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ABSTRACT

In the fields of computational mathematics and artificial intelligence, the need for precise
data modeling is crucial, especially for predictive machine learning tasks. This paper ex-
plores further XNet, a novel algorithm that employs the complex-valued Cauchy integral
formula, offering a superior network architecture that surpasses traditional Multi-Layer
Perceptrons (MLPs) and Kolmogorov-Arnold Networks (KANs). XNet significant im-
proves speed and accuracy across various tasks in both low and high-dimensional spaces,
redefining the scope of data-driven model development and providing substantial im-
provements over established time series models like LSTMs.

1 INTRODUCTION

We initially proposed a novel method for constructing real networks from the complex domain using the
Cauchy integral formula in Li et al. (2024); Zhang et al. (2024), utilizing Cauchy kernels as basis functions.
This work comprehensively compares these networks with KANs, which use B-spline as basis functions in
Liu et al. (2024), and MLPs to highlight our significant improvements.

Multi-layer perceptrons (MLPs) (Haykin (1994); Cybenko (1989); Hornik et al. (1989)), recognized as
fundamental building blocks in deep learning, have their limitations despite their wide use, particularly in
its accuracy, and large number of parameters needed in structures such as in transformers (Vaswani et al.
(2017)), and lack interpretability without post-analysis tools (Cunningham et al. (2023)). The Kolmogorov-
Arnold Networks (KANs) were introduced as a potential alternative, drawing on the Kolmogorov-Arnold
representation theorem (Kolmogorov (1956); Braun & Griebel (2009)), and demonstrate their efficiency
and accuracy in computational tasks, especially in solving PDEs and function approximation (Sprecher
& Draghici (2002); Köppen (2002); Lin & Unbehauen (1993); Lai & Shen (2021); Leni et al. (2013);
Fakhoury et al. (2022)).

In the swiftly advancing domain of deep learning, the continuous search for novel neural network designs
that deliver superior accuracy and efficiency is pivotal. While traditional activation functions such as the
Rectified Linear Unit (ReLU) (Nair & Hinton (2010)) have been widely adopted due to their straightfor-
wardness and efficacy in diverse applications, their shortcomings become evident as the complexity of
challenges escalates. This is particularly true in areas that demand meticulous data fitting and the solutions
of intricate partial differential equations (PDEs). These limitations have paved the way for architectures
that merge neural network techniques with PDEs, significantly enhancing function approximation capabil-
ities in high-dimensional settings (Sirignano & Spiliopoulos (2018); Raissi et al. (2019); Jin et al. (2021);
Wu et al. (2024); Zhao et al. (2023)).

Time series forecasting is critical in various sectors including finance, healthcare, and environmental sci-
ence. While LSTM models are well-regarded for their ability to capture temporal dependencies (Yu et al.
(2019); Zhao et al. (2017)), KAN models have also shown promise in managing time series predictions
(Hochreiter & Schmidhuber (1997); Staudemeyer & Morris (2019); Xu et al. (2024)). Our study com-
pares these models, providing insights into their applications and theoretical foundations. We also examine
the performance of transformers and our novel XNet model in time series forecasting in the appendix,
highlighting their capabilities in managing sequential data (Vaswani et al. (2017); Wen et al. (2023)).

Inspired by the mathematical precision of the Cauchy integral theorem, Li et al. (2024) introduced the
XNet architecture, a novel neural network model that incorporates a uniquely designed Cauchy activation
function. This function is mathematically expressed as:
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ϕa(x) =
λ1 ∗ x

x2 + d2
+

λ2

x2 + d2
,

where λ1, λ2, and d are parameters optimized during training. This design is not only a theoretical ad-
vancement but also empirical advantageous, offering a promising alternative to traditional models for many
applications. By integrating Cauchy activation functions, XNet demonstrates superior performance in func-
tion approximation tasks and in solving low-dimensional PDEs compared to its contemporaries, namely
Multilayer Perceptrons (MLPs) and Kolmogorov-Arnold Networks (KANs). This paper will systematically
compare these architectures, highlighting XNet’s advantages in terms of accuracy, convergence speed, and
computational demands.

