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ABSTRACT

Federated Learning (FL) enables a group of clients to collaboratively train a model
without sharing individual data, but its performance drops when client data are
heterogeneous. Clustered FL tackles this by grouping similar clients. However,
existing clustered FL approaches rely solely on either data similarity or gradient
similarity; however, this results in an incomplete assessment of client similari-
ties. Prior clustered FL approaches also restrict knowledge and representation
sharing to clients within the same cluster. This prevents cluster models from ben-
efiting from the diverse client population across clusters. To address these limi-
tations, FEDDAG introduces a clustered FL framework, FEDDAG, that employs
a weighted, class-wise similarity metric that integrates both data and gradient in-
formation, providing a more holistic measure of similarity during clustering. In
addition, FEDDAG adopts a dual-encoder architecture for cluster models, com-
prising a primary encoder trained on its own clients’ data and a secondary encoder
refined using gradients from complementary clusters. This enables cross-cluster
feature transfer while preserving cluster-specific specialization. Experiments on
diverse benchmarks and data heterogeneity settings show that FEDDAG consis-
tently outperforms state-of-the-art clustered FL baselines in accuracy.

1 INTRODUCTION

Federated Learning (FL) enables users/clients to collaboratively train a model on their data with-
out sharing it with other clients or a central entity (McMahan et al., 2017). However, diversity in
user behavior results in heterogeneous data distributions, known as non-identically independently
distributed (non-IID) data, across clients. This heterogeneity can lead to slower convergence and
suboptimal accuracy of the global model (Kairouz et al., [2021). More specifically, non-IID data
can arise due to various factors, including class/label skew, feature skew, quantity shift, concept
shift, and concept drift — common types of data heterogeneity. Class/label skew refers to the non-
identical distribution of labels/classes at different clients, e.g., the absence of a label at one client
while the same label is present at other clients (Zhang et al.l [2022). Feature skew occurs when
distributions vary due to different personalization nuances, e.g., an alphabet letter can be written in
different ways (Li et al.,2021). Quantity shift happens when different clients have different amounts
of data (Wang et al., [2021), e.g., an online retailer with millions of transaction records is compared
to a local store with only a few hundred records. Concept shift happens when different clients assign
the same label to fundamentally different data samples due to variations in local data distributions
or labeling criteria (Kang et al., 2024).

Clustered FL handles non-IID data effectively, especially when distinct groups of clients display
substantial variations in their data distributions (Ghosh et al., 2020; /Guo et al.,[2024}|Vahidian et al.,
2023). In clustered FL, clients are grouped into clusters based on their similarities in their data
distributions, and each cluster trains its own model tailored to its specific data. However, despite
their advantages, existing clustered FL approaches suffer from the following limitations:

1. Improper Similarity Method. Cluster FL approaches use either data or gradient alone to com-
pute similarity for clustering. Cluster FL approaches (Sattler et al., [2020; [Long et al.| 2023} |Ghosh
et al.,|2020) that use gradients or loss values to cluster clients can group clients incorrectly due to the
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high dimensionality of data or the presence of various skews in client data (Vahidian et al.| [2023).
Other drawbacks of these approaches include: requiring each client to evaluate multiple global mod-
els every round (Ghosh et al.l [2020; [Licciardi et al., 2025)), delaying cluster formation until many
training iterations, and requiring clients to upload full model updates (Sattler et al., 2020).

On the other hand, the data-based approach, such as PACFL (Vahidian et al.,|2023), only considers
label skew and does not account for skew issues like concept shift. Moreover, PACFL defines inter-
client similarity as the minimum cosine angle between the clients’ feature subspaces. However, by
relying on the smallest angle across the subspaces, PACFL may yield high similarity even when only
a small portion of the clients’ data is similar, while the remaining subspaces are vastly dissimilar.

2. Global Representation Sharing. Existing Clustered FL approaches restrict knowledge sharing
to clients within the same cluster. This prohibits clients across clusters to benefit from low-level
latent representations. One way FedSoft (Ruan & Joe-Wong] [2022) and FedRC (Guo et al., [2024)
address this issue by incorporating multiple cluster models through soft clustering with learnable
cluster importance weights. However, in these approaches, a client’s model becomes a noisy blend
of several cluster models. While this blending may occasionally benefit data that aligns with sev-
eral clusters, the added noise from unrelated clusters may degrade the performance on the client’s
primary dataset, since the model is no longer explicitly optimized for its own data.

3. Limited Consideration of Distribution Skews. Clustered FL techniques (Sattler et al., 2020;
Ghosh et al.}2020; Vahidian et al., [2023} |Licciardi et al., [2025) primarily address label skew. How-
ever, these approaches do not account for concept shift or quantity shift.

4. Predefined Cluster Numbers. Existing clustered FL approaches lack adaptive mechanisms for
automatically adjusting the number of clusters. For example, IFCA (Ghosh et al.l [2020) requires
the optimal number of clusters to be specified in advance. [Sattler et al|(2020) adopts a recursive
strategy to split clusters when gradients converge to a stationary point but cannot merge clusters
when needed, such as upon the arrival of new clients. [Zeng et al.|(2023) supports merging clusters
but not splitting them. [Li et al.| (2024) evaluates candidate clustering using traditional clustering
metrics that do not account for the unique characteristics of FL setting.

These limitations raise the following crucial question:

How can we overcome the above challenges posed by various skews in heterogeneous data
distributions by utilizing both data and gradient information to dynamically cluster clients and
enabling representation sharing among clusters in FL?

Our contribution. This work proposes a novel algorithm, entitled clustered Federated Learning via
global DatA and Gradient integration (FEDDAG). FEDDAG introduces a novel method to compute
similarities among clients and an innovative approach that combines data and gradient information
for improved client grouping. To combine data- and gradient-based similarity to achieve a more
accurate similarity matrix, FEDDAG assigns each client a weight that indicates how much emphasis
to place on data versus gradient information. FEDDAG optimizes these weights using an entropy-
based loss that sharpens the final adjacency matrix. To further improve client similarity estimation,
FEDDAG extends the data-based approach PACFL (Vahidian et al.,2023) by performing class-wise
comparisons rather than comparing entire data subspaces—restricting comparisons to subspaces
corresponding to the same class across clients. This approach yields a more accurate similarity
metric and naturally accounts for concept shift. In addition, FEDDAG assigns weights to the class-
wise similarity values to address quantity shift. FEDDAG also improves upon the existing gradient-
based similarity so that client computes gradients for at most one model per round and transmits
only a compressed gradient.

These above mechanisms improve similarity computation and lead to better client clustering. We
further enhance FEDDAG by employing a dual-encoder architecture to enable effective representa-
tion sharing across clusters. During the training phase, each cluster model consists of: (i) a primary
encoder, optimized using the cluster’s own client data, and (ii) a secondary encoder, designed to
learn complementary features from other clusters. The outputs of the two encoders are concatenated
along the feature dimension, and a classifier is trained on the combined representation. This design
facilitates cross-cluster knowledge transfer while preserving cluster-specific specialization.

Compared to prior works, to our knowledge, FEDDAG is the only work that addresses all four types
of data heterogeneity: label skew, feature skew, concept shift, and quantity shift. FEDDAG accounts
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for concept shift by performing class-wise comparisons when computing similarity between clients’
data. Additionally, FEDDAG introduces an adaptive clustering mechanism that automatically deter-
mines the optimal number of clusters through a novel evaluation metric. Specifically, it generates a
range of candidate clusterings using hierarchical clustering (HC) (Day & Edelsbrunner, [1984) and
evaluates them with a novel federated-aware metric that rewards compact cluster formation while
penalizing over—splitting In summary, the contributions of this paper are as follows:

1. A new clustered FL algorithm, FEDDAG, that combines both data and gradient similarity for
better client clustering and further improves data similarity estimation with a class-wise weighted
method.

2. FEDDAG introduces a novel method for knowledge and representation sharing across clusters
by employing a dual-encoder architecture.

3. This work introduces a novel federated-aware metric to evaluate candidate clusterings and auto-
matically determine the optimal number of clusters.

4. We evaluate FEDDAG under non-IID data, having class skew, feature skew, concept shift, and
quantity shift, and across different degrees of heterogeneity (e.g., high vs. low). Table[I]reports
the accuracy of FEDDAG in comparison to existing clustered FL. methods. Detailed experimen-
tal results are provided in §5]

2 LITERATURE REVIEW

Clustered FL techniques address distribution

shift by grouping clients based on their data dis-  Taple 1: Accuracy (%) of FEDDAG vs. cluster-
tributions. PACFL (Vahidian et al., [2023) clus- ing baselines under non-IID label skew (20%) and

ters clients by analyzing principal angles be-  guantity shift (Dirichlet o/ =1).
tween client data subspaces, but it ignores la-

bel information, making it prone to incorrect [Algorithm |Technique CIFAR-10 | FMNIST
clustering under concept shift. Another line of [PACFL _ |Data (D) 90.45+0.30 | 94.41+0.31

N ErvSTe=T CFL Gradient (G) 72.80+0.66 | 86.97£0.23
work (Ghosh et al.} 202(.)’ L1c01a.rd1 et. al}|2025) IFCA Gradient (G) 89.68+0.1794.03£0.09
uses loss values on gradients to iteratively clus-  [FgpDAG [D + G + Global Feature|94.5310.12 | 96.8240.18
ter clients each training round. Other meth- | (Ours) Sharing

ods group clients via gradient similarity (Duan

et al.,|[2021a; Sattler et al., 2020), while soft clustering enables clients to join multiple clusters (Ruan
& Joe-Wongl [2022; |Guo et al.,[2024). A recent approach Zhang et al.|(2024) develops adaptive clus-
tering based on cosine similarity between dimensionally-reduced models. Additional methods, such
as |[Long et al.| (2023); [Marfoq et al.| (2021); [Wu et al.| (2023), rely on maximizing log-likelihood
functions or modeling joint distributions. Compared to these, FEDDAG combines data and gradi-
ent information for better clustering and enables cross-cluster knowledge transfer while preserving
cluster-specific specialization.

