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ABSTRACT

Federated Learning (FL) enables a group of clients to collaboratively train a model
without sharing individual data, but its performance drops when client data are
heterogeneous. Clustered FL tackles this by grouping similar clients. However,
existing clustered FL approaches rely solely on either data similarity or gradient
similarity; however, this results in an incomplete assessment of client similari-
ties. Prior clustered FL approaches also restrict knowledge and representation
sharing to clients within the same cluster. This prevents cluster models from ben-
efiting from the diverse client population across clusters. To address these limi-
tations, FEDDAG introduces a clustered FL framework, FEDDAG, that employs
a weighted, class-wise similarity metric that integrates both data and gradient in-
formation, providing a more holistic measure of similarity during clustering. In
addition, FEDDAG adopts a dual-encoder architecture for cluster models, com-
prising a primary encoder trained on its own clients’ data and a secondary encoder
refined using gradients from complementary clusters. This enables cross-cluster
feature transfer while preserving cluster-specific specialization. Experiments on
diverse benchmarks and data heterogeneity settings show that FEDDAG consis-
tently outperforms state-of-the-art clustered FL baselines in accuracy.

1 INTRODUCTION

Federated Learning (FL) enables users/clients to collaboratively train a model on their data with-
out sharing it with other clients or a central entity (McMahan et al., 2017). However, diversity in
user behavior results in heterogeneous data distributions, known as non-identically independently
distributed (non-IID) data, across clients. This heterogeneity can lead to slower convergence and
suboptimal accuracy of the global model (Kairouz et al., 2021). More specifically, non-IID data
can arise due to various factors, including class/label skew, feature skew, quantity shift, concept
shift, and concept drift — common types of data heterogeneity. Class/label skew refers to the non-
identical distribution of labels/classes at different clients, e.g., the absence of a label at one client
while the same label is present at other clients (Zhang et al., 2022a). Feature skew occurs when
distributions vary due to different personalization nuances, e.g., an alphabet letter can be written
in different ways (Li et al., 2021b). Quantity shift happens when different clients have different
amounts of data (Wang et al., 2021), e.g., an online retailer with millions of transaction records is
compared to a local store with only a few hundred records. Concept shift happens when different
clients assign the same label to fundamentally different data samples due to variations in local data
distributions or labeling criteria (Kang et al., 2024).

Clustered FL handles non-IID data effectively, especially when distinct groups of clients display
substantial variations in their data distributions (Ghosh et al., 2020; Guo et al., 2024; Vahidian et al.,
2023). In clustered FL, clients are grouped into clusters based on their similarities in their data
distributions, and each cluster trains its own model tailored to its specific data. However, despite
their advantages, existing clustered FL approaches suffer from the following limitations:

1. Improper Similarity Method. Cluster FL approaches use either data or gradient alone to com-
pute similarity for clustering. Cluster FL approaches (Sattler et al., 2020; Long et al., 2023; Ghosh
et al., 2020) that use gradients or loss values to cluster clients can group clients incorrectly due to the
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high dimensionality of data or the presence of various skews in client data (Vahidian et al., 2023).
Other drawbacks of these approaches include: requiring each client to evaluate multiple global mod-
els every round (Ghosh et al., 2020; Licciardi et al., 2025), delaying cluster formation until many
training iterations, and requiring clients to upload full model updates (Sattler et al., 2020).

On the other hand, the data-based approach, such as PACFL (Vahidian et al., 2023), only considers
label skew and does not account for skew issues like concept shift. Moreover, PACFL defines inter-
client similarity as the minimum cosine angle between the clients’ feature subspaces. However, by
relying on the smallest angle across the subspaces, PACFL may yield high similarity even when only
a small portion of the clients’ data is similar, while the remaining subspaces are vastly dissimilar.

2. Global Representation Sharing. Existing Clustered FL approaches restrict knowledge sharing
to clients within the same cluster. This prohibits clients across clusters to benefit from low-level
latent representations. One way FedSoft (Ruan & Joe-Wong, 2022) and FedRC (Guo et al., 2024)
address this issue by incorporating multiple cluster models through soft clustering with learnable
cluster importance weights. However, in these approaches, a client’s model becomes a noisy blend
of several cluster models. While this blending may occasionally benefit data that aligns with sev-
eral clusters, the added noise from unrelated clusters may degrade the performance on the client’s
primary dataset, since the model is no longer explicitly optimized for its own data.

3. Limited Consideration of Distribution Skews. Clustered FL techniques (Sattler et al., 2020;
Ghosh et al., 2020; Vahidian et al., 2023; Licciardi et al., 2025) primarily address label skew. How-
ever, these approaches do not account for concept shift or quantity shift.

4. Predefined Cluster Numbers. Existing clustered FL approaches lack adaptive mechanisms for
automatically adjusting the number of clusters. For example, IFCA (Ghosh et al., 2020) requires
the optimal number of clusters to be specified in advance. Sattler et al. (2020) adopts a recursive
strategy to split clusters when gradients converge to a stationary point but cannot merge clusters
when needed, such as upon the arrival of new clients. Zeng et al. (2023) supports merging clusters
but not splitting them. Li et al. (2024a) evaluates candidate clustering using traditional clustering
metrics that do not account for the unique characteristics of FL setting. These limitations raise the
following crucial question:

How can we overcome the above challenges posed by various skews in heterogeneous data
distributions by utilizing both data and gradient information to dynamically cluster clients and

enabling representation sharing among clusters in FL?

Our contribution. This work proposes a novel algorithm, entitled clustered Federated Learning via
global DatA and Gradient integration (FEDDAG). FEDDAG introduces a novel method to compute
similarities among clients and an innovative approach that combines data and gradient information
for improved client grouping. To combine data- and gradient-based similarity to achieve a more
accurate similarity matrix, FEDDAG assigns each client a weight that indicates how much emphasis
to place on data versus gradient information. FEDDAG optimizes these weights using an entropy-
based loss that sharpens the final adjacency matrix. To further improve client similarity estimation,
FEDDAG extends the data-based approach PACFL (Vahidian et al., 2023) by performing class-wise
comparisons rather than comparing entire data subspaces—restricting comparisons to subspaces
corresponding to the same class across clients. This approach yields a more accurate similarity
metric and naturally accounts for concept shift. In addition, FEDDAG assigns weights to the class-
wise similarity values to address quantity shift. FEDDAG also improves upon the existing gradient-
based similarity so that client computes gradients for at most one model per round and transmits
only a compressed gradient.

These above mechanisms improve similarity computation and lead to better client clustering. We
further enhance FEDDAG by employing a dual-encoder architecture to enable effective representa-
tion sharing across clusters. During the training phase, each cluster model consists of: (i) a primary
encoder, optimized using the cluster’s own client data, and (ii) a secondary encoder, designed to
learn complementary features from other clusters. The outputs of the two encoders are concatenated
along the feature dimension, and a classifier is trained on the combined representation. This design
facilitates cross-cluster knowledge transfer while preserving cluster-specific specialization.

Compared to prior works, to our knowledge, FEDDAG is the only work that addresses all four types
of data heterogeneity: label skew, feature skew, concept shift, and quantity shift. FEDDAG accounts
for concept shift by performing class-wise comparisons when computing similarity between clients’
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data. Additionally, FEDDAG introduces an adaptive clustering mechanism that automatically deter-
mines the optimal number of clusters through a novel evaluation metric. Specifically, it generates a
range of candidate clusterings using hierarchical clustering (HC) (Day & Edelsbrunner, 1984) and
evaluates them with a novel federated-aware metric that rewards compact cluster formation while
penalizing over-splitting.1 In summary, the contributions of this paper are as follows:

1. A new clustered FL algorithm, FEDDAG, that combines both data and gradient similarity for bet-
ter client clustering and improves data similarity estimation with a class-wise weighted method.

2. FEDDAG introduces a novel method for knowledge and representation sharing across clusters
by employing a dual-encoder architecture.

3. This work introduces a novel federated-aware metric to evaluate candidate clusterings and auto-
matically determine the optimal number of clusters.

4. We evaluate FEDDAG under non-IID data, having class skew, feature skew, concept shift, and
quantity shift, and across different degrees of heterogeneity (e.g., high vs. low). Table 1 reports
the accuracy of FEDDAG in comparison to existing clustered FL methods. Detailed experimen-
tal results are provided in §5.

The full version of the paper and code is available at https://tinyurl.com/2rbkb3zu.

2 LITERATURE REVIEW Table 1: Accuracy (%) of FEDDAG vs. cluster-
ing baselines under non-IID label skew (20%) and
quantity shift (Dirichlet α′=1).

Algorithm Technique CIFAR-10 FMNIST
PACFL Data (D) 90.45±0.30 94.41±0.31
CFL Gradient (G) 72.80±0.66 86.97±0.23
IFCA Gradient (G) 89.68±0.17 94.03±0.09
FEDDAG
(Ours)

D + G + Global Feature
Sharing

94.53±0.12 96.82±0.18

There exists an extensive body of work on
improving the performance of FL in data-
heterogeneous environments via clustered FL,
knowledge distillation, meta-learning, data
augmentation, and related techniques. Below,
we summarize the approaches most relevant to
our work; additional related directions are dis-
cussed in Appendix A.1.

Clustered FL techniques address distribution shift by grouping clients based on their data distribu-
tions. PACFL (Vahidian et al., 2023) clusters clients by analyzing principal angles between client
data subspaces, but it ignores label information, making it prone to incorrect clustering under con-
cept shift. Ding & Wang (2022) constructsK shared models based on each client’s dataset contribu-
tion. Another line of work (Ghosh et al., 2020; Licciardi et al., 2025) uses loss values on gradients
to iteratively cluster clients each training round. Other methods group clients via gradient or param-
eter similarity (Sattler et al., 2020; Zhang et al., 2024), while soft clustering enables clients to join
multiple clusters (Ruan & Joe-Wong, 2022; Guo et al., 2024). Additional methods, such as Long
et al. (2023); Marfoq et al. (2021); Wu et al. (2023), rely on maximizing log-likelihood functions
or modeling joint distributions. Compared to these methods, FEDDAG combines data and gradient
information for better clustering and enables knowledge sharing across clusters.

Knowledge distillation (KD) approaches such as Lin et al. (2020); Li & Wang (2019) use a global
dataset to transfer knowledge from local teacher models to a global student model. FedFTG (Zhang
et al., 2022b) trains a generator to approximate the input space of local models and uses it to generate
pseudo-data. Another line of work, data-free KD, generates pseudo-data directly from a pretrained
teacher model to perform knowledge distillation (Guo et al., 2023; Chen et al., 2019). DeepImpres-
sion (Nayak et al., 2019) recovers approximate real data by modeling the output space of the teacher
model, while DeepInversion (Yin et al., 2020) further refines pseudo-data by regularizing the dis-
tribution of intermediate feature maps. Instead of relying on a public/pseudo dataset our proposed
FEDDAG’s global parameters are updated directly using data from complementary source clusters,
enabling cross-cluster knowledge sharing.

3 FEDDAG ALGORITHM

FEDDAG, a framework for clustered FL, can be formulated as an empirical risk minimization
(ERM) problem over N clients, each holding a local dataset Di=(Xi, Yi), where Xi and Yi de-

1Over-splitting is a common issue in HC for FL that can violate key principles of FL by producing degenerate clusters with very few
clients (Licciardi et al., 2025).
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note the input samples and labels, respectively. The data can be non-iid and may exhibit various
skews (as discussed in §1). The server partitions the clients into Z clusters C1, . . . ,CZ . The ob-
jective is to minimize the local loss L(Yi, Fz(i)(Xi)) for each client i∈N , where z(i) is the cluster
assignment determined by FEDDAG. Simplified FEDDAG cluster-level model is defined as:

Fz(·) = ψ
(
ϕ(·; Θf

z ); Θ
c
z

)
(1)

Here, ϕ is the feature encoder and ψ is the classifier head. FEDDAG also supports a more expressive
dual-encoder architecture, where the outputs of two encoders are jointly processed by the classifier
head, as represented below:

Fz(·) = ψ
(
ϕ(1)(·; Θ1f

z ), ϕ(2)(·; Θ2f
z ) ; Θc

z

)
(2)

We describe FEDDAG (see Algorithm 1) in two parts. First, we introduce the weighted class-
wise approach (Algorithm 2 in Appendix A.3) for computing data similarity among clients and
combine both data and gradient to improve clustering (Algorithm 3 in Appendix A.3). The improved
clustering can be directly used for traditional clustered FL, resulting in higher accuracy (see §5). We
then further enhance FEDDAG with a dual-encoder mechanism (described in §4) that enables inter-
cluster representation sharing during FL training, which further increases FEDDAG’s performance.
An illustration of FEDDAG is shown in Figure 1 and its components are described below.
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Figure 1: Overview of FEDDAG. Clients compute prin-
cipal vectors and gradients to build an adjacency matrix
and a graph indicating which clusters can supply fea-
tures for cross-cluster sharing. Training proceeds in two
phases: (1) the primary encoder and classifier are trained
on each cluster’s local data; (2) the secondary encoder of
a requesting cluster is trained on source cluster’s data

High-level idea. FEDDAG introduces a
lightweight method for computing gradient
similarity. Prior approaches such as Sattler
et al. (2020) and Kim et al. (2024b) period-
ically send gradient updates to the server to
measure client similarity. In contrast, our ap-
proach has each client first train locally on
its own data (without federation) for a few
rounds to partially converge the gradients.
We observed that two such rounds (10 lo-
cal steps each) are sufficient to achieve par-
tial convergence, making inter-client similar-
ity more distinguishable (see experiments on
Local Steps (tg) in Appendix §B.2). To fur-
ther reduce communication, FEDDAG trans-
mits a k-sparse version of the gradients (re-
taining only k coordinates) to the server for
similarity computation (Wangni et al., 2018).

Details of the method. Each client i ∈ N is initialized with random parameters θ0i and performs
local training (without federation) on Di for tg = 2 rounds (see Appendix §B.2) to obtain a gradient
update ∆i. The update is k-sparsified—retaining only a small random subset of entries (typically
1–2%) (Wangni et al., 2018). The sparsified update ∆̃i is then sent to the server, which constructs a
pairwise similarity matrix. The similarity Gi,j between clients i and j is computed as:

Gi,j = cos−1

(
⟨∆̃i, ∆̃j⟩
∥∆̃i∥ ∥∆̃j∥

)
× 180

π
, ∀i, j ∈ N. (3)

3.2 WEIGHTED CLASS-WISE DATA-BASED SIMILARITY

High-level idea. Our goal is to construct a data-based similarity matrix that will be fused with the
gradient matrix for clustering. Unlike the existing data-based approach, PACFL (Vahidian et al.,
2023), which compares the entire data subspaces of two clients, we measure similarity in a class-
wise manner and assign weights to the class-level similarities to compute the final client similarity.

