
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDDAG: CLUSTERED FEDERATED LEARNING VIA
GLOBAL DATA AND GRADIENT INTEGRATION FOR
HETEROGENEOUS ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) enables a group of clients to collaboratively train a model
without sharing individual data, but its performance drops when client data are
heterogeneous. Clustered FL tackles this by grouping similar clients. However,
existing clustered FL approaches rely solely on either data similarity or gradient
similarity; however, this results in an incomplete assessment of client similari-
ties. Prior clustered FL approaches also restrict knowledge and representation
sharing to clients within the same cluster. This prevents cluster models from ben-
efiting from the diverse client population across clusters. To address these limi-
tations, FEDDAG introduces a clustered FL framework, FEDDAG, that employs
a weighted, class-wise similarity metric that integrates both data and gradient in-
formation, providing a more holistic measure of similarity during clustering. In
addition, FEDDAG adopts a dual-encoder architecture for cluster models, com-
prising a primary encoder trained on its own clients’ data and a secondary encoder
refined using gradients from complementary clusters. This enables cross-cluster
feature transfer while preserving cluster-specific specialization. Experiments on
diverse benchmarks and data heterogeneity settings show that FEDDAG consis-
tently outperforms state-of-the-art clustered FL baselines in accuracy.

1 INTRODUCTION

Federated Learning (FL) enables users/clients to collaboratively train a model on their data with-
out sharing it with other clients or a central entity (McMahan et al., 2017). However, diversity in
user behavior results in heterogeneous data distributions, known as non-identically independently
distributed (non-IID) data, across clients. This heterogeneity can lead to slower convergence and
suboptimal accuracy of the global model (Kairouz et al., 2021). More specifically, non-IID data
can arise due to various factors, including class/label skew, feature skew, quantity shift, concept
shift, and concept drift — common types of data heterogeneity. Class/label skew refers to the non-
identical distribution of labels/classes at different clients, e.g., the absence of a label at one client
while the same label is present at other clients (Zhang et al., 2022). Feature skew occurs when
distributions vary due to different personalization nuances, e.g., an alphabet letter can be written in
different ways (Li et al., 2021). Quantity shift happens when different clients have different amounts
of data (Wang et al., 2021), e.g., an online retailer with millions of transaction records is compared
to a local store with only a few hundred records. Concept shift happens when different clients assign
the same label to fundamentally different data samples due to variations in local data distributions
or labeling criteria (Kang et al., 2024).

Clustered FL handles non-IID data effectively, especially when distinct groups of clients display
substantial variations in their data distributions (Ghosh et al., 2020; Guo et al., 2024; Vahidian et al.,
2023). In clustered FL, clients are grouped into clusters based on their similarities in their data
distributions, and each cluster trains its own model tailored to its specific data. However, despite
their advantages, existing clustered FL approaches suffer from the following limitations:

1. Improper Similarity Method. Cluster FL approaches use either data or gradient alone to com-
pute similarity for clustering. Cluster FL approaches (Sattler et al., 2020; Long et al., 2023; Ghosh
et al., 2020) that use gradients or loss values to cluster clients can group clients incorrectly due to the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

high dimensionality of data or the presence of various skews in client data (Vahidian et al., 2023).
Other drawbacks of these approaches include: requiring each client to evaluate multiple global mod-
els every round (Ghosh et al., 2020; Licciardi et al., 2025), delaying cluster formation until many
training iterations, and requiring clients to upload full model updates (Sattler et al., 2020).

On the other hand, the data-based approach, such as PACFL (Vahidian et al., 2023), only considers
label skew and does not account for skew issues like concept shift. Moreover, PACFL defines inter-
client similarity as the minimum cosine angle between the clients’ feature subspaces. However, by
relying on the smallest angle across the subspaces, PACFL may yield high similarity even when only
a small portion of the clients’ data is similar, while the remaining subspaces are vastly dissimilar.

2. Global Representation Sharing. Existing Clustered FL approaches restrict knowledge sharing
to clients within the same cluster. This prohibits clients across clusters to benefit from low-level
latent representations. One way FedSoft (Ruan & Joe-Wong, 2022) and FedRC (Guo et al., 2024)
address this issue by incorporating multiple cluster models through soft clustering with learnable
cluster importance weights. However, in these approaches, a client’s model becomes a noisy blend
of several cluster models. While this blending may occasionally benefit data that aligns with sev-
eral clusters, the added noise from unrelated clusters may degrade the performance on the client’s
primary dataset, since the model is no longer explicitly optimized for its own data.

3. Limited Consideration of Distribution Skews. Clustered FL techniques (Sattler et al., 2020;
Ghosh et al., 2020; Vahidian et al., 2023; Licciardi et al., 2025) primarily address label skew. How-
ever, these approaches do not account for concept shift or quantity shift.

4. Predefined Cluster Numbers. Existing clustered FL approaches lack adaptive mechanisms for
automatically adjusting the number of clusters. For example, IFCA (Ghosh et al., 2020) requires
the optimal number of clusters to be specified in advance. Sattler et al. (2020) adopts a recursive
strategy to split clusters when gradients converge to a stationary point but cannot merge clusters
when needed, such as upon the arrival of new clients. Zeng et al. (2023) supports merging clusters
but not splitting them. Li et al. (2024) evaluates candidate clustering using traditional clustering
metrics that do not account for the unique characteristics of FL setting.

These limitations raise the following crucial question:

How can we overcome the above challenges posed by various skews in heterogeneous data
distributions by utilizing both data and gradient information to dynamically cluster clients and

enabling representation sharing among clusters in FL?

Our contribution. This work proposes a novel algorithm, entitled clustered Federated Learning via
global DatA and Gradient integration (FEDDAG). FEDDAG introduces a novel method to compute
similarities among clients and an innovative approach that combines data and gradient information
for improved client grouping. To combine data- and gradient-based similarity to achieve a more
accurate similarity matrix, FEDDAG assigns each client a weight that indicates how much emphasis
to place on data versus gradient information. FEDDAG optimizes these weights using an entropy-
based loss that sharpens the final adjacency matrix. To further improve client similarity estimation,
FEDDAG extends the data-based approach PACFL (Vahidian et al., 2023) by performing class-wise
comparisons rather than comparing entire data subspaces—restricting comparisons to subspaces
corresponding to the same class across clients. This approach yields a more accurate similarity
metric and naturally accounts for concept shift. In addition, FEDDAG assigns weights to the class-
wise similarity values to address quantity shift. FEDDAG also improves upon the existing gradient-
based similarity so that client computes gradients for at most one model per round and transmits
only a compressed gradient.

These above mechanisms improve similarity computation and lead to better client clustering. We
further enhance FEDDAG by employing a dual-encoder architecture to enable effective representa-
tion sharing across clusters. During the training phase, each cluster model consists of: (i) a primary
encoder, optimized using the cluster’s own client data, and (ii) a secondary encoder, designed to
learn complementary features from other clusters. The outputs of the two encoders are concatenated
along the feature dimension, and a classifier is trained on the combined representation. This design
facilitates cross-cluster knowledge transfer while preserving cluster-specific specialization.

Compared to prior works, to our knowledge, FEDDAG is the only work that addresses all four types
of data heterogeneity: label skew, feature skew, concept shift, and quantity shift. FEDDAG accounts

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for concept shift by performing class-wise comparisons when computing similarity between clients’
data. Additionally, FEDDAG introduces an adaptive clustering mechanism that automatically deter-
mines the optimal number of clusters through a novel evaluation metric. Specifically, it generates a
range of candidate clusterings using hierarchical clustering (HC) (Day & Edelsbrunner, 1984) and
evaluates them with a novel federated-aware metric that rewards compact cluster formation while
penalizing over-splitting.1 In summary, the contributions of this paper are as follows:

1. A new clustered FL algorithm, FEDDAG, that combines both data and gradient similarity for
better client clustering and further improves data similarity estimation with a class-wise weighted
method.

2. FEDDAG introduces a novel method for knowledge and representation sharing across clusters
by employing a dual-encoder architecture.

3. This work introduces a novel federated-aware metric to evaluate candidate clusterings and auto-
matically determine the optimal number of clusters.

4. We evaluate FEDDAG under non-IID data, having class skew, feature skew, concept shift, and
quantity shift, and across different degrees of heterogeneity (e.g., high vs. low). Table 1 reports
the accuracy of FEDDAG in comparison to existing clustered FL methods. Detailed experimen-
tal results are provided in §5.

2 LITERATURE REVIEW

Table 1: Accuracy (%) of FEDDAG vs. cluster-
ing baselines under non-IID label skew (20%) and
quantity shift (Dirichlet α′=1).

Algorithm Technique CIFAR-10 FMNIST
PACFL Data (D) 90.45±0.30 94.41±0.31
CFL Gradient (G) 72.80±0.66 86.97±0.23
IFCA Gradient (G) 89.68±0.17 94.03±0.09
FEDDAG
(Ours)

D + G + Global Feature
Sharing

94.53±0.12 96.82±0.18

Clustered FL techniques address distribution
shift by grouping clients based on their data dis-
tributions. PACFL (Vahidian et al., 2023) clus-
ters clients by analyzing principal angles be-
tween client data subspaces, but it ignores la-
bel information, making it prone to incorrect
clustering under concept shift. Another line of
work (Ghosh et al., 2020; Licciardi et al., 2025)
uses loss values on gradients to iteratively clus-
ter clients each training round. Other meth-
ods group clients via gradient similarity (Duan
et al., 2021a; Sattler et al., 2020), while soft clustering enables clients to join multiple clusters (Ruan
& Joe-Wong, 2022; Guo et al., 2024). A recent approach Zhang et al. (2024) develops adaptive clus-
tering based on cosine similarity between dimensionally-reduced models. Additional methods, such
as Long et al. (2023); Marfoq et al. (2021); Wu et al. (2023), rely on maximizing log-likelihood
functions or modeling joint distributions. Compared to these, FEDDAG combines data and gradi-
ent information for better clustering and enables cross-cluster knowledge transfer while preserving
cluster-specific specialization.