3 FEDDAG ALGORITHM

FEDDAG, a framework for clustered FL, can be formulated as an empirical risk minimization
(ERM) problem over N clients, each holding a local dataset D;=(X;,Y;), where X, and Y; de-
note the input samples and labels, respectively. The data can be non-iid and may exhibit various
skews (as discussed in §I). The server partitions the clients into Z clusters Cy,...,Cz. The ob-
jective is to minimize the local loss £(Y;, F,(;)(X;)) for each client i€ NV, where z(i) is the cluster
assignment determined by FEDDAG. Simplified FEDDAG cluster-level model is defined as:

F.() = y(¢(-01); ©%) (1
Here, ¢ is the feature encoder and 1 is the classifier head. FEDDAG also supports a more expressive

dual-encoder architecture, where the outputs of two encoders are jointly processed by the classifier
head, as represented below:

F.() = (oW (5 01), 6@ (;02) ; 67) 2)

lOver—splitting is a common issue in HC for FL that can violate key principles of FL by producing degenerate clusters with very few
clients (Licciardi et al.||2025).
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We describe FEDDAG (see Algorithm[T)) in two parts. First, we introduce the weighted class-wise
approach (Algorithm [2]in Appendix[A.3)) for computing data similarity among clients and combine
both data and gradient information to improve clustering (Algorithm [3] in Appendix [A.3). The
improved clustering can be directly used for traditional clustered FL, resulting in higher accuracy
(see §5). We then further enhance FEDDAG with a dual-encoder mechanism (described in §4) that
enables inter-cluster representation sharing during FL training, which further increases FEDDAG’s
performance. An illustration of FEDDAG is shown in Figure2)in Appendix[A.3] and its components
are described below.

3.1 GRADIENT-BASED SIMILARITY

High-level idea. FEDDAG introduces a lightweight method for computing gradient similarity. Prior
approaches such as|Sattler et al.|(2020) and |[Kim et al.|(2024b) periodically send gradient updates to
the server to measure client similarity. In contrast, our approach has each client first train locally on
its own data (without federation) for a few rounds to partially converge the gradients. We observed
that two such rounds (10 local steps each) are sufficient to achieve partial convergence, making
inter-client similarity more distinguishable (see experiments on Local Steps (t,) in Appendix §B.2).
To further reduce communication, FEDDAG transmits a k-sparse version of the gradients (retaining
only k coordinates) to the server for similarity computation (Wangni et al., 2018)).

Details of the method. Each client i € N is initialized with random parameters 69 and performs
local training (without federation) on D; for ¢, = 2 rounds (see Appendix @ to obtain a gradient
update A’. The update is k-sparsified—retaining only a small random subset of entries (typically
1-2%) (Wangni et al., [2018). The sparsified update A is then sent to the server, which constructs a
pairwise similarity matrix. The similarity G; ; between clients  and j is computed as:

_ AN 180 o
G = cos 1(%) X —, Vi,j € N. 3)
’ A& T

3.2 WEIGHTED CLASS-WISE DATA-BASED SIMILARITY

High-level idea. Our goal is to construct a data-based similarity matrix that will be fused with the
gradient matrix for clustering. Unlike the existing data-based approach, PACFL (Vahidian et al.,
2023)), which compares the entire data subspaces of two clients, we measure similarity in a class-
wise manner and assign weights to the class-level similarities to compute the final client similarity.

Details of the method. Let C' be the total number of classes, and D; . the data of client i € N for
class ¢ € C. Each client applies truncated SVD (Klema & Laub), [1980) on the transpose of D; . to
compute p principal vectors per class, denoted U! = [uy, ..., u,]. These vectors are then sent to
the server to compute the data similarity matrixE] For each class c, the server computes the principal
angle (Jain et al.||2013) between U and U/, indicating the similarity between clients ¢ and j as:

-
. _ v X ..
Vije= min cos”' (7' | ) , Vi,j €N. )
vEU}:,xGUﬁ HVH : HXH
If class c is present in only one of the clients, V'; ; . = 90°; if in neither, V'; ;. = 0°. Next,

the server assigns weights W; ; . to each class-wise similarity V', ; . to reflect class frequency dif-
ferences (i.e., quantity skew) between clients ¢ and j. This weighting scheme ensures that larger
differences in class frequency lead to higher dissimilarity values. The weights are computed as:

i~ max(in(Dicl + 0. (|Dye| + ) -
7 min(In(|Dic| + €),1n(|Dj c| + €))

then min—-max normalized to a bounded range [1—d, 1+4], where § > 0 controls the server’s toler-

ance to frequency imbalance. The final similarity between clients ¢ and j is:

C
1 ’ / / .
Vi’j = @ E y i,j,¢ w i,j,¢s w ij,¢ <+ normalized Wi,j,c. (6)
c=1

2In FEDDAG, clients share a small set of principal vectors and class frequency information with the server to compute similarity. These
principal vectors are not actual client data, but a linear combination of them. Moreover, the number of principal vectors shared with the server
is less than 1% of the size of the dataset for each class per client. This approach aligns with prior works, such as PACFL(Vahidian et al.|[2023).
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Algorithm 1: FEDDAG Algorithm

Input: Number of clients IV, sampling rate R € (0, 1], C classes

Output: Updated global model parameters

Initialize client i € N with random 67

for each roundt = 0,1, ... do

m <+ max(R-N,1) // Sampling rate

Sm  {i1,...,4m} // Set of m sampled clients

for each client i € N in parallel do

ift <tg4 then

Local training of 6? with client ¢ local data (no federation)

ift = t, then
Client % sends sparsified local model update A to server
Client ¢ performs SVD and extracts principal vectors U, V¢ € C and sends to server

Server forms A <— ProximityMatrix (U*, A¥) (Algorithm// Adjacency matrix

Server computes optimal Clustering {C1,...,Cz} < OptimalClustering(A, Sa)
(Algorithm// Find best clustering

Server computes the CC-Graph H as per Eq.

Server initiates (-—)Lf as in Eq. and @Ef and ©f randomly // cluster encoder initialization

else

Server sends {@i(fi), @2{”, ©%(;} and @f(f:) = 2 iiH(, () =1 @? to client 4

Client % sets (91.1f, 07) + (@i(fw » ©%(i)) and trains them via SGD as in Eq.[15|// primary training phase
!’ ’
Client 7 sets Off “— @i{i) and updates via SGD as in Eq.|18|// Secondary training phase

s 1f pge 2f!
Client 7 broadcasts (6;”, 07) and ;7 to server
ift > t, then
// Executed after clusters are formed t > t4
for each cluster z = 1 to Z do
Update ©1f and ©%,asin Eq.

2f :

Update learner cluster ej:H(j,z)=1’ as in Eq.

3.3 COMBINING DATA & GRADIENT — ALGORITHM 2]

High-level idea. After constructing the data and gradient similarity matrices, FEDDAG applies
min-max normalization and then combines them into a single proximity matrix, which serves as the
adjacency matrix for clustering.

Details of the method. Given the normalized ]A)l ; and C;Z j» FEDDAG learns a weight vector w =
(w1, ...,wy) " € [0,1]Y, where each w; is assigned to client i to control the relative importance
of gradient versus data similarity. FEDDAG then fuses the normalized matrices to construct the
proximity matrix as follows:

Ay =w; Gij + (1- wi)f/i,j, 1<i<j<N, Aji=A; @)
FEDDAG optimizes w by minimizing the entropy loss:

LR ~
Lo == 323 Auy log Ay, iy =

N A; 1
i=1 j=1 Dop—p €

where ./L ; is the row-wise softmax normalization of A; ;. In Eq.|8] the loss L, sharpens each row of
the fused matrix .A; ;, encouraging each client to retain only its strongest neighbors (Ghasedi Dizaji
et al., 2017). This, in turn, guides w to favor the view (i.e., data or gradient) that leads to a more
clusterable affinity structure. FEDDAG learns the weight vector w using a lightweight multi-layer
perceptron (MLP) (Almeida) [2020) trained via gradient descent to minimize the entropy loss Lep.
Finally, FEDDAG constructs the proximity matrix using the learned w as shown in Eq.