Details of the method. Let C be the total number of classes, and Di,c the data of client i ∈ N for
class c ∈ C. Each client applies truncated SVD (Klema & Laub, 1980) on the transpose of Di,c to
compute p principal vectors per class, denoted U i

c = [u1, . . . , up]. These vectors are then sent to
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Algorithm 1: FEDDAG Algorithm
Input: Number of clients N , sampling rate R ∈ (0, 1], C classes. Output: Updated global model parameters

1 Initialize client i ∈ N with random θ0
i

2 for each round t = 0, 1, . . . do
3 m← max(R ·N, 1) // Sampling rate
4 Sm ← {i1, ..., im} // Set of m sampled clients
5 for each client i ∈ N in parallel do
6 if t ≤ tg then
7 Local training of θ0

i with client i local data (no federation)
8 if t = tg then
9 Client i sends sparsified local model update ∆̃i to server

10 Client i performs SVD and extracts principal vectors Ui
c, ∀c ∈ C and sends to server

11 Server formsA ← ProximityMatrix(U∗, ∆̃∗) (Algorithm 2)// Adjacency matrix
12 Server computes optimal Clustering {C1, . . . ,CZ} ← OptimalClustering(A, Sα)

(Algorithm 3)// Find best clustering
13 Server computes the CC-Graph H as per Eq. 12
14 Server initiates Θ1f

z as in Eq. 22, and Θ2f
z and Θc

z randomly // cluster encoder initialization
15 else
16 Server sends {Θ1f

z(i)
,Θ2f

z(i)
,Θc

z(i)} and Θ2f′
z(i)

=
∑

j:H(j,z(i))=1 Θ2f
j to client i

17 Client i sets (θ1f
i , θc

i )← (Θ1f
z(i)

,Θc
z(i)) and trains them via SGD as in Eq. 17 // primary training phase

18 Client i sets θ2f′
i ← Θ2f′

z(i)
and updates via SGD as in Eq. 20 // Secondary training phase

19 Client i broadcasts (θ1f
i , θc

i ) and θ2f′
i to server

20 if t ≥ tg then
21 for each cluster z = 1 to Z do
22 Update Θ1f

z and Θc
z , as in Eq. 18

23 Update learner cluster Θ2f
j:H(j,z)=1

, as in Eq. 21

the server to compute the data similarity matrix.2 For each class c, the server computes the principal
angle (Jain et al., 2013) between U i

c and U j
c , indicating the similarity between clients i and j as:

V ′
i,j,c = min

v∈Ui
c,x∈U

j
c

cos−1

(
|v⊤x|
∥v∥ · ∥x∥

)
, ∀i, j ∈ N. (4)

If class c is present in only one of the clients, V ′i,j,c = 90◦; if in neither, V ′i,j,c = 0◦. Next,
the server assigns weightsWi,j,c to each class-wise similarity V ′i,j,c to reflect class frequency dif-
ferences (i.e., quantity skew) between clients i and j. This weighting scheme ensures that larger
differences in class frequency lead to higher dissimilarity values. The weights are computed as:

Wi,j,c =
max(ln(|Di,c|+ ϵ), ln(|Dj,c|+ ϵ))

min(ln(|Di,c|+ ϵ), ln(|Dj,c|+ ϵ))
(5)

then min–max normalized to a bounded range [1−δ, 1+δ], where δ > 0 controls the server’s toler-
ance to frequency imbalance. The final similarity between clients i and j is:

Vi,j = 1
|C|

C∑
c=1

V ′
i,j,cW ′

i,j,c, W ′
i,j,c ← normalizedWi,j,c. (6)

3.3 COMBINING DATA & GRADIENT — ALGORITHM 2

High-level idea. After constructing the data and gradient similarity matrices, FEDDAG applies
min-max normalization and then combines them into a single proximity/adjacency matrix.

Details of the method. Given the normalized V̂i,j and Ĝi,j , FEDDAG learns a weight vector w =
(w1, . . . , wN )⊤ ∈ [0, 1]N , where each wi is assigned to client i to control the relative importance
of gradient versus data similarity. FEDDAG then fuses the normalized matrices to construct the
proximity matrix as follows:

Ai,j = wi Ĝi,j +
(
1− wi

)
V̂i,j , 1 ≤ i < j ≤ N, Aj,i = Ai,j . (7)

FEDDAG optimizes w by minimizing the entropy loss:

Len = − 1

N

N∑
i=1

N∑
j=1

Ãi,j log Ãi,j , Ãi,j =
eAi,j∑N

k=1 e
Ai,k

(8)

2In FEDDAG, clients share a small set of principal vectors and class frequency information with the server to compute similarity. These
principal vectors are not actual client data, but a linear combination of them. Moreover, the number of principal vectors shared with the server
is less than 1% of the size of the dataset for each class per client. This approach aligns with prior works, such as PACFL(Vahidian et al., 2023).
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where Ãi,j is the row-wise softmax normalization ofAi,j . In Eq. 8, the lossLen sharpens each row of
the fused matrix Ai,j , encouraging each client to retain only its strongest neighbors (Ghasedi Dizaji
et al., 2017). This, in turn, guides w to favor the view (i.e., data or gradient) that leads to a more
clusterable affinity structure. FEDDAG learns the weight vector w using a lightweight multi-layer
perceptron (MLP) (Almeida, 2020) trained via gradient descent to minimize the entropy loss Len.
Finally, FEDDAG constructs the proximity matrix using the learned w as shown in Eq. 7.

3.4 OPTIMAL CLUSTERING — ALGORITHM 3

High-level idea. FEDDAG introduces an adaptive clustering mechanism that automatically identi-
fies the optimal number of clusters. This mechanism incorporates a novel federated-aware metric to
evaluate clustering quality.

Details of the method. Given the proximity matrix Ai,j , the server applies agglomerative hierar-
chical clustering (HC). In HC, the clustering threshold α ∈ (0, 1] controls merges: clusters with
pairwise distances below α are merged. Smaller α yields more clusters; larger α merges more
broadly. The server iterates over different α values to generate candidate clusterings {C1, . . . ,CZ},
each with a distinct number of clusters Z. Each clustering is evaluated using two metrics. Compact-
ness loss L1 promotes tight clusters, while degeneracy penalty L2 discourages small clusters:

L1 =

Z∑
z=1

1

|Cz|2
∑

i,j∈Cz

Ai,j , L2 =
1

Z

Z∑
z=1

exp

(
max{0, C̄− γσC − |Cz|}

τ

)
(9)

where C̄ = N/Z and σC denote the mean and standard deviation of cluster sizes. A cluster Cz is
penalized if size |Cz| < C̄− γσC, with τ > 0 controlling sharpness. The total loss is

L{C1,...,CZ} = L1 + λL2, (10)

where λ > 0 balances the two terms. LowerL1 (tighter clusters) andL2 (less over-splitting) indicate
better partitions. FEDDAG selects the clustering with the lowest loss and relatively few clusters.

4 GLOBAL REPRESENTATION SHARING (GRS)

High-level idea. In the previous section, we have combined data and gradient information to im-
prove clustering. This section introduces global representation sharing across clusters during the
training phase via a dual-encoder mechanism to further enhance FEDDAG’s ability to learn comple-
mentary representations. The process for determining which clusters should complement each other
and how training is carried out is described below:

Building Cluster Complementarity Graph (CC-Graph). We first construct a directed graph that
identifies, for each cluster, which other clusters can supply the class representations it lacks. Intu-
itively, a cluster has a demand for a class if that class is underrepresented among its clients, and a
supply if the class is well represented.

For each client i and each class c ∈ C, letmi denote the number of distinct classes present on client i
and let ri,c ∈ {0, . . . ,mi−1} be the rarity rank of class c on that client, where ri,c = 0 means that c
is the rarest class on client i. For a single client i and each class c, we define the client-level demand
score as (mi − ri,c) and the supply score as (ri,c + 1), so that rarer classes induce higher demand
while more frequent classes induce higher supply. To obtain cluster-level scores, we aggregate the
client-level values. For a requesting cluster Cp and a source cluster Cq , the demand and supply for
class c can be computed as shown below:

dp,c =
∑
i∈Cp

(
mi − ri,c

)
, sq,c =

1

|Cq|
∑
i∈Cq

(
ri,c + 1

)
, (11)

where dp,c captures how strongly Cp lacks class c, and sq,c measures how abundantly Cq represents
class c on average. Combining demand and supply yields the complementarity score between a
requesting cluster p and a source cluster q:

H ′
p,q =

∑
c∈C

dp,c sq,c, H ′
p,p = −∞. (12)

A large value of H ′p,q indicates that Cp has high demand for exactly those classes for which Cq has
high supply. However,H ′p,q only accounts for the relative quantity of each class and does not capture
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the quality or alignment of the data between the two clusters. To make the CC-Graph sensitive to
alignment, we incorporate the per-class principal-angle information V ′i,j,c between client subspaces
(see Section §3.2) into the complementarity score. For each client pair (i, j) and class c, we first
clip the class-wise angle V ′i,j,c to the range [0◦, 90◦] and then map it to [0, 1] as follows:

Γi,j,c = 1− V
′
i,j,c

90◦
, Γ̄p,q,c =

1

|Cp| |Cq|
∑
i∈Cp

∑
j∈Cq

Γi,j,c. (13)

Here, the mapped value Γi,j,c is close to 1 when the class-c feature subspaces of clients i and j are
well aligned and close to 0 when they are poorly aligned. To obtain a cluster-level alignment score
Γ̄p,q,c, we average over all client pairs across clusters p and q. Finally, we incorporate the alignment
score into the demand–supply term H ′p,q to compute a refined complementarity score as:

Hp,q =
∑
c∈C

dp,c sq,c Γ̄p,q,c, Hp,p = −∞. (14)

Here, a high value of Hp,q indicates that Cq is a strong complementary source for Cp: the terms
dp,c and sq,c capture relative quantity, while Γ̄p,q,c ensures that complementarity also reflects how
well the corresponding class-c representations are aligned between the two clusters.

Finally, we sparsify this score matrix into a directed adjacency matrix. For each row p, we keep only
the top-k largest values Hp,q to build the CC-Graph. An edge p→ q in this CC-Graph indicates that
cluster Cp will receive class representations from cluster Cq .

Training using dual encoders. For each client i ∈ Cz , the prediction model can be described as:

Fz(Xi) = ψ
(
ϕ(1)(Xi; Θ

1f
z ), ϕ(2)(Xi; Θ

2f
z ) ; Θc

z

)
(15)

FEDDAG optimizes the parameters {Θ1f
z ,Θ2f

z ,Θc
z}Zz=1 to minimize the weighted empirical loss

across N clients. This is achieved through parallel training phases of the primary and secondary
encoders. During the primary phase for each cluster, the primary encoder Θ1f

z and the classifier Θc
z

are optimized using data from clients i ∈ Cz , enabling the model to learn its own cluster-specific
features. During the secondary phase, cluster Cz enriches the secondary encoders of clusters that
seek to learn from it, as directed by the CC-Graph H . The procedures for both phases and their
unified training strategy are detailed below.

(i) Primary encoder training. For each cluster, we optimize the primary encoder Θ1f
z and the

classifier Θc
z via gradient descent, while keeping the secondary encoder Θ2f

z fixed. To approximate
this, each client i ∈ Cz initializes its local parameters as (θ1fi , θci ) ← (Θ1f

z ,Θc
z) and keeps the

secondary encoder Θ2f
z frozen. The local loss is then defined as:

ℓi(θ
1f
i , θci )=L(Yi,ψ(ϕ

(1)(Xi; θ
1f
i ), ϕ(2)(Xi; Θ

2f
z(i)); θ

c
i )) (16)

Using the client loss defined in Eq. 16, each client performs SGD training to update (θ1fi , θci ) as:

(θ1fi , θci )← (θ1fi , θci )− η∇(θ
1f
i ,θci )

ℓi(θ
1f
i , θci ), ∀i ∈ Cz (17)

FEDDAG weighted aggregates the local primary encoder and classifier updates (θ1fi − Θ1f
z ) and

(θci −Θc
z) from each client i ∈ Cz to update (Θ1f

z ,Θc
z) as:

Θ1f
z ← Θ1f

z +
∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
(θ1fi −Θ1f

z ), Θc
z ← Θc

z +
∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
(θci −Θc

z) (18)

(ii) Secondary encoder training. Given the CC-GraphH , an edge j → z means that learner cluster
Cj asks source cluster Cz to refine its secondary encoder Θ2f

j using Cz’s data. To achieve this, all
learner clusters {Cj : H(j, z) = 1} of Cz first aggregate their current secondary encoders into a
single combined encoder and send this combined encoder to Cz . Clients in Cz then jointly train this
received secondary encoder on their local data (with the primary encoder and classifier frozen), and
the resulting gradients are aggregated and sent back to the learner clusters so that each of them can
update its own secondary encoder. The process is described in detail below.