3 FEDDAG ALGORITHM

FEDDAG, a framework for clustered FL, can be formulated as an empirical risk minimization
(ERM) problem over N clients, each holding a local dataset Di=(Xi, Yi), where Xi and Yi de-
note the input samples and labels, respectively. The data can be non-iid and may exhibit various
skews (as discussed in §1). The server partitions the clients into Z clusters C1, . . . ,CZ . The ob-
jective is to minimize the local loss L(Yi, Fz(i)(Xi)) for each client i∈N , where z(i) is the cluster
assignment determined by FEDDAG. Simplified FEDDAG cluster-level model is defined as:

Fz(·) = ψ
(
ϕ(·; Θf

z); Θ
c
z

)
(1)

Here, ϕ is the feature encoder and ψ is the classifier head. FEDDAG also supports a more expressive
dual-encoder architecture, where the outputs of two encoders are jointly processed by the classifier
head, as represented below:

Fz(·) = ψ
(
ϕ(1)(·; Θ1f

z), ϕ(2)(·; Θ2f
z) ; Θc

z

)
(2)

1Over-splitting is a common issue in HC for FL that can violate key principles of FL by producing degenerate clusters with very few
clients (Licciardi et al., 2025).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We describe FEDDAG (see Algorithm 1) in two parts. First, we introduce the weighted class-wise
approach (Algorithm 2 in Appendix A.3) for computing data similarity among clients and combine
both data and gradient information to improve clustering (Algorithm 3 in Appendix A.3). The
improved clustering can be directly used for traditional clustered FL, resulting in higher accuracy
(see §5). We then further enhance FEDDAG with a dual-encoder mechanism (described in §4) that
enables inter-cluster representation sharing during FL training, which further increases FEDDAG’s
performance. An illustration of FEDDAG is shown in Figure 2 in Appendix A.3, and its components
are described below.

3.1 GRADIENT-BASED SIMILARITY

High-level idea. FEDDAG introduces a lightweight method for computing gradient similarity. Prior
approaches such as Sattler et al. (2020) and Kim et al. (2024b) periodically send gradient updates to
the server to measure client similarity. In contrast, our approach has each client first train locally on
its own data (without federation) for a few rounds to partially converge the gradients. We observed
that two such rounds (10 local steps each) are sufficient to achieve partial convergence, making
inter-client similarity more distinguishable (see experiments on Local Steps (tg) in Appendix §B.2).
To further reduce communication, FEDDAG transmits a k-sparse version of the gradients (retaining
only k coordinates) to the server for similarity computation (Wangni et al., 2018).

Details of the method. Each client i ∈ N is initialized with random parameters θ0i and performs
local training (without federation) on Di for tg = 2 rounds (see Appendix §B.2) to obtain a gradient
update ∆i. The update is k-sparsified—retaining only a small random subset of entries (typically
1–2%) (Wangni et al., 2018). The sparsified update ∆̃i is then sent to the server, which constructs a
pairwise similarity matrix. The similarity Gi,j between clients i and j is computed as:

Gi,j = cos−1

(
⟨∆̃i, ∆̃j⟩
∥∆̃i∥ ∥∆̃j∥

)
× 180

π
, ∀i, j ∈ N. (3)

3.2 WEIGHTED CLASS-WISE DATA-BASED SIMILARITY

High-level idea. Our goal is to construct a data-based similarity matrix that will be fused with the
gradient matrix for clustering. Unlike the existing data-based approach, PACFL (Vahidian et al.,
2023), which compares the entire data subspaces of two clients, we measure similarity in a class-
wise manner and assign weights to the class-level similarities to compute the final client similarity.

Details of the method. Let C be the total number of classes, and Di,c the data of client i ∈ N for
class c ∈ C. Each client applies truncated SVD (Klema & Laub, 1980) on the transpose of Di,c to
compute p principal vectors per class, denoted U i

c = [u1, . . . , up]. These vectors are then sent to
the server to compute the data similarity matrix.2 For each class c, the server computes the principal
angle (Jain et al., 2013) between U i

c and U j
c , indicating the similarity between clients i and j as:

V ′
i,j,c = min

v∈Ui
c,x∈U

j
c

cos−1

(
|v⊤x|
∥v∥ · ∥x∥

)
, ∀i, j ∈ N. (4)

If class c is present in only one of the clients, V ′i,j,c = 90◦; if in neither, V ′i,j,c = 0◦. Next,
the server assigns weightsWi,j,c to each class-wise similarity V ′i,j,c to reflect class frequency dif-
ferences (i.e., quantity skew) between clients i and j. This weighting scheme ensures that larger
differences in class frequency lead to higher dissimilarity values. The weights are computed as:

Wi,j,c =
max(ln(|Di,c|+ ϵ), ln(|Dj,c|+ ϵ))

min(ln(|Di,c|+ ϵ), ln(|Dj,c|+ ϵ))
(5)

then min–max normalized to a bounded range [1−δ, 1+δ], where δ > 0 controls the server’s toler-
ance to frequency imbalance. The final similarity between clients i and j is:

Vi,j = 1
|C|

C∑
c=1

V ′
i,j,cW ′

i,j,c, W ′
i,j,c ← normalizedWi,j,c. (6)

2In FEDDAG, clients share a small set of principal vectors and class frequency information with the server to compute similarity. These
principal vectors are not actual client data, but a linear combination of them. Moreover, the number of principal vectors shared with the server
is less than 1% of the size of the dataset for each class per client. This approach aligns with prior works, such as PACFL(Vahidian et al., 2023).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: FEDDAG Algorithm
Input: Number of clients N , sampling rate R ∈ (0, 1], C classes
Output: Updated global model parameters

1 Initialize client i ∈ N with random θ0
i

2 for each round t = 0, 1, . . . do
3 m← max(R ·N, 1) // Sampling rate
4 Sm ← {i1, ..., im} // Set of m sampled clients
5 for each client i ∈ N in parallel do
6 if t ≤ tg then
7 Local training of θ0

i with client i local data (no federation)
8 if t = tg then
9 Client i sends sparsified local model update ∆̃i to server

10 Client i performs SVD and extracts principal vectors Ui
c, ∀c ∈ C and sends to server

11 Server formsA ← ProximityMatrix(U∗, ∆̃∗) (Algorithm 2)// Adjacency matrix
12 Server computes optimal Clustering {C1, . . . ,CZ} ← OptimalClustering(A, Sα)

(Algorithm 3)// Find best clustering
13 Server computes the CC-Graph H as per Eq. 12
14 Server initiates Θ1f

z as in Eq. 20, and Θ2f
z and Θc

z randomly // cluster encoder initialization
15 else
16 Server sends {Θ1f

z(i)
,Θ2f

z(i)
,Θc

z(i)} and Θ2f′
z(i)

=
∑

j:H(j,z(i))=1 Θ2f
j to client i

17 Client i sets (θ1f
i , θc

i)← (Θ1f
z(i)

,Θc
z(i)) and trains them via SGD as in Eq. 15 // primary training phase

18 Client i sets θ2f′
i ← Θ2f′

z(i)
and updates via SGD as in Eq. 18 // Secondary training phase

19 Client i broadcasts (θ1f
i , θc

i) and θ2f′
i to server

20 if t ≥ tg then
// Executed after clusters are formed t ≥ tg

21 for each cluster z = 1 to Z do
22 Update Θ1f

z and Θc
z , as in Eq. 16

23 Update learner cluster Θ2f
j:H(j,z)=1

, as in Eq. 19

3.3 COMBINING DATA & GRADIENT — ALGORITHM 2

High-level idea. After constructing the data and gradient similarity matrices, FEDDAG applies
min-max normalization and then combines them into a single proximity matrix, which serves as the
adjacency matrix for clustering.

Details of the method. Given the normalized V̂i,j and Ĝi,j , FEDDAG learns a weight vector w =
(w1, . . . , wN)⊤ ∈ [0, 1]N , where each wi is assigned to client i to control the relative importance
of gradient versus data similarity. FEDDAG then fuses the normalized matrices to construct the
proximity matrix as follows:

Ai,j = wi Ĝi,j +
(
1− wi

)
V̂i,j , 1 ≤ i < j ≤ N, Aj,i = Ai,j . (7)

FEDDAG optimizes w by minimizing the entropy loss:

Len = − 1

N

N∑
i=1

N∑
j=1

Ãi,j log Ãi,j , Ãi,j =
eAi,j∑N

k=1 e
Ai,k

(8)

where Ãi,j is the row-wise softmax normalization ofAi,j . In Eq. 8, the lossLen sharpens each row of
the fused matrix Ai,j , encouraging each client to retain only its strongest neighbors (Ghasedi Dizaji
et al., 2017). This, in turn, guides w to favor the view (i.e., data or gradient) that leads to a more
clusterable affinity structure. FEDDAG learns the weight vector w using a lightweight multi-layer
perceptron (MLP) (Almeida, 2020) trained via gradient descent to minimize the entropy loss Len.
Finally, FEDDAG constructs the proximity matrix using the learned w as shown in Eq. 7.

3.4 OPTIMAL CLUSTERING — ALGORITHM 3

High-level idea. FEDDAG introduces an adaptive clustering mechanism that automatically identi-
fies the optimal number of clusters. This mechanism incorporates a novel federated-aware metric to
evaluate clustering quality.