‘Ai,]‘

(®)

3.4 OPTIMAL CLUSTERING — ALGORITHM [3]

High-level idea. FEDDAG introduces an adaptive clustering mechanism that automatically identi-
fies the optimal number of clusters. This mechanism incorporates a novel federated-aware metric to
evaluate clustering quality.

Details of the method. Given the proximity matrix 4; ;, the server applies agglomerative hierar-
chical clustering (HC). In HC, the clustering threshold o. € (0, 1] controls merges: clusters with
pairwise distances below « are merged. Smaller « yields more clusters; larger o merges more
broadly. The server iterates over different o values to generate candidate clusterings {Cy,...,Cz},
each with a distinct number of clusters Z. Each clustering is evaluated using two metrics. Compact-
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Table 2: Exp 1: Performance comparison for Data Distribution I with a high degree of quantity shift
(Dirichlet o = 0.25)

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100
FedAvg 42.02+1.17 53.114+£031 69.79+051 47.16 091 | 5424 £0.08 72.86+040 64.15+0.64 50.99+1.35
FedProx 4398 +£0.17 53.61 £020 74.75+027 50.56+0.70 | 54.99 +£0.20 68.22+0.16 64.80+0.25 48.66+ 0.80
PerFedAvg | 81.09 +0.35 86.51+0.19 89.20+0.05 65594+0.02 | 7745+0.24 89.77+0.15 88.23+0.31 57.38+0.10
FedSoft 76.44 £0.18 8458 £0.14 83.75+£0.33 62.54+£041 | 7248 +£0.17 85.15+0.17 8243 +040 55244043
PACFL 86.93+£040 91.90+047 89.88+0.25 66.11 +0.29 | 84.66 £0.29 91.96+£0.25 9048 £0.23 5830+ 0.56
CFL 68.67£0.76 81.90+£0.10 79.83£0.38 5738+£095 | 67.57£0.69 80.64 021 7521+£0.09 49.63+1.29
CFL-GP 8525+0.17 89.13+0.35 87.83+0.22 67.89+0.20 | 8398 £0.28 91.14+0.14 90.01 £0.11 59.71 £0.76
FedGWC | 8597 +0.13 91.024+0.17 89.35+0.10 69.19+0.48 | 83.58 +£0.21 9145+0.12 88.94+0.15 56.52+0.40
FedRC 7512 +£0.28 8832+0.23 88.05+0.30 63.25+0.37 | 7648 £0.37 88.12+0.25 8578 +£0.38 54.32+0.33
IFCA 86.64 £0.13 90.93+£0.17 89.51+£0.10 69.08+0.48 | 83.45+0.37 91.50+£0.11 8881 +£0.09 56.33+0.40
FEDDAG" | 88.67 £0.18 92.75+0.22 91.87£0.26 7037 £0.33 | 86.95+0.21 92.18 £0.15 90.97 +£0.13 60.84 £ 0.65
FEDDAG 90.76 +0.12 93.82 +0.20 93.91 +0.23 72.84 +0.30 | 89.87 = 0.19 92.72 +0.13 92.65 +0.11 63.21 & 0.60

ness loss £ promotes tight clusters, while degeneracy penalty £y discourages small clusters:

Z A =
1 1 max{0, C — vyoc — |C,
L1 = § : |C. 2 E Ai s Lo = 7 E exp( { noe | |}> )
z=1 z=1

2 T
1,j€C,

where C = N/Z and o¢ denote the mean and standard deviation of cluster sizes. A cluster C, is
penalized if size |C,| < C — yo¢, with 7 > 0 controlling sharpness. The total loss is

Licy,...czy = L1+ ALa, (10

where A > 0 balances the two terms. Lower £, (tighter clusters) and L (less over-splitting) indicate
better partitions. FEDDAG selects the clustering with the lowest loss and relatively few clusters.

4 GLOBAL REPRESENTATION SHARING (GRYS)

High-level idea. In the previous section, we have combined data and gradient information to im-
prove clustering. This section introduces global representation sharing across clusters during the
training phase via a dual-encoder mechanism to further enhance FEDDAG’s ability to learn comple-
mentary representations. The process for determining which clusters should complement each other
and how training is carried out is described below:

Building Cluster Complementarity Graph (CC-Graph). We first determine which clusters can
supply the class representation that others lack. Intuitively, a cluster has a demand for a class if that
class is underrepresented among its clients, and a supply if the class is well represented. For class
¢ € C we compute the demand of a requesting cluster C,, and the supply of a source cluster C:

1
dp,c = Z (mz - 7”i,c)y Sq,c = @ Z (Ti,c + 1)» (1n)

i€Cyp 1€Cq
where m; is the number of distinct classes on client ¢ and r; . € {0, ..., m; — 1} is the rarity rank of
class c on that client (0 = rarest). Combining demand and supply yields the complementarity score
between clusters p and g:
Hp,q = Z dp,cSqe, Hpp=—00 12)
ceC

Top-k values per row are retained to construct the adjacency matrix H € {0,1}#*#, where an edge
p— q indicates that cluster C, receives representation from C,.

Training using dual encoders. For each client ¢ € C,, the prediction model can be described as:
F.(X) = o (60 (X501, 0 (X;;02) ; ©) (13)

FEDDAG optimizes the parameters {O1f 02/ ©¢}Z | to minimize the weighted empirical loss
across N clients. This is achieved through parallel training phases of the primary and secondary
encoders. During the primary phase for each cluster, the primary encoder ©1/ and the classifier ©¢
are optimized using data from clients « € C,, enabling the model to learn its own cluster-specific
features. In the secondary phase, clusters requesting knowledge from C, first aggregate their sec-
ondary encoders 02/ and transmit the aggregated encoder to C,. The source cluster C, then trains
the received encoder on its local data and returns the resulting gradients to the requesting clusters
for integration. The procedures for both phases and their unified training strategy are detailed below.
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Figure 1: Exp 2: Clustering score vs cluster oz and number of clusters for finding optimal clustering.

(i) Primary encoder training. For each cluster, we optimize ©1f and ©¢ via gradient descent, while
keeping the ©2/ fixed. To approximate this, each client i € C, initializes (6.7,60¢) « (OL, ©¢)

and keeps the secondary encoder ©%7 frozen. The local loss is then defined as:
60}, 09) =LYi 0 (6™ (X501, 61 (X302, 65)) (14)
Using the client loss defined in Eq. each client performs SGD training to update (921 / ,09) as:

(ezlfvezc) — (azlfvezc) - nv(gilf’gﬁ el(ezlf7ezc)7 Vi € Cz (15)

FEDDAG aggregates the updates (/)7 — ©1/) and (65 — ©¢) from client i to update (O1F, ©¢) as:

|D7,| 1f 1f c c ‘D’L| c c
(0 —eY), O+ Y = (0F — e
Zkecz |Dk:|( ) ZGZCZ Zkecz ‘Dk|( ) (16)

(ii) Secondary encoder training. For each cluster C,, we optimize the secondary encoders {9? }

of the clusters that seek to learn from C,. First, given the CC-Graph H, we first aggregate the sec-

ondary encoders of all learner clusters into a single combined encoder: ©%f "= > i H(,2)=1 @?f .

el « olf ¢
iec,

Then, each client i € C, initializes its local instance of the secondary encoder as 0? r — 9§f ',
while keeping ©!/ and ©¢ fixed, and then minimizes the following loss:

203 =(Yi, v (60 (X106 (x5 63); 09)) a7
Using this loss, each client performs SGD to update as:
03— 02— Y 0077 (18)

FEDDAG then aggregates the gradients (fo - 0% ') from each client ¢ € C, , and update the
secondary encoder of each learner cluster C; (where H(j, z) = 1) as:

|Di|

B L2 T 19
Zke({:z |Dk| ( i ) ( )

2f 2f
CHESCHESY
i€Cy,

Unifying Primary and Secondary Training. Since the primary and secondary encoder updates are
independent (Eq. |15 , they can be trained in parallel. However, because the primary ©!/ and
secondary ©2/ encoders are intended to capture complementary information, initializing them both
randomly may lead to redundant features. To avoid this, we ensure the primary encoder is partially
converged before joint training starts. Specifically, during gradient-based similarity computation
in §3.1] each client 7 trains a local model to partial convergence. We reuse the resulting feature

extractors 9? ! to initialize the global primary encoder ©'/, thereby avoiding extra training rounds:

Di|
ol = _ Dl 0%, Vvze Z, (20)
pIS SN

FEDDAG structure summary. During the initial rounds, FEDDAG determines the optimal clus-
tering configuration (see Algorithm [T} Lines 1-14). Once the clustering is established, FEDDAG
parallelly executes two phases: a primary training phase and a secondary global feature-sharing
phase (Algorithm[I] Lines 15-23). Additional mechanisms for incorporating new clients and adapt-
ing to distribution shifts without interrupting training are provided in Appendix [A]

5 EXPERIMENTS
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This section experimentally evaluates FED-
DAG, compares it against existing works, and
investigates: (i) FEDDAG accuracy, (ii) Find-
ing optimal clustering, (iii) Ablation studies,

Table 3: Exp 3: Ablation study of cross-cluster rep-
resentation sharing under 20% label skew (Dirichlet
o' = 0.25), comparing FEDDAG, FEDDAG' (dual en-
coder w/o GRS), and FEDDAG™ (single encoder).