For each source cluster Cz , we optimize the secondary encoders {Θ2f
j } of the clusters that seek to

learn from Cz . First, given the CC-GraphH , FEDDAG first aggregate the secondary encoders of all
learner clusters into a single combined encoder: Θ2f ′

z =
∑

j :H(j,z)=1 Θ
2f
j and sends it to Cz . Then,

each client i ∈ Cz initializes its local instance of the secondary encoder with the received encoder
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as θ2f
′

i ← Θ2f ′

z , while keeping the primary Θ1f
z and the classifier Θc

z fixed; and then minimizes the
following loss:

ℓ′i(θ
2f ′

i )=L
(
Yi, ψ(ϕ

(1)(Xi; Θ
1f
z ),ϕ(2)(Xi; θ

2f ′

i );Θc
z)
)

(19)

Using this loss, each client performs SGD to update its local secondary-encoder parameters θ2f
′

i as:

θ2f
′

i ← θ2f
′

i − η∇
θ
2f′
i

ℓ′i
(
θ2f

′

i

)
(20)

FEDDAG then weighted aggregates the local gradients (θ2f
′

i − Θ2f ′

z ) for secondary encoder from
each client i ∈ Cz and broadcasts the aggregated gradient back to the learner clusters. FEDDAG
then updates the secondary encoder of each learner cluster Cj (where H(j, z) = 1) using the aggre-
gated gradient as follows:

Θ2f
j ← Θ2f

j +
∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
(θ2f

′

i −Θ2f ′
z ) (21)

Unifying Primary and Secondary Training. Since the primary and secondary encoder updates are
independent (Eq. 17, 20), they can be trained in parallel. However, because the primary Θ1f

z and
secondary Θ2f

z encoders are intended to capture complementary information, initializing them both
randomly may lead to redundant features. To avoid this, we ensure the primary encoder is partially
converged before joint training starts. Specifically, during gradient-based similarity computation
in §3.1, each client i trains a local model to partial convergence. We reuse the resulting feature
extractors θ0fi to initialize the global primary encoder Θ1f

z , thereby avoiding extra training rounds:

Θ1f
z =

∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
θ0fi , ∀z ∈ Z, (22)

FEDDAG structure summary. During the initial rounds, FEDDAG determines the optimal clus-
tering configuration (see Algorithm 1, Lines 1–14). Once the clustering is established, FEDDAG
parallelly executes two phases: a primary training phase and a secondary global feature-sharing
phase (Algorithm 1, Lines 15–23). Additional mechanisms for incorporating new clients and adapt-
ing to distribution shifts without interrupting training are provided in Appendix A.

5 EXPERIMENTS
Table 2: Exp 5: Performance comparison for
concept shift across datasets.
Algorithm CIFAR-10 FMNIST SVHN
FedAvg 42.87±0.36 42.68±0.49 37.93±0.39
FedBR 62.41±0.28 82.81±0.17 80.12±0.22
FedSoft 64.34±0.38 75.89±0.15 76.35±0.40
PACFL 59.82±0.22 78.42±0.35 78.82±0.12
CFL 61.48±0.15 82.73±0.23 79.15±0.36
CFL-GP 66.74±0.28 84.71±0.13 82.38±0.13
FedGWC 65.91±0.19 83.85±0.21 81.63±0.28
FedRC 65.48±0.33 79.87±0.14 77.86±0.29
IFCA 64.58±0.39 84.67±0.21 81.56±0.14
FEDDAG∗ 67.79±0.27 86.03±0.21 83.73±0.19
FEDDAG 69.90±0.20 88.93±0.13 85.34±0.21

This section experimentally evaluates FEDDAG, com-
pares it against existing works, and investigates: (i) FED-
DAG accuracy, (ii) Finding optimal clustering, (iii) Ab-
lation studies, (iv) During evaluation, we report two vari-
ants of our method: FEDDAG∗, which is restricted to
the approach in §3—combining data and gradient in-
formation to form clusters and then training a standard
clustered FL model (single encoder and classifier) with-
out global representation sharing—and FEDDAG, which
is the full algorithm that additionally incorporates dual-
encoder inter-cluster sharing described in §4.

Table 3: Exp 3: Ablation study of cross-cluster rep-
resentation sharing under 20% label skew (Dirichlet
α′ = 0.25), comparing FEDDAG, FEDDAG† (dual en-
coder w/o GRS), and FEDDAG∗ (single encoder).

Algorithm CIFAR-10 FMNIST SVHN CIFAR-100
FEDDAG† 88.79±0.20 92.61±0.31 91.95±0.25 70.28±0.38
FEDDAG∗ 88.67±0.18 92.75±0.22 91.87±0.26 70.37±0.33
FEDDAG 90.76±0.12 93.82±0.20 93.91±0.23 72.84±0.30

Baselines. We compare FEDDAG against
SOTA methods: (i) single-model FL: Fe-
dAvg (McMahan et al., 2017), FedProx (Li
et al., 2020), (ii) personalized FL methods:
PerFedAvg (Fallah et al., 2020), (iii) non-
clustered non-IID FL: FedMix (Yoon et al.,
2021), FedBR (Guo et al., 2023), (iv) clus-
tered FL — data-based: PACFL (Vahidian
et al., 2023), (v) clustered FL — gradient-
based: IFCA (Ghosh et al., 2020), CFL (Sattler et al., 2020), FedSoft (Ruan & Joe-Wong, 2022),
FedRC (Guo et al., 2024), FedGWC (Licciardi et al., 2025), CFL-GP (Kim et al., 2024a).

Experimental Setup. We consider 100 clients, with 20% randomly selected per round. Unless
stated otherwise, all experiments run for 200 rounds with each selected client performing 10 local
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Table 4: Exp 1: Performance comparison for Data Distribution I with a high degree of quantity shift
(Dirichlet α′ = 0.25)

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 42.02 ± 1.17 53.11 ± 0.31 69.79 ± 0.51 47.16 ± 0.91 54.24 ± 0.08 72.86 ± 0.40 64.15 ± 0.64 50.99 ± 1.35
FedProx 43.98 ± 0.17 53.61 ± 0.20 74.75 ± 0.27 50.56 ± 0.70 54.99 ± 0.20 68.22 ± 0.16 64.80 ± 0.25 48.66 ± 0.80

PerFedAvg 81.09 ± 0.35 86.51 ± 0.19 89.20 ± 0.05 65.59 ± 0.02 77.45 ± 0.24 89.77 ± 0.15 88.23 ± 0.31 57.38 ± 0.10
FedMix 77.94 ± 0.26 83.55 ± 0.31 83.12 ± 0.29 60.33 ± 0.24 76.90 ± 0.33 81.96 ± 0.27 82.21 ± 0.34 53.55 ± 0.30
FedBR 81.62 ± 0.28 85.32 ± 0.23 84.05 ± 0.30 61.61 ± 0.37 81.48 ± 0.37 84.12 ± 0.25 84.78 ± 0.38 56.32 ± 0.33
FedSoft 76.44 ± 0.18 84.58 ± 0.14 83.75 ± 0.33 62.54 ± 0.41 72.48 ± 0.17 85.15 ± 0.17 82.43 ± 0.40 55.24 ± 0.43
PACFL 86.93 ± 0.40 91.90 ± 0.47 89.88 ± 0.25 66.11 ± 0.29 84.66 ± 0.29 91.96 ± 0.25 90.48 ± 0.23 58.30 ± 0.56

CFL 68.67 ± 0.76 81.90 ± 0.10 79.83 ± 0.38 57.38 ± 0.95 67.57 ± 0.69 80.64 ± 0.21 75.21 ± 0.09 49.63 ± 1.29
CFL-GP 85.25 ± 0.17 89.13 ± 0.35 87.83 ± 0.22 67.89 ± 0.20 83.98 ± 0.28 91.14 ± 0.14 90.01 ± 0.11 59.71 ± 0.76
FedGWC 85.97 ± 0.13 91.02 ± 0.17 89.35 ± 0.10 69.19 ± 0.48 83.58 ± 0.21 91.45 ± 0.12 88.94 ± 0.15 56.52 ± 0.40
FedRC 75.12 ± 0.28 88.32 ± 0.23 88.05 ± 0.30 63.25 ± 0.37 76.48 ± 0.37 88.12 ± 0.25 85.78 ± 0.38 54.32 ± 0.33
IFCA 86.64 ± 0.13 90.93 ± 0.17 89.51 ± 0.10 69.08 ± 0.48 83.45 ± 0.37 91.50 ± 0.11 88.81 ± 0.09 56.33 ± 0.40

FEDDAG∗ 88.67 ± 0.18 92.75 ± 0.22 91.87 ± 0.26 70.37 ± 0.33 86.95 ± 0.21 92.18 ± 0.15 90.97 ± 0.13 60.84 ± 0.65
FEDDAG 90.76 ± 0.12 93.82 ± 0.20 93.91 ± 0.23 72.84 ± 0.30 89.87 ± 0.19 92.72 ± 0.13 92.65 ± 0.11 63.21 ± 0.60

epochs (batch size 10, SGD). The principal vector U i
c transmitted per class is roughly 1% the size

of |Di,c|. For gradient similarity Gi,j , each client trains locally for tg=2 rounds. To construct the
CC-Graph, we select the top-k=2 source clusters.

Datasets. We use four popular datasets for the image classification task in FL setting, i.e., CIFAR-
10 (Krizhevsky et al., 2009), FMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-
100 (Krizhevsky et al., 2009).

Non-IID Data. We use multiple data distributions to simulate traditional and complex data skews:

• Data Distribution I: This distribution evaluates FEDDAG under combined label skew and quan-
tity shift. To simulate label skew, we randomly select ρ% of labels and assign them to random client
groups, repeating the process until all clients are assigned—similar to PACFL. For quantity shift,
we allocate samples of the assigned labels using the Dirichlet factor (Ng et al., 2011). A real-world
example is predictive text input, where users may discuss similar topics, but word distributions vary
due to individual preferences and typing habits.

• Data Distribution II: This distribution evaluates FEDDAG under concept shift. Following prior
work (Jothimurugesan et al., 2023; Guo et al., 2024), we simulate concept shift by modifying the
labels of a subset of clients. For example, label y is changed to (C−y) or (y+1)%C, whereC is the
total number of classes. We perform three such transformations to simulate three distinct concepts.
Similar modifications are applied to the test set.

(a) CIFAR-10 (b) FMNIST (c) SVHN (d) CIFAR-100

Figure 2: Exp 2: Clustering score vs cluster α and number of clusters for finding optimal clustering.

• Data Distribution III: This distribution evaluates FEDDAG under a different form of label skew.
We adopt the Latent Dirichlet Allocation (LDA) method from Hsu et al. (2019), using Dirichlet
concentration factors α′ = 0.25 and α′ = 1.0.

Additional experiments (e.g., performance evaluation, communication rounds) on the above
and new (feature skew) distributions, hyperparameter tuning, implementation details, abla-
tion studies are provided in Appendix B. Algorithm theoretical issues, such as convergence,
complexity, and privacy analysis; distribution and client shifts are discussed in Appendix A.

Experiments on Data Distribution I

Exp 1: Performance evaluation. We consider class skew ρ = 20% and 30%, with the Dirichlet
concentration parameter α′ set to 1 for low and 0.25 for high quantity shift. Table 4 shows the re-
sults for α′ = 0.25, while the results for α′ = 1 are included in Appendix B.3. We observe that
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Table 5: Exp 5: Performance comparison under LDA skew (α′ = 0.25 and α′ = 1.0).

α′ = 0.25 α′ = 1.0
Algorithm CIFAR-10 FMNIST SVHN CIFAR-10 FMNIST SVHN

FedAvg 66.48± 0.21 47.26± 0.28 46.13± 0.48 41.78± 0.73 85.48± 0.36 81.89± 0.31
FedSoft 71.08± 0.26 83.75± 0.26 85.67± 0.19 73.83± 0.42 87.85± 0.31 85.92± 0.13
PACFL 73.91± 0.43 85.93± 0.12 87.23± 0.20 80.52± 0.15 93.31± 0.28 92.17± 0.23

CFL 67.46± 0.12 85.18± 0.17 85.19± 0.25 78.94± 0.18 83.16± 0.26 82.75± 0.28
CFL-GP 73.84± 0.28 86.43± 0.14 88.04± 0.19 83.57± 0.15 92.21± 0.23 91.67± 0.19
FedRC 70.19± 0.42 85.24± 0.22 87.91± 0.26 81.76± 0.16 88.27± 0.22 86.29± 0.42
IFCA 74.43± 0.32 87.53± 0.21 88.81± 0.13 82.27± 0.19 92.79± 0.33 92.12± 0.15

FEDDAG∗ 75.52± 0.27 89.65± 0.16 91.27± 0.22 85.03± 0.21 93.95± 0.20 93.08± 0.18
FEDDAG 77.84± 0.23 91.88± 0.10 93.17± 0.18 87.62± 0.14 94.68± 0.13 94.15± 0.11

single global FL baselines (e.g., FedAvg, FedProx) perform poorly under heterogeneity due to model
drift (Zhao et al., 2018), while clustered FL methods yield stronger performance. Both variants of
FEDDAG outperform state-of-the-art baselines—including data-based methods (e.g., PACFL) and
gradient-based methods (e.g., IFCA, FedGWC). The lighter variant, FEDDAG∗, achieves strong
performance by combining data and gradient information to yield improved clustering. The full
FEDDAG further enhances accuracy by enabling complementary representation sharing across clus-
ters, allowing them to learn richer feature spaces.

Exp 2: Finding Optimal Cluster Formation. The server iterates over the clustering threshold α in
Agglomerative HC at regular intervals (e.g., 0.05) to generate candidate clusterings. For each, the
clustering loss L{C1,...,CZ} (see §3.4) is computed. In Figure 2, the x-axis shows α; the red curve
indicates loss, and blue bars denote the number of clusters. Unlike traditional metrics (e.g., inertia)
where loss decreases with more clusters, we observe abrupt increases in loss even as the number
of clusters decreases for certain α values. This is due to FEDDAG’s federated-aware clustering
loss penalizing over-splitting into small clusters. The optimal α is selected as the point with low
clustering loss and a relatively small number of clusters (e.g., for Figure 2(b) α∗ = 0.65).

Exp 3: Ablation Studies. We examine whether accuracy gains from inter-cluster global representa-
tion sharing (GRS) via the dual-encoder architecture (see §4) arise from genuine feature enrichment
or simply from increased model parameters. To isolate this effect, we implement a dual-encoder
variant with GRS disabled: during secondary-encoder training, instead of receiving representations
from other clusters, each client trains its secondary encoder only on its own data and aggregates
within its cluster. We denote this variant FEDDAG†; it is distinct from FEDDAG, which uses a sin-
gle encoder. As shown in Table 3, full FEDDAG (with GRS) achieves the highest accuracy, while
FEDDAG† performs comparably to FEDDAG, confirming that the gains of FEDDAG stem from
cross-cluster representation sharing rather than model size alone.

Experiment on Data Distribution II

Exp 4: Performance under concept shift. Table 2 compares the performance of SOTA algorithms
and FEDDAG on different datasets under concept shift and shows that FEDDAG achieves higher ac-
curacy than the baselines. This improvement stems from FEDDAG’s class-wise comparison mecha-
nism, which provides more accurate similarity estimation under concept shift than existing methods.

Experiment on Data Distribution III

Exp 5: Performance under varying LDA skew. Table 5 shows accuracy under LDA-based skew
with α′ = 0.25 and α′ = 1.0. FEDDAG consistently outperforms SOTA methods by leveraging
cross-cluster feature sharing and integrating data and gradient information for clustering, leading to
robust performance under LDA-based partition.