Details of the method. Given the proximity matrix Ai,j , the server applies agglomerative hierar-
chical clustering (HC). In HC, the clustering threshold α ∈ (0, 1] controls merges: clusters with
pairwise distances below α are merged. Smaller α yields more clusters; larger α merges more
broadly. The server iterates over different α values to generate candidate clusterings {C1, . . . ,CZ},
each with a distinct number of clusters Z. Each clustering is evaluated using two metrics. Compact-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Exp 1: Performance comparison for Data Distribution I with a high degree of quantity shift
(Dirichlet α′ = 0.25)

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 42.02 ± 1.17 53.11 ± 0.31 69.79 ± 0.51 47.16 ± 0.91 54.24 ± 0.08 72.86 ± 0.40 64.15 ± 0.64 50.99 ± 1.35
FedProx 43.98 ± 0.17 53.61 ± 0.20 74.75 ± 0.27 50.56 ± 0.70 54.99 ± 0.20 68.22 ± 0.16 64.80 ± 0.25 48.66 ± 0.80

PerFedAvg 81.09 ± 0.35 86.51 ± 0.19 89.20 ± 0.05 65.59 ± 0.02 77.45 ± 0.24 89.77 ± 0.15 88.23 ± 0.31 57.38 ± 0.10
FedSoft 76.44 ± 0.18 84.58 ± 0.14 83.75 ± 0.33 62.54 ± 0.41 72.48 ± 0.17 85.15 ± 0.17 82.43 ± 0.40 55.24 ± 0.43
PACFL 86.93 ± 0.40 91.90 ± 0.47 89.88 ± 0.25 66.11 ± 0.29 84.66 ± 0.29 91.96 ± 0.25 90.48 ± 0.23 58.30 ± 0.56

CFL 68.67 ± 0.76 81.90 ± 0.10 79.83 ± 0.38 57.38 ± 0.95 67.57 ± 0.69 80.64 ± 0.21 75.21 ± 0.09 49.63 ± 1.29
CFL-GP 85.25 ± 0.17 89.13 ± 0.35 87.83 ± 0.22 67.89 ± 0.20 83.98 ± 0.28 91.14 ± 0.14 90.01 ± 0.11 59.71 ± 0.76
FedGWC 85.97 ± 0.13 91.02 ± 0.17 89.35 ± 0.10 69.19 ± 0.48 83.58 ± 0.21 91.45 ± 0.12 88.94 ± 0.15 56.52 ± 0.40
FedRC 75.12 ± 0.28 88.32 ± 0.23 88.05 ± 0.30 63.25 ± 0.37 76.48 ± 0.37 88.12 ± 0.25 85.78 ± 0.38 54.32 ± 0.33
IFCA 86.64 ± 0.13 90.93 ± 0.17 89.51 ± 0.10 69.08 ± 0.48 83.45 ± 0.37 91.50 ± 0.11 88.81 ± 0.09 56.33 ± 0.40

FEDDAG∗ 88.67 ± 0.18 92.75 ± 0.22 91.87 ± 0.26 70.37 ± 0.33 86.95 ± 0.21 92.18 ± 0.15 90.97 ± 0.13 60.84 ± 0.65
FEDDAG 90.76 ± 0.12 93.82 ± 0.20 93.91 ± 0.23 72.84 ± 0.30 89.87 ± 0.19 92.72 ± 0.13 92.65 ± 0.11 63.21 ± 0.60

ness loss L1 promotes tight clusters, while degeneracy penalty L2 discourages small clusters:

L1 =

Z∑
z=1

1

|Cz|2
∑

i,j∈Cz

Ai,j , L2 =
1

Z

Z∑
z=1

exp

(
max{0, C̄− γσC − |Cz|}

τ

)
(9)

where C̄ = N/Z and σC denote the mean and standard deviation of cluster sizes. A cluster Cz is
penalized if size |Cz| < C̄− γσC, with τ > 0 controlling sharpness. The total loss is

L{C1,...,CZ} = L1 + λL2, (10)

where λ > 0 balances the two terms. LowerL1 (tighter clusters) andL2 (less over-splitting) indicate
better partitions. FEDDAG selects the clustering with the lowest loss and relatively few clusters.

4 GLOBAL REPRESENTATION SHARING (GRS)

High-level idea. In the previous section, we have combined data and gradient information to im-
prove clustering. This section introduces global representation sharing across clusters during the
training phase via a dual-encoder mechanism to further enhance FEDDAG’s ability to learn comple-
mentary representations. The process for determining which clusters should complement each other
and how training is carried out is described below:

Building Cluster Complementarity Graph (CC-Graph). We first determine which clusters can
supply the class representation that others lack. Intuitively, a cluster has a demand for a class if that
class is underrepresented among its clients, and a supply if the class is well represented. For class
c ∈C we compute the demand of a requesting cluster Cp and the supply of a source cluster Cq:

dp,c =
∑
i∈Cp

(
mi − ri,c

)
, sq,c =

1

|Cq|
∑
i∈Cq

(
ri,c + 1

)
, (11)

where mi is the number of distinct classes on client i and ri,c ∈ {0, . . . ,mi−1} is the rarity rank of
class c on that client (0 = rarest). Combining demand and supply yields the complementarity score
between clusters p and q:

Hp,q =
∑
c∈C

dp,c sq,c, Hp,p = −∞ (12)

Top-k values per row are retained to construct the adjacency matrix H ∈ {0, 1}Z×Z , where an edge
p→q indicates that cluster Cp receives representation from Cq .

Training using dual encoders. For each client i ∈ Cz , the prediction model can be described as:

Fz(Xi) = ψ
(
ϕ(1)(Xi; Θ

1f
z), ϕ(2)(Xi; Θ

2f
z) ; Θc

z

)
(13)

FEDDAG optimizes the parameters {Θ1f
z ,Θ2f

z ,Θc
z}Zz=1 to minimize the weighted empirical loss

across N clients. This is achieved through parallel training phases of the primary and secondary
encoders. During the primary phase for each cluster, the primary encoder Θ1f

z and the classifier Θc
z

are optimized using data from clients i ∈ Cz , enabling the model to learn its own cluster-specific
features. In the secondary phase, clusters requesting knowledge from Cz first aggregate their sec-
ondary encoders Θ2f

j and transmit the aggregated encoder to Cz . The source cluster Cz then trains
the received encoder on its local data and returns the resulting gradients to the requesting clusters
for integration. The procedures for both phases and their unified training strategy are detailed below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) CIFAR-10 (b) FMNIST (c) SVHN (d) CIFAR-100

Figure 1: Exp 2: Clustering score vs cluster α and number of clusters for finding optimal clustering.

(i) Primary encoder training. For each cluster, we optimize Θ1f
z and Θc

z via gradient descent, while
keeping the Θ2f

z fixed. To approximate this, each client i ∈ Cz initializes (θ1fi , θci) ← (Θ1f
z ,Θc

z)
and keeps the secondary encoder Θ2f

z frozen. The local loss is then defined as:

ℓi(θ
1f
i , θci)=L(Yi,ψ(ϕ

(1)(Xi; θ
1f
i), ϕ(2)(Xi; Θ

2f
z(i)); θ

c
i)) (14)

Using the client loss defined in Eq. 14, each client performs SGD training to update (θ1fi , θci) as:

(θ1fi , θci)← (θ1fi , θci)− η∇(θ
1f
i ,θci)

ℓi(θ
1f
i , θci), ∀i ∈ Cz (15)

FEDDAG aggregates the updates (θ1fi −Θ1f
z) and (θci −Θc

z) from client i to update (Θ1f
z ,Θc

z) as:

Θ1f
z ← Θ1f

z +
∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
(θ1fi −Θ1f

z), Θc
z ← Θc

z +
∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
(θci −Θc

z) (16)

(ii) Secondary encoder training. For each cluster Cz , we optimize the secondary encoders {Θ2f
j }

of the clusters that seek to learn from Cz . First, given the CC-Graph H , we first aggregate the sec-
ondary encoders of all learner clusters into a single combined encoder: Θ2f ′

z =
∑

j :H(j,z)=1 Θ
2f
j .

Then, each client i ∈ Cz initializes its local instance of the secondary encoder as θ2f
′

i ← Θ2f ′

z ,
while keeping Θ1f

z and Θc
z fixed, and then minimizes the following loss:

ℓ′i(θ
2f ′

i)=L
(
Yi, ψ(ϕ

(1)(Xi; Θ
1f
z),ϕ(2)(Xi; θ

2f ′

i);Θc
z)
)

(17)

Using this loss, each client performs SGD to update as:

θ2f
′

i ← θ2f
′

i − η∇
θ
2f′
i

ℓ′i
(
θ2f

′

i

)
(18)

FEDDAG then aggregates the gradients (θ2f
′

i − Θ2f ′

z) from each client i ∈ Cz , and update the
secondary encoder of each learner cluster Cj (where H(j, z) = 1) as:

Θ2f
j ← Θ2f

j +
∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
(θ2f

′

i −Θ2f ′
z) (19)

Unifying Primary and Secondary Training. Since the primary and secondary encoder updates are
independent (Eq. 15, 18), they can be trained in parallel. However, because the primary Θ1f

z and
secondary Θ2f

z encoders are intended to capture complementary information, initializing them both
randomly may lead to redundant features. To avoid this, we ensure the primary encoder is partially
converged before joint training starts. Specifically, during gradient-based similarity computation
in §3.1, each client i trains a local model to partial convergence. We reuse the resulting feature
extractors θ0fi to initialize the global primary encoder Θ1f

z , thereby avoiding extra training rounds:

Θ1f
z =

∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
θ0fi , ∀z ∈ Z, (20)

FEDDAG structure summary. During the initial rounds, FEDDAG determines the optimal clus-
tering configuration (see Algorithm 1, Lines 1–14). Once the clustering is established, FEDDAG
parallelly executes two phases: a primary training phase and a secondary global feature-sharing
phase (Algorithm 1, Lines 15–23). Additional mechanisms for incorporating new clients and adapt-
ing to distribution shifts without interrupting training are provided in Appendix A.

5 EXPERIMENTS

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Exp 3: Ablation study of cross-cluster rep-
resentation sharing under 20% label skew (Dirichlet
α′ = 0.25), comparing FEDDAG, FEDDAG† (dual en-
coder w/o GRS), and FEDDAG∗ (single encoder).

Algorithm CIFAR-10 FMNIST SVHN CIFAR-100
FEDDAG† 88.79±0.20 92.61±0.31 91.95±0.25 70.28±0.38
FEDDAG∗ 88.67±0.18 92.75±0.22 91.87±0.26 70.37±0.33
FEDDAG 90.76±0.12 93.82±0.20 93.91±0.23 72.84±0.30

This section experimentally evaluates FED-
DAG, compares it against existing works, and
investigates: (i) FEDDAG accuracy, (ii) Find-
ing optimal clustering, (iii) Ablation studies,
(iv) During evaluation, we report two variants
of our method: FEDDAG∗, which is restricted
to the approach in §3—combining data and
gradient information to form clusters and then
training a standard clustered FL model (single encoder and classifier) without global representa-
tion sharing—and FEDDAG, which is the full algorithm that additionally incorporates dual-encoder
inter-cluster sharing described in §4.

Table 4: Exp 5: Performance comparison for concept
shift across datasets.