(iv) During evaluation, we report two variants A‘gorith“‘; CIFAR-10 | FMNIST | SVHN |CIFAR-100

. * b1 : FEDDAGT |88.7940.20|92.610.31 |91.950.25 | 70.28£0.38
of our method: FEDDAG", which is restricted ¢/ /ny 656710 15(927510.22 |01 87-£0.26| 70,37 40,33
to the approach in §3}—combining data and  FepDAG |90.7620.12(93.82+0.2093.912-0.23| 72.840.30

gradient information to form clusters and then

training a standard clustered FL model (single encoder and classifier) without global representa-
tion sharing—and FEDDAG, which is the full algorithm that additionally incorporates dual-encoder
inter-cluster sharing described in

Baselines. We compare FEDDAG against
SOTA methods: (i) single model FL: Fe-

Table 4: Exp 5: Performance comparison for concept
shift across datasets.

dAvg (McMahan et al., [2017), FedProx (Li Algorithm CIFAR-10 | FMNIST | SVHN
et all [2020), (i) personalized FL method: FedAvg 12.87£0.36|42.6810.49]37.93£0.39
FedSoft 64.34+0.38 | 75.89-£0.15 | 76.3540.40
PerFedAvg (Fallah et al.} [2020), (iii) clustered PACFL 50.82+0.22|78.42-40.35 | 78.8240.12
FL — data-based: PACFL (Vahidian et al., CFL 61.4840.15(82.73£0.23 | 79.1540.36
. : ’ CFL-GP 66.74+0.28 |84.71+0.13|82.38+0.13
2023), (iv) clustered FL — gradient-based: FedGWC 65.9140.19|83.8540.21 | 81.6340.28
IFCA (Ghosh et al., 2020), (CFL) (Sattler et al., FedRC 65.48-£0.33 | 79.87-0.14|77.8640.29
2U20), FedSoft (Ruan & Joe-Wong) 2U22), Fe- - B0, o 1O s 0 7 |s6.05021 83735015
= + . ED . .. .03 . .13 .
dRC (Guo et al.; 2024), FedGWC (Licciardi FEDDAG 69.13-:0.23|88.79+0.19 | 85.06+-0.26

et al.| [2025)), CFL-GP (Kim et al., [2024a)).

Experimental Setup. We consider 100 clients, with 20% randomly selected per round. Unless
stated otherwise, all experiments run for 200 rounds with each selected client performing 10 local
epochs (batch size 10, SGD). The principal vector U! transmitted per class is roughly 1% the size
of |D; .|. For gradient similarity G; ;, each client trains locally for t,=2 rounds. To construct the
CC-Graph, we select the top-k=2 source clusters.

Datasets. We use four popular datasets for the image classification task in FL setting, i.e., CIFAR-
10 (Krizhevsky et al., 2009), FMNIST (Xiao et al.,|2017), SVHN (Netzer et al., 2011), and CIFAR-
100 (Krizhevsky et al.,[2009).

Non-IID Data. We use multiple data distributions to simulate traditional and complex data skews:

e Data Distribution I: This distribution evaluates FEDDAG under combined label skew and quan-
tity shift. To simulate label skew, we randomly select p% of labels and assign them to random
client groups, repeating the process until all clients are assigned—similar to PACFL (Vahidian et al.,
2023). For quantity shift, we allocate samples of the assigned labels using the Dirichlet factor (Ng
et al.,|2011). A real-world example is predictive text input, where users may discuss similar topics,
but word distributions vary due to individual preferences and typing habits.

e Data Distribution II: This distribution evaluates FEDDAG under concept shift. Following prior
work (Jothimurugesan et al., |2023}; |Guo et al.| |2024), we simulate concept shift by modifying the
labels of a subset of clients. For example, label y is changed to (C'—y) or (y+1)%C, where C is the
total number of classes. We perform three such transformations to simulate three distinct concepts.
Similar modifications are applied to the test set.

e Data Distribution III: This distribution evaluates FEDDAG under a different form of label skew.
We adopt the Latent Dirichlet Allocation (LDA) method from [Hsu et al.| (2019); [Yurochkin et al.
(2019), using Dirichlet concentration factors o’ = 0.25 and o’ = 1.0.

Additional experiments (e.g., performance evaluation, communication rounds) on the above
and new distributions, hyperparameter selection and tuning, implementation details, abla-
tion studies are provided in Appendix [B| Algorithm theoretical issues, such as convergence,
complexity, and privacy analysis; distribution and client shifts are discussed in Appendix [A]

Experiments on Data Distribution I

Exp 1: Performance evaluation. We consider class skew p = 20% and 30%, with the Dirichlet
concentration parameter o’ set to I for low and 0.25 for high quantity shift. Table [2|shows the re-
sults for o/ = 0.25, while the results for o’ = 1 are included in Appendix We observe that
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Table 5: Exp 5: Performance comparison under LDA skew (o = 0.25 and o’ = 1.0).

o’ =0.25 a’=1.0
Algorithm CIFAR-10 FMNIST SVHN CIFAR-10 FMNIST SVHN
FedAvg 41.78 + 0.73 47.26 + 0.28 46.13 + 0.48 66.48 £+ 0.21 85.48 £+ 0.36 81.89 + 0.31
FedSoft 73.83 +0.42 83.75 + 0.26 85.67 £ 0.19 71.08 £+ 0.26 87.85 £ 0.31 85.92 +£0.13
PACFL 80.52 £+ 0.15 85.93 +0.12 87.23 +£0.20 73.91 +0.43 93.31 +0.28 92.17 +0.23
CFL 78.94 4+ 0.18 85.18 & 0.17 85.19 £ 0.25 67.46 + 0.12 83.16 £+ 0.26 82.75 £ 0.28
CFL-GP 83.57 £ 0.15 86.43 +0.14 88.04 £+ 0.19 73.84 + 0.28 92.21 +0.23 91.67 &= 0.19
FedRC 81.76 £+ 0.16 85.24 +0.22 87.91 £+ 0.26 70.19 + 0.42 88.27 £+ 0.22 86.29 + 0.42
IFCA 82.27 £ 0.19 87.53 £ 0.21 88.81 £ 0.13 74.43 + 0.32 92.79 4+ 0.33 92.12 £ 0.15
FEDDAG™ 85.03 £ 0.21 89.65 +0.16 91.27 +0.22 75.52 £ 0.27 93.95 +0.20 93.08 +0.18
FEDDAG 87.62 £+ 0.14 91.88 + 0.10 93.17 £+ 0.18 77.84 + 0.23 94.68 + 0.13 94.15 £+ 0.11

single global FL baselines (e.g., FedAvg, FedProx) perform poorly under heterogeneity due to model
drift (Zhao et al., [2018)), while clustered FL. methods yield stronger performance. Both variants of
FEDDAG outperform state-of-the-art baselines—including data-based methods (e.g., PACFL) and
gradient-based methods (e.g., IFCA, FedGWC). The lighter variant, FEDDAG®, achieves strong
performance by combining data and gradient information to yield improved clustering. The full
FEDDAG further enhances accuracy by enabling complementary representation sharing across clus-
ters, allowing them to learn richer feature spaces.

Exp 2: Finding Optimal Cluster Formation. The server iterates over the clustering threshold « in
Agglomerative HC at regular intervals (e.g., 0.05) to generate candidate clusterings. For each, the
clustering loss Lyc, ... .c,} (see §Ef{1is computed. In Figure [l the x-axis shows «; the red curve
indicates loss, and blue bars denote the number of clusters. Unlike traditional metrics (e.g., inertia)
where loss decreases with more clusters, we observe abrupt increases in loss even as the number
of clusters decreases for certain o values. This is due to FEDDAG’s federated-aware clustering
loss penalizing over-splitting into small clusters. The optimal « is selected as the point with low
clustering loss and a relatively small number of clusters (e.g., for Figure[T[b) a* = 0.65).

Exp 3: Ablation Studies. We examine whether accuracy gains from inter-cluster global representa-
tion sharing (GRS) via the dual-encoder architecture (see arise from genuine feature enrichment
or simply from increased model parameters. To isolate this effect, we implement a dual-encoder
variant with GRS disabled: during secondary-encoder training, instead of receiving representations
from other clusters, each client trains its secondary encoder only on its own data and aggregates
within its cluster. We denote this variant FEDDAGT; it is distinct from FEDDAG, which uses a sin-
gle encoder. As shown in Table[3] full FEDDAG (with GRS) achieves the highest accuracy, while
FEDDAGT performs comparably to FEDDAG, confirming that the gains of FEDDAG stem from
cross-cluster representation sharing rather than model size alone.

Experiment on Data Distribution II

Exp 4: Performance under concept shift. Table d compares the performance of SOTA algorithms
and FEDDAG on different datasets under concept shift and shows that FEDDAG achieves higher ac-
curacy than the baselines. This improvement stems from FEDDAG’s class-wise comparison mecha-
nism, which provides more accurate similarity estimation under concept shift than existing methods.