6 CONCLUSION

We develop a novel algorithm, FEDDAG, that addresses the limitations of existing clustered FL
techniques and effectively tackles data heterogeneity challenges in FL by developing a novel method
that combines both data and gradient information to cluster clients more effectively. Furthermore,
FEDDAG utilizes representation sharing across clusters and incorporates an efficient mechanism to
automatically determine the optimal number of clusters. Experiments on various heterogeneous data
distributions demonstrate that FEDDAG outperforms existing approaches in terms of accuracy.
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A TECHNICAL DISCUSSION AND ANALYSIS

This section presents a detailed discussion and breakdown of FEDDAG, covering key design ele-
ments, communication and privacy considerations, adaptability to new clients and shifting distribu-
tions, and practical implementation details.

A.1 ADDITIONAL RELATED WORK

Data Augmentation based FL techniques propose sharing a small global dataset among clients and
combining it with their local datasets to mitigate heterogeneity (Tuor et al., 2021; Xin et al., 2020).
Approaches such as Xin et al. (2020); Yoon et al. (2021); Guo et al. (2023) employ generative adver-
sarial networks (GANs) or averaged local data (Random Sample Mean) to create privacy-preserving
pseudo-data that is used to reduce bias in client models. Astraea (Duan et al., 2019) constructs a
globally balanced data distribution by performing local augmentation across participating clients.
VHL (Tang et al., 2022) creates virtual samples from noise shared across clients to regularize train-
ing by aligning local feature representations with these virtual data.

Meta-learning approaches include personalized FL (Arivazhagan et al., 2019; Liang et al., 2020;
Li et al., 2024b) and model regularization methods (Li et al., 2021a; T Dinh et al., 2020; Karim-
ireddy et al., 2020). Per-FedAvg (Fallah et al., 2020) is a personalized variant of FedAvg based
on the Model-Agnostic Meta-Learning (MAML) framework. FedPer (Arivazhagan et al., 2019) and
FedRep (Collins et al., 2021) split the backbone into a feature extractor and a head to share feature in-
formation, while FedRoD (Chen & Chao, 2021) maintains a shared feature extractor and two heads.
FedSimSup (Liu et al., 2025) uses a local supervisor and data-similarity–weighted inter-learning
model to better align global knowledge with heterogeneous local data. Our approach, FEDDAG,
maintains global–personal decoupling via a dual-encoder architecture, where the global parameters
are updated only by a selected subset of clients instead of being influenced by all clients.

A.2 PRELIMINARIES

Principal Angles Between Two Subspaces. Consider two subspaces, V = span{v1, . . . ,vp} and
X = span{x1, . . . ,xq}, where V and X are p-dimensional and q-dimensional subspaces of Rn,
respectively. The sets {v1, . . . ,vp} and {x1, . . . ,xq} are orthonormal, with 1 ≤ p ≤ q. A sequence
of p principal angles, 0 ≤ Φ1 ≤ Φ2 ≤ · · · ≤ Φp ≤ π

2 , is defined to measure the similarity between
the subspaces. These angles are calculated as:

Φ(V,X ) = min
v∈V,x∈X

cos−1
(
|vTx|
∥v∥∥x∥

)
(23)

where ∥ · ∥ is the norm. The smallest of these angles is Φ1(v1,x1), with the vectors v1 and x1 as
the corresponding principal vectors. The principal angle distance serves as a metric to quantify the
separation between subspaces Jain et al. (2013).

Agglomerative hierarchical clustering (HC). (Day & Edelsbrunner, 1984) is a popular method in
machine learning for grouping similar objects based on an adjacency (proximity) matrix. We found
HC to be the best fit for FEDDAG. We also experimented with other clustering algorithms, e.g.,
K-means and graph clustering, but we observed that the clustering algorithm does not make much
difference in cluster formation. HC begins by treating each data point as its own cluster. During
each iteration, HC identifies two clusters that are most similar and merges them. The criterion
for selecting which clusters to merge depends on a linkage method; e.g., in single linkage, the
L2 (Euclidean) distance between two clusters is defined as the smallest distance between any pair
of points from the two clusters. As a merging criterion, FEDDAG defines a clustering threshold
α ∈ (0,1], such that any two clusters with a distance less than α are merged.; e.g., α=1 results in
all clients being grouped into a single cluster.

A.3 FEDDAG TECHNICAL COMPONENTS

An illustration of the FEDDAG algorithm is shown in Figure 1. The algorithm for class-wise
weighted data-based similarity computation is shown in Algorithm 2. And, the algorithm for com-
bining both data and gradient information to improve clustering is shown in Algorithm 3.
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A.4 CONVERGENCE ANALYSIS

Following Pillutla et al. (2022) that works on partial model personalization, we consider the
shared–personalized objective:

min
u, V

F (u, V ) :=
1

n

n∑
i=1

Fi

(
u, vi

)
, (24)

where u denotes shared parameters and V = {vi}ni=1 personalized parameters. In our dual-encoder
model (Eq. equation 15), for each cluster z we map the secondary encoder as the shared block and
the primary encoder (optionally together with the classifier) as the personalized block:

uz 7−→ Θ2f
z (shared: secondary encoder),

Vz 7−→ (Θ1f
z ,Θc

z) (personalized: primary encoder + classifier).

Given a fixed clustering {Cz}Zz=1 (one-shot data and gradient combined similarity; see §3), the
cluster-level empirical risk can be written in the shared–personalized form of Pillutla et al. (2022):

min
{uz,Vz}Zz=1

F ({uz, Vz}) =
Z∑

z=1

∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
Fi(uz, Vz),

Fi(uz, Vz) = L
(
Yi, ψ

(
ϕ(1)(Xi; Θ

1f
z ), ϕ(2)(Xi;uz); Θ

c
z

))
.

Thus, for each cluster z, Pillutla et al. (2022)’s analysis applies to the pair (uz, Vz), and the full
objective is a weighted sum over clusters. So, based on this, we will define notations, assumptions,
and the convergence analysis below:

Block notation and participation model. For each cluster z ∈ {1, . . . , Z} in the fixed partition
{Cz}Zz=1, we decompose the parameters as

uz := Θ2f
z (cluster–global / secondary encoder), (25)

Vz := (Θ1f
z ,Θc

z) (cluster–personal: primary encoder + classifier). (26)
Let m be the total number of clients and mz := |Cz| the number of clients in cluster z; define the
cluster weights

πz :=
mz

m
,

Z∑
z=1

πz = 1. (27)

In each communication round, cluster z samples sz clients (without replacement) and runs E local
steps. The average per-round participation fraction is

q̄ :=

Z∑
z=1

πz
sz
mz
∈ (0, 1]. (28)

Loss and per-client objective. For client i ∈ Cz with data Di = (Xi, Yi), define

Fi(uz, Vz) := L
(
Yi, ψ

(
ϕ(1)(Xi; Θ

1f
z ), ϕ(2)(Xi;uz); Θ

c
z

))
, (29)

and the cluster-weighted empirical risk

F
(
{uz, Vz}Zz=1

)
:=

Z∑
z=1

∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
Fi(uz, Vz). (30)

Scope of the analysis. The full FEDDAG algorithm includes three dynamic components: (i) an
initial clustering phase that combines data- and gradient-based similarity (Algorithm 1, Lines 1–
14), (ii) a mechanism to attach newcomers to existing clusters (Appendix, Algorithm 4), and (iii)
an optional re-clustering step under significant distribution shift. In this subsection, we analyze
the stationary training regime between such events: we condition on a fixed client set and a fixed
partition {Cz}Zz=1 and study the convergence behavior of the shared–personalized objective Eq. 30
under this partition. Newcomers or mild distribution changes that do not trigger re-clustering can
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be viewed as small perturbations of the variance and heterogeneity constants in our bound, whereas
a re-clustering event corresponds to switching to a new objective with a new partition and new
constants. The theorem below should therefore be interpreted as a per-phase guarantee for any
interval between two re-clustering events.

Assumptions used in the theorem. We state the standard conditions in our block notation; expec-
tations are w.r.t. the algorithm’s sampling and stochasticity.
Assumption A.1 (Smoothness). Each client loss in equation 29 is L-smooth in (uz, Vz). For all
(uz, Vz) and (u′z, V

′
z ),∥∥∇(uz,Vz)Fi(uz, Vz)−∇(uz,Vz)Fi(u

′
z, V

′
z )
∥∥ ≤ L

∥∥(uz, Vz)− (u′z, V
′
z )
∥∥. (31)

Equivalently, Fi is L-smooth in each sub-block Θ1f
z , Θ2f

z , and Θc
z .

Assumption A.2 (Unbiased stochastic gradients with bounded variance). For any sampled client
i ∈ Cz ,

E
[
∇̃uzF

]
= ∇uzF, E

[
∥∇̃uzF −∇uzF∥2

]
≤ σ2

u,z, (32)

E
[
∇̃Vz

F
]
= ∇Vz

F, E
[
∥∇̃Vz

F −∇Vz
F∥2

]
≤ σ2

V,z, (33)
where∇VzF := (∇Θ1f

z
F,∇Θc

z
F ). Define the cluster-weighted variances

σ̄2
u :=

Z∑
z=1

πz σ
2
u,z, σ̄2

V :=

Z∑
z=1

πz σ
2
V,z. (34)

Assumption A.3 (Gradient diversity / heterogeneity). Let Fz(uz, Vz) :=
1∑

k∈Cz |Dk|
∑

i∈Cz
|Di|Fi(uz, Vz) be the average loss in cluster z. There exist finite constants

δ2in ≥ 0 and δ2out ≥ 0 such that
Z∑

z=1

πz
∥∥∇uzFz −∇uzF

∥∥2 ≤ δ2in, Z∑
z=1

πz
∥∥∇VzFz −∇VzF

∥∥2 ≤ δ2in, (35)

and the cross-cluster mismatch (relevant to the sharing step) is bounded by δ2out.
Assumption A.4 (Phase-wise stable clustering). For the training phase under consideration, the
partition {Cz}Zz=1 obtained at initialization (t=0 of this phase) remains fixed for the analysis hori-
zon t = 1, . . . , T : no clients are reassigned, and clusters do not split or merge within this phase.
Potential re-clustering events (triggered by significant distribution shift) are modeled as the start of
a new phase with its own objective and constants and are therefore outside the scope of the current
per-phase guarantee.
Assumption A.5 (Cross-cluster sharing noise). The cross-cluster representation sharing (via the
CC-Graph) is either deterministic (no additional noise), or it introduces an additive variance
bounded by σ2

share in the updates of the u-blocks.

Initial suboptimality. We denote the initial gap by

∆ℓ := F
(
{u0z, V 0

z }Zz=1

)
− F ⋆, (36)

where F ⋆ is the optimal value of equation 30.
Theorem A.1 (Convergence of FEDDAG (per-cluster globals, dual encoders)). Let the assumptions
above hold. Choose learning rates η = τ/(LE) and ηshare = Θ(1/L), for a constant τ depending
on L, the variance terms, heterogeneity, and participation. Then, ignoring absolute constants and
provided clustering is stable,

1

T

T∑
t=1

[
1

L

Z∑
z=1

E
∥∥∇uzF

∥∥2
+

1

mL

m∑
i=1

E
∥∥∇Vc(i)

F
∥∥2

]
≤

(∆ℓ σ
2
sim,1)

1/2

T 1/2
+

(∆2
ℓ σ

2
sim,2)

1/3

T 2/3
+ O

(
1

T

)
,

(37)
where the effective variance terms are

σ2
sim,1 =

2

L

(
δ2in

Z∑
z=1

πz

(
1− sz

mz

)
+

σ̄2
u

L
+

Z∑
z=1

πz
sz
mz

σ2
V,z + σ2

share

)
, (38)

σ2
sim,2 =

2

L

(
δ2in + δ2out + σ̄2

u + σ̄2
V + σ2

share

) (
1− 1

E

)
. (39)
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Remark 1 (Clustering stability). The bound relies on a fixed partition; oscillations due to re-
clustering invalidate the descent decomposition. In practice, stability is supported empirically by
(i) one-shot blended (data+gradient) clustering at t=0 and (ii) the fact that training is conducted
within the fixed clusters thereafter.

Remark 2 (What differs vs. single-global frameworks). In FEDDAG, we aggregate both the per-
cluster global blocks u1:Z (secondary encoders, coupled via the CC-Graph) and the cluster-personal
blocks V1:Z (primary encoder + classifier). Consequently, σ2

sim,1 and σ2
sim,2 expose: (i) per-cluster

sampling sz/mz (larger sz improves the first term), (ii) local steps E (fewer local steps reduce the
drift factor 1 − 1/E), and (iii) cross-cluster sharing noise σ2

share (zero for deterministic Laplacian
smoothing; small but positive for stochastic distillation). The asymptotic T−1/2 rate is observed
once all devices are seen on average at least once; a convenient sufficient condition (up to constants)
is

T ≥ ∆ℓ

σ2
sim,1

max

{
(1− q̄)E

q̄
, 2

}
, q̄ =

Z∑
z=1

πz
sz
mz

. (40)

A.5 COMMUNICATION AND COMPUTATION COMPLEXITY

FEDDAG minimizes communication and computation overhead, aligning with the scalability re-
quirements of federated learning systems. Before dual-encoder joint training begins, each client
locally trains for tg rounds without federation (see Algorithm 1). At the end of this phase, each
client uploads: (i) a k-sparse gradient ∆̃i of dimension k ≪ |Di|, and (ii) class-wise p principal
vectors U i

c ∈ Rd×r for c = 1, . . . , C. The number of principal vectors p is kept small (typically
1–2% of the class size). Hence, the combined communication cost of ∆̃i and U i

c is negligible rel-
ative to the size of the model parameter space |Θ|. The computation of principal vectors via SVD
incurs a cost of O(FN2) per client, assuming a local dataset of N samples and F features with
N > F .

Once the proximity matrix and clustering are finalized, FEDDAG maintains the same per-round
communication cost as FedAvg in terms of transmitting model parameters. However, due to its
dual-encoder architecture, it additionally transmits a secondary encoder (Θ2f ) alongside the primary
encoder (Θ1f ), both of equal size. In each training round, selected clients perform two local SGD
phases:

• Primary phase — standard local update on (θ1f , θc).

• Secondary phase — additional local update on θ2f
′
, which has the same size as θ1f .

