
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

SOLVING POISSON EQUATIONS USING
NEURAL WALK-ON-SPHERES

Hong Chul Nam∗

ETH Zurich
honam@student.ethz.ch

Julius Berner∗ & Anima Anandkumar
California Insitute of Technology
{jberner, anima}@caltech.edu

ABSTRACT

We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the
efficient solution of high-dimensional Poisson equations. Leveraging stochastic
representations and Walk-on-Spheres methods, we develop novel losses for neural
networks based on the recursive solution of Poisson equations on spheres inside the
domain. The resulting method is highly parallelizable and does not require spatial
gradients for the loss. We provide a comprehensive comparison against competing
methods based on PINNs, the Deep Ritz method, and (backward) stochastic dif-
ferential equations. In several challenging, high-dimensional numerical examples,
we demonstrate the superiority of NWoS in terms of accuracy, speed, and com-
putational costs. Compared to commonly used PINNs, our approach can reduce
memory usage and errors by orders of magnitude. Furthermore, we apply NWoS
to problems in the context of PDE-constrained optimization as well as molecular
dynamics to show its efficiency in practical applications.

1 INTRODUCTION

Partial Differential Equations (PDE) are foundational to our modern scientific understanding in a
wide range of domains. While decades of research have been devoted to this topic, numerical methods
to solve PDEs still remain expensive for many PDEs. In recent years, deep learning has helped to
accelerate the solution of PDEs (Azzizadenesheli et al., 2023; Zhang et al., 2023b; Cuomo et al.,
2022) as well as tackle PDEs, which had been completely out of range for classical methods (Han
et al., 2018; Scherbela et al., 2022; Nüsken & Richter, 2021b).

In this work, we focus on high-dimensional Poisson equations on general domains. Several deep
learning methods (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018; E et al., 2017; Han et al.,
2017; Nüsken & Richter, 2021a; Han et al., 2020) are amendable to the numerical solution of Poisson
equations. However, previous methods suffer from unnecessary high computational costs, bias, or
instabilities, see Appendix A for a detailed comparison. To overcome these challenges, we propose a
novel approach based on so-called Walk-on-Spheres (WoS) methods (Muller, 1956). WoS rewrites the
solution as an expectation over Brownian motions stopped at the boundary of the domain. Leveraging
the isotropy of Brownian motion, WoS accelerates the random walk by iterative sampling from
spheres around the current position until reaching the boundary, see Figure 2.

Our approach: We develop Neural Walk-on-Spheres (NWoS), a version of WoS that can be
combined with neural networks to learn the solution to (parametric families of) Poisson equations on
the whole domain. Our method amortizes the cost of WoS during training so that the solution, as well
as gradients, can be evaluated in fractions of seconds afterward (and at arbitrary points in the domain).
The resulting objective is more efficient and scalable than competing methods, without the need to
balance penalty terms for the boundary condition or compute spatial derivatives. In particular, we
demonstrate a significant reduction of GPU memory usage in comparison to PINNs and up to orders
of magnitude better performance for a given time and compute budget, see Table 1 and Figure 1.

Related works: We provide an in-depth comparison of competing deep learning approaches for
the solution of elliptic PDEs in Appendix A. These include physics-informed neural networks

∗Equal contribution

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: Comparison of neural PDE solver for Poisson equations. #derivatives, #loss terms, and
cost denote the order of spatial derivatives, the number of terms required in the loss function, and
the computational cost for one gradient step. Propagation speed describes how quickly boundary
information can propagate to the interior of the domain, see Appendix A for details.

Method #Derivatives #Loss Cost Propagation
terms speed

PINN 2 2 medium slow
Deep Ritz 1 2 low slow
Feynman-Kac 0 1 high fast
BSDE 1 1 high fast
Diffusion loss 1 2 medium medium

NWoS (ours)1 0 1 low fast

(PINNs) (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018), the Deep Ritz method (Jin et al., 2017),
and the diffusion loss (Nüsken & Richter, 2021a), see also Table 1. The diffusion loss can be viewed
as an interpolation between PINNs and losses based on backward SDEs (BSDEs) (Han et al., 2017;
E et al., 2017; Beck et al., 2019). Methods based on BSDEs and the Feynman-Kac formula (Beck
et al., 2018; Berner et al., 2020a; Richter & Berner, 2022) have been investigated for the solution of
parabolic PDEs, where the SDE is stopped at a given terminal time. Due to costly simulation time,
they cannot be applied efficiently to elliptic problems.