Experiment on Data Distribution III

Exp 5: Performance under varying LDA skew. Table [5]shows accuracy under LDA-based skew
with @/ = 0.25 and o/ = 1.0. FEDDAG consistently outperforms SOTA methods by leveraging
cross-cluster feature sharing and integrating data and gradient information for clustering, leading to
robust performance under LDA-based partition.

6 CONCLUSION

We develop a novel algorithm, FEDDAG, that addresses the limitations of existing clustered FL
techniques and effectively tackles data heterogeneity challenges in FL by developing a novel method
that combines both data and gradient information to cluster clients more effectively. Furthermore,
FEDDAG utilizes representation sharing across clusters and incorporates an efficient mechanism to
automatically determine the optimal number of clusters. Experiments on various heterogeneous data
distributions demonstrate that FEDDAG outperforms existing approaches in terms of accuracy.
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7 REPRODUCIBILITY STATEMENT

Code for the FEDDAG is included in the supplementary material. Additionally, convergence analy-
sis of FEDDAG is provided in Appendix [A.4]
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A TECHNICAL DISCUSSION AND ANALYSIS

This section presents a detailed discussion and breakdown of FEDDAG, covering key design ele-
ments, communication and privacy considerations, adaptability to new clients and shifting distribu-
tions, and practical implementation details.

A.1 ADDITIONAL RELATED WORK

FL with Heterogeneous Data. Handling data heterogeneity remains a fundamental challenge in
federated learning, as clients often hold non-IID datasets that degrade the performance of standard
aggregation schemes. Personalized FL methods Fallah et al.[(2020); [Liang et al.| (2020); |Smith et al.
(2017);|Arivazhagan et al.[(2019) aim to tailor models to individual clients improving local accuracy
while still benefiting from partial knowledge sharing. Aggregation-based approaches Wang et al.
(2020); [Pillutla et al.| (2022a); [Karimireddy et al.| (2020) modify the server-side model update to
mitigate client drift caused by non-IID data, often using correction terms or robust optimization
techniques. Local—global mixing strategies Jiang et al.| (2024); Mansour et al.| (2020); Deng et al.
(2020) combine local model training with global knowledge transfer, balancing personalization and
collaboration to better handle skewed distributions.

A.2 PRELIMINARIES

Principal Angles Between Two Subspaces. Consider two subspaces, V = span{vy,...,v,} and
X = span{xy,...,X,}, where V and X" are p-dimensional and g-dimensional subspaces of R",
respectively. The sets {v1,...,v,} and {x1,...,X,} are orthonormal, with 1 < p < ¢. A sequence
of p principal angles, 0 < ¢ < Py <--- <P, < %, is defined to measure the similarity between
the subspaces. These angles are calculated as:

T
®(V,X)= min cos! ( [V x] ) 21
Ve I
where || - || is the norm. The smallest of these angles is ®1(v1,x1), with the vectors v; and x; as

the corresponding principal vectors. The principal angle distance serves as a metric to quantify the
separation between subspaces Jain et al.|(2013).

Agglomerative hierarchical clustering (HC). (Day & Edelsbrunner, [1984)) is a popular method in
machine learning for grouping similar objects based on an adjacency (proximity) matrix. We found
HC to be the best fit for FEDDAG. We also experimented with other clustering algorithms, e.g.,
K-means and graph clustering, but we observed that the clustering algorithm does not make much
difference in cluster formation. HC begins by treating each data point as its own cluster. During
each iteration, HC identifies two clusters that are most similar and merges them. The criterion
for selecting which clusters to merge depends on a linkage method; e.g., in single linkage, the
L5 (Euclidean) distance between two clusters is defined as the smallest distance between any pair
of points from the two clusters. As a merging criterion, FEDDAG defines a clustering threshold
a € (0, 1], such that any two clusters with a distance less than « are merged.; e.g., =1 results in
all clients being grouped into a single cluster.

A.3 FEDDAG OVERVIEW & ALGORITHMS
An illustration of the FEDDAG algorithm is shown in Figure The algorithm for class-wise

weighted data-based similarity computation is shown in Algorithm[2] And, the algorithm for com-
bining both data and gradient information to improve clustering is shown in Algorithm 3]

A.4 CONVERGENCE ANALYSIS

Following |Pillutla et al.| (2022b) that works on partial model personalization, we consider the
shared—personalized objective:

. N
rgju‘r/l F(u,V) = ﬁ;Fi(U,Ui)a (22)
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Figure 2: Overview of FEDDAG. Clients compute principal vectors and gradients, which the server
uses to build an adjacency matrix via hierarchical clustering. A cluster complementarity graph then
indicates which clusters can supply features for cross-cluster sharing. Training proceeds in two
phases: (1) the primary encoder and classifier are trained on each cluster’s local data; (2) the sec-
ondary encoder of a requesting cluster is sent to a source cluster, trained with its data, and returned
as gradients for integration.

where u denotes shared parameters and V' = {v; }_; personalized parameters. In our dual-encoder
model (Eq. equation[T3)), for each cluster z we map the secondary encoder as the shared block and
the primary encoder (optionally together with the classifier) as the personalized block:

Uy — @ﬁf (shared: secondary encoder),
V, — (@if ,0¢) (personalized: primary encoder + classifier).

Given a fixed clustering {C,}Z_; (one-shot data and gradient combined similarity; see §3), the
cluster-level empirical risk can be written in the shared—personalized form of |Pillutla et al.| (2022b):

min  F({u.,V.}) = Z Z Pl Fi(u.,V2),

{“zvvz}zZ 1 2=14i€eC, ZkEC |Dk|

Fius, Vo) = £(Yi, 060 (Xi501), 6 (Xi30.);:09) ).

Thus, for each cluster z, [Pillutla et al|(2022b)’s analysis applies to the pair (u, V), and the full
objective is a weighted sum over clusters. So, based on this, we will define notations, assumptions,
and the convergence analysis below:

Block notation and participation model. For each cluster z € {1,..., Z} in the fixed partition
{C.}%_,, we decompose the parameters as
Uy 1= @zf (cluster—global / secondary encoder), (23)
= (0!, 09 (cluster—personal: primary encoder + classifier). (24)
Let m be the total number of clients and m, := |C,| the number of clients in cluster z; define the
cluster weights
z
m,
RS , . = 1. 25
TS AT 25)
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In each communication round, cluster z samples s, clients (without replacement) and runs E local
steps. The average per-round participation fraction is

my

zZ
= m 2 e(0,1), (26)
z=1

Loss and per-client objective. For client i € C, with data D; = (X, Y;), define
Fi(uz, V2) = £(Ye 0 (6D (X 0Y), 62 (Xiiu.):0%) ), 27)

and the cluster-weighted empirical risk
z

F({u, Va32) =3 Y D]

= Filus, V2). (28)
z=1 ieC. Yrec. [Pkl

Assumptions used in the theorem. We state the standard conditions in our block notation; expec-
tations are w.r.t. the algorithm’s sampling and stochasticity.

Assumption A.1 (Smoothness). Each client loss in equation|27|is L-smooth in (u,,V,). For all
(uz; Vz) and (ulza Vz/)’

IV e vy Fi(uz, V) = Vi v Fi(ul, V)| <L [(us, V) = (ul, VD). (29)
Equivalently, F; is L-smooth in each sub-block ©'/, ©2/, and ©¢.

Assumption A.2 (Unbiased stochastic gradients with bounded variance). For any sampled client
1€ C,,

E[Vi.F] = Vo F,  E[|Ve.F = Vo FIP] <o, (30)
E[Vv.F] =Vv.F,  E[[Vv.F = Vv.F|?] <of., (31
where Vv F := (Vgi1 F,Vec I). Define the cluster-weighted variances
z z
G2 = Z’ffz 03’2, 5% = sz 0‘2,&. (32)
z=1 z=1

Assumption A.3  (Gradient diversity / heterogeneity). Ler F,(u,V,) =
ﬁ > icc. |Dil Fi(uz,V,) be the average loss in cluster z. There exist finite constants
keC, 3 z

51211 > 0and 82, > 0 such that

out

Z Z
S |V e =V FIP <2, Y m|[Vv.F - V. F|| <62, (33)
z=1 z=1

and the cross-cluster mismatch (relevant to the sharing step) is bounded by 62,,,.

Assumption A.4 (Stable clustering). The partition {C,}2_, obtained at initialization (t=0) is fixed
for the entire analysis horizont = 1,...,T: no clients are reassigned, and clusters do not split or
merge.

Assumption A.5 (Cross-cluster sharing noise). The cross-cluster representation sharing (via the
CC-Graph) is either deterministic (no additional noise), or it introduces an additive variance
bounded by o in the updates of the u-blocks.