If both phases are executed in the same round, the local computation cost is approximately 2× that of
FedAvg. However, the two phases can be alternated when computation is constrained—for example,
updating the primary encoder for several rounds (e.g., 5 rounds) followed by a single round updating
the secondary encoder. We also perform an experiment evaluating the trade-offs of these alternating
schedules, showing how they affect convergence speed; see §B.9.

Since updates to the primary and secondary encoders are independent, the correctness and conver-
gence of the final model are preserved under this alternating schedule.

A.6 CLUSTERING OVERHEAD OF FEDDAG

While §A.5 analyzes the overall complexity of FEDDAG, here we focus specifically on the clus-
tering component and compare it to other clustered FL approaches. Conceptually, clustering in
FEDDAG can be separated into two parts: (i) a one-time warm-up and initial clustering phase and
(ii) a re-clustering phase to handle distribution shift.

(i) Initial clustering phase. In this part, we discuss the computation and communication overhead
of the warm-up and initial clustering phase:

Computation overhead. In the initial phase, each client runs tg rounds of local warm-up epochs.
As detailed in Appendix B.2 (Hyperparameter Tuning), a small number of rounds, such as tg = 2, is
enough to obtain the client gradient signatures for similarity computation. Another important aspect
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is that these warm-up updates are not discarded. While the clients simply do not participate in FL
aggregation during this short period, once clustering is assigned, training continues directly from
the warmed-up model. The same warmed-up parameters are also used to initialize the secondary
encoder training during our dual-encoder-based clustered FL, so the warm-up is not an additional or
wasted cost.

Another aspect of FEDDAG’s initial clustering is computing per-class principal vectors via truncated
SVD for a client with N samples and feature dimension F , which costs O(FN2). This one-time
SVD, together with tg ≤ 2 warm-up rounds, constitutes the main clustering-side computation over-
head in FEDDAG. The SVD cost is incurred only once during initialization and is amortized over
all subsequent communication rounds. This computation overhead of FEDDAG is compared with
other clustered FL approaches as follows:

• PACFL also performs an SVD/PCA-type step per client to extract principal components, so the
clustering-stage complexity is of the same order. In FEDDAG, one addition that can create a slight
increase is the tg rounds of warm-up, but FEDDAG mainly adds the reuse of the tg warm-up for
the model during the clustering phase, rather than treating clustering as a separate, discarded pre-
processing step.

• In contrast, iterative clustering methods (IFCA, CFL, CFL-GP, FedSoft, FedRC) re-evaluate clus-
tering at every communication round: at round t, the server sendsK cluster models to each partic-
ipating client, and each client must evaluate all K models locally to decide its cluster assignment.
Over T rounds, this leads to roughly KT model evaluations per client, whereas FEDDAG pays
the SVD + warm-up cost only once and then trains on a fixed cluster assignment (unless a rare
re-clustering event is triggered; see below).

Communication overhead. After warm-up, each client uploads a k-sparse gradient ∆̃i (only 1–2%
of coordinates) and a small number of per-class principal vectors U i

c (about 1–2% of the class data
size). The resulting communication is negligible compared to sending the full model parameters
|Θ|. Both the sparsified gradient and the principal vectors are communicated only once during the
clustering phase, so their cost is also amortized over the entire training run. The communication
overhead is compared to other clustered FL approaches as follows:

• PACFL has a similar one-shot communication pattern for principal components during clustering,
as it also sends principal vectors. FEDDAG incurs a slightly higher cost because it additionally
sends the sparsified gradient, but this is still a single extra message of size 1–2% of the model.

• Iterative clustered FL methods such as IFCA, CFL, CFL-GP, FedRC, and FedSoft must send allK
cluster models (each of sizeM ) to every participating client in every round, so each client receives
on the order of KM parameters per round and returns updates for its chosen cluster. In contrast,
FEDDAG only sends 1–2% of the model parameters M and principal vectors whose total size is
about 1–2% of the client data.

(ii) Re-clustering overhead. We discussed that FEDDAG performs re-clustering under severe dis-
tribution shift (Appendix A.8) as an infrequent, deployment-time procedure: it is triggered only
after a major shift in the client distribution and is not used in our main experiments (e.g., when
the Wasserstein distance changes by more than 20%). When activated, it simply re-runs the same
warm-up + principal vector computation and clustering procedure, again without resetting the mod-
els, so the cost is similar to the initial clustering phase as above. During the FL training period (apart
from the re-clustering mechanism), FEDDAG does not require further clustering, as it trains on the
assigned clusters.

To complement the qualitative discussion of computation and communication overhead above, we
next provide a simple numerical complexity analysis that quantifies how the clustering cost of one-
time SVD and partial gradient convergence in FEDDAG compares to the per-round clustering cost
of iterative clustered FL methods. Secondly, we also provide an alternative approach to compute
principal vectors that reduces the overall clustering overhead.

A.6.1 NUMERICAL ANALYSIS OF CLUSTERING OVERHEAD

The discussion above compares FEDDAG qualitatively to iterative clustered FL methods. We now
provide a simple numerical complexity analysis to quantify the relative overhead.
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For each client with local sample size N and feature dimension F , let X ∈ RN×F denote its feature
matrix. A full SVD of X would cost on the order of:

O
(
min{NF 2, FN2}

)
,

but FEDDAG only requires the top p ≪ min(N,F ) singular vectors per class. Using efficient
truncated or randomized SVD, as shown here Halko et al. (2011), the per-client cost reduces to:

O(pNF ),
which is linear in both N and F , and this cost is incurred only once during the warm-up / initial
clustering phase.

By contrast, iterative clustered FL methods (e.g., IFCA, CFL, CFL-GP, FedGWC, FedRC, FedSoft)
maintain K cluster models and, in each communication round, send all K models to every partic-
ipating client. To update cluster assignments, each client evaluates all K models on its N local
samples. Let Mfwd denote the cost of a single forward pass of the full model on one sample. Then
the per-round and total clustering costs of these methods are

iterative per-round cost: O(KNMfwd).

iterative total cost over T rounds: O(KTNMfwd).

Comparing the clustering cost of FEDDAG and iterative clustered FL methods for a single client,
we first account for the components of FEDDAG’s clustering overhead. This consists of the one-
time truncated SVD used for initial clustering and the tg = 2 warm-up rounds needed to obtain
stable gradient signatures. Even though these warm-up updates are reused for subsequent training
(and hence are not wasted), we conservatively count them toward the clustering overhead. Thus, the
per-client clustering cost of FEDDAG is

FedDAG clustering cost: O
(
pNF

)
+O

(
2NMfwd

)
,

where p is the number of principal vectors, N is the local sample size, F is the feature dimension,
and Mfwd denotes the cost of a single forward pass of the full model on one sample.

By contrast, iterative clustered FL methods require evaluating all K cluster models on the client’s
N local samples in every communication round and repeating this over T rounds. The resulting
per-client clustering cost is:

iterative clustering cost: O
(
KTNMfwd

)
.

The ratio between the total iterative clustering cost and the (conservatively defined) clustering cost
of FEDDAG is therefore

R =
iterative clustering cost

FEDDAG clustering cost
=

KTNMfwd

pNF + 2NMfwd
=

KTMfwd

pF + 2Mfwd
.

To obtain a concrete sense of scale, consider a CIFAR-10 setup with 100 clients. The training set has
50,000 examples, so each client holds about N ≈ 500 samples. Assume a standard convolutional
network with three convolutional layers followed by two fully connected layers, whose encoder
outputs F = 256-dimensional features and whose total parameter count is approximately 5.4× 105.
We approximate the per-sample forward cost by this parameter count, i.e., Mfwd ≈ 5.4 × 105.
Following our earlier assumption, we take the number of principal vectors to be a small fraction of
the local data, p = 0.02N ≈ 10.

Substituting these values into the denominator,
pF + 2Mfwd ≈ 10 · 256 + 2 · 5.4× 105 = 2,560 + 1.08× 106 ≈ 1.08× 106,

so the term 2Mfwd dominates. Consequently,

R ≈ KTMfwd

2Mfwd
=
KT

2
.

For a representative clustered FL setting with K = 5 clusters and T = 200 communication rounds,
we obtain

R ≈ 5 · 200
2

= 500,

meaning that the cumulative iterative clustering overhead is roughly 500× larger than FEDDAG’s
one-time truncated SVD plus warm-up cost per client.
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These estimates indicate that, in the regimes we study (small p relative to N , moderate K, tens
to hundreds of rounds, and a realistic convolutional backbone such as SimpleCNN), the additional
clustering overhead of iterativeK-model evaluation in clustered FL baselines dominates FEDDAG’s
one-time truncated SVD plus warm-up cost.

A.6.2 ALTERNATIVE PRINCIPAL-VECTOR COMPUTATION VIA CLASS-WISE SUBSAMPLING

Although the analysis above shows that the one-shot clustering overhead of FEDDAG is significantly
smaller than the per-round clustering cost of iterative clustered FL methods, we can further reduce
the overall cost and make FEDDAG’s clustering overhead comparable to other non-clustering FL
approaches by modifying how we compute principal vectors.

Subsampled principal vectors. In our original class-wise weighted data-similarity mechanism
(Eq. 4–6), each client i uses the full set of samplesDi,c for class c to compute p principal vectors U i

c
via truncated SVD. In the alternative variant, each client instead constructs a class-wise subsample
D̃i,c ⊆ Di,c of size si,c, chosen according to its local computation and memory budget (e.g., a fixed
per-class cap or a fixed fraction of |Di,c|), and applies truncated SVD (Klema & Laub, 1980) on D̃⊤i,c
to obtain p principal vectors Ũ i

c = [ũ1, . . . , ũp], which replace U i
c in the subsequent pipeline. The

server then proceeds exactly as in Eq. 4–6, computing principal angles and applying class-frequency
weighting using Ũ i

c , so that the final similarity Ṽi,j is obtained from subsampled data.

Extension to CC-graph construction. The same sampling idea can be applied when construct-
ing the cluster complementarity graph (CC-graph) in §4. Instead of using all available samples to
compute the alignment scores Γp,q,c between clusters p and q for class c, we compute Γp,q,c from
class-wise subsamples drawn from the participating clusters. This further reduces the overall com-
putation and communication overhead of FEDDAG.

A.7 PRIVACY CONSIDERATIONS

Privacy is a foundational aspect of federated learning, which aims to enable collaborative model
training while protecting the sensitive data of individual clients. In the context of FEDDAG, we ex-
amine the privacy implications of both the similarity estimation and representation-sharing phases.
During client clustering, FEDDAG constructs a weighted, class-wise data similarity matrix using
a small set of class-representative principal vectors and per-class sample counts provided by each
client. Crucially, the shared principal vectors are reduced linear combinations of local data and do
not expose any raw samples or labels. Moreover, each client contributes fewer than 1% of such
vectors per class, ensuring minimal data exposure. This approach aligns with prior privacy-aware
clustering methods Vahidian et al. (2023), which also transmit low-dimensional representative vec-
tors to the server. In more privacy-sensitive deployments, additional protection mechanisms can
be integrated into FEDDAG. For instance, secure aggregation protocols (Bonawitz et al., 2017),
encryption techniques, or differential privacy can be used to protect the shared principal vectors.

Privacy mechanisms can also be used to prevent leakage of the class-frequency information that we
use when weighting similarity values. For example, FLIPS (Bhope et al., 2023) employs a trusted
execution environment (TEE) to protect label distributions, which are used to select a diverse set
of clients during FL training. Similarly, FEDDAG could employ differential privacy (DP) (Dwork,
2006) by perturbing class counts with carefully calibrated noise so that the contribution of any
single example is statistically hidden. As another privacy-based option, FEDDAG could employ
homomorphic encryption (HE) (Gentry, 2009), allowing the server to compute weights directly on
ciphertexts without learning the raw values. However, designing and implementing such privacy
mechanisms is beyond the scope of this work, so we do not pursue them further.

To further mitigate information leakage during gradient-based similarity estimation, FEDDAG can
adopt encryption strategies similar to those proposed in Sattler et al. (2020). During cross-cluster
feature sharing (see §4), when a cluster requests representations from a source cluster, only the
aggregated gradients computed from the source cluster’s clients are shared. No individual client’s
gradient information is exposed at any point.
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Algorithm 2: Proximity Matrix Computation
Input: Principal vectors U∗, sparsified gradients ∆̃∗ for all clients
Output: A, proximity matrix between all client pairs

1 Function: ProximityMatrix(U∗, ∆̃∗)
2 for client i = 1, . . . , N and for client j = 1, . . . , N do
3 for class c = 1, . . . , C do
4 Compute V′

i,j,c using Eq. 4
5 ComputeW′

i,j,c using Eq. 5
6 Compute Vi,j using Eq. 6 and V̂ ← normalize(V)
7 Compute Gi,j using Eq. 3 and Ĝ ← normalize(G)
8 Initialize weight vector w = (w1, . . . , wN )⊤ ∈ [0, 1]N randomly
9 while not converged do

10 Compute entropy loss Len using Eq. 8
11 w ← w − η∇wLen; and w ← clip(w, 0, 1) // MLP-based update
12 Compute Ai,j as in Eq. 7 and returnAi,j

Algorithm 3: Clustering Threshold Search in FL
Input: Proximity matrixAi,j , threshold set Sα

Output: Optimal clustering {C1, . . . ,CZ}
1 Function OptimalClustering(A, Sα):
2 Initialize empty list records
3 for α ∈ Sα do
4 Generate candidate clustering Cα using hierarchical clustering (HC) onA with threshold α
5 Compute L1 and L2 (Eq. 9) for Cα

6 Total clustering score L{C1,...,CZ} = L1 + λL2

7 Save tuple (α,L{C1,...,CZ}) to records
8 Select α∗ with low score and relatively small Z from records

9 return Optimal clustering {C1, . . . ,CZ} ← Cα∗

A.8 GENERALIZATION TO NEWCOMERS — ALGORITHMS 4

High-level idea. In real-world FL systems, new clients may join after the initial clustering and model
training have already begun. Moreover, clients may not always remain continuously available. To
handle such cases, we extend FEDDAG with a lightweight mechanism that allows new clients to
seamlessly join existing clusters without disrupting ongoing training. Specifically, each new client
computes its data and gradient information, which are used to extend the proximity matrix to include
similarity values for the new client. This updated matrix is then used by the clustering algorithm
to determine the appropriate cluster assignment. Once assigned, the client is integrated into the
designated cluster without re-evaluating the optimal clustering or retraining any previously learned
weights.