Algorithm CIFAR-10 FMNIST SVHN
FedAvg 42.87±0.36 42.68±0.49 37.93±0.39
FedSoft 64.34±0.38 75.89±0.15 76.35±0.40
PACFL 59.82±0.22 78.42±0.35 78.82±0.12
CFL 61.48±0.15 82.73±0.23 79.15±0.36
CFL-GP 66.74±0.28 84.71±0.13 82.38±0.13
FedGWC 65.91±0.19 83.85±0.21 81.63±0.28
FedRC 65.48±0.33 79.87±0.14 77.86±0.29
IFCA 64.58±0.39 84.67±0.21 81.56±0.14
FEDDAG∗ 67.79±0.27 86.03±0.21 83.73±0.19
FEDDAG 69.13±0.23 88.79±0.19 85.06±0.26

Baselines. We compare FEDDAG against
SOTA methods: (i) single model FL: Fe-
dAvg (McMahan et al., 2017), FedProx (Li
et al., 2020), (ii) personalized FL method:
PerFedAvg (Fallah et al., 2020), (iii) clustered
FL — data-based: PACFL (Vahidian et al.,
2023), (iv) clustered FL — gradient-based:
IFCA (Ghosh et al., 2020), (CFL) (Sattler et al.,
2020), FedSoft (Ruan & Joe-Wong, 2022), Fe-
dRC (Guo et al., 2024), FedGWC (Licciardi
et al., 2025), CFL-GP (Kim et al., 2024a).

Experimental Setup. We consider 100 clients, with 20% randomly selected per round. Unless
stated otherwise, all experiments run for 200 rounds with each selected client performing 10 local
epochs (batch size 10, SGD). The principal vector U i

c transmitted per class is roughly 1% the size
of |Di,c|. For gradient similarity Gi,j , each client trains locally for tg=2 rounds. To construct the
CC-Graph, we select the top-k=2 source clusters.

Datasets. We use four popular datasets for the image classification task in FL setting, i.e., CIFAR-
10 (Krizhevsky et al., 2009), FMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-
100 (Krizhevsky et al., 2009).

Non-IID Data. We use multiple data distributions to simulate traditional and complex data skews:

• Data Distribution I: This distribution evaluates FEDDAG under combined label skew and quan-
tity shift. To simulate label skew, we randomly select ρ% of labels and assign them to random
client groups, repeating the process until all clients are assigned—similar to PACFL (Vahidian et al.,
2023). For quantity shift, we allocate samples of the assigned labels using the Dirichlet factor (Ng
et al., 2011). A real-world example is predictive text input, where users may discuss similar topics,
but word distributions vary due to individual preferences and typing habits.

• Data Distribution II: This distribution evaluates FEDDAG under concept shift. Following prior
work (Jothimurugesan et al., 2023; Guo et al., 2024), we simulate concept shift by modifying the
labels of a subset of clients. For example, label y is changed to (C−y) or (y+1)%C, whereC is the
total number of classes. We perform three such transformations to simulate three distinct concepts.
Similar modifications are applied to the test set.

• Data Distribution III: This distribution evaluates FEDDAG under a different form of label skew.
We adopt the Latent Dirichlet Allocation (LDA) method from Hsu et al. (2019); Yurochkin et al.
(2019), using Dirichlet concentration factors α′ = 0.25 and α′ = 1.0.

Additional experiments (e.g., performance evaluation, communication rounds) on the above
and new distributions, hyperparameter selection and tuning, implementation details, abla-
tion studies are provided in Appendix B. Algorithm theoretical issues, such as convergence,
complexity, and privacy analysis; distribution and client shifts are discussed in Appendix A.

Experiments on Data Distribution I

Exp 1: Performance evaluation. We consider class skew ρ = 20% and 30%, with the Dirichlet
concentration parameter α′ set to 1 for low and 0.25 for high quantity shift. Table 2 shows the re-
sults for α′ = 0.25, while the results for α′ = 1 are included in Appendix B.3. We observe that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Exp 5: Performance comparison under LDA skew (α′ = 0.25 and α′ = 1.0).

α′ = 0.25 α′ = 1.0
Algorithm CIFAR-10 FMNIST SVHN CIFAR-10 FMNIST SVHN

FedAvg 41.78± 0.73 47.26± 0.28 46.13± 0.48 66.48± 0.21 85.48± 0.36 81.89± 0.31
FedSoft 73.83± 0.42 83.75± 0.26 85.67± 0.19 71.08± 0.26 87.85± 0.31 85.92± 0.13
PACFL 80.52± 0.15 85.93± 0.12 87.23± 0.20 73.91± 0.43 93.31± 0.28 92.17± 0.23

CFL 78.94± 0.18 85.18± 0.17 85.19± 0.25 67.46± 0.12 83.16± 0.26 82.75± 0.28
CFL-GP 83.57± 0.15 86.43± 0.14 88.04± 0.19 73.84± 0.28 92.21± 0.23 91.67± 0.19
FedRC 81.76± 0.16 85.24± 0.22 87.91± 0.26 70.19± 0.42 88.27± 0.22 86.29± 0.42
IFCA 82.27± 0.19 87.53± 0.21 88.81± 0.13 74.43± 0.32 92.79± 0.33 92.12± 0.15

FEDDAG∗ 85.03± 0.21 89.65± 0.16 91.27± 0.22 75.52± 0.27 93.95± 0.20 93.08± 0.18
FEDDAG 87.62± 0.14 91.88± 0.10 93.17± 0.18 77.84± 0.23 94.68± 0.13 94.15± 0.11

single global FL baselines (e.g., FedAvg, FedProx) perform poorly under heterogeneity due to model
drift (Zhao et al., 2018), while clustered FL methods yield stronger performance. Both variants of
FEDDAG outperform state-of-the-art baselines—including data-based methods (e.g., PACFL) and
gradient-based methods (e.g., IFCA, FedGWC). The lighter variant, FEDDAG∗, achieves strong
performance by combining data and gradient information to yield improved clustering. The full
FEDDAG further enhances accuracy by enabling complementary representation sharing across clus-
ters, allowing them to learn richer feature spaces.

Exp 2: Finding Optimal Cluster Formation. The server iterates over the clustering threshold α in
Agglomerative HC at regular intervals (e.g., 0.05) to generate candidate clusterings. For each, the
clustering loss L{C1,...,CZ} (see §3.4) is computed. In Figure 1, the x-axis shows α; the red curve
indicates loss, and blue bars denote the number of clusters. Unlike traditional metrics (e.g., inertia)
where loss decreases with more clusters, we observe abrupt increases in loss even as the number
of clusters decreases for certain α values. This is due to FEDDAG’s federated-aware clustering
loss penalizing over-splitting into small clusters. The optimal α is selected as the point with low
clustering loss and a relatively small number of clusters (e.g., for Figure 1(b) α∗ = 0.65).

Exp 3: Ablation Studies. We examine whether accuracy gains from inter-cluster global representa-
tion sharing (GRS) via the dual-encoder architecture (see §4) arise from genuine feature enrichment
or simply from increased model parameters. To isolate this effect, we implement a dual-encoder
variant with GRS disabled: during secondary-encoder training, instead of receiving representations
from other clusters, each client trains its secondary encoder only on its own data and aggregates
within its cluster. We denote this variant FEDDAG†; it is distinct from FEDDAG, which uses a sin-
gle encoder. As shown in Table 3, full FEDDAG (with GRS) achieves the highest accuracy, while
FEDDAG† performs comparably to FEDDAG, confirming that the gains of FEDDAG stem from
cross-cluster representation sharing rather than model size alone.

Experiment on Data Distribution II

Exp 4: Performance under concept shift. Table 4 compares the performance of SOTA algorithms
and FEDDAG on different datasets under concept shift and shows that FEDDAG achieves higher ac-
curacy than the baselines. This improvement stems from FEDDAG’s class-wise comparison mecha-
nism, which provides more accurate similarity estimation under concept shift than existing methods.

Experiment on Data Distribution III

Exp 5: Performance under varying LDA skew. Table 5 shows accuracy under LDA-based skew
with α′ = 0.25 and α′ = 1.0. FEDDAG consistently outperforms SOTA methods by leveraging
cross-cluster feature sharing and integrating data and gradient information for clustering, leading to
robust performance under LDA-based partition.

6 CONCLUSION

We develop a novel algorithm, FEDDAG, that addresses the limitations of existing clustered FL
techniques and effectively tackles data heterogeneity challenges in FL by developing a novel method
that combines both data and gradient information to cluster clients more effectively. Furthermore,
FEDDAG utilizes representation sharing across clusters and incorporates an efficient mechanism to
automatically determine the optimal number of clusters. Experiments on various heterogeneous data
distributions demonstrate that FEDDAG outperforms existing approaches in terms of accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

Code for the FEDDAG is included in the supplementary material. Additionally, convergence analy-
sis of FEDDAG is provided in Appendix A.4.

REFERENCES

Luis B Almeida. Multilayer perceptrons. In Handbook of Neural Computation, pp. C1–2. CRC
Press, 2020.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, 2017.

William HE Day and Herbert Edelsbrunner. Efficient algorithms for agglomerative hierarchical
clustering methods. Journal of classification, 1(1):7–24, 1984.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen, and Yujuan
Tan. Fedgroup: Efficient federated learning via decomposed similarity-based clustering. In
2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing & Network-
ing (ISPA/BDCloud/SocialCom/SustainCom), pp. 228–237. IEEE, 2021a.

Moming Duan, Duo Liu, Xinyuan Ji, Yu Wu, Liang Liang, Xianzhang Chen, Yujuan Tan, and
Ao Ren. Flexible clustered federated learning for client-level data distribution shift. IEEE Trans-
actions on Parallel and Distributed Systems, 33(11):2661–2674, 2021b.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with the-
oretical guarantees: A model-agnostic meta-learning approach. Advances in neural information
processing systems, 33:3557–3568, 2020.

Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and Heng Huang. Deep
clustering via joint convolutional autoencoder embedding and relative entropy minimization. In
Proceedings of the IEEE international conference on computer vision, pp. 5736–5745, 2017.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Yongxin Guo, Xiaoying Tang, and Tao Lin. Fedrc: tackling diverse distribution shifts challenge in
federated learning by robust clustering. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alter-
nating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 665–674, 2013.

Meirui Jiang, Anjie Le, Xiaoxiao Li, and Qi Dou. Heterogeneous personalized federated learning
by local-global updates mixing via convergence rate. In The Twelfth International Conference on
Learning Representations, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B Gibbons. Federated
learning under distributed concept drift. In International Conference on Artificial Intelligence and
Statistics, pp. 5834–5853. PMLR, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Myeongkyun Kang, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M Pohl, and Sang Hyun
Park. Fednn: Federated learning on concept drift data using weight and adaptive group normal-
izations. Pattern Recognition, 149:110230, 2024.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Heasung Kim, Hyeji Kim, and Gustavo De Veciana. Clustered federated learning via gradient-based
partitioning. In Forty-first International Conference on Machine Learning, 2024a.