2
share

Initial suboptimality. We denote the initial gap by

Ay = F({ud, VYZL,) - F*, (34)
where F* is the optimal value of equation [2§]
Theorem A.1 (Convergence of FEDDAG (per-cluster globals, dual encoders)). Let the assumptions
above hold. Choose learning rates n = 7/(LE) and nshare = O(1/L), for a constant T depending

on L, the variance terms, heterogeneity, and participation. Then, ignoring absolute constants and
provided clustering is stable,

T zZ m 2 1/2 2 2 1/3
1 1 1 (Aé Usim, ) (A Usim, ) 1
T2 LBV + o BT A < S S o(7),
(33)

z=1
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where the effective variance terms are

VA _ z
2 S, O’Z S,
Js2im,1 = Z (6121'1 Zz::lﬂ-z (]— - mz) + f + Zz::lﬂ—z m, 0\2/’,z + Uszhare> ) (36)
2 1
Cma = 7 (Bt 0w + 0L+ 0% + 0hae) (1 - E)' 37)

Remark 1 (Clustering stability). The bound relies on a fixed partition; oscillations due to re-
clustering invalidate the descent decomposition. In practice, stability is supported empirically by
(i) one-shot blended (data+gradient) clustering at t=0 and (ii) the fact that training is conducted
within the fixed clusters thereafter.

Remark 2 (What differs vs. single-global frameworks). In FEDDAG, we aggregate both the per-
cluster global blocks u1.7 (secondary encoders, coupled via the CC-Graph) and the cluster-personal
blocks Vi.z (primary encoder + classifier). Consequently, a?im’l and crszim2 expose: (i) per-cluster
sampling s, /m, (larger s, improves the first term), (ii) local steps E (fewer local steps reduce the
drift factor 1 — 1/E), and (iii) cross-cluster sharing noise o> (zero for deterministic Laplacian

share
smoothing; small but positive for stochastic distillation). The asymptotic 7~ 1/2 rate is observed
once all devices are seen on average at least once; a convenient sufficient condition (up to constants)

1S

_ Z
1—
T > max{(;)E, 2}, EDILES (38)

O-sirn,l

A.5 COMMUNICATION AND COMPUTATION COMPLEXITY

FEDDAG minimizes communication and computation overhead, aligning with the scalability re-
quirements of federated learning systems. Before dual-encoder joint training begins, each client
locally trains for ¢, rounds without federation (see Algorithm [I). At the end of this phase, each
client uploads: (i) a k-sparse gradient A; of dimension k < |D;|, and (ii) class-wise p principal
vectors U! € R¥" for ¢ = 1,...,C. The number of principal vectors p is kept small (typically
1-2% of the class size). Hence, the combined communication cost of A; and U is negligible rel-
ative to the size of the model parameter space |0|. The computation of principal vectors via SVD

incurs a cost of O(FN?) per client, assuming a local dataset of N samples and F' features with
N>F.

Once the proximity matrix and clustering are finalized, FEDDAG maintains the same per-round
communication cost as FedAvg in terms of transmitting model parameters. However, due to its
dual-encoder architecture, it additionally transmits a secondary encoder (©2/) alongside the primary
encoder (©'/), both of equal size. In each training round, selected clients perform two local SGD
phases:

* Primary phase — standard local update on (6'/, 6°).

« Secondary phase — additional local update on #2/", which has the same size as 6.

If both phases are executed in the same round, the local computation cost is approximately 2x that
of FedAvg. However, the two phases can be alternated, with each running every other round in
settings where computation is constrained. Since updates to the primary and secondary encoders are
independent, the correctness and convergence of the final model are preserved under this alternating
schedule.

A.6 PRIVACY CONSIDERATIONS

Privacy is a foundational aspect of federated learning, which aims to enable collaborative model
training while protecting the sensitive data of individual clients. In the context of FEDDAG, we ex-
amine the privacy implications of both the similarity estimation and representation-sharing phases.
During client clustering, FEDDAG constructs a weighted, class-wise data similarity matrix using
a small set of class-representative principal vectors and per-class sample counts provided by each
client. Crucially, the shared principal vectors are reduced linear combinations of local data and do
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Algorithm 2: Proximity Matrix Computation

Input: Principal vectors U™, sparsified gradients A* for all clients
Output: A, proximity matrix between all client pairs
Function: ProximityMatrix (U™, A")
for clienti = 1,..., N andfor clientj =1,..., N do
forclassc=1,...,C do
Compute V' ;, using Eq. 4|
Compute W'; ;. using Eq.
Compute V; ; using Eq. E and V < normalize(V)
Compute G; ; using Eq.[3{and G <~ normalize(G)

Initialize weight vector w = (w1, ..., wx) " € [0,1]" randomly

while not converged do

Compute entropy loss L, using Eq.

W < W — nVwLey;and w < clip(w,0,1) // MLP-based update
Compute A;_j as in Eq.and return A; ;

Algorithm 3: Clustering Threshold Search in FL

Input: Proximity matrix A ;, threshold set S,
Output: Optimal clustering {C1,...,Cz}
Function OptimalClustering (A, S )
Initialize empty list records
for o € S, do
Generate candidate clustering C* using hierarchical clustering (HC) on A with threshold c
Compute £1 and Lo (Eq.[9) for C*
Total clustering score L (¢ .

gy = L1+ ALz
Save tuple (cv, ﬁ{Cl,-»-,‘Cz}) to records

Select o™ with low score and relatively small Z from records

return Optimal clustering {C1,...,Cz} « ce”

not expose any raw samples or labels. Moreover, each client contributes fewer than 1% of such
vectors per class, ensuring minimal data exposure. This approach aligns with prior privacy-aware
clustering methods [Vahidian et al.| (2023), which also transmit low-dimensional representative vec-
tors to the server. In more privacy-sensitive deployments, additional protection mechanisms can
be integrated into FEDDAG. For instance, secure aggregation protocols (Bonawitz et al., |2017),
encryption techniques, or differential privacy can be used to protect the shared principal vectors.
Additionally, uniform weighting can be employed in place of class-frequency-based weighting of
similarity values to prevent leakage of class distribution information. To further mitigate informa-
tion leakage during gradient-based similarity estimation, FEDDAG can adopt encryption strategies
similar to those proposed in|Sattler et al.|(2020).

During cross-cluster feature sharing (see §4)), when a cluster requests representations from a source
cluster, only the aggregated gradients computed from the source cluster’s clients are shared. No
individual client’s gradient information is exposed at any point.

A.7 GENERALIZATION TO NEWCOMERS — ALGORITHMS [4]

High-level idea. In real-world FL systems, new clients may join after the initial clustering and model
training have already begun. Moreover, clients may not always remain continuously available. To
handle such cases, we extend FEDDAG with a lightweight mechanism that allows new clients to
seamlessly join existing clusters without disrupting ongoing training. Specifically, each new client
computes its data and gradient information, which are used to extend the proximity matrix to include
similarity values for the new client. This updated matrix is then used by the clustering algorithm
to determine the appropriate cluster assignment. Once assigned, the client is integrated into the
designated cluster without re-evaluating the optimal clustering or retraining any previously learned
weights.

Details of the method. The process for integrating a new client inew is similar to that used for initial
clients (as in §E]) FEDDAG first performs local training on 7,y ’s data for ¢, rounds to reach partlal
convergence. Afterwards, client i,., computes its sparsified gradient update A= and class-wise
pr1nc1pal vectors U and sends them to the server. The server updates the ex1st1ng data similarity
matrix V; ; and gradient similarity matrix Gs j to their extended forms V“ew and gnew incorporating
information from the new client. To combine the data and gradient, FEDDAG initially learns a
weight vector w (see §3.3). To integrate the new client, FEDDAG extends this process by assigning
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Algorithm 4: Generalization to Newcomers

Input: New client %y, clustering threshold ™, current clusters {Cy, . .., Cz }, current proximity matrix .A;_;, data matrix V; ;,
gradient matrix G; ;
Output: Updated client i,e,, models
Function NewcomerIntegration (ipew, a™):
Initialize client 4pey With random Gi’new
Set local counter ¢; .., = 0
// Tracks local warm-up rounds
for each global round t do
if t;,,, <ty then
Local training of 010“
t’lncw ~ tlnew + 1
ift;,,,, =ty then
Client i,ey sends Anew gand Uﬁ“ew to server
// —--— Extend proximity matrix ---—

using local data (no federation)

Server extends \A}"EWY and Q"EW j© include the new client
Server initializes unnew € o, 1] and learns it using Eq. I(‘ keepmg existing weights fixed
Server extends proximity matrix .A;"} using Eq. E]( ) wnh V"ew and g“ew

// --- Cluster assignment --—-
Server executes hierarchical clustering with o™ on AEC”]Y o assign inew to cluster C

Client ey Sets 0 6°  from (@

“new ' tnew

= (inew)
c

= Cinew)” ©(inew))

// Aggregate secondary encoders from related clusters (via H)

. . 2f! 2
Client inew Sets Oinj;w “— Zj:H“,z(lncw))zl @].f

else
// —-—— Standard training phase (same as else branch in Algorithm )

Train (9Lnew ;07 ) via SGD using Eq. .
// Primary training

Train O?nfc:v via SGD using Eq.
// Secondary training

Broadcast updated (617 | ¢ sz‘:,) to server

inew’ ~ tnew’ ~ ine

aweight w; ., € [0, 1] and learning it using the same entropy loss (Eq.[8) used during initial training,
but optimizing only for w;,, without modifying ex1st1ng weights. Using the extended weights wnew,

the proximity matrix A} is computed based on erjw, :’CJW, and wj,, , as defined in Eq. Im