2 NEURAL WALK-ON-SPHERES (NWOS) METHOD

In this section, we derive our method. We consider the Poisson equation with Dirichlet boundary
condition on an open, connected, and sufficiently regular domain Ω ⊂ Rd, given by{

∆u = f, on Ω,

u = g, on ∂Ω.
(1)

It is well-known that the solution admits the stochastic representation

u(x) = E
[
g(Xξ

τ)− F ξ
τ

∣∣ξ = x
]
, with F ξ

τ :=

∫ τ

0

f(Xξ
t) dt, (2)

where ξ is a random variable distributed on Ω, dXt =
√
2 dBt is a scaled Brownian motion with

initial condition Xξ
0 = ξ, and τ := τ(Ω, ξ) = inf{t ∈ [0,∞) : Xξ

t ̸= Ω} is the first exit time, see
Appendix A for further details. Directly leveraging this representation results in long runtimes, since
it requires to simulate the Brownian motion until reaching the boundary. To tackle this issue, we cast
the solution of the PDE in (1) into nested subproblems of solving Poisson equations on subdomains.

Specifically, let Ω0 ⊂ Ω be an open sub-domain containing2 ξ0 := ξ and let τ0 := τ(Ω0, ξ) be the
corresponding stopping time. Analogously to the stochastic representation in (2), we obtain that

u(ξ) = E
[
u(Xξ

τ0)− F ξ
τ0

∣∣ξ] . (3)
Note that this is a recursive definition since the solution u to the PDE in (1) appears again in the
expectation. To resolve the recurrence, we define the random variable ξ1 ∼ Xξ

τ0 and choose another
open sub-domain Ω1 ⊂ Ω containing ξ1. Considering the stopping time τ1 := τ(Ω1, ξ1), we can
calculate the value of u appearing in the expectation

u(Xξ
τ0) ∼ u(ξ1) = E

[
u(Xξ1

τ1)− F ξ1
τ1

∣∣ξ1] .
We can now iterate this process for k ∈ N and combine the result with (3) to obtain

u(ξ) = E

[
g(Xξ

τ)−
∑
k≥0

F ξk
τk

∣∣∣∣∣ξ
]
. (4)

1While not necessary for NWoS, we note that the gradient of the model and an additional boundary loss can
still be used to improve performance, see Appendix D.

2Since ξ is a random variable, the sub-domain Ω0 is random, and the statement is to be understood for each
realization.

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0 200 400 600 800 1000
Time (s)

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

10 100 1000
Dimension (d)

102

103

104

M
em

or
y

Si
ze

 (M
B)

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN

Figure 1: Left: Convergence of the relative L2-error when solving the Laplace equation in 10d using
our considered methods. Right: Peak GPU memory usage of different methods during training with
batch size 512 for the Poisson equation in Section 3 in different dimensions d.

In the above, we used the strong Markov property of the SDE solution as well as the tower property
of the conditional expectation, see also Hermann et al. (2020).

2.1 WALK-ON-SPHERES

Picking Ωk := Brk(ξk) to be a ball of radius rk ∈ (0,∞) around ξk in the k-th step, the isotropy of
Brownian motion ensures that

ξk+1 ∼ Xξk
τk
∼ U(∂Brk(ξk)).

In other words, we can just sample ξk+1 uniformly from a sphere of radius rk around the previous
value ξk. To terminate after finitely many steps, we pick the maximal radius in each step, i.e.,
rk := dist(ξk, ∂Ω), and stop when reaching an ε-shell, i.e., when rκ < ε for a prescribed ε ∈ (0,∞).
This allows us to “walk” from sphere to sphere until (approximately) reaching the boundary, such
that we can estimate the first term in (4). Specifically, the value g(Xξ

τ) in (4) is approximated by the
boundary value g(ξ̄κ), where

ξ̄κ := argmin
x∈∂Ω

∥x− ξκ∥

is the projection to the boundary, see Figure 2 and Figure 4 in the appendix. We note that the bias
from introducing the stopping tolerance ε can be estimated as O(ε) (Mascagni & Hwang, 2003).
Moreover, for well-behaved, e.g., convex, domains Ω, the average number of steps κ behaves like
O(log(ε−1)) (Motoo, 1959; Binder & Braverman, 2012). This shows that ε can be chosen sufficiently
small without incurring too much additional computational cost. We note that this leads to much faster
convergence than time-discretizations of the Brownian motion. In particular, to have a comparable
bias, we would need to take steps of size O(ε), requiring Ω(ε−2) steps to converge.

Finally, we note that the second term in (4) can be estimated using Green’s functions Grk on the
domains Ωk = Brk(ξk), see Boggio (1905); Gazzola et al. (2010) and Appendix B.

2.2 LEARNING PROBLEM

Based on the previous derivations, we can establish a variational formulation, where the minimizer
is guaranteed to approximate the Poisson equation in (1) on the whole domain Ω. Specifically, we
define

LNWoS[v] := E
[(
v(ξ)−WoS(ξ)

)2]
, (5)

where the single-trajectory WoS method WoS(ξ) with random initial point ξ is given by

WoS(ξ) := g(ξ̄κ)−
κ−1∑
k=0

|Brk(ξk)|f(ξk)Grk(γk, ξk).

In the above, γk ∼ U(Brk(ξk)), and the random variables κ, ξk, ξ̄κ, and rk are defined as in Section 2.
From the stochastic formulation in (4) and Proposition 3.5 by Hermann et al. (2020), it follows that

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

𝜉!!