Heasung Kim, Hyeji Kim, and Gustavo De Veciana. Clustered federated learning via gradient-based
partitioning. In Forty-first International Conference on Machine Learning, 2024b.

Virginia Klema and Alan Laub. The singular value decomposition: Its computation and some appli-
cations. IEEE Transactions on automatic control, 25(2):164–176, 1980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

Minghao Li, Dmitrii Avdiukhin, Rana Shahout, Nikita Ivkin, Vladimir Braverman, and Min-
lan Yu. Federated learning clients clustering with adaptation to data drifts. arXiv preprint
arXiv:2411.01580, 2024.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Alessandro Licciardi, Davide Leo, Eros Fanı́, Barbara Caputo, and Marco Ciccone. Interaction-
aware gaussian weighting for clustered federated learning. arXiv preprint arXiv:2502.03340,
2025.

Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
federated learning: clients clustering for better personalization. World Wide Web, 26(1):481–500,
2023.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Federated
multi-task learning under a mixture of distributions. Advances in Neural Information Processing
Systems, 34:15434–15447, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. Dirichlet and related distributions: Theory,
methods and applications. 2011.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
IEEE Transactions on Signal Processing, 70:1142–1154, 2022a.

Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personalization. In International Conference on
Machine Learning, pp. 17716–17758. PMLR, 2022b.

Yichen Ruan and Carlee Joe-Wong. Fedsoft: Soft clustered federated learning with proximal local
updating. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pp. 8124–
8131, 2022.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. Advances in neural information processing systems, 30, 2017.

Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah,
and Bill Lin. Efficient distribution similarity identification in clustered federated learning via prin-
cipal angles between client data subspaces. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 10043–10052, 2023.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing class imbalance in federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10165–10173,
2021.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems, 31, 2018.

Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei Zhou, Haifeng Chen,
and Wei Cheng. Personalized federated learning under mixture of distributions. In International
Conference on Machine Learning, pp. 37860–37879. PMLR, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional conference on machine learning, pp. 7252–7261. PMLR, 2019.

Dun Zeng, Xiangjing Hu, Shiyu Liu, Yue Yu, Qifan Wang, and Zenglin Xu. Stochastic clustered
federated learning. arXiv preprint arXiv:2303.00897, 2023.

Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated learn-
ing with label distribution skew via logits calibration. In International Conference on Machine
Learning, pp. 26311–26329. PMLR, 2022.

Yuxin Zhang, Haoyu Chen, Zheng Lin, Zhe Chen, and Jin Zhao. Fedac: A adaptive clustered
federated learning framework for heterogeneous data. arXiv preprint arXiv:2403.16460, 2024.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TECHNICAL DISCUSSION AND ANALYSIS

This section presents a detailed discussion and breakdown of FEDDAG, covering key design ele-
ments, communication and privacy considerations, adaptability to new clients and shifting distribu-
tions, and practical implementation details.

A.1 ADDITIONAL RELATED WORK

FL with Heterogeneous Data. Handling data heterogeneity remains a fundamental challenge in
federated learning, as clients often hold non-IID datasets that degrade the performance of standard
aggregation schemes. Personalized FL methods Fallah et al. (2020); Liang et al. (2020); Smith et al.
(2017); Arivazhagan et al. (2019) aim to tailor models to individual clients improving local accuracy
while still benefiting from partial knowledge sharing. Aggregation-based approaches Wang et al.
(2020); Pillutla et al. (2022a); Karimireddy et al. (2020) modify the server-side model update to
mitigate client drift caused by non-IID data, often using correction terms or robust optimization
techniques. Local–global mixing strategies Jiang et al. (2024); Mansour et al. (2020); Deng et al.
(2020) combine local model training with global knowledge transfer, balancing personalization and
collaboration to better handle skewed distributions.

A.2 PRELIMINARIES

Principal Angles Between Two Subspaces. Consider two subspaces, V = span{v1, . . . ,vp} and
X = span{x1, . . . ,xq}, where V and X are p-dimensional and q-dimensional subspaces of Rn,
respectively. The sets {v1, . . . ,vp} and {x1, . . . ,xq} are orthonormal, with 1 ≤ p ≤ q. A sequence
of p principal angles, 0 ≤ Φ1 ≤ Φ2 ≤ · · · ≤ Φp ≤ π

2 , is defined to measure the similarity between
the subspaces. These angles are calculated as:

Φ(V,X) = min
v∈V,x∈X

cos−1
(
|vTx|
∥v∥∥x∥

)
(21)

where ∥ · ∥ is the norm. The smallest of these angles is Φ1(v1,x1), with the vectors v1 and x1 as
the corresponding principal vectors. The principal angle distance serves as a metric to quantify the
separation between subspaces Jain et al. (2013).

Agglomerative hierarchical clustering (HC). (Day & Edelsbrunner, 1984) is a popular method in
machine learning for grouping similar objects based on an adjacency (proximity) matrix. We found
HC to be the best fit for FEDDAG. We also experimented with other clustering algorithms, e.g.,
K-means and graph clustering, but we observed that the clustering algorithm does not make much
difference in cluster formation. HC begins by treating each data point as its own cluster. During
each iteration, HC identifies two clusters that are most similar and merges them. The criterion
for selecting which clusters to merge depends on a linkage method; e.g., in single linkage, the
L2 (Euclidean) distance between two clusters is defined as the smallest distance between any pair
of points from the two clusters. As a merging criterion, FEDDAG defines a clustering threshold
α ∈ (0,1], such that any two clusters with a distance less than α are merged.; e.g., α=1 results in
all clients being grouped into a single cluster.

A.3 FEDDAG OVERVIEW & ALGORITHMS

An illustration of the FEDDAG algorithm is shown in Figure 2. The algorithm for class-wise
weighted data-based similarity computation is shown in Algorithm 2. And, the algorithm for com-
bining both data and gradient information to improve clustering is shown in Algorithm 3.

A.4 CONVERGENCE ANALYSIS

Following Pillutla et al. (2022b) that works on partial model personalization, we consider the
shared–personalized objective:

min
u, V

F (u, V) :=
1

n

n∑
i=1

Fi

(
u, vi

)
, (22)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Client-side

Data

Gradient

+

Fusing Data and Gradient Adjacency

Matrix

Hierarchical

Clustering

Client Clustering

Cluster 2

Cluster 1

Cluster

Complementarity Graph

Cluster 1 Cluster 2

Clients

Server-side

FL Training

Server

Cluster 1

SGD

trainingPrimary

Encoder

Server

SGD

training
Cluster 2

Gradient

Update

Secondary

Encoder

Gradient

Update

Cluster 1

Cluster 1 Secondary Encoder Training
Cluster 1 Primary Encoder Training

1

2

3 4

6

7

89

5

Figure 2: Overview of FEDDAG. Clients compute principal vectors and gradients, which the server
uses to build an adjacency matrix via hierarchical clustering. A cluster complementarity graph then
indicates which clusters can supply features for cross-cluster sharing. Training proceeds in two
phases: (1) the primary encoder and classifier are trained on each cluster’s local data; (2) the sec-
ondary encoder of a requesting cluster is sent to a source cluster, trained with its data, and returned
as gradients for integration.

where u denotes shared parameters and V = {vi}ni=1 personalized parameters. In our dual-encoder
model (Eq. equation 13), for each cluster z we map the secondary encoder as the shared block and
the primary encoder (optionally together with the classifier) as the personalized block:

uz 7−→ Θ2f
z (shared: secondary encoder),

Vz 7−→ (Θ1f
z ,Θc

z) (personalized: primary encoder + classifier).

Given a fixed clustering {Cz}Zz=1 (one-shot data and gradient combined similarity; see §3), the
cluster-level empirical risk can be written in the shared–personalized form of Pillutla et al. (2022b):

min
{uz,Vz}Zz=1

F ({uz, Vz}) =
Z∑

z=1

∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
Fi(uz, Vz),

Fi(uz, Vz) = L
(
Yi, ψ

(
ϕ(1)(Xi; Θ

1f
z), ϕ(2)(Xi;uz); Θ

c
z

))
.

Thus, for each cluster z, Pillutla et al. (2022b)’s analysis applies to the pair (uz, Vz), and the full
objective is a weighted sum over clusters. So, based on this, we will define notations, assumptions,
and the convergence analysis below:

Block notation and participation model. For each cluster z ∈ {1, . . . , Z} in the fixed partition
{Cz}Zz=1, we decompose the parameters as

uz := Θ2f
z (cluster–global / secondary encoder), (23)

Vz := (Θ1f
z ,Θc

z) (cluster–personal: primary encoder + classifier). (24)
Let m be the total number of clients and mz := |Cz| the number of clients in cluster z; define the
cluster weights

πz :=
mz

m
,

Z∑
z=1

πz = 1. (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In each communication round, cluster z samples sz clients (without replacement) and runs E local
steps. The average per-round participation fraction is

q̄ :=

Z∑
z=1

πz
sz
mz
∈ (0, 1]. (26)

Loss and per-client objective. For client i ∈ Cz with data Di = (Xi, Yi), define

Fi(uz, Vz) := L
(
Yi, ψ

(
ϕ(1)(Xi; Θ

1f
z), ϕ(2)(Xi;uz); Θ

c
z

))
, (27)

and the cluster-weighted empirical risk

F
(
{uz, Vz}Zz=1

)
:=

Z∑
z=1

∑
i∈Cz

|Di|∑
k∈Cz

|Dk|
Fi(uz, Vz). (28)

Assumptions used in the theorem. We state the standard conditions in our block notation; expec-
tations are w.r.t. the algorithm’s sampling and stochasticity.
Assumption A.1 (Smoothness). Each client loss in equation 27 is L-smooth in (uz, Vz). For all
(uz, Vz) and (u′z, V

′
z),∥∥∇(uz,Vz)Fi(uz, Vz)−∇(uz,Vz)Fi(u

′
z, V

′
z)
∥∥ ≤ L

∥∥(uz, Vz)− (u′z, V
′
z)
∥∥. (29)

Equivalently, Fi is L-smooth in each sub-block Θ1f
z , Θ2f

z , and Θc
z .