Details of the method. The process for integrating a new client inew is similar to that used for initial
clients (as in §3). FEDDAG first performs local training on inew’s data for tg rounds to reach partial
convergence. Afterwards, client inew computes its sparsified gradient update ∆̃inew and class-wise
principal vectors U inew

c and sends them to the server. The server updates the existing data similarity
matrix V̂i,j and gradient similarity matrix Ĝi,j to their extended forms V̂new

i,j and Ĝnew
i,j , incorporating

information from the new client. To combine the data and gradient, FEDDAG initially learns a
weight vector w (see §3.3). To integrate the new client, FEDDAG extends this process by assigning
a weight winew ∈ [0, 1] and learning it using the same entropy loss (Eq. 8) used during initial training,
but optimizing only for winew without modifying existing weights. Using the extended weights wnew,
the proximity matrix Anew

i,j is computed based on V̂new
i,j , Ĝnew

i,j , and winew , as defined in Eq. 7 in §3.3.

Finally, the server reuses the previously selected clustering threshold α∗ (from Optimal Clustering
in §3.4) and performs a single hierarchical clustering (HC) pass on Anew

i,j to assign inew to a cluster
Cz(inew). After assignment, client inew initializes its model from the corresponding cluster’s global
parameters and directly joins the existing FEDDAG training flow (i.e., the else branch at line 15 in
Algorithm 1). This extension enables efficient onboarding of new clients by reusing the established
clustering threshold and global models, avoiding disruption to ongoing training. The complete pro-
cess is summarized in Algorithm 4. Also, we evaluate the generalization capability of FEDDAG to
unseen clients through experiments reported in Appendix §B.6.
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Algorithm 4: Generalization to Newcomers
Input: New client inew, clustering threshold α∗, current clusters {C1, . . . ,CZ}, current proximity matrixAi,j , data matrix Vi,j ,

gradient matrix Gi,j
Output: Updated client inew models

1 Function NewcomerIntegration(inew, α∗):
2 Initialize client inew with random θ0

inew
3 Set local counter tinew = 0

// Tracks local warm-up rounds
4 for each global round t do
5 if tinew < tg then
6 Local training of θ0

inew using local data (no federation)
7 tinew ← tinew + 1
8 if tinew = tg then
9 Client inew sends ∆̃inew and Uinew

c to server
// --- Extend proximity matrix ---

10 Server extends V̂new
inew,j and Ĝnew

inew,j to include the new client
11 Server initializes winew ∈ [0, 1] and learns it using Eq. 8 (§3), keeping existing weights fixed
12 Server extends proximity matrixAnew

i,j using Eq. 7 (§3) with V̂new
i,j and Ĝnew

i,j

// --- Cluster assignment ---
13 Server executes hierarchical clustering with α∗ onAnew

i,j to assign inew to cluster Cz(inew)

14 Client inew sets θ1f
inew

, θc
inew from (Θ1f

z(inew)
,Θc

z(inew))

// Aggregate secondary encoders from related clusters (via H)
15 Client inew sets θ2f′

inew
←

∑
j:H(j,z(inew))=1 Θ2f

j

16 else
// --- Standard training phase (same as else branch in Algorithm 1) ---

17 Train (θ1f
inew

, θc
inew ) via SGD using Eq. 17

// Primary training

18 Train θ2f′
inew

via SGD using Eq. 20
// Secondary training

19 Broadcast updated (θ1f
inew

, θc
inew , θ

2f′
inew

) to server

A.9 HANDLING DATA-DISTRIBUTION SHIFT

High-level idea. After FEDDAG has converged, the data of already-clustered clients may still
evolve over time (e.g., new sensor drifts, changes in user behavior). If the local distribution of a
client drifts too far from what its current cluster represents, the global model quality may degrade.
We, therefore, add a mechanism that decides whether a client needs to be re-evaluated for clus-
ter assignment. In addition, to accommodate a growing client population, FEDDAG periodically
re-assesses the clustering to ensure the configuration remains consistent with the evolving client
landscape. Specifically, the Wasserstein distance (Duan et al., 2021) is employed to track shifts in
the class distribution of each client’s local data over time; when a significant shift is detected, the
system recomputes that client’s data and gradient representations and re-evaluates its proximity to
other clients using the same similarity fusion mechanism described in §3. This enables re-clustering
of the client without disrupting other participants or restarting global training.

Client re-evaluation. Let P(t)
i denote the empirical class histogram of client i at round t. Every

δ′ rounds, we compute the 1-Wasserstein distance3 between the current and previous histograms as
W1

(
P(t)
i , P(t−δ′)

i

)
. Client i is marked as shifted if:

W1

(
P(t)
i , P(t−δ′)

i

)
> τi :=

0.2

LabelSize
· ni, (41)

where ni is the number of new samples processed by client i since round t−δ′. Eq. 41 flags a shift
when roughly 20% of local data has changed.

A shifted client does not immediately trigger global re-clustering. Instead, its cluster assignment is
re-evaluated through a procedure that re-computes data and gradient information for the server (sim-
ilar to generalizing to newcomer clients in §A.8). For the next tg rounds, the shifted client i trains
its primary encoder and classifier on local data without federation so that the resulting gradients
reflect its own distribution rather than the global model. After local training, the client computes its
gradient update ∆i, applies k-sparsification to obtain ∆̃i, re-computes class-wise principal vectors

3For image classification, we treat classes as discrete points on the line 0, . . . , C−1; the 1-Wasserstein
distance then has a closed form based on cumulative histograms.
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U i
c from local data, and sends U i

c and ∆̃i to the server. These components update the data similar-
ity matrix V̂i,j , the gradient similarity matrix Ĝi,j , and the proximity matrix Ai,j . The server then
re-evaluates clients’ cluster assignments by performing a single hierarchical-clustering pass on the
updated Ai,j using the fixed optimal threshold α∗ (derived in §3.4). If a reassignment occurs, the
client initializes its model from the corresponding global model and continues training.

Accommodating growing population. To support an expanding set of participants, FEDDAG
periodically re-evaluates the clustering after a specified number of new clients have joined. This
reassessment determines whether the updated client distribution warrants a change in the cluster
structure. Concretely, FEDDAG re-runs the optimal clustering selection procedure by sweeping
over candidate threshold values α (as in §3.4). If a new clustering configuration is chosen, the al-
gorithm updates the necessary components (e.g., the cluster complementarity graph, re-initializes
the global model from client models) and resumes training, ensuring consistency with the evolving
client landscape.

A.10 COMPARISON OF DUAL ENCODER ARCHITECTURE WITH PERSONALIZED FL

In this section, we clarify how FEDDAG’s dual-encoder architecture differs from (i) personalized
FL with a shared feature encoder and personalized/global heads and (ii) feature-skew FL with
global/personal feature encoders.

Comparison with shared feature encoders. Classical personalized FL typically assumes that fea-
ture extraction can be largely shared across clients and that personalization is only needed at the
classifier layer. Concretely, many approaches decompose the model into (i) a shared feature extrac-
tor or shared head and (ii) a per-client personalized head or personalized feature extractor, implicitly
assuming that a single global feature space is suitable for all clients and tasks. In heavily non-IID
regimes with strong label skew and feature shift, this assumption can fail: clients or clusters may
have different learning objectives and feature supports, so forcing them into one shared feature ex-
tractor can cause negative transfer. FedBR (Guo et al., 2023) explicitly visualizes that, even for the
same input, local-model and global-model features can differ substantially, indicating that feature
extraction is not a purely global, universally shared operation.

To address the generalization vs. personalization trade-off, several FL methods maintain both local
and global feature extractors or add auxiliary encoders/supervisors. For example, FedBR (Guo et al.,
2023) uses separate local and global feature extractors to reduce classifier bias while preserving
client-specific features, and FedSimSup (Liu et al., 2025) lets each client hold two models—a local
supervisor and an inter-learning model—where the supervisor aligns the inter-learning model with
heterogeneous local data.

Comparison to other personalized/global methods. FEDDAG belongs to this family of methods
with an extra encoder. Most prior global/local feature schemes decompose the model into: i) a
global part: a shared feature extractor, and ii) a personalized part: a per-client local feature extractor.
However, FEDDAG leverages the clustered FL framework and a different training mechanism to
improve upon those existing approaches, as desribed below:

1. Global feature vs. selective complementary features. In these pFL approaches, a single global
feature extractor is influenced by all clients, including those with very different objectives or very
small, noisy datasets, which can cause negative transfer. In contrast, FEDDAG does not build one
monolithic global representation. It uses the CC-Graph to select only complementary source clusters
and imports features from them via the secondary encoder. Effectively, FEDDAG factorizes the
representation into i) cluster-specific personal features, and ii) selected complementary features from
other clusters; avoiding contamination from unrelated or low-quality sources.

2. Secondary encoder trained directly on other clusters’ data. In FEDDAG, the secondary en-
coder of a learner cluster is sent to CC-Graph–selected source clusters, trained on their local data,
and then sent back as an updated encoder. Thus, the secondary encoder acts as a parameter carrier
that directly learns from other clusters’ data. This differs from typical feature-skew FL, which usu-
ally relies on a single global backbone or indirect signals (e.g., distilled logits or prototypes) rather
than remote training on other clients’ data. As a result, FEDDAG’s secondary encoder performs
targeted cross-cluster feature extraction guided by the CC-Graph, rather than serving as just another
shared or personalized feature extractor.
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A.11 DUAL-ENCODER ALTERNATIVE INITIALIZATION AND TRAINING

High-level idea. In our dual-encoder architecture, the goal is for the primary and secondary en-
coders to capture complementary information. In the main FEDDAG pipeline, this is facilitated by
initializing the primary encoder using partially converged gradients obtained during gradient-based
similarity estimation, rather than initializing both encoders at random. Here, we investigate an al-
ternative strategy to initialize encoders. regularizer. This variant modifies FEDDAG dual-encoder
initialization and architecture as follows:

• Both encoders in each cluster are initialized randomly
• The primary-encoder objective is augmented with a regularization term that penalizes excessive

alignment between the feature representations of the two encoders.

All other components of FEDDAG (cluster-wise FedAvg, CC-Graph–guided enrichment,
secondary-encoder updates, etc.) remain unchanged. This variant is described in detail below:

Details of the method. At first, FEDDAG initializes both the primary-encoder parameters Θ1f and
the secondary-encoder parameters Θ2f randomly, as described above. Then, during the primary-
encoder training phase (see Eq. 16), to explicitly encourage ϕ(1)(·; θ1f ) and ϕ(2)(·; Θ2f ) to learn
complementary representations rather than collapse to similar feature directions, we introduce a
diversity regularizer Rdiv that penalizes excessive alignment between their outputs, as follows:

Rdiv(θ
1f
i ,Θ2f

z(i)) = Ex∼Di

[(
cos(ϕ(1)(x; θ1fi ), ϕ(2)(x; Θ2f

z(i)))
)2]

, (42)

where cos(·, ·) denotes cosine similarity. Large cosine similarity indicates alignment between the
encoders; minimizing cos2 therefore pushes the encoders toward complementary feature directions.

The local objective, as shown in Eq. 16, after modification becomes:

ℓdivi (θ1fi , θci ) = L
(
Yi, ψ(ϕ

(1)(Xi; θ
1f
i ), ϕ(2)(Xi; Θ

2f
z(i)); θ

c
i )
)
+ λdivRdiv(θ

1f
i ,Θ2f

z(i)), (43)

where λdiv > 0 controls the strength of the diversity term. During local SGD, client i updates
(θ1fi , θci ) using ℓdivi (θ1fi , θci ), while Θ2f

z(i) remains fixed and is updated later via the secondary-
encoder enrichment step. The secondary-encoder training and all other components of FEDDAG
remain unchanged. We also evaluate the effectiveness of this alternative encoder initialization em-
pirically as shown in §B.8.

B ADDITIONAL EXPERIMENTS

In this section, we show implementation details, ablation studies, additional experiments regarding
hyperparameter selection and sensitivity, and FEDDAG performance on different data distributions.

B.1 IMPLEMENTATION DETAILS

We now describe the implementation details used in our experiments, including model architectures
and training hyperparameters. For datasets such as CIFAR-10 and SVHN, we adopt a convolutional
neural network (LeCun et al., 2002) composed of three convolutional layers followed by two fully
connected layers. For FMNIST, we use a simpler architecture with two convolutional layers and
a single dense layer. Local training on each client is performed using stochastic gradient descent
(SGD) with a learning rate of 0.01, momentum of 0.5, weight decay of 1 × 10−4, and a batch
size of 64. Each client trains locally for 10 epochs per round. Unless stated otherwise, we run
a total of 200 global communication rounds, with 20% of clients sampled per round. We report
classification performance using balanced accuracy, averaged across clients to account for non-IID
data distributions.

B.2 HYPERPARAMETER TUNING

In the context FEDDAG, hyperparameters play a crucial role in determining the model’s perfor-
mance, stability, and robustness. To better understand the effectiveness of FEDDAG, we investigate
how sensitive the algorithm is to variations in different hyperparameters.
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Local Steps (tg). The parameter tg controls the number of local training epochs each client per-
forms on its own data before sending gradient information to the server. This step is crucial for
estimating each client’s gradient direction, which is used to compute the gradient similarity matrix.
Since this training is done without any federation, the resulting gradients reflect only the client’s
local data. The choice of tg affects the trade-off between computation efficiency and the quality of
similarity estimation. Ideally, we want tg to be as small as possible, while still enabling the gradients
to converge enough to produce meaningful similarity measurements. Table 6 shows how accuracy
varies with different values of tg across datasets. In these experiments, the gradient similarity ma-
trix alone (instead of combining data and gradient) was used as the proximity matrix to assess how
effectively gradient information captures client similarity. We also switch off dual-encoder and only
use single encoder FEDDAG∗ (see §5). The setup follows Data Distribution I (see §5) with α′ = 1,
ρ = 30%, and consistent hyperparameter settings. Each communication round included 10 local
training steps. As shown, increasing tg improves accuracy initially, as longer local training leads
to more stable and comparable gradients. However, accuracy plateaus around tg = 2 for most
datasets, indicating that the gradients have sufficiently converged for reliable similarity estimation.
Beyond this point, additional local steps yield diminishing returns. Therefore, tg = 2 provides a
good trade-off between accuracy and efficiency.