Finally, the server reuses the previously selected clustering threshold a* (from Optimal Clustering
in \i and performs a single hierarchical clustering (HC) pass on A‘;Zw to assign ey to a cluster
C.(iney)- After assignment, client i,y initializes its model from the corresponding cluster’s global
parameters and directly joins the existing FEDDAG training flow (i.e., the else branch at line 15 in
Algorithm|[T). This extension enables efficient onboarding of new clients by reusing the established
clustering threshold and global models, avoiding disruption to ongoing training. The complete pro-
cess is summarized in Algorithm[d] Also, we evaluate the generalization capability of FEDDAG to
unseen clients through experiments reported in Appendix

A.8 HANDLING DATA-DISTRIBUTION SHIFT

High-level idea. After FEDDAG has converged, the data of already-clustered clients may still
evolve over time (e.g., new sensor drifts, changes in user behavior). If the local distribution of a
client drifts too far from what its current cluster represents, the global model quality may degrade.
We, therefore, add a mechanism that decides whether a client needs to be re-evaluated for clus-
ter assignment. In addition, to accommodate a growing client population, FEDDAG periodically
re-assesses the clustering to ensure the configuration remains consistent with the evolving client
landscape. Specifically, the Wasserstein distance (Duan et al.l 2021b) is employed to track shifts in
the class distribution of each client’s local data over time; when a significant shift is detected, the
system recomputes that client’s data and gradient representations and re-evaluates its proximity to
other clients using the same similarity fusion mechanism described in §3| This enables re-clustering
of the client without disrupting other participants or restarting global training.

Client re-evaluation. Let ’Pi(t) denote the empirical class histogram of client ¢ at round ¢. Every
0’ rounds, we compute the 1-Wasserstein distanceﬂ between the current and previous histograms as

3For image classification, we treat classes as discrete points on the line 0, ..., C'—1; the 1-Wasserstein
distance then has a closed form based on cumulative histograms.
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Wl(’Pi(t), 7?1.(1"_6,)). Client 7 is marked as shifted if:
0.2 n
LabelSize "’

where n; is the number of new samples processed by client 4 since round t—4’. Eq.[39|flags a shift
when roughly 20% of local data has changed.

wy(PD, P s g = (39)

A shifted client does not immediately trigger global re-clustering. Instead, its cluster assignment is
re-evaluated through a procedure that re-computes data and gradient information for the server (sim-
ilar to generalizing to newcomer clients in . For the next ¢, rounds, the shifted client ¢ trains
its primary encoder and classifier on local data without federation so that the resulting gradients
reflect its own distribution rather than the global model. After local training, the client computes its
gradient update A, applies k-sparsification to obtain A?, re-computes class-wise principal vectors
U from local data, and sends U and A’ to the server. These components update the data similar-
ity matrix )A/l ;» the gradient similarity matrix QAZ j» and the proximity matrix A; ;. The server then
re-evaluates clients’ cluster assignments by performing a single hierarchical-clustering pass on the
updated A; ; using the fixed optimal threshold o* (derived in @ If a reassignment occurs, the
client initializes its model from the corresponding global model and continues training.

Accommodating growing population. To support an expanding set of participants, FEDDAG
periodically re-evaluates the clustering after a specified number of new clients have joined. This
reassessment determines whether the updated client distribution warrants a change in the cluster
structure. Concretely, FEDDAG re-runs the optimal clustering selection procedure by sweeping
over candidate threshold values « (as in §3.4). If a new clustering configuration is chosen, the al-
gorithm updates the necessary components (e.g., the cluster complementarity graph, re-initializes
the global model from client models) and resumes training, ensuring consistency with the evolving
client landscape.

B ADDITIONAL EXPERIMENTS

In this section, we show implementation details, additional experiments regarding hyperparameter
selection and sensitivity, and FEDDAG performance on different data distributions.

B.1 IMPLEMENTATION DETAILS

We now describe the implementation details used in our experiments, including model architectures
and training hyperparameters. For datasets such as CIFAR-10 and SVHN, we adopt a convolutional
neural network (LeCun et al., [2002) composed of three convolutional layers followed by two fully
connected layers. For FMNIST, we use a simpler architecture with two convolutional layers and
a single dense layer. Local training on each client is performed using stochastic gradient descent
(SGD) with a learning rate of 0.01, momentum of 0.5, weight decay of 1 x 10~%, and a batch
size of 64. Each client trains locally for 10 epochs per round. Unless stated otherwise, we run
a total of 200 global communication rounds, with 20% of clients sampled per round. We report
classification performance using balanced accuracy, averaged across clients to account for non-IID
data distributions.

B.2 HYPERPARAMETER TUNING

In the context FEDDAG, hyperparameters play a crucial role in determining the model’s perfor-
mance, stability, and robustness. To better understand the effectiveness of FEDDAG, we investigate
how sensitive the algorithm is to variations in different hyperparameters.

Local Steps (t4). The parameter ¢, controls the number of local training epochs each client per-
forms on its own data before sending gradient information to the server. This step is crucial for
estimating each client’s gradient direction, which is used to compute the gradient similarity matrix.
Since this training is done without any federation, the resulting gradients reflect only the client’s
local data. The choice of ¢, affects the trade-off between computation efficiency and the quality of
similarity estimation. Ideally, we want ¢, to be as small as possible, while still enabling the gradients
to converge enough to produce meaningful similarity measurements. Table [6] shows how accuracy
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varies with different values of ¢, across datasets. In these experiments, the gradient similarity matrix
alone (instead of combining data and gradient) was used as the proximity matrix to assess how ef-
fectively gradient information captures client similarity. The setup follows Data Distribution I (see
with o/ = 1, p = 30%, and consistent hyperparameter settings. Each communication round
included 10 local training steps. As shown, increasing ¢, improves accuracy initially, as longer local
training leads to more stable and comparable gradients. However, accuracy plateaus around ¢, = 2
for most datasets, indicating that the gradients have sufficiently converged for reliable similarity
estimation. Beyond this point, additional local steps yield diminishing returns. Therefore, t, = 2
provides a good trade-off between accuracy and efficiency.

t CIFAR-10 SVHN FMNIST

g
I 80.81+0.59 84.82+0.24 93.18+0.11
2 83.34+£0.52 90.05+0.16 93.18£0.11
3 83.344+0.52 90.05+0.16 93.18+0.11

Table 6: Test accuracy for different values of local training rounds ¢, (with 10 local steps per round)
across datasets, evaluated under Data Distribution I with 30% class skew and Dirichlet parameter
o =1.

Weight Range for Data Similarity Matrix (6). The parameter J controls the sensitivity of the
data similarity matrix to dataset size imbalance when comparing clients. Specifically, this weight-
ing mechanism penalizes similarity scores between clients with large differences in dataset sizes,
thereby reflecting the quantity shift more accurately. The impact of these size-based penalties is
governed by the value of §: smaller values result in minimal influence, while larger values increase
the penalty’s effect. Each computed similarity value is reweighted and normalized into the range
[1—0,1+ 0], with § € [0,1), allowing the final similarity score to scale by at most a factor of two.
Table [/| report test accuracy for various values of § across multiple datasets. Since the weighting
mechanism primarily addresses size disparity and quantity shift, we examine its effect under the
Dirichlet concentration factor: o = 0.25 (severe shift). To isolate the effect of different values of §
on accuracy, we use only the data similarity matrix (instead of combining data and gradient similar-
ity) when computing the proximity matrix for clustering. These experiments follow the Data Dis-
tribution I described in §5] using identical hyperparameters. From Table[7} we observe that higher
0 values (e.g., 0.6) can lead to improved clustering and accuracy. This suggests that the weight-
ing scheme is particularly beneficial in highly heterogeneous environments, where accounting for
dataset size differences enhances similarity estimation.

6 | CIFAR-10 SVHN FMNIST
0.2 | 87.51£0.18 | 91.7440.08 | 91.7940.08
0.4 | 87.51£0.18 | 91.744+0.08 | 92.214+0.09
0.6 | 87.95+0.13 | 91.91+0.13 | 92.214+0.09
0.8 | 87.95£0.13 | 91.91+0.13 | 92.214+0.09
1.0 | 87.954+0.13 | 91.91£0.13 | 92.21£0.09

Table 7: Accuracy metrics for various values of weight range § under Data Distribution I (Dirichlet
o' = 0.25, 20% class skew).

Top-k values in CC-Graph. The parameter k determines how many top-ranked clusters are selected
as knowledge sources for each target cluster in the complementarity graph H. This graph guides
which clusters will supply feature representations to others during the secondary encoder training
phase. For every row in the complementarity score matrix (Eq. [I2)), only the top-k highest scor-
ing entries are retained to form directed edges. A smaller & limits each cluster to fewer sources,
possibly reducing noise but also restricting diversity. In contrast, a larger k increases the opportu-
nities for learning from complementary clusters but may include low-quality connections that dilute
representation quality.