Assumption A.2 (Unbiased stochastic gradients with bounded variance). For any sampled client
i ∈ Cz ,

E
[
∇̃uz

F
]
= ∇uz

F, E
[
∥∇̃uz

F −∇uz
F∥2

]
≤ σ2

u,z, (30)

E
[
∇̃Vz

F
]
= ∇Vz

F, E
[
∥∇̃Vz

F −∇Vz
F∥2

]
≤ σ2

V,z, (31)
where∇Vz

F := (∇Θ1f
z
F,∇Θc

z
F). Define the cluster-weighted variances

σ̄2
u :=

Z∑
z=1

πz σ
2
u,z, σ̄2

V :=

Z∑
z=1

πz σ
2
V,z. (32)

Assumption A.3 (Gradient diversity / heterogeneity). Let Fz(uz, Vz) :=
1∑

k∈Cz |Dk|
∑

i∈Cz
|Di|Fi(uz, Vz) be the average loss in cluster z. There exist finite constants

δ2in ≥ 0 and δ2out ≥ 0 such that
Z∑

z=1

πz
∥∥∇uz

Fz −∇uz
F
∥∥2 ≤ δ2in, Z∑

z=1

πz
∥∥∇Vz

Fz −∇Vz
F
∥∥2 ≤ δ2in, (33)

and the cross-cluster mismatch (relevant to the sharing step) is bounded by δ2out.
Assumption A.4 (Stable clustering). The partition {Cz}Zz=1 obtained at initialization (t=0) is fixed
for the entire analysis horizon t = 1, . . . , T : no clients are reassigned, and clusters do not split or
merge.
Assumption A.5 (Cross-cluster sharing noise). The cross-cluster representation sharing (via the
CC-Graph) is either deterministic (no additional noise), or it introduces an additive variance
bounded by σ2

share in the updates of the u-blocks.

Initial suboptimality. We denote the initial gap by

∆ℓ := F
(
{u0z, V 0

z }Zz=1

)
− F ⋆, (34)

where F ⋆ is the optimal value of equation 28.
Theorem A.1 (Convergence of FEDDAG (per-cluster globals, dual encoders)). Let the assumptions
above hold. Choose learning rates η = τ/(LE) and ηshare = Θ(1/L), for a constant τ depending
on L, the variance terms, heterogeneity, and participation. Then, ignoring absolute constants and
provided clustering is stable,

1

T

T∑
t=1

[
1

L

Z∑
z=1

E
∥∥∇uzF

∥∥2
+

1

mL

m∑
i=1

E
∥∥∇Vc(i)

F
∥∥2

]
≤

(∆ℓ σ
2
sim,1)

1/2

T 1/2
+

(∆2
ℓ σ

2
sim,2)

1/3

T 2/3
+ O

(
1

T

)
,

(35)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where the effective variance terms are

σ2
sim,1 =

2

L

(
δ2in

Z∑
z=1

πz

(
1− sz

mz

)
+

σ̄2
u

L
+

Z∑
z=1

πz
sz
mz

σ2
V,z + σ2

share

)
, (36)

σ2
sim,2 =

2

L

(
δ2in + δ2out + σ̄2

u + σ̄2
V + σ2

share

) (
1− 1

E

)
. (37)

Remark 1 (Clustering stability). The bound relies on a fixed partition; oscillations due to re-
clustering invalidate the descent decomposition. In practice, stability is supported empirically by
(i) one-shot blended (data+gradient) clustering at t=0 and (ii) the fact that training is conducted
within the fixed clusters thereafter.

Remark 2 (What differs vs. single-global frameworks). In FEDDAG, we aggregate both the per-
cluster global blocks u1:Z (secondary encoders, coupled via the CC-Graph) and the cluster-personal
blocks V1:Z (primary encoder + classifier). Consequently, σ2

sim,1 and σ2
sim,2 expose: (i) per-cluster

sampling sz/mz (larger sz improves the first term), (ii) local steps E (fewer local steps reduce the
drift factor 1 − 1/E), and (iii) cross-cluster sharing noise σ2

share (zero for deterministic Laplacian
smoothing; small but positive for stochastic distillation). The asymptotic T−1/2 rate is observed
once all devices are seen on average at least once; a convenient sufficient condition (up to constants)
is

T ≥ ∆ℓ

σ2
sim,1

max

{
(1− q̄)E

q̄
, 2

}
, q̄ =

Z∑
z=1

πz
sz
mz

. (38)

A.5 COMMUNICATION AND COMPUTATION COMPLEXITY

FEDDAG minimizes communication and computation overhead, aligning with the scalability re-
quirements of federated learning systems. Before dual-encoder joint training begins, each client
locally trains for tg rounds without federation (see Algorithm 1). At the end of this phase, each
client uploads: (i) a k-sparse gradient ∆̃i of dimension k ≪ |Di|, and (ii) class-wise p principal
vectors U i

c ∈ Rd×r for c = 1, . . . , C. The number of principal vectors p is kept small (typically
1–2% of the class size). Hence, the combined communication cost of ∆̃i and U i

c is negligible rel-
ative to the size of the model parameter space |Θ|. The computation of principal vectors via SVD
incurs a cost of O(FN2) per client, assuming a local dataset of N samples and F features with
N > F .

Once the proximity matrix and clustering are finalized, FEDDAG maintains the same per-round
communication cost as FedAvg in terms of transmitting model parameters. However, due to its
dual-encoder architecture, it additionally transmits a secondary encoder (Θ2f) alongside the primary
encoder (Θ1f), both of equal size. In each training round, selected clients perform two local SGD
phases:

• Primary phase — standard local update on (θ1f , θc).

• Secondary phase — additional local update on θ2f
′
, which has the same size as θ1f .

If both phases are executed in the same round, the local computation cost is approximately 2× that
of FedAvg. However, the two phases can be alternated, with each running every other round in
settings where computation is constrained. Since updates to the primary and secondary encoders are
independent, the correctness and convergence of the final model are preserved under this alternating
schedule.

A.6 PRIVACY CONSIDERATIONS

Privacy is a foundational aspect of federated learning, which aims to enable collaborative model
training while protecting the sensitive data of individual clients. In the context of FEDDAG, we ex-
amine the privacy implications of both the similarity estimation and representation-sharing phases.
During client clustering, FEDDAG constructs a weighted, class-wise data similarity matrix using
a small set of class-representative principal vectors and per-class sample counts provided by each
client. Crucially, the shared principal vectors are reduced linear combinations of local data and do

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2: Proximity Matrix Computation
Input: Principal vectors U∗, sparsified gradients ∆̃∗ for all clients
Output: A, proximity matrix between all client pairs

1 Function: ProximityMatrix(U∗, ∆̃∗)
2 for client i = 1, . . . , N and for client j = 1, . . . , N do
3 for class c = 1, . . . , C do
4 Compute V′

i,j,c using Eq. 4
5 ComputeW′

i,j,c using Eq. 5
6 Compute Vi,j using Eq. 6 and V̂ ← normalize(V)
7 Compute Gi,j using Eq. 3 and Ĝ ← normalize(G)
8 Initialize weight vector w = (w1, . . . , wN)⊤ ∈ [0, 1]N randomly
9 while not converged do

10 Compute entropy loss Len using Eq. 8
11 w ← w − η∇wLen; and w ← clip(w, 0, 1) // MLP-based update
12 Compute Ai,j as in Eq. 7 and returnAi,j

Algorithm 3: Clustering Threshold Search in FL
Input: Proximity matrixAi,j , threshold set Sα

Output: Optimal clustering {C1, . . . ,CZ}
1 Function OptimalClustering(A, Sα):
2 Initialize empty list records
3 for α ∈ Sα do
4 Generate candidate clustering Cα using hierarchical clustering (HC) onA with threshold α
5 Compute L1 and L2 (Eq. 9) for Cα

6 Total clustering score L{C1,...,CZ} = L1 + λL2

7 Save tuple (α,L{C1,...,CZ}) to records
8 Select α∗ with low score and relatively small Z from records

9 return Optimal clustering {C1, . . . ,CZ} ← Cα∗

not expose any raw samples or labels. Moreover, each client contributes fewer than 1% of such
vectors per class, ensuring minimal data exposure. This approach aligns with prior privacy-aware
clustering methods Vahidian et al. (2023), which also transmit low-dimensional representative vec-
tors to the server. In more privacy-sensitive deployments, additional protection mechanisms can
be integrated into FEDDAG. For instance, secure aggregation protocols (Bonawitz et al., 2017),
encryption techniques, or differential privacy can be used to protect the shared principal vectors.
Additionally, uniform weighting can be employed in place of class-frequency-based weighting of
similarity values to prevent leakage of class distribution information. To further mitigate informa-
tion leakage during gradient-based similarity estimation, FEDDAG can adopt encryption strategies
similar to those proposed in Sattler et al. (2020).

During cross-cluster feature sharing (see §4), when a cluster requests representations from a source
cluster, only the aggregated gradients computed from the source cluster’s clients are shared. No
individual client’s gradient information is exposed at any point.

A.7 GENERALIZATION TO NEWCOMERS — ALGORITHMS 4

High-level idea. In real-world FL systems, new clients may join after the initial clustering and model
training have already begun. Moreover, clients may not always remain continuously available. To
handle such cases, we extend FEDDAG with a lightweight mechanism that allows new clients to
seamlessly join existing clusters without disrupting ongoing training. Specifically, each new client
computes its data and gradient information, which are used to extend the proximity matrix to include
similarity values for the new client. This updated matrix is then used by the clustering algorithm
to determine the appropriate cluster assignment. Once assigned, the client is integrated into the
designated cluster without re-evaluating the optimal clustering or retraining any previously learned
weights.