Furthermore, empirical evaluations reveal that the Cauchy activation function possesses a localized re-
sponse with decay at both ends, significantly benefiting the approximation of localized data segments. This
capability allows XNet to fine-tune responses to specific data characteristics, a critical advantage over the
globally responding functions like ReLU.

The implications of this research are significant. It has been demonstrated that the XNet can serve as
an effective foundation for general AI applications, our findings in this paper indicate that it can even
outperform meticulously designed networks tailored for specific purposes.

Principal Contributions

Our study elucidates several critical advancements in the domain of neural network architectures and their
applications:

(i) Enhanced Function Approximation Capabilities: We conduct a comparative analysis between XNet
and KAN within the context of function approximation, demonstratting the superior performance of
XNet, particularly in handling the Heaviside step function and complex high-dimensional scenarios.
Detailed examinations are presented in Sections 3.1 through 3.3, showcasing empirical validations
that underscore XNet’s robust adaptability across varying dimensions.

(ii) Superiority in Physics-Informed Neural Networks: Utilizing the Poisson equation as a benchmark, we
demonstrate XNet’s enhanced efficacy within the Physics-Informed Neural Network (PINN) frame-
work. Our results indicate that XNet significantly outstrips the performance metrics of both Multi-
Layer Perceptron (MLP) and KAN, as detailed in Section 3.5. This investigation not only highlights
XNet’s prowess but also sets a new benchmark for subsequent applications in the field.

(iii) Innovation in Time Series Forecasting–By innovatively substituting the conventional feedforward
neural network (FNN) with XNet in the LSTM architecture, we introduce the XLSTM model. In
a series of time series forecasting experiments, XLSTM consistently surpasses traditional LSTM
models in accuracy and reliability, establishing a new frontier in predictive analytics.

We summarize our results with a representative graph (fig 1), which compares the performance of various
models in solving partial differential equations (PDEs). The parameterization of Kolmogorov-Arnold Net-
works (KANs) is fundamentally different from that of Multi-layer Perceptrons (MLPs); thus, even though
KANs sometimes require fewer parameters and fewer training iterations, the training time can be substan-
tially longer. In the context of solving PDEs, XNets with 200 basis functions typically operate at a pace
that is 3-4 times slower than Physics-Informed Neural Networks (PINNs), 2 times faster than KANs, yet
they achieve significantly higher precision-10000 times more precise than PINNs, to be exact.

2 EXPERIMENTAL SETUP

Our research is designed to rigorously evaluate the capabilities of KAN and XNet across three fundamental
domains: function approximation, solving partial differential equations (PDEs), and time series prediction.
This structured evaluation allows us to systematically assess the performance and applicability of each
model in varied computational tasks.

Function Approximation: We divide the function approximation experiments based on the dimensionality
and complexity of the functions:

• Low-Dimensional Functions: Both irregular and regular functions are tested to evaluate the
models’ ability to handle variations in functional behavior and data distribution irregularities.

2



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Figure 1: Comparing the MSE and training time for: PINN, XNet(20), KAN, and XNet(200). The MSE
values are displayed on a logarithmic scale to better visualize the differences among the models.

• High-Dimensional Functions: Smooth functions that simulate complex real-world phenomena
are used to examine the models’ generalization in higher-dimensional spaces.

Evaluation metrics for accuracy, computational efficiency, and convergence are applied to each functional
type.