Table [8|shows how varying the number of source clusters k in the complementarity graph H affects
the performance of FEDDAG. Experiments are conducted under Data Distribution I with Dirichlet
concentration parameter o’ = 1 and 30% label skew, while keeping all other hyperparameters fixed.
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We observe that performance generally improves when £ > 2, benefiting from knowledge transfer
across multiple relevant clusters. In some cases, increasing k beyond 2 continues to help (e.g.,
FMNIST), while in others (e.g., SVHN), it leads to marginal drops in accuracy. This suggests that
the optimal value of k depends on the dataset characteristics and the number of clusters in the current
formation. We adopt & = 2 as a balanced choice to ensure diversity while maintaining relevance.

CIFAR-10 SVHN FMNIST

90.85+0.13 | 97.09+0.08 | 97.71£0.05
91.02+0.12 | 97.19+£0.04 | 98.36+£0.10
90.95+0.16 | 97.01£0.07 | 98.57+0.08
90.96+0.21 | 96.78£0.12 | 98.41+£0.11

NI S

Table 8: Accuracy for different values of top-k retained in the complementarity graph H under Data
Distribution I (Dirichlet o = 1, 30% class skew).

B.3 EXPERIMENTS ON DATA DISTRIBUTION I

Exp 1: Performance Evaluation. This section presents the additional results referenced in the
main paper for o’ = 1, under class skew p = 20% and 30%, following the setup described in
The results, shown in Table 0] further validate the effectiveness of FEDDAG on Data Distribution I
under moderate quantity shift. The same set of baselines is used, and results are reported across all
four datasets.

Exp 6: Convergence Under Limited Communication rounds. We compare the performance
of FEDDAG against state-of-the-art (SOTA) baselines under a constrained communication budget
of 80 rounds. Figure |3| reports the final local test accuracy versus the number of communication
rounds for four datasets. The results demonstrate that FEDDAG consistently converges within 20
to 30 communication rounds, outperforming all other methods in both convergence speed and final
accuracy.

100 100 60
70 s
ge0 g 80 g 80 g
350 > > =40
é540 g 60 g & g
3 ——FedDAG 3 § w© —e—FedDAG § 30
{30 PACFL g 40 —e—PACFL < PACFL <20 PACFL
20 ——IFCA 20 ——IFCA 20 ——IFCA 1 ——IFCA
10 —o—Per-FedAvg —o—Per-FedAvg —o—Per-FedAvg —o—Per-FedAvg
0 0 0 0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
# of Communication Rounds # of Communication Rounds # of Communication Rounds # of Communication Rounds
(a) CIFAR-10 (b) FMNIST (c) SVHN (d) CIFAR-100

Figure 3: Exp 6: Test accuracy versus number of communication rounds, Data Distribution I, non-
11D (30%), o’=1.

B.4 EXPERIMENTS ON DATA DISTRIBUTION III

Exp 7: Finding Optimal Cluster Formation under LDA Skew. We repeat the clustering selection
experiment under Data Distribution III, where client data follows an LDA-based label distribution
with moderate skew (o’ = 1). Figure the red curve plots clustering loss and blue bars indicate the
number of clusters. Similar to Data Distribution I, the optimal threshold o* is selected based on a
balance between clustering loss and cluster count.

B.5 DATA DISTRIBUTION IV

This distribution evaluates FEDDAG under a combination of feature skew and label skew. To sim-
ulate feature skew, we follow an approach similar to FedRC (Guo et al.| 2024)), which leverages
datasets (e.g., CIFAR-10-C) that apply diverse image corruptions, thereby introducing different fea-
ture styles. To simulate label skew, we adopt the LDA method (Hsu et al., [2019). Specifically, each
client is assigned one of the available corruption types (e.g., fog, contrast, etc. for CIFAR-10-C) to
create feature skew, and the samples are distributed using the Dirichlet factor (Ng et al., [2011}).
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Table 9: Exp 1: Performance comparison for Data Distribution I with 20% and 30% non-IID label
skew under low quantity shift (Dirichlet o/ = 1).

20% Label Skew 30% Label Skew

Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100
FedAvg 4620+0.97 57.124+030 74.61+036 51.34+078 | 5748 +0.17 77.17+0.24 68.34+045 53.13+1.46
FedProx 46.77+0.14 5681 £0.16 7723 +£045 5338 +0.86 | 57.80+0.23 73.87+0.25 69.65+0.19 53.97+0.85
PerFedAvg | 84.68 £0.19 91.18 £ 021 92.344+0.13 6943 +022 | 8283 +£0.14 94.74+0.17 91.48+0.29 60.70 + 0.30
FedSoft 7742 £0.21 87.64£035 9048 +£0.24 6598 +£0.37 | 76.94 £0.38 89.56 +0.37 84.86+0.45 56.61 & 0.31
PACFL 90.45£0.30 9441 £031 9496+£0.12 7035+£0.36 | 87.01 £0.38 9728 £0.24 9436+0.19 6391 +0.76
CFL 72.80 £0.66 8697 £0.23 82.06£0.34 6143092 | 71.85£0.79 8567023 8023+£025 5290+1.17
CFL-GP 87.83+0.19 9145+0.27 90.38+0.16 69.73+0.20 | 8567 £0.25 96.82+0.24 9229+0.09 61.24+0.73
FedGWC | 89.58 £0.17 93.56 £0.09 93.67+£0.13 72.75+029 | 86.18 £0.25 96.97 +£0.14 92.94+0.19 61.35+043
FedRC 76.12 £0.28 86.45+042 89.22+0.31 6478+£0.33 | 75.12+031 91.02+044 83.67+038 57.89+0.24
IFCA 89.68 +£0.17 94.02+0.09 93.28+0.13 72.86+0.29 | 86.42+0.25 96.61 £0.14 92.86+0.19 61.34+043
FEDDAG | 9453 £0.12 96.82+0.18 97.04 +0.23 75.32+0.33 | 91.02 £ 0.12 9836 +£0.10 97.19 £0.04 67.17 + 0.61
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Figure 4: Exp 7: Clustering score versus cluster a values and number of clusters for finding optimal
clustering.

Dataset. We use two datasets for this task in the FL setting: CIFAR-10-C, TINY IMAGENET-
C (Hendrycks & Dietterichl, 2019)).

Exp 8: Performance under Feature Skew. We evaluate the performance of SOTA algorithms and
FEDDAG on different datasets under a combination of feature skew and label skew. Each client
is randomly assigned one of the 20 available corruption types, and samples are distributed using
a Dirichlet concentration factor o’ = 1. The results in Table [10[ show that FEDDAG consistently
achieves higher accuracy than the baseline methods. This improvement is attributed to FEDDAG’s
data-based similarity metric, which provides more accurate feature similarity estimation compared
to existing approaches.

B.6 EXPERIMENT ON GENERALIZATION TO NEWCOMERS

To assess the ability of FEDDAG to generalize to unseen clients (see Appendix [A7), we simu-
late a dynamic federated learning environment using Data Distribution I with 30% label skew and
Dirichlet concentration factor o' = 1. Initially, training is performed on 80 out of 100 clients for
80 communication rounds, following the standard FEDDAG procedure. At the end of this phase,
the remaining 20 clients join the system as newcomers. Each newcomer executes steps (1-15) of
Algorithm[d]and is assigned to a cluster. Once assigned, the client receives the current global model
from its designated cluster and personalizes it for 1 round (10 local epochs). To evaluate model
quality, we report the average final test accuracy of the 20 newcomers across different datasets. As
shown in Table[IT} FEDDAG achieves better generalization to newcomers than competing methods.
This improvement is attributed to its robust cluster assignment and generalization strategy for new
clients.
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Algorithm CIFAR-10-C TINY IMAGENET-C
FedAvg 30.73 £ 0.36 18.43 +£0.43
PerFedAvg  60.39 £ 0.13 25.54 +0.31
PACFL 63.62 +0.22 33.53 +£0.38
CFL 59.48 £ 0.15 28.97 £ 0.26
FedRC 61.82 +0.21 32.14 +0.19
IFCA 62.52 £0.39 32.33 £ 0.19
FEDDAG  65.62 + 0.31 36.27 + 0.32

Table 10: Exp 8: Performance comparison of various SOTA algorithms and FEDDAG under com-

bined feature skew and label skew (Data Distribution I'V).

Table 11: Test accuracy of newcomer clients trained under Data Distribution I with 30% label skew

and o/ = 1.

Algorithm  CIFAR-10 FMNIST SVHN

FedAvg 55.384+0.15 74.93+0.22 66.86+0.28
PerFedAvg 80.92+0.10 92.62+0.17 90.00£0.15
FedSoft 74.98+0.27 87.45+0.22 83.59+0.12
PACFL 85.33£0.15 95.17+0.24 92.76+0.08
CFL 69.97+0.11 83.64+0.13 78.94+0.17
FedGWC 84.30£0.13 94.534+0.10 91.56+0.06
FedRC 73.36+0.26  88.91+0.21 82.36+0.12
IFCA 84.55+£0.22 94.61+0.30 91.58+0.22
FEDDAG  88.23+0.18 96.84+0.23 95.74+0.13
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