Details of the method. The process for integrating a new client inew is similar to that used for initial
clients (as in §3). FEDDAG first performs local training on inew’s data for tg rounds to reach partial
convergence. Afterwards, client inew computes its sparsified gradient update ∆̃inew and class-wise
principal vectors U inew

c and sends them to the server. The server updates the existing data similarity
matrix V̂i,j and gradient similarity matrix Ĝi,j to their extended forms V̂new

i,j and Ĝnew
i,j , incorporating

information from the new client. To combine the data and gradient, FEDDAG initially learns a
weight vector w (see §3.3). To integrate the new client, FEDDAG extends this process by assigning

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 4: Generalization to Newcomers
Input: New client inew, clustering threshold α∗, current clusters {C1, . . . ,CZ}, current proximity matrixAi,j , data matrix Vi,j ,

gradient matrix Gi,j
Output: Updated client inew models

1 Function NewcomerIntegration(inew, α∗):
2 Initialize client inew with random θ0

inew
3 Set local counter tinew = 0

// Tracks local warm-up rounds
4 for each global round t do
5 if tinew < tg then
6 Local training of θ0

inew using local data (no federation)
7 tinew ← tinew + 1
8 if tinew = tg then
9 Client inew sends ∆̃inew and Uinew

c to server
// --- Extend proximity matrix ---

10 Server extends V̂new
inew,j and Ĝnew

inew,j to include the new client
11 Server initializes winew ∈ [0, 1] and learns it using Eq. 8 (§3), keeping existing weights fixed
12 Server extends proximity matrixAnew

i,j using Eq. 7 (§3) with V̂new
i,j and Ĝnew

i,j

// --- Cluster assignment ---
13 Server executes hierarchical clustering with α∗ onAnew

i,j to assign inew to cluster Cz(inew)

14 Client inew sets θ1f
inew

, θc
inew from (Θ1f

z(inew)
,Θc

z(inew))

// Aggregate secondary encoders from related clusters (via H)
15 Client inew sets θ2f′

inew
←

∑
j:H(j,z(inew))=1 Θ2f

j

16 else
// --- Standard training phase (same as else branch in Algorithm 1) ---

17 Train (θ1f
inew

, θc
inew) via SGD using Eq. 15

// Primary training

18 Train θ2f′
inew

via SGD using Eq. 18
// Secondary training

19 Broadcast updated (θ1f
inew

, θc
inew , θ

2f′
inew

) to server

a weight winew ∈ [0, 1] and learning it using the same entropy loss (Eq. 8) used during initial training,
but optimizing only for winew without modifying existing weights. Using the extended weights wnew,
the proximity matrix Anew

i,j is computed based on V̂new
i,j , Ĝnew

i,j , and winew , as defined in Eq. 7 in §3.3.

Finally, the server reuses the previously selected clustering threshold α∗ (from Optimal Clustering
in §3.4) and performs a single hierarchical clustering (HC) pass on Anew

i,j to assign inew to a cluster
Cz(inew). After assignment, client inew initializes its model from the corresponding cluster’s global
parameters and directly joins the existing FEDDAG training flow (i.e., the else branch at line 15 in
Algorithm 1). This extension enables efficient onboarding of new clients by reusing the established
clustering threshold and global models, avoiding disruption to ongoing training. The complete pro-
cess is summarized in Algorithm 4. Also, we evaluate the generalization capability of FEDDAG to
unseen clients through experiments reported in Appendix §B.6.

A.8 HANDLING DATA-DISTRIBUTION SHIFT

High-level idea. After FEDDAG has converged, the data of already-clustered clients may still
evolve over time (e.g., new sensor drifts, changes in user behavior). If the local distribution of a
client drifts too far from what its current cluster represents, the global model quality may degrade.
We, therefore, add a mechanism that decides whether a client needs to be re-evaluated for clus-
ter assignment. In addition, to accommodate a growing client population, FEDDAG periodically
re-assesses the clustering to ensure the configuration remains consistent with the evolving client
landscape. Specifically, the Wasserstein distance (Duan et al., 2021b) is employed to track shifts in
the class distribution of each client’s local data over time; when a significant shift is detected, the
system recomputes that client’s data and gradient representations and re-evaluates its proximity to
other clients using the same similarity fusion mechanism described in §3. This enables re-clustering
of the client without disrupting other participants or restarting global training.

Client re-evaluation. Let P(t)
i denote the empirical class histogram of client i at round t. Every

δ′ rounds, we compute the 1-Wasserstein distance3 between the current and previous histograms as

3For image classification, we treat classes as discrete points on the line 0, . . . , C−1; the 1-Wasserstein
distance then has a closed form based on cumulative histograms.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

W1

(
P(t)
i , P(t−δ′)

i

)
. Client i is marked as shifted if:

W1

(
P(t)
i , P(t−δ′)

i

)
> τi :=

0.2

LabelSize
· ni, (39)

where ni is the number of new samples processed by client i since round t−δ′. Eq. 39 flags a shift
when roughly 20% of local data has changed.

A shifted client does not immediately trigger global re-clustering. Instead, its cluster assignment is
re-evaluated through a procedure that re-computes data and gradient information for the server (sim-
ilar to generalizing to newcomer clients in §A.7). For the next tg rounds, the shifted client i trains
its primary encoder and classifier on local data without federation so that the resulting gradients
reflect its own distribution rather than the global model. After local training, the client computes its
gradient update ∆i, applies k-sparsification to obtain ∆̃i, re-computes class-wise principal vectors
U i
c from local data, and sends U i

c and ∆̃i to the server. These components update the data similar-
ity matrix V̂i,j , the gradient similarity matrix Ĝi,j , and the proximity matrix Ai,j . The server then
re-evaluates clients’ cluster assignments by performing a single hierarchical-clustering pass on the
updated Ai,j using the fixed optimal threshold α∗ (derived in §3.4). If a reassignment occurs, the
client initializes its model from the corresponding global model and continues training.

Accommodating growing population. To support an expanding set of participants, FEDDAG
periodically re-evaluates the clustering after a specified number of new clients have joined. This
reassessment determines whether the updated client distribution warrants a change in the cluster
structure. Concretely, FEDDAG re-runs the optimal clustering selection procedure by sweeping
over candidate threshold values α (as in §3.4). If a new clustering configuration is chosen, the al-
gorithm updates the necessary components (e.g., the cluster complementarity graph, re-initializes
the global model from client models) and resumes training, ensuring consistency with the evolving
client landscape.

B ADDITIONAL EXPERIMENTS

In this section, we show implementation details, additional experiments regarding hyperparameter
selection and sensitivity, and FEDDAG performance on different data distributions.

B.1 IMPLEMENTATION DETAILS

We now describe the implementation details used in our experiments, including model architectures
and training hyperparameters. For datasets such as CIFAR-10 and SVHN, we adopt a convolutional
neural network (LeCun et al., 2002) composed of three convolutional layers followed by two fully
connected layers. For FMNIST, we use a simpler architecture with two convolutional layers and
a single dense layer. Local training on each client is performed using stochastic gradient descent
(SGD) with a learning rate of 0.01, momentum of 0.5, weight decay of 1 × 10−4, and a batch
size of 64. Each client trains locally for 10 epochs per round. Unless stated otherwise, we run
a total of 200 global communication rounds, with 20% of clients sampled per round. We report
classification performance using balanced accuracy, averaged across clients to account for non-IID
data distributions.

B.2 HYPERPARAMETER TUNING

In the context FEDDAG, hyperparameters play a crucial role in determining the model’s perfor-
mance, stability, and robustness. To better understand the effectiveness of FEDDAG, we investigate
how sensitive the algorithm is to variations in different hyperparameters.

Local Steps (tg). The parameter tg controls the number of local training epochs each client per-
forms on its own data before sending gradient information to the server. This step is crucial for
estimating each client’s gradient direction, which is used to compute the gradient similarity matrix.
Since this training is done without any federation, the resulting gradients reflect only the client’s
local data. The choice of tg affects the trade-off between computation efficiency and the quality of
similarity estimation. Ideally, we want tg to be as small as possible, while still enabling the gradients
to converge enough to produce meaningful similarity measurements. Table 6 shows how accuracy

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

varies with different values of tg across datasets. In these experiments, the gradient similarity matrix
alone (instead of combining data and gradient) was used as the proximity matrix to assess how ef-
fectively gradient information captures client similarity. The setup follows Data Distribution I (see
§5) with α′ = 1, ρ = 30%, and consistent hyperparameter settings. Each communication round
included 10 local training steps. As shown, increasing tg improves accuracy initially, as longer local
training leads to more stable and comparable gradients. However, accuracy plateaus around tg = 2
for most datasets, indicating that the gradients have sufficiently converged for reliable similarity
estimation. Beyond this point, additional local steps yield diminishing returns. Therefore, tg = 2
provides a good trade-off between accuracy and efficiency.

tg CIFAR-10 SVHN FMNIST
1 80.81±0.59 84.82±0.24 93.18±0.11
2 83.34±0.52 90.05±0.16 93.18±0.11
3 83.34±0.52 90.05±0.16 93.18±0.11

Table 6: Test accuracy for different values of local training rounds tg (with 10 local steps per round)
across datasets, evaluated under Data Distribution I with 30% class skew and Dirichlet parameter
α′ = 1.

Weight Range for Data Similarity Matrix (δ). The parameter δ controls the sensitivity of the
data similarity matrix to dataset size imbalance when comparing clients. Specifically, this weight-
ing mechanism penalizes similarity scores between clients with large differences in dataset sizes,
thereby reflecting the quantity shift more accurately. The impact of these size-based penalties is
governed by the value of δ: smaller values result in minimal influence, while larger values increase
the penalty’s effect. Each computed similarity value is reweighted and normalized into the range
[1− δ, 1 + δ], with δ ∈ [0, 1), allowing the final similarity score to scale by at most a factor of two.
Table 7 report test accuracy for various values of δ across multiple datasets. Since the weighting
mechanism primarily addresses size disparity and quantity shift, we examine its effect under the
Dirichlet concentration factor: α′ = 0.25 (severe shift). To isolate the effect of different values of δ
on accuracy, we use only the data similarity matrix (instead of combining data and gradient similar-
ity) when computing the proximity matrix for clustering. These experiments follow the Data Dis-
tribution I described in §5, using identical hyperparameters. From Table 7, we observe that higher
δ values (e.g., 0.6) can lead to improved clustering and accuracy. This suggests that the weight-
ing scheme is particularly beneficial in highly heterogeneous environments, where accounting for
dataset size differences enhances similarity estimation.

δ CIFAR-10 SVHN FMNIST
0.2 87.51±0.18 91.74±0.08 91.79±0.08
0.4 87.51±0.18 91.74±0.08 92.21±0.09
0.6 87.95±0.13 91.91±0.13 92.21±0.09
0.8 87.95±0.13 91.91±0.13 92.21±0.09
1.0 87.95±0.13 91.91±0.13 92.21±0.09

Table 7: Accuracy metrics for various values of weight range δ under Data Distribution I (Dirichlet
α′ = 0.25, 20% class skew).

Top-k values in CC-Graph. The parameter k determines how many top-ranked clusters are selected
as knowledge sources for each target cluster in the complementarity graph H . This graph guides
which clusters will supply feature representations to others during the secondary encoder training
phase. For every row in the complementarity score matrix (Eq. 12), only the top-k highest scor-
ing entries are retained to form directed edges. A smaller k limits each cluster to fewer sources,
possibly reducing noise but also restricting diversity. In contrast, a larger k increases the opportu-
nities for learning from complementary clusters but may include low-quality connections that dilute
representation quality.