Table 1: Low-dimensional and High-dimensional Functions Examples

Several Types of Functions and Their Examples

f(x) =

{

1, x > 0

0, otherwise
f(x, y) = exp(sin(πx) + y2) jpg f(x, y) = xy

High-dimensional Functions

f(x1, x2, x3, x4) = exp

(

1

2

(

sin
(

π(x2
1 + x2

2)
)

+ x3x4

)

)

f(x1, . . . , x100) = exp

(

1

100

100
∑

i=1

sin2
(πxi

2

)

)

Solving Partial Differential Equations: We utilize a series of well-known differential equations from
physics and engineering to test the efficacy of KAN and XNet. These include:

• Both linear and non-linear systems to provide a comprehensive assessment reflective of common
scientific computing scenarios.

We consider the Poisson equation:

∇2v(x, y) = f(x, y), f(x, y) = −2π2 sin(πx) sin(πy),

with the boundary conditions,v(−1, y) = v(1, y) = v(x,−1) = v(x, 1) = 0. The PDE has the explict
solution, v(x, y) = sin(πx)sin(πy), as shown in the figure 2. In the subsection, we aim to compare the
performance of three neural network architectures: PINN, KAN, and XNet.
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Time Series Prediction: The proficiency of the models in capturing temporal dynamics and dependencies
is explored through:

• The use of both synthetic and real-world time series datasets, which range from financial market
data to weather forecasting, focusing on predictive accuracy, response time, and robustness at
various temporal scales.

we also conducted time series forecasting experiments in different scenarios. One scenario is driven by
mathematical and physical models. The example we provide is Apple’s stock close price (adj) from the
U.S. market, with the test period spanning from July 1, 2016 to July 1, 2017, as shown in the figure 3.

Figure 2: Solution of
the Poisson equation

Figure 3: Apple’s stock price:
7/1/2016 - 7/1/2017

Data Sets and Implementation Details: Detailed descriptions of the datasets is provided in Section 3.7.
Additionally, implementation specifics such as hyperparameter settings, training procedures, and compu-
tational resources used are documented to ensure the experiments’ reproducibility and transparency.

3 RESULTS

In Section 3.1, we perform the heaviside function approximation tasks using KAN and XNet. In Section
3.2, we conduct 2D smooth function approximation tasks using KAN and XNet. Section 3.3 evaluates
the approximation of high-dimensional functions. In Section 3.4, we employ PINN, KAN, and XNet to
construct physics-informed machine learning models for solving the 2D Poisson equation. In Section 3.5,
we apply XNet to improve the performance of LSTM across various scenarios, then compare with KAN.

3.1 HEAVISIDE STEP FUNCTION APPRXIAMTION

The experimental comparison between XNet, B-spline, and KAN demonstrates XNet’s superior approxi-
mation ability. Except for the first example, all other examples are from the referenced article, with KAN
settings matching those from the original experiments. This ensures a fair comparison, fully proving that
XNet has stronger approximation capabilities in various benchmarks.

Metric MSE RMSE MAE

XNet with 64 basis functions 8.99e-08 3.00e-04 1.91e-04
[1,1]KAN with 200 grids 5.98e-04 2.45e-02 3.03e-03

Table 2: Performance comparison between XNet and KAN.

As shown in Figure 6 and 7, both B-Spline and KAN exhibit ”overshoot,” leading to local oscillations
at discontinuities. We speculate that this is due to the fact that a portion of KAN’s output is represented
by B-Splines. While adjusting the grid can alleviate this phenomenon, it introduces complexity in tuning
parameters (see Table 12 in appendix A.1). In contrast, XNet demonstrates superior performance, providing
smooth transitions at discontinuities. Notably, in terms of fitting accuracy in these regions, XNet’s MSE is
1,000-fold times smaller than that of KAN.
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Figure 4: XNet approximation, with 64 basis
functions

Figure 5: [1,1] KAN approximation, with k=3,
grid =200

Figure 6: B-Spline comparision, with k=3 Figure 7: [1,1] KAN comparision, with k=3

3.2 FUNCTION APPROXIMATION WITH exp(sin(πx) + y2) AND xy

The function used is f(x, y) = exp(sin(πx)+ y2). Following the procedure described in the article, 1,000
points were used for training and another 1,000 points for testing. After sufficient training, the model’s
predictions were evaluated on a 100 × 100 grid. The KAN structure consists of a two hidden layer with
configuration [2, 1, 1], We compare its computational efficiency with the XNet model using two examples:
exp(sin(πx) + y2) and xy .