Table 6: Test accuracy for different values of local training rounds tg (with 10 local steps per round)
across datasets, evaluated under Data Distribution I with 30% class skew and Dirichlet α′ = 1.

tg CIFAR-10 SVHN FMNIST
1 80.81±0.59 84.82±0.24 93.18±0.11
2 83.34±0.52 90.05±0.16 93.18±0.11
3 83.34±0.52 90.05±0.16 93.18±0.11

Weight Range for Data Similarity Matrix (δ). The parameter δ controls the sensitivity of the
data similarity matrix to dataset size imbalance when comparing clients. Specifically, this weight-
ing mechanism penalizes similarity scores between clients with large differences in dataset sizes,
thereby reflecting the quantity shift more accurately. The impact of these size-based penalties is
governed by the value of δ: smaller values result in minimal influence, while larger values increase
the penalty’s effect. Each computed similarity value is reweighted and normalized into the range
[1− δ, 1 + δ], with δ ∈ [0, 1), allowing the final similarity score to scale by at most a factor of two.
Table 7 report test accuracy for various values of δ across multiple datasets. Since the weighting
mechanism primarily addresses size disparity and quantity shift, we examine its effect under the
Dirichlet concentration factor: α′ = 0.25 (severe shift). To isolate the effect of different values of δ
on accuracy, we use only the data similarity matrix (instead of combining data and gradient similar-
ity) when computing the proximity matrix for clustering. These experiments follow the Data Dis-
tribution I described in §5, using identical hyperparameters. From Table 7, we observe that higher
δ values (e.g., 0.6) can lead to improved clustering and accuracy. This suggests that the weight-
ing scheme is particularly beneficial in highly heterogeneous environments, where accounting for
dataset size differences enhances similarity estimation.

Table 7: Accuracy metrics for various values of weight range δ under Data Distribution I (Dirichlet
α′ = 0.25, 20% class skew).

δ CIFAR-10 SVHN FMNIST
0.2 87.51±0.18 91.74±0.08 91.79±0.08
0.4 87.51±0.18 91.74±0.08 92.21±0.09
0.6 87.95±0.13 91.91±0.13 92.21±0.09
0.8 87.95±0.13 91.91±0.13 92.21±0.09
1.0 87.95±0.13 91.91±0.13 92.21±0.09

Top-k values in CC-Graph. The parameter k determines how many top-ranked clusters are selected
as knowledge sources for each target cluster in the complementarity graph H . This graph guides
which clusters will supply feature representations to others during the secondary encoder training
phase. For every row in the complementarity score matrix (Eq. 12), only the top-k highest scor-
ing entries are retained to form directed edges. A smaller k limits each cluster to fewer sources,
possibly reducing noise but also restricting diversity. In contrast, a larger k increases the opportu-
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Table 8: Accuracy for different values of top-k retained in the complementarity graph H under Data
Distribution I (Dirichlet α′ = 1, 30% class skew).

k CIFAR-10 SVHN FMNIST
1 90.85±0.13 97.09±0.08 97.71±0.05
2 91.02±0.12 97.19±0.04 98.36±0.10
3 90.95±0.16 97.01±0.07 98.57±0.08
4 90.96±0.21 96.78±0.12 98.41±0.11

Table 9: Test accuracy (%) as a function of the gradient sparsification ratio with only gradient
similarity and singel encoder (fraction of coordinates retained in ∆̃i) under Data Distribution I (30%
label skew, α′ = 1, tg = 2).

Sparsity (entries kept) CIFAR-10 SVHN FMNIST
0.1% 82.52± 0.60 89.23± 0.25 92.81± 0.14
0.5% 83.34± 0.52 90.05± 0.16 93.18± 0.11
1% 83.34± 0.52 90.05± 0.16 93.18± 0.11
2% 83.34± 0.52 90.05± 0.16 93.18± 0.11
20% 83.34± 0.52 90.05± 0.16 93.18± 0.11

nities for learning from complementary clusters but may include low-quality connections that dilute
representation quality.

Table 8 shows how varying the number of source clusters k in the complementarity graph H affects
the performance of FEDDAG. Experiments are conducted under Data Distribution I with Dirichlet
concentration parameter α′ = 1 and 30% label skew, while keeping all other hyperparameters fixed.
We observe that performance generally improves when k ≥ 2, benefiting from knowledge transfer
across multiple relevant clusters. In some cases, increasing k beyond 2 continues to help (e.g.,
FMNIST), while in others (e.g., SVHN), it leads to marginal drops in accuracy. This suggests that
the optimal value of k depends on the dataset characteristics and the number of clusters in the current
formation. We adopt k = 2 as a balanced choice to ensure diversity while maintaining relevance.

Sparsified Gradient ∆̃i. From Section §3.1 that, after a short local warm-up, each client i computes
a gradient update ∆i on its local data and transmits a k-sparsified version ∆̃i to the server. Here, ∆̃i

retains only a small random subset of coordinates of ∆i, and the gradient sparsification ratio refers
to the fraction of coordinates that are kept in ∆̃i when constructing the gradient similarity matrix in
Eq. 3. In this subsection, we study how the final test accuracy varies as we change this sparsification
ratio. To isolate the effect of sparsification, we use only gradient-based similarity (no data-based
similarity) when forming the client similarity matrix. We also switch off dual-encoder and only use
single encoder FEDDAG∗ (see §5). The experimental setup matches our main configuration for
Data Distribution I: we use a 30% label-skew with Dirichlet α′ = 1, fix the local warm-up to tg = 2

rounds with 10 local steps per round, and vary the fraction of coordinates retained in each ∆̃i.

Table 9 reports the test accuracy as a function of the sparsification ratio (percentage of coordinates
kept in ∆̃i). We observe that keeping as little as 0.5% of the gradient coordinates in ∆̃i is already
sufficient to obtain essentially the same accuracy as much denser settings. For sparsification ratios at
or above 0.5%, the resulting gradient-based similarities are very similar, leading to almost identical
clustering structure and final performance. In contrast, at 0.1% sparsity, the similarities become
noisier, slightly degrading clustering quality and accuracy. Based on these results, in our main
experiments we choose sparsification ratios in the range of 1–2% for ∆̃i, which provides a good
trade-off between communication efficiency and clustering quality.

B.3 EXPERIMENTS ON DATA DISTRIBUTION I

Exp 1: Performance Evaluation. This section presents the additional results referenced in the
main paper for α′ = 1, under class skew ρ = 20% and 30%, following the setup described in §5.
The results, shown in Table 10, further validate the effectiveness of FEDDAG on Data Distribution I
under moderate quantity shift. The same set of baselines is used, and results are reported across all
four datasets.
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Table 10: Exp 1: Performance comparison for Data Distribution I with 20% and 30% non-IID label
skew under low quantity shift (Dirichlet α′ = 1).

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 46.20 ± 0.97 57.12 ± 0.30 74.61 ± 0.36 51.34 ± 0.78 57.48 ± 0.17 77.17 ± 0.24 68.34 ± 0.45 53.13 ± 1.46
FedProx 46.77 ± 0.14 56.81 ± 0.16 77.23 ± 0.45 53.38 ± 0.86 57.80 ± 0.23 73.87 ± 0.25 69.65 ± 0.19 53.97 ± 0.85

PerFedAvg 84.68 ± 0.19 91.18 ± 0.21 92.34 ± 0.13 69.43 ± 0.22 82.83 ± 0.14 94.74 ± 0.17 91.48 ± 0.29 60.70 ± 0.30
FedSoft 77.42 ± 0.21 87.64 ± 0.35 90.48 ± 0.24 65.98 ± 0.37 76.94 ± 0.38 89.56 ± 0.37 84.86 ± 0.45 56.61 ± 0.31
PACFL 90.45 ± 0.30 94.41 ± 0.31 94.96 ± 0.12 70.35 ± 0.36 87.01 ± 0.38 97.28 ± 0.24 94.36 ± 0.19 63.91 ± 0.76

CFL 72.80 ± 0.66 86.97 ± 0.23 82.06 ± 0.34 61.43 ± 0.92 71.85 ± 0.79 85.67 ± 0.23 80.23 ± 0.25 52.90 ± 1.17
CFL-GP 87.83 ± 0.19 91.45 ± 0.27 90.38 ± 0.16 69.73 ± 0.20 85.67 ± 0.25 96.82 ± 0.24 92.29 ± 0.09 61.24 ± 0.73
FedGWC 89.58 ± 0.17 93.56 ± 0.09 93.67 ± 0.13 72.75 ± 0.29 86.18 ± 0.25 96.97 ± 0.14 92.94 ± 0.19 61.35 ± 0.43
FedRC 76.12 ± 0.28 86.45 ± 0.42 89.22 ± 0.31 64.78 ± 0.33 75.12 ± 0.31 91.02 ± 0.44 83.67 ± 0.38 57.89 ± 0.24
IFCA 89.68 ± 0.17 94.02 ± 0.09 93.28 ± 0.13 72.86 ± 0.29 86.42 ± 0.25 96.61 ± 0.14 92.86 ± 0.19 61.34 ± 0.43

FEDDAG 94.53 ± 0.12 96.82 ± 0.18 97.04 ± 0.23 75.32 ± 0.33 91.02 ± 0.12 98.36 ± 0.10 97.19 ± 0.04 67.17 ± 0.61

Exp 6: Convergence Under Limited Communication rounds. We compare the performance of
FEDDAG against SOTA baselines under a constrained communication budget of 80 rounds. Fig-
ure 3 reports the final local test accuracy versus the number of communication rounds for four
datasets. The results demonstrate that FEDDAG consistently converges within 20 to 30 communi-
cation rounds, outperforming all other methods in both convergence speed and final accuracy.

(a) CIFAR-10 (b) FMNIST (c) SVHN (d) CIFAR-100

Figure 3: Exp 6: Accuracy vs. number of comm. rounds, Data Distribution I, non-IID (30%), α′=1.

B.4 DATA DISTRIBUTION IV

This distribution evaluates FEDDAG under a combination of feature skew and label skew. To sim-
ulate feature skew, we follow an approach similar to FedRC (Guo et al., 2024), which leverages
datasets (e.g., CIFAR-10-C) that apply diverse image corruptions or use domains, thereby introduc-
ing different feature styles. To simulate label skew, we adopt the LDA method (Hsu et al., 2019).
Specifically, each client is assigned one of the available corruption types (e.g., fog, contrast, etc.
for CIFAR-10-C) or domains (e.g., cartoon, photo, etc. for PACS) to create feature skew, and the
samples are distributed using the Dirichlet factor α′ = 1.

Dataset. We use four datasets for this task in the FL setting: CIFAR-10-C, TINY IMAGENET-
C (Hendrycks & Dietterich, 2019), PACS Li et al. (2017), and Office-Caltech-10 Gong et al. (2014),
thereby covering both corruption-based and domain-level feature shift.

Exp 8: Performance under Feature Skew. We evaluate the performance of SOTA algorithms
and FEDDAG on different datasets under a combination of feature skew and label skew. Each
client is randomly assigned one of the 20 available corruption types (For CIFAR-10-C and TINY
IMAGENET-C), or one of the four available domain types (for PACS and Office-Caltech-10). In both
cases, the samples are distributed using a Dirichlet concentration factor α′ = 1. We randomly select
80% of clients for training and keep the remaining 20% as unseen clients, reporting test accuracy on
these held-out clients using the final trained models. To more directly compare against approaches
specialized for quantity shift—which naturally arises in this Dirichlet-based sample allocation—we
also include the dedicated baseline FBLG Xu et al. (2024), which employs a client-selection strategy
that prioritizes clients with larger local datasets while grouping clients with similar sizes. The
results in Table 11 show that FEDDAG consistently achieves higher accuracy than the baseline
methods. This improvement is attributed to FEDDAG’s data-based similarity metric, which provides
more accurate feature similarity estimation compared to existing approaches. Across all four feature-
skew benchmarks, FEDDAG achieves the best performance, providing direct empirical evidence of
its robustness to feature distribution shift combined with label skew.
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Table 11: Exp 8: Performance comparison of various SOTA algorithms and FEDDAG under com-
bined feature skew and label skew (Data Distribution IV). Feature skew arises from corruption types
on CIFAR-10-C and TINY IMAGENET-C, and from domains on PACS and Office-Caltech-10.

Algorithm CIFAR-10-C TINY IMAGENET-C PACS Office-Caltech-10

FedAvg 30.73 ± 0.36 18.43 ± 0.43 38.47 ± 0.28 46.12 ± 0.31
PerFedAvg 60.39 ± 0.13 25.54 ± 0.31 70.82 ± 0.22 67.34 ± 0.23
FBLG 60.25 ± 0.30 29.91 ± 0.23 72.38 ± 0.37 68.44 ± 0.14
FedBR 61.09 ± 0.32 30.83 ± 0.25 73.83 ± 0.32 71.37 ± 0.18
FedMix 60.11 ± 0.14 30.71 ± 0.24 73.25 ± 0.41 70.56 ± 0.23
PACFL 63.62 ± 0.22 33.53 ± 0.38 76.63 ± 0.19 73.31 ± 0.14
CFL 59.48 ± 0.15 28.97 ± 0.26 72.14 ± 0.25 68.02 ± 0.19
FedRC 61.82 ± 0.21 32.14 ± 0.19 76.28 ± 0.17 73.54 ± 0.22
IFCA 62.52 ± 0.39 32.33 ± 0.19 75.12 ± 0.21 72.48 ± 0.29
FEDDAG 65.62 ± 0.31 36.27 ± 0.32 80.34 ± 0.27 76.28 ± 0.20

B.5 EXPERIMENT ON LARGE-SCALE REAL-WORLD DATASET

To evaluate FEDDAG in a large-scale, real-world setting, we additionally evaluate it on the Google
Landmarks dataset Weyand et al. (2020), following the setup of Licciardi et al. (2025). Specifically,
we consider the Landmarks-Users-160K partition, where the dataset is partitioned into 1,000 clients
based on the landmark dataset’s authorship information. All other aspects of the experimental setup
are kept the same as in our Data Distribution I experiments in Section 5. We compare FEDDAG
against a group of established FL baselines, and the results are reported in Table 12.

Table 12: Performance on the large-scale real-world Google Landmarks dataset.