Table 8 shows how varying the number of source clusters k in the complementarity graph H affects
the performance of FEDDAG. Experiments are conducted under Data Distribution I with Dirichlet
concentration parameter α′ = 1 and 30% label skew, while keeping all other hyperparameters fixed.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We observe that performance generally improves when k ≥ 2, benefiting from knowledge transfer
across multiple relevant clusters. In some cases, increasing k beyond 2 continues to help (e.g.,
FMNIST), while in others (e.g., SVHN), it leads to marginal drops in accuracy. This suggests that
the optimal value of k depends on the dataset characteristics and the number of clusters in the current
formation. We adopt k = 2 as a balanced choice to ensure diversity while maintaining relevance.

k CIFAR-10 SVHN FMNIST
1 90.85±0.13 97.09±0.08 97.71±0.05
2 91.02±0.12 97.19±0.04 98.36±0.10
3 90.95±0.16 97.01±0.07 98.57±0.08
4 90.96±0.21 96.78±0.12 98.41±0.11

Table 8: Accuracy for different values of top-k retained in the complementarity graph H under Data
Distribution I (Dirichlet α′ = 1, 30% class skew).

B.3 EXPERIMENTS ON DATA DISTRIBUTION I

Exp 1: Performance Evaluation. This section presents the additional results referenced in the
main paper for α′ = 1, under class skew ρ = 20% and 30%, following the setup described in §5.
The results, shown in Table 9, further validate the effectiveness of FEDDAG on Data Distribution I
under moderate quantity shift. The same set of baselines is used, and results are reported across all
four datasets.

Exp 6: Convergence Under Limited Communication rounds. We compare the performance
of FEDDAG against state-of-the-art (SOTA) baselines under a constrained communication budget
of 80 rounds. Figure 3 reports the final local test accuracy versus the number of communication
rounds for four datasets. The results demonstrate that FEDDAG consistently converges within 20
to 30 communication rounds, outperforming all other methods in both convergence speed and final
accuracy.

(a) CIFAR-10 (b) FMNIST (c) SVHN (d) CIFAR-100

Figure 3: Exp 6: Test accuracy versus number of communication rounds, Data Distribution I, non-
IID (30%), α′=1.

B.4 EXPERIMENTS ON DATA DISTRIBUTION III

Exp 7: Finding Optimal Cluster Formation under LDA Skew. We repeat the clustering selection
experiment under Data Distribution III, where client data follows an LDA-based label distribution
with moderate skew (α′ = 1). Figure 4, the red curve plots clustering loss and blue bars indicate the
number of clusters. Similar to Data Distribution I, the optimal threshold α∗ is selected based on a
balance between clustering loss and cluster count.

B.5 DATA DISTRIBUTION IV

This distribution evaluates FEDDAG under a combination of feature skew and label skew. To sim-
ulate feature skew, we follow an approach similar to FedRC (Guo et al., 2024), which leverages
datasets (e.g., CIFAR-10-C) that apply diverse image corruptions, thereby introducing different fea-
ture styles. To simulate label skew, we adopt the LDA method (Hsu et al., 2019). Specifically, each
client is assigned one of the available corruption types (e.g., fog, contrast, etc. for CIFAR-10-C) to
create feature skew, and the samples are distributed using the Dirichlet factor (Ng et al., 2011).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Exp 1: Performance comparison for Data Distribution I with 20% and 30% non-IID label
skew under low quantity shift (Dirichlet α′ = 1).

20% Label Skew 30% Label Skew
Algorithm CIFAR-10 FMNIST SVHN CIFAR-100 CIFAR-10 FMNIST SVHN CIFAR-100

FedAvg 46.20 ± 0.97 57.12 ± 0.30 74.61 ± 0.36 51.34 ± 0.78 57.48 ± 0.17 77.17 ± 0.24 68.34 ± 0.45 53.13 ± 1.46
FedProx 46.77 ± 0.14 56.81 ± 0.16 77.23 ± 0.45 53.38 ± 0.86 57.80 ± 0.23 73.87 ± 0.25 69.65 ± 0.19 53.97 ± 0.85

PerFedAvg 84.68 ± 0.19 91.18 ± 0.21 92.34 ± 0.13 69.43 ± 0.22 82.83 ± 0.14 94.74 ± 0.17 91.48 ± 0.29 60.70 ± 0.30
FedSoft 77.42 ± 0.21 87.64 ± 0.35 90.48 ± 0.24 65.98 ± 0.37 76.94 ± 0.38 89.56 ± 0.37 84.86 ± 0.45 56.61 ± 0.31
PACFL 90.45 ± 0.30 94.41 ± 0.31 94.96 ± 0.12 70.35 ± 0.36 87.01 ± 0.38 97.28 ± 0.24 94.36 ± 0.19 63.91 ± 0.76

CFL 72.80 ± 0.66 86.97 ± 0.23 82.06 ± 0.34 61.43 ± 0.92 71.85 ± 0.79 85.67 ± 0.23 80.23 ± 0.25 52.90 ± 1.17
CFL-GP 87.83 ± 0.19 91.45 ± 0.27 90.38 ± 0.16 69.73 ± 0.20 85.67 ± 0.25 96.82 ± 0.24 92.29 ± 0.09 61.24 ± 0.73
FedGWC 89.58 ± 0.17 93.56 ± 0.09 93.67 ± 0.13 72.75 ± 0.29 86.18 ± 0.25 96.97 ± 0.14 92.94 ± 0.19 61.35 ± 0.43
FedRC 76.12 ± 0.28 86.45 ± 0.42 89.22 ± 0.31 64.78 ± 0.33 75.12 ± 0.31 91.02 ± 0.44 83.67 ± 0.38 57.89 ± 0.24
IFCA 89.68 ± 0.17 94.02 ± 0.09 93.28 ± 0.13 72.86 ± 0.29 86.42 ± 0.25 96.61 ± 0.14 92.86 ± 0.19 61.34 ± 0.43

FEDDAG 94.53 ± 0.12 96.82 ± 0.18 97.04 ± 0.23 75.32 ± 0.33 91.02 ± 0.12 98.36 ± 0.10 97.19 ± 0.04 67.17 ± 0.61

(a) CIFAR-10 (b) FMNIST (c) SVHN

Figure 4: Exp 7: Clustering score versus cluster α values and number of clusters for finding optimal
clustering.

Dataset. We use two datasets for this task in the FL setting: CIFAR-10-C, TINY IMAGENET-
C (Hendrycks & Dietterich, 2019).

Exp 8: Performance under Feature Skew. We evaluate the performance of SOTA algorithms and
FEDDAG on different datasets under a combination of feature skew and label skew. Each client
is randomly assigned one of the 20 available corruption types, and samples are distributed using
a Dirichlet concentration factor α′ = 1. The results in Table 10 show that FEDDAG consistently
achieves higher accuracy than the baseline methods. This improvement is attributed to FEDDAG’s
data-based similarity metric, which provides more accurate feature similarity estimation compared
to existing approaches.

B.6 EXPERIMENT ON GENERALIZATION TO NEWCOMERS

To assess the ability of FEDDAG to generalize to unseen clients (see Appendix A.7), we simu-
late a dynamic federated learning environment using Data Distribution I with 30% label skew and
Dirichlet concentration factor α′ = 1. Initially, training is performed on 80 out of 100 clients for
80 communication rounds, following the standard FEDDAG procedure. At the end of this phase,
the remaining 20 clients join the system as newcomers. Each newcomer executes steps (1–15) of
Algorithm 4 and is assigned to a cluster. Once assigned, the client receives the current global model
from its designated cluster and personalizes it for 1 round (10 local epochs). To evaluate model
quality, we report the average final test accuracy of the 20 newcomers across different datasets. As
shown in Table 11, FEDDAG achieves better generalization to newcomers than competing methods.
This improvement is attributed to its robust cluster assignment and generalization strategy for new
clients.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm CIFAR-10-C TINY IMAGENET-C

FedAvg 30.73 ± 0.36 18.43 ± 0.43
PerFedAvg 60.39 ± 0.13 25.54 ± 0.31
PACFL 63.62 ± 0.22 33.53 ± 0.38
CFL 59.48 ± 0.15 28.97 ± 0.26
FedRC 61.82 ± 0.21 32.14 ± 0.19
IFCA 62.52 ± 0.39 32.33 ± 0.19
FEDDAG 65.62 ± 0.31 36.27 ± 0.32

Table 10: Exp 8: Performance comparison of various SOTA algorithms and FEDDAG under com-
bined feature skew and label skew (Data Distribution IV).

Algorithm CIFAR-10 FMNIST SVHN
FedAvg 55.38±0.15 74.93±0.22 66.86±0.28
PerFedAvg 80.92±0.10 92.62±0.17 90.00±0.15
FedSoft 74.98±0.27 87.45±0.22 83.59±0.12
PACFL 85.33±0.15 95.17±0.24 92.76±0.08
CFL 69.97±0.11 83.64±0.13 78.94±0.17
FedGWC 84.30±0.13 94.53±0.10 91.56±0.06
FedRC 73.36±0.26 88.91±0.21 82.36±0.12
IFCA 84.55±0.22 94.61±0.30 91.58±0.22
FEDDAG 88.23±0.18 96.84±0.23 95.74±0.13

Table 11: Test accuracy of newcomer clients trained under Data Distribution I with 30% label skew
and α′ = 1.

23

	Introduction
	Literature review
	FedDAG Algorithm
	Gradient-based Similarity
	Weighted Class-wise Data-based Similarity
	Combining Data & Gradient — blackAlgorithm 2
	Optimal Clustering — blackAlgorithm 3

	Global Representation Sharing (GRS)
	Experiments
	Conclusion
	Reproducibility statement
	Technical Discussion and Analysis
	Additional related work
	Preliminaries
	FedDAG Overview & Algorithms
	Convergence Analysis
	Communication and Computation Complexity
	Privacy Considerations
	Generalization to Newcomers — Algorithms 4
	Handling Data-Distribution Shift

	Additional Experiments
	Implementation Details
	Hyperparameter Tuning
	Experiments on Data Distribution I
	Experiments on Data Distribution III
	Data Distribution IV
	Experiment on Generalization to Newcomers