Following the official model configurations, XNet with 5,000 basis functions is trained with adam, while
KAN is initialized to have G = 3, trained with LBFGS, with increasing number of grid points every 200
steps to cover G = 3, 5, 10, 20, 50. Overall, both networks performed similarly on these two-dimensional
examples (see Table 3 and 4). However, XNet produced a more uniform fit, with no significant local
oscillations (see Figure 9). In contrast, KAN exhibited sharp variations in certain regions, consistent with
the behavior observed in the heaviside step function (see Section 3.1).

Figure 8: Difference on exp(sin(πx) + y2) Figure 9: Difference on xy

3.3 APPROXIMATION WITH HIGH-DIMENSIONAL FUNCTIONS

We continue to compare the approximation capabilities of KAN and XNet in solving high-dimensional
functions. Following the procedure described in the article, 8000 points were used for training and another
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Table 3: Comparison of XNet and KAN on exp(sin(πx) + y2).

Metric MSE RMSE MAE Time (s)

XNet (5000) 3.9767e-07 6.3061e-04 4.0538e-04 61.0
KAN[2,1,1] 3.0227e-07 5.4979e-04 1.6344e-04 56.1

Table 4: Comparison of XNet and KAN on xy.

Metric MSE RMSE MAE Time (s)

XNet (5000) 2.1544e-08 1.4678e-04 1.0439e-04 61.8
KAN[2,2,1] 4.9306e-08 2.2205e-04 1.4963e-04 62.4

1000 points for testing. XNet is trained with adam, while KAN is initialized to have G = 3, trained with
LBFGS, with increasing number of grid points every 200 steps to cover G = 3, 5, 10, 20, 50.

First, we consider the four-dimensional function exp
(

1
2

(

sin
(

π(x2
1 + x2

2)
)

+ x3x4

))

. For this case, the
KAN structure is configured as [4,4,2,1], while XNet is equipped with 5,000 basis functions. Under the
same number of iterations, XNet achieves higher accuracy in less time (see Table 5), the MSE is 1,000-fold
smaller than that of KAN.

Table 5: Comparison of XNet and KAN on exp
(

1
2

(

sin
(

π(x2
1 + x2

2)
)

+ x3x4

))

.

Metric MSE RMSE MAE Time (s)

XNet (5,000) 2.3079e-06 1.5192e-03 8.3852e-04 78.18
KAN [4,2,2,1] 2.6151e-03 5.1138e-02 3.6300e-02 143.1

Next, we consider the 100-dimensional function exp( 1
100

∑100

i=1 sin
2(πxi

2
)). For this case, the KAN struc-

ture is configured as [100,1,1], while XNet has 5,000 basis functions. Under the same number of iterations,
XNet achieved higher accuracy in less time compared to KAN (see Table 6).

Table 6: Comparison of XNet and KAN on exp
(

1
100

∑100

i=1 sin
2
(

πxi

2

)

)

.

Metric MSE RMSE MAE Time (s)

XNet (5,000) 6.8492e-04 2.6171e-02 2.0889e-02 158.69
KAN [100,1,1] 6.5868e-03 8.1159e-02 6.4611e-02 556.5

As dimensionality increases, the computational efficiency of KAN decreases significantly, while XNet
shows an advantage in this regard. The approximation accuracy of both networks declines with increasing
dimensions, which we hypothesize is related to the sampling method and the number of samples used.

exp(sin(πx) + y
2) xy exp

(

1

2

(

sin
(

π(x2

1
+ x

2

2
)
)

+ x3x4

))

exp
(

1

100

∑

100

i=1
sin2

(

πxi

2

))

Figure 10: XNet Performance with Number of Parameters

As shown in Figure 10, XNet achieves high accuracy with relatively few network parameters. Moreover,
as the number of parameters increases, XNet can further enhance its accuracy. Given its performance in
function approximation tasks, both in terms of computational efficiency and accuracy, we conclude that
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XNet is a highly efficient neural network with strong approximation capabilities. Building on this, in the
following subsection, we apply PINN, KAN, and XNet to approximate the value function of the Poisson
equation.