Dataset FedAvg PACFL CFL FedGWC IFCA FedDAG
Google Landmarks 36.53± 0.24 54.74± 0.21 45.29± 0.28 51.51± 0.31 51.97± 0.16 58.23± 0.15

B.6 EXPERIMENT ON GENERALIZATION TO NEWCOMERS

To assess the ability of FEDDAG to generalize to unseen clients (see Appendix A.8), we simulate a
dynamic FL environment using Data Distribution I with 30% label skew and Dirichlet concentration
factor α′ = 1. Initially, training is performed on 80 out of 100 clients for 80 communication
rounds, following the standard FEDDAG procedure. At the end of this phase, the remaining 20
clients join the system as newcomers. Each newcomer executes steps (1–15) of Algorithm 4 and is
assigned to a cluster. Once assigned, the client receives the current global model from its designated
cluster and personalizes it for 1 round (10 local epochs). To evaluate model quality, we report the
average final test accuracy of the 20 newcomers across different datasets. As shown in Table 13,
FEDDAG achieves better generalization to newcomers than competing methods. This improvement
is attributed to its robust cluster assignment and generalization strategy for new clients.

Table 13: Test accuracy of newcomer clients, Data Distribution I with 30% label skew and α′ = 1.

Algorithm CIFAR-10 FMNIST SVHN

FedAvg 55.38±0.15 74.93±0.22 66.86±0.28
PerFedAvg 80.92±0.10 92.62±0.17 90.00±0.15
FedSoft 74.98±0.27 87.45±0.22 83.59±0.12
PACFL 85.33±0.15 95.17±0.24 92.76±0.08
CFL 69.97±0.11 83.64±0.13 78.94±0.17
FedGWC 84.30±0.13 94.53±0.10 91.56±0.06
FedRC 73.36±0.26 88.91±0.21 82.36±0.12
IFCA 84.55±0.22 94.61±0.30 91.58±0.22
FEDDAG 88.23±0.18 96.84±0.23 95.74±0.13
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B.7 ADDITIONAL ABLATION STUDIES

To observe the contribution of different components and their behavior under different non-IID set-
tings, we perform a set of targeted ablations that isolate each module (combining data and gradient,
adaptive optimal clustering, and dual-encoder representation sharing).

B.7.1 COMBINING DATA- AND GRADIENT-BASED SIMILARITY

To isolate the contribution of combining data- and gradient-based information for similarity compu-
tation, we perform an ablation study where, instead of using the combined similarity, we construct
the client similarity matrix using either gradient-only or data-only similarity. We run this ablation
on the FEDDAG∗ single-encoder variant (no dual-encoder sharing), so that performance differences
can be attributed directly to the similarity design without interference from other techniques. Con-
cretely, we compare: FEDDAG∗-Grad (gradient-only similarity), FEDDAG∗-Data (data-only simi-
larity), and FEDDAG∗-Data+Grad (our combined similarity). We evaluate on CIFAR-10 and SVHN
under two different non-IID data distributions: (i) Data Distribution I with 30% label skew and high
quantity shift (Dirichlet α′ = 0.25), and (ii) Data Distribution II with concept shift (see Section 5).
The results for these two settings are reported in Table 14 and Table 15, respectively. These results
consistently show that weighted data-based similarity (FEDDAG∗-Data) outperforms gradient-only
similarity, and that combining data- and gradient-based similarity (FEDDAG∗-Data+Grad) yields
the best performance in both label+quantity-skew and concept-shift settings.

Table 14: Ablation on combining data and gradient under Data Distribution I (label skew 30%,
Dirichlet α′ = 0.25).

Method CIFAR-10 FMNIST SVHN
FEDDAG∗-Grad (gradient-only) 83.79± 0.50 91.26± 0.38 89.05± 0.19
FEDDAG∗-Data (data-only) 85.03± 0.33 91.82± 0.25 89.52± 0.21
FEDDAG∗-Data+Grad (combined) 86.95± 0.21 92.18± 0.15 90.97± 0.13

Table 15: Ablation on similarity design under Data Distribution II (concept shift).

Method CIFAR-10 FMNIST SVHN
FEDDAG∗-Grad (gradient-only) 64.52± 0.45 83.88± 0.32 81.17± 0.21
FEDDAG∗-Data (data-only) 67.10± 0.23 85.74± 0.28 83.15± 0.14
FEDDAG∗-Data+Grad (combined) 67.79± 0.27 86.03± 0.21 83.73± 0.19

B.7.2 DUAL-ENCODER REPRESENTATION SHARING

Here, we examine whether the accuracy gains from inter-cluster global representation sharing (GRS)
via the dual-encoder architecture (see §4) arise from genuine feature enrichment or simply from
increased model capacity. We already performed this ablation on Data Distribution I (20% label
skew, Dirichlet α′ = 0.25; see Table 3 in §5). To further observe the behavior of dual-encoder
sharing under a different non-IID regime, we repeat this ablation in the concept-shift setting (see
Data Distribution II in §5). Using the same three variants of FEDDAG as in Table 3, we obtain the
following results as shown in Table 16. Similar to the experiment under Data Distribution I (label-
skew setting), full FEDDAG achieves clear accuracy gains over both the single-encoder (FEDDAG∗)
and the no-sharing dual-encoder (FEDDAG†) variants across all three datasets under concept shift.
This indicates that cross-cluster representation sharing remains beneficial even when the primary
challenge is a mismatch in local decision boundaries rather than pure label skew.

B.8 EVALUATION OF THE ALTERNATIVE DUAL-ENCODER INITIALIZATION

We empirically evaluate the alternative dual-encoder initialization and diversity-regularization strat-
egy described in §A.11. In this variant, both encoder parameter sets are initialized randomly, and
the local primary-encoder objective is augmented with the diversity regularizer to encourage com-
plementary feature extraction. To assess its effectiveness, we compare this variant against the warm-
start initialization used in the main FEDDAG pipeline.
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Table 16: Ablation of cross-cluster representation sharing under concept shift (Data Distribution II
in §5), comparing the single-encoder baseline (FEDDAG∗), a dual-encoder variant without cross-
cluster sharing (FEDDAG†), and full FEDDAG.

Algorithm CIFAR-10 FMNIST SVHN
FEDDAG∗ (single encoder) 67.79±0.27 86.03±0.21 83.73±0.19

FEDDAG† (dual encoder, no sharing) 67.51±0.22 85.91±0.15 83.65±0.24
FEDDAG (dual encoder + sharing) 69.13±0.23 88.79±0.19 85.06±0.26

(a) CIFAR-10, loss and
cluster count vs. α using

L1 only.

(b) CIFAR-10, loss and
cluster count vs. α using

L1+λL2.

(c) SVHN, loss and
cluster count vs. α using

L1 only.

(d) SVHN, loss and
cluster count vs. α using

L1+λL2.

Figure 4: Effect of the federated-aware clustering loss on the adaptive clustering mechanism under
Data Distribution I (30% label skew, Dirichlet α′ = 0.25) for CIFAR-10 and SVHN.

Experiment setup and results. We evaluate on CIFAR-10 and SVHN under the same 20% label-
skew configuration with Dirichlet parameter α′ = 1.0 used in Data Distribution I (Section 5). Each
experiment is repeated across three random seeds, and we report the mean and standard deviation of
the final test accuracy. The diversity-regularized variant achieves accuracy comparable to the main
(warm-start) version of FEDDAG on both datasets, with slight improvements in certain cases. These
results suggest that while warm-start initialization is effective, the random-init + regularization ap-
proach also provides a competitive—and in some settings slightly stronger alternative.

Table 17: Comparison of dual-encoder initialization strategies in FEDDAG (Data Distribution I).

Encoder Initialization Method CIFAR-10 FMNIST SVHN

Main (warm-start) (see §4) 90.76± 0.12 93.82± 0.20 93.91± 0.23
Random init+regularizer (§A.11) 90.93± 0.16 93.76± 0.17 93.86± 0.10

B.9 SECONDARY-ENCODER SCHEDULING UNDER RESOURCE CONSTRAINTS

The dual-encoder design in FEDDAG doubles the number of encoder parameters compared to a
single-encoder model and introduces extra communication for secondary-encoder updates. While
our ablation on FEDDAG∗ (single encoder) (see 5) shows that the dual-encoder architecture is ben-
eficial for robustness, it is important to understand the trade-off between accuracy and the additional
computation/communication overhead, especially for resource-constrained edge devices.

To this end, we evaluate lighter-weight training schedules that throttle secondary-encoder updates to
reduce computation overhead.. Let a K:1 schedule denote a pattern where we perform K rounds of
standard FEDDAG primary training (updating the primary encoder and classifier) followed by one
secondary-encoder enrichment round (updating only the secondary encoder). The original FEDDAG
corresponds to updating both encoders every round, i.e., no throttling of secondary updates.

We evaluate four primary:secondary scheduling patterns—1:1, 5:1, 10:1, and 15:1—under a fixed
compute/communication budget of 80 communication rounds. All experiments are conducted on
CIFAR-10 and SVHN under the same heterogeneous setting as Data Distribution I (30% label skew,
Dirichlet α′=0.25). The results are summarized in Table 18.

The 1:1 schedule significantly underperforms because the primary encoder is updated only every
other round and thus remains under-trained. In contrast, the 5:1 schedule provides the best trade-off:
it reduces the number of secondary-encoder updates by 80% while maintaining accuracy close to
the full FEDDAG model on both datasets. The 10:1 and 15:1 schedules further reduce the number
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Table 18: Accuracy of FEDDAG under different primary:secondary training scheduling patterns
(Data Distribution I, 80 comm. rounds). “Full FEDDAG” updates both encoders every round.

Schedule (Primary : Secondary) CIFAR-10 SVHN

Full FEDDAG (both) 89.87 ± 0.19 92.65 ± 0.11
1 : 1 80.34 ± 0.44 86.26 ± 0.32
5 : 1 87.65 ± 0.28 91.31 ± 0.22
10 : 1 87.25 ± 0.31 91.46 ± 0.20
15 : 1 86.54 ± 0.35 90.87 ± 0.27

Table 19: Number of clusters and clustering loss LC as a function of the distance threshold α for
CIFAR-10 and SVHN in the inherent high-cluster (i.e., 11) distribution setting.

CIFAR-10 SVHN

α #clusters LC #clusters LC

1.000 1 0.770 1 0.675
0.950 1 0.770 1 0.675
0.900 2 1.000 1 0.675
0.850 3 1.000 1 0.675
0.800 3 1.000 2 0.866
0.750 3 1.000 2 0.866
0.700 4 1.000 3 1.000
0.650 4 1.000 4 1.000
0.600 5 1.000 4 1.000
0.550 6 1.000 5 1.000

CIFAR-10 SVHN

α #clusters LC #clusters LC

0.500 11 0.149 5 1.000
0.450 11 0.149 7 0.896
0.400 11 0.149 9 0.688
0.350 11 0.149 11 0.343
0.300 11 0.149 11 0.343
0.250 11 0.149 11 0.343
0.200 12 0.251 11 0.343
0.150 13 0.161 14 0.315
0.100 14 0.117 18 0.205
0.050 14 0.117 24 0.141

of secondary updates but incur a slightly larger accuracy drop. Overall, these results show that
a modest throttling of secondary-encoder updates (e.g., 5:1) can substantially reduce the effective
compute and communication devoted to the secondary encoder while preserving most of the dual-
encoder performance gains.

B.10 EVALUATING THE OPTIMAL CLUSTERING MECHANISM

To understand the efficacy of the optimal clustering mechanism (see §3.4) in FEDDAG, we examine
its behavior when the number of true underlying data distributions is large. To do this, we design
an experiment where the inherent number of clusters is intentionally high. The experiment is set up
and performed as follows:

Dataset setup. We use the SVHN and CIFAR-10 datasets to construct a federated setting with an
inherently large number of ground-truth clusters. Each dataset has 10 classes; any pair of classes
defines a possible two-class distribution, yielding a total of

(
10
2

)
= 45 distinct two-class combina-

tions. From these 45 possibilities, we select 11 distinct two-class combinations to create a controlled
setting with 11 ground-truth clusters (e.g., class pairs (1, 3), (2, 8), etc.).

Each client is assigned exactly one of these 11 two-class combinations. For each chosen pair of
classes, we collect all corresponding samples and distribute them across the assigned clients using
a Dirichlet sampler, which introduces within-cluster heterogeneity while preserving the underlying
two-class structure. As a result, each client contains data from exactly two classes, while the over-
all population spans 11 distinct underlying distributions. This setting allows us to test whether
FEDDAG can automatically discover a relatively large number of true clusters.

Experiment on optimal clustering procedure. After FEDDAG computes adjacency matrix, we
run hierarchical clustering over a grid of distance α and evaluate our clustering loss LC. We start
from α = 1.0 and decrease α in steps of 0.05. For each value of α, we record (i) the resulting
number of clusters and (ii) the corresponding clustering loss LC. The results for optimal clustering
on CIFAR-10 and SVHN are summarized jointly in Table 19 and visualized in Figure 5.

For CIFAR-10, as α decreases from 1.0, the clustering initially remains extremely coarse (between 1
and 6 clusters), and the loss stays high and saturated at 1.0, reflecting severe under-clustering, where
many heterogeneous clients are incorrectly merged. A clear transition occurs around α ≈ 0.50: the
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(a) CIFAR-10: #clusters and LC vs. α (b) SVHN: #clusters and LC vs. α

Figure 5: Behavior of FEDDAG’s adaptive clustering mechanism in a setting with inherent high
number of clusters (e.g,. > 10) ground-truth distributions.

number of clusters jumps to 11, and the loss drops sharply from 1.0 to approximately 0.15. Impor-
tantly, this 11-cluster solution forms a stable plateau across a wide threshold range α ∈ [0.25, 0.50],
with both the cluster count and the loss remaining effectively unchanged. Lowering α below 0.25
further fragments clusters into 12–14 smaller groups, but the loss only improves marginally (from
≈ 0.15 to ≈ 0.12). We interpret this as over-segmentation rather than revealing additional mean-
ingful structure. In contrast, the 11-cluster configuration dominates across a broad α interval and
matches the true number of underlying distributions. For SVHN, we observe a similar trend. At large
α (between 0.85 and 1.0) the solution is clearly under-clustered (1–2 clusters) with high loss. As
α decreases, an 11-cluster configuration emerges and remains stable for α ∈ [0.20, 0.35] with loss
around 0.34. Pushing α below 0.20 further splits clusters (14–24 clusters) and only slightly reduces
the loss (down to ≈ 0.14), again indicating over-segmentation rather than meaningful clusters.

Overall, these experiments show that FEDDAG’s adaptive clustering mechanism scales effectively
to scenarios with more than 10 true distributions on both CIFAR-10 and SVHN, and can recover the
correct number of underlying clusters (here, K⋆ = 11) without ever hard-coding K into FEDDAG.
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