𝜉"!

𝜉#!

𝜉$!

𝜉!"

𝜉$"

𝛾!!

𝛾"!

𝛾!"
𝜉""

𝜀

𝛀
𝝏𝛀

1

𝛾""

𝑩𝒓𝟎𝟎

𝑩𝒓𝟏𝟎

𝑩𝒓𝟎𝟏

𝑩𝒓𝟏𝟏

1

𝑦% = #
𝑔 𝜉&% , 	 𝑑 𝜉&% , 𝜕Ω < 𝜀
𝑣'(𝜉&%), 	 else	

2

min
'
MSE[𝑦% −;

()*

&+,

𝐵-!" 𝑓 𝜉(% 𝐺-!" 𝜉(
% , 𝛾(% , 𝑣' 𝜉*%]3

Figure 2: Neural Walk-on-Spheres (NWoS): Our algorithm for learning the solution to Poisson
equations ∆u = f on Ω ⊂ Rd and u|∂Ω = g. 1 In each gradient descent step, we sample a batch of
random points (ξi0)

m
i=1 in the domain Ω and simulate Brownian motions by iteratively sampling ξik

from spheres Brik
inscribed in the domain. Moreover, we sample γi

k ∼ U(Brik
) to compute a MC

approximation |Brik
|f(ξik)G(ξik, γ

i
k) to the solution of the Poisson equation on the sphere Brik

using
the Green’s function G in Appendix B. 2 We stop after a fixed number of maximum steps κ and
either evaluate our neural network vθ or the boundary condition g if we reach an ε-shell of ∂Ω. 3 If
vθ satisfies the PDE, the mean-value property implies that vθ(ξi0) equals the expected value of yi
minus the source term contributions. We thus minimize the corresponding mean squared error over
the parameters θ.

the minimizer of (5) approximates the solution u in (1) in the uniform norm up to error O(ε), where
ε is the stopping tolerance. We refer to Appendix C for further theoretical results. We also remark
that, in theory, the loss requires only a single WoS trajectory per sample of ξ since the minimizer of
the regression problem in (5) averages out the noise.

3 EXPERIMENTS

In this section, we compare the performance of NWoS, PINN, DeepRitz, diffusion loss, and Neural
Cache (Li et al., 2023) on various baselines across dimensions from 10d to 50d. We do not consider
the FK and BSDE losses since they incur prohibitively long runtimes for simulating the SDEs with
sufficient precision. To compare against the baselines, we consider benchmarks from the works
proposing the Deep Ritz and diffusion loss Jin et al. (2017); Nüsken & Richter (2021a). To have a
fair comparison, we use a fixed runtime of 25d+ 750 seconds and a GPU memory budget of 2GiB
for training. Moreover, we ran a grid search over a series of hyperparameter configurations for each
method. Then, we performed 5 independent runs for the best configurations w.r.t. the relative L2-error.
More details on the hyperparameters and our implementations3 can be found in Appendix E.

We present our results in Table 2. We first note that we improve the Deep Ritz method as well as
the diffusion loss by almost an order of magnitude compared to the results reported by Jin et al.
(2017); Nüsken & Richter (2021a). Still, our NWoS approach can outperform all other methods on
our considered benchmarks. In addition to these results, we highlight that the efficient objective of
NWoS also leads to faster convergence, see Figure 1 and Appendix H. We provide ablation studies
in Appendix G and additional numerical evidence for the Poisson equation in 100d and 500d in
Appendix I.

We also highlight that the efficient objective of NWoS also leads to fast convergence and less memory
footprint, see Figure 1. The PDE-constrained optimization problem shows that this allows NWoS to

3Our PyTorch code can be found at https://github.com/bizoffermark/neural_wos.

4

https://github.com/bizoffermark/neural_wos

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 2: Relative L2-error (and standard deviations over 5 independent runs) of our considered
methods, estimated using MC integration on 106 uniformly distributed (unseen) points in Ω.

Method Problem
Laplace (10d) Commitor (10d) Poisson Rect. (10d) Poisson (50d)

PINN 7.42e−4 ± 1.84e−4 4.10−3 ± 1.11e−3 1.35e−2 ± 1.57e−3 7.70e−3 ± 2.25e−3

Deep Ritz 8.43e−4 ± 6.29e−5 6.15e−3 ± 5.30e−4 1.06e−2 ± 6.20e−4 1.05e−3 ± 1.70e−4

Diffusion loss 1.57e−4 ± 7.74e−6 4.48e−2 ± 6.93e−3 9.69e−2 ± 1.03e−2 5.96e−4 ± 1.06e−5

Neural Cache 3.99−4 ± 4.08e−5 1.26e−3 ± 5.82e−5 4.98e−2 ± 1.80e−2 1.63e−2 ± 1.42e−2

WoS 1.08e−3 ± 1.34e−6 1.99e−3 ± 9.79e−6 2.32e−1 ± 2.09e−1 4.50e−3 ± 7.38e−4

NWoS (ours) 4.29e−5 ± 2.