3.4 POSSION FUNCTION

We aim to solve a 2D poisson equation ∇2v(x, y) = f(x, y), f(x, y) = −2π2sin(πx)sin(πy), with
boundary condition v(−1, y) = v(1, y) = v(x,−1) = v(x, 1) = 0. The ground truth solution is v(x, y) =
sin(πx)sin(πy). We use the framework of physics-informed neural networks (PINNs) to solve this PDE,
with the loss function given by

losspde = αlossi + lossb := α
1

ni

ni
∑

i=1

|vxx(zi) + vyy(zi)− f(zi)|
2 +

1

nb

nb
∑

i=1

v2 ,

where we use lossito denote the interior loss, discretized and evaluated by a uniform sampling of ni points
zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary loss, discretized and
evaluated by a uniform sampling of nb points on the boundary. α is the hyperparameter balancing the effect
of the two terms.

Figure 11: PINN and KAN Performance

Figure 12: XNet Performance

We compare the KAN, XNet and PINNs using the same hyperparameters ni = 2500, nb = 200, and
α = 0.01. We measured the error in the L2 norm (MSE) and observed that XNet achieved a smaller error,
requiring less computational time, as shown in Figure 13. A width-200 XNet is 50 times more accurate and
2 times faster than a 2-Layer width-10 KAN; a width-20 XNet is 3 times more accurate and 5 times faster
than a 2-Layer width-10 KAN (see Table 7). Therefore we speculate that the XNet might have the potential
of serving as a good neural network representation for model reduction of PDEs. In general, KANs and
PINNs are good at representing different function classes of PDE solutions, which needs detailed future
study to understand their respective boundaries.

Table 7: Comparison of XNet and KAN on the Poisson equation.

Metric MSE RMSE MAE Time (s)

PINN [2,20,20,1] 1.7998e-05 4.2424e-03 2.3300e-03 48.9
XNet (20) 1.8651e-08 1.3657e-04 1.0511e-04 57.2

KAN [2,10,1] 5.7430e-08 2.3965e-04 1.8450e-04 286.3
XNet (200) 1.0937e-09 3.3071e-05 2.1711e-05 154.8
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Figure 13: Comparison of KAN, PINN and XNet approximations on PDE loss.

Figure 14: XNet Performance with Number of Parameters

3.5 XNET ENHANCE THE LSTM

Time prediction tasks can generally be categorized into two types: those driven by mathematical and phys-
ical models, and those that are data-driven. In the former, time prediction can often be formulated as a
function approximation problem, while the latter involves noisy data, cannot be easily described by de-
terministic partial differential equations (PDEs). In this subsection, we introduce the XLSTM algorithm,
which enhances the standard LSTM framework by replacing its feed-forward neural network (FNN) com-
ponent with XNet. Across various examples, XLSTM consistently demonstrates superior predictive perfor-
mance compared to the traditional LSTM. In the following experiments, we will demonstrate that XLSTM
also significantly outperforms the KAN model in noisy time series examples. The KAN implementation
for time series prediction is sourced from this repository: https://github.com/Nixtla/neuralforecast

Example 1: Predicting a Synthetic Time Series

The time series is generated by the following equations:

xi
5 = 0.1 ∗ xi

0x
i
1 + 0.1 ∗ sin(xi

2x
i
3) + sin(xi

4) + µi, i = 1, 2, ..., n

and
xi
0 = xi−1

1 , xi
1 = xi−1

2 , xi
2 = xi−1

3 , xi
4 = xi−1

5 ,

where the initial conditions x0
0, x

0
1, x

0
2, x

0
3, x

0
4 ∼ rand(0, 0.2) are randomly sampled in the range [0, 0.2],

and the noise term µi is sampled from a normal distribution, µi ∼ N(0, noise). This generates a time
series {f i = xi

5}i=1,...,n, with n = 200. In this example, the time series is governed by relatively simple
functions. The task of predicting the sixth data point using the first five data points becomes a high-
dimensional function approximation problem.

Figures [15] and [16] show a comparison of the predictive performance of LSTM and XLSTM on two
scenarios: one with no noise (noise = 0) and one with moderate noise (noise = 0.05). The results indicate
that XLSTM significantly outperforms LSTM in both settings, particularly under non-noisy conditions.
When there is no noise, XLSTM achieves an MSE of 3.4252 × 10−11, which is lower than that of LSTM
(1.5925 × 10−7). Similarly, XLSTM’s RMSE and MAE are drastically lower than LSTM’s, while the
computation time remains comparable. In the presence of moderate noise (noise = 0.05), although XLSTM
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does not show a significant advantage in metrics such as MSE, it is clear from Figure (15) that XLSTM
captures the underlying patterns of the data better than LSTM.

Figure 15: noise=0,0.05

Table 8: Comparison of LSTM and XLSTM on the example1 (noise=0).

Metric MSE RMSE MAE Time (s)

LSTM 1.5925e-07 3.9906e-04 3.9906e-04 9.01
XLSTM 3.4252e-11 5.8525e-06 5.8457e-06 9.42

[5,64,1]KAN 9.8281e-13 9.9137e-07 8.0000e-07 11.63

Table 9: Comparison of LSTM and XLSTM on the example1 (noise=0.05).

Metric MSE RMSE MAE Time (s)

LSTM 2.5919e-03 5.0911e-02 3.8814e-02 9.07
XLSTM 2.2080e-03 4.6990e-02 3.7182e-02 9.56

[5,64,1]KAN 4.6537e-03 6.8218e-02 5.3703e-02 11.59

In this example of a mathematical model-driven time series, XLSTM clearly outperforms LSTM, partic-
ularly in noisy and noise-free environments. Given these results, we hypothesize that XLSTM will also
exhibit superior performance in highly noisy, real-world datasets, such as financial time series, where tra-
ditional LSTM models may struggle. The [5,64,1] KAN model, however, shows signs of overfitting, with
excellent performance on the training set but noticeable degradation on the test set.

Example 2: Predicting a Financial Time Series

This is a toy model case with extremely noisy data. Stock price patterns are notoriously unpredictable, and
we do not claim that our simplistic model outperforms others. We included this case merely to demonstrate

the modelÂ’s potential. In this experiment, we focus on Apple’s stock price from the U.S. market, with
the test period spanning from July 1, 2016 to July 1, 2017. The entire set of 252 data points is divided
into two parts: 201 for training and 51 for testing. We consider using LSTM and XLSTM for time series
prediction, where the model uses the first 10 data points and predicts the 11th. After 500 iterations, training
was deemed complete.

As shown in Figure 17, XLSTM aligns more closely with the original data, outperforming LSTM by a
significant margin. In this example, the KAN model continues to exhibit overfitting, making it unsuitable
for direct application to time series prediction with significant noise.

4 SUMMARY AND OUTLOOK

1. XNet vs. KAN for Function Approximation Recently, KAN has gained popularity as a function
approximator. However, our experiments demonstrate that XNet outperforms Kan, particularly when ap-
proximating discontinuous or high-dimensional functions.
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Figure 16: Comparison of the performance of LSTM, XLSTM, and KAN under different noise levels. The
first row shows the results for noise level 0, while the second row corresponds to noise level 0.05.

