be calculated by:

11
ceC deD

where C is the set of classes and D is the set of thresholds (i.e., {0.5,1,2,4}). We mainly focus on 10
classes. NDS is the weighted of mAP and five true positive metrics, including Average Translation
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Error (ATE), Average Scale Error (ASE), Average Orientation Error (AOE), Average Velocity Error
(AVE) and Average Attribute Error (AAE). The NDS can be formulated as:

1 1
mTP = & > TP, NDS= TglomAP + > (1= min(1,mTP))], (11)
ceC mT PeTP
where TP is the set of true positive metrics.

KITTI evaluation metric. We report mAP with 40 recall positions to evaluate the detection
performance and the 3D IoU thresholds is set to 0.7 for cars and 0.5 for pedestrians and cyclists.

C More Implementation Details

As shown in Tab. 15, we list some details about pre-training and fine-tuning datasets. Note that the
voxel size of nuScenes is set to [0.1, 0.1, 0.2] following [13]. It can be seen that different datasets
may have different dimensions of input features (e.g., ONCE use 4 dimension features as input while
Waymo and nuScenes use 5 dimension features) causing the input dimension of the first layer network
to be different. We simply do not load the parameters of the first layer when this happens while
fine-tuning. In the pre-training phase, we merge the pseudo-labeled data and a small amount of
labeled data (i.e., ONCE train set) as the pre-training dataset. In the fine-tuning phase, we fine-tune
30 epochs for Waymo, 20 epochs for nuScenes and 80 epochs for KITTI.

Table 15: Some implementation details about pre-training and fine-tuning datasets.

Dataset Point cloud range voxel size input features

ONCE (Pre-train) [-75.2,-75.2,-5.0,75.2,75.2, 3.0] [0.1, 0.1, 0.2] [X, Y, z, intensity]
Waymo (Fine-tune) [-75.2,-75.2,-2.0,75.2,75.2,4.0] [0.1,0.1,0.15] [x,y, z, intensity, elongation]
nuScenes (Fine-tune) [-51.2,-51.2,-5.0,51.2,51.2, 3.0] [0.1, 0.1, 0.2] [X, v, z, intensity, timestamp]

KITTI (Fine-tune) [0.0, -40.0, -3.0, 70.4, 40.0, 1.0] [0.05, 0.05, 0.1] [x, y, z, intensity]

D More Experimental Results

D.1 Ablation Studies on Unknown-aware Instance Learning Head

In this part, we conduct experiments to ablate the hyper-parameters in unknown-aware instance
learning head (i.e., the number M of selected features and the distance threshold 7).

Tab. 16 shows the results using different numbers of selected features in unknown-aware instance
learning head when pre-training. When M is small, some foreground instances with relatively
low scores are ignored, while when M is large, the matched background regions are increased.
Considering these factors, we choose M to be 256.

Tab. 17 shows the performance under different distance thresholds in Eq. 4 in the main submission.
The number of matched features is relatively small when using a lower 7, thus can not fully exploit
the unknown foreground instances. When using a larger threshold, some mismatches may occur.
Finally, we set 7 to 0.3 as mentioned in our main submission.

Table 16: Ablation studies of the number M of selected features.
M | Waymo L2 AP/ APH
\ Overall Vehicle Pedestrian Cyclist

128 | 67.71/64.98 67.91/67.45 68.54/61.87 66.67/65.63
256 | 68.33/65.69 68.17/67.70 68.82/62.39 68.00/67.00
512 | 67.93/65.24 68.04/67.36 68.63/62.12 67.14/66.23

D.2 More Results of Pre-training Scalability

In this section, we show more results to verify the pre-training scalability. We pre-train the model on
the small, middle and large splits of the ONCE dataset and then fine-tune the model on 3% Waymo
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Table 17: Ablation studies of the distance threshold 7.
- | Waymo L2 AP/APH
|  Overall Vehicle Pedestrian Cyclist

0.1 | 67.90/65.22 68.01/67.54 68.52/62.01 67.17/66.12
0.3 | 68.33/65.69 68.17/67.70 68.82/62.39 68.00/67.00
0.5 | 67.82/65.15 67.73/67.26 68.26/61.73 67.49/66.46

and 20% KITTI train data. As shown in Tab. 18, as the scale of the pre-training dataset and the
diversity of scenarios increases, the performance of fine-tuning on the downstream dataset will also
improve.

Table 18: The pre-training scalability. We use ONCE to pre-train and Waymo and KITTI to fine-tune.

L | Waymo L2 AP/APH KITTI Moderate mAP
Pre-training dataset
Overall |  Vehicle Pedestrian Cyclist | Overall | Car  Pedestrian ~Cyclist
ONCE (~100k) 68.33/65.69 | 68.17/67.70 68.82/62.39 68.00/67.00 | 69.43 | 82.75 57.59 67.96
ONCE (~500k) 69.04/66.52 | 68.69/68.23 69.81/63.74 68.61/67.60 | 71.36 | 83.17 58.14 72.78
ONCE (~1M) 69.63/67.08 | 69.03/68.57 70.54/64.34 69.33/68.33 | 72.37 | 83.47 59.84 73.81
D.3 Results of fine-tuning on ONCE.
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Figure 10: Visualization of fine-tuning results. We visualize the results of three downstream datasets.
(a-c): results of Waymo. (d-f): results of nuScenes. (g-i): results of KITTL
The green and red bounding boxes represent ground-truths and detector predictions, respectively.

In our main submission, we report the fine-tuning performance on multiple datasets which are
different from the pre-training dataset. Here, we show some fine-tuning performance on ONCE. As
shown in Tab. 19, the performance can be largely improved when the baseline detectors are initialized
by AD-PT. For example, when using SECOND as the baseline detector, the overall performance can
be improved from 56.47% to 64.10% (+7.63%). We use the ONCE train set to fine-tune the model.
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Table 19: The fine-tuning performance on ONCE validation set.
‘ SECOND CenterPoint
| Overall 0-30m 30-50m >50m | Overall 0-30m 30-50m >50m

Random Initialization | 56.47  65.94  51.05 3644 | 6494 7452 5947 4428
AD-PT Initialization 6410 7434 57.69 4123 | 67.73 7648  61.85  46.29

Init.

D.4 Visualization Results.

Fig. 10 shows the visualization results of three downstream datasets (i.e., Waymo, nuScenes, KITTTI).
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