Figure 17: Comparison of the performance of LSTM, XLSTM, and KAN on Apple’s stock price

Table 10: Comparison of LSTM, XLSTM and KAN on the Financial Time Series.

Metric MSE RMSE MAE Time (s)

LSTM 3.3768E-01 5.8110E-01 4.8787E-01 8.9574
XLSTM 2.3878E-01 4.8865E-01 3.3764E-01 10.1159

[10,64,1]KAN 8.5918e-01 9.2692e-01 5.9108e-01 11.7505

2. XNet in the PINN Framework Within the Physics-Informed Neural Networks (PINN) framework, we
verified that using KAN significantly improves the accuracy of traditional PINNs. Moreover, implementing
XNet further enhances both accuracy and computational efficiency. We hypothesize this is due to XNet’s
superior approximation capabilities.

3. Enhancing LSTM with XNet Given XNet’s ability to capture complex data features, we found that
XNet can enhance LSTM performance by replacing the embedded feed-forward neural network (FNN)
within the LSTM structure.

4. Potential Applications of XNet We believe that XNet can improve the performance of models in other
machine learning domains, including image recognition, image generation, computer vision, and more.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT DETAILS

The numerical experiments presented below were performed in Python using the Tensorflow-CPU proces-
sor on a Dell computer equipped with a 3.00 Gigahertz (GHz) Intel Core i9-13900KF. When detailing grids
ans k for KAN models, we always use values provided by respective authors (Kan).

A.2 A.1 FUNCTION APPROXIMATION

For 1d heaciside function, we set different configurations. The results are shown as follows

Table 11: B-Spline Performance metrics comparison for different G and K values. reference

B-Spline

k, G MSE RMSE MAE

k=50, G=200 5.8477e-01 7.6470e-01 6.1076e-01
k=3, G=10 9.2871e-03 9.6369e-02 4.7923e-02
k=3, G=50 2.3252e-03 4.8221e-02 1.2255e-02

k=10, G=50 1.9881e-03 4.4588e-02 1.0879e-02
k=3, G=200 1.1252e-03 3.3544e-02 4.4737e-03

k=10, G=200 1.1029e-03 3.3210e-02 5.1904e-03

For 2d functions, loss function

for high-dimensional functions, loss functions
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Table 12: KAN reference

[1,1]KAN [1,3,1]KAN

k,G MSE RMSE MAE MSE RMSE MAE

k=3, G=3 2.20E-02 1.48E-01 9.89E-02 3.50E-04 1.87E-02 5.56E-03
k=3, G=10 1.22E-02 1.10E-01 5.91E-02 1.84E-04 1.36E-02 2.54E-03
k=3, G=50 2.44E-03 4.94E-02 1.22E-02 4.28E-05 6.55E-03 2.71E-03
k=3, G=200 5.98E-04 2.45E-02 3.03E-03 3.79E-04 1.95E-02 1.24E-02

Figure 18: Loss on exp(sin(πx) + y2) Figure 19: Loss on xy

exp
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1
2

(
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π(x2
1 + x2

2)
)
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100

∑100

i=1 sin
2(πxi

2
))

Figure 20: Loss on high-dimensional functions

A.3 A.2 TIME SEREIS

In Section 3.5, we present two examples to forecast future unknown data using LSTM and XLSTM. In the
function-driven example (15), the loss functions of LSTM and XLSTM are shown in Figure 21; for the

task of predicting AppleÃ¢ÂCÂ™s stock price, the loss functions of LSTM and XLSTM are illustrated in
Figure 22.

Figure 21: Loss of LSTM and XLSTM on Example 1.

Example 2 loss

A.4 TIME SERIES

There exists two types of time prediction applications. One is driven by mathematical and physical models,
where time prediction can essentially be viewed as a function approximation. The other is data-driven,
where the data often contains significant noise and cannot be easily described by PDEs. In this section, we
introduce the XLSTM algorithm, which replaces the FNN component in the standard LSTM framework
with XNet. In the following examples, XLSTM consistently demonstrates superior predictive performance.
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Figure 22: loss of LSTM and XLSTM on Apple’s stock price

A.5 HIGH-DIMENSIONAL FUNCTION 1

The time series is generated by the following equations:

xi
5 = 0.1 ∗ xi

0 ∗ x
i
1 + 0.5 ∗ sin(xi

2 ∗ x
i
3) + 1 ∗ sin(xi

4), i = 1, 2, ..., n

and
xi
0 = xi−1

1 , xi
1 = xi−1

2 , xi
2 = xi−1

3 , xi
4 = xi−1

5 ,

with
x0
0, x

0
1, x

0
2, x

0
3, x

0
4 ∼ rand(0, 0.2).

This generates the time series {f i = xi
5}i=1,...,n. We consider the data n=200. In this example, the time

series is driven by simple functions. Specifically, when the task is to predict the sixth data point using the
first five, it essentially becomes a high-dimensional function approximation problem.

We first split the data into a training set (80%) and a validation set (20%) and performed predictions using
different models including 2-Layer width-10 FNN, 1-layer width-10 LSTM, width-10 XNet and width-10
XLSTM.

For each training iteration, the first five data points were used as input, and the model predicted the sixth
data point, which was then compared with the target values. After five thousand iterations, the training
process was considered complete. On the test set, we used the first five data points as input to predict the
sixth, sliding through the sequence until all predictions were made. In essence, this can be viewed as a
function-fitting problem.

Figure 23: different models

XLSTM demonstrates stronger predictive capabilities compared to standard LSTM. With the same training
cost, XLSTM improves accuracy by a factor of fifty.

FNN XNet LSTM X-LSTM

MSE (Val) 1.6253E-03 1.0758E-05 1.1187E-04 2.5222E-06

RMSE (Val) 4.0315E-02 3.2800E-03 1.0577E-02 1.5881E-03

MAE (Val) 3.3874E-02 2.7836E-03 9.0519E-03 1.1279E-03

MSE (Train) 3.0175E-02 3.3013E-03 8.2499E-03 1.3336E-03

Time(s) 6 6 12 12

Next, we apply XLSTM to stock price prediction and power consumption forecasting, where it again
demonstrates stronger predictive capabilities compared to LSTM.
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Figure 24: loss

A.6 ELECTRIC POWER

In this experiment, the time series represents electricity consumption in Zone 1 of the United
States, with the test period from 01/01/2017 00:00 to 01/14/2017 21:20. The data is sourced from
https://www.kaggle.com/datasets/fedesoriano/electric-power-consumption. The 2,000 data points are di-
vided into two parts: 1,602 for training and 398 for testing. During training, the model takes the first 10
data points as input and predicts the 11th, comparing it with the target.

Figure 25: electric power

XNet enhanced transformer and lstm model. transformer has little advantage in this case

Figure 26: loss

LSTM XLSTM Transformer XTransformer

MSE (Val) 2.3937E+05 1.1505E+05 3.7482E+05 2.7868E+05

RMSE (Val) 4.8925E+02 3.3920E+02 6.1223E+02 5.2790E+02

MAE (Val) 3.2422E+02 2.6051E+02 4.9423E+02 4.1865E+02

MSE (Train) 3.2729E+02 2.4623E+02 3.8049E+02 3.7939E+02

Time(s) 15 26 127 90

15


	Introduction
	Experimental Setup
	RESULTS
	Heaviside step function apprxiamtion
	Function Approximation with ((x) + y2) and xy 
	Approximation with high-dimensional functions
	Possion function
	XNet enhance the LSTM

	Summary and Outlook
	Appendix
	ADDITIONAL EXPERIMENT DETAILS
	A.1 FUNCTION APPROXIMATION
	A.2 Time sereis
	Time series
	high-dimensional function 1
	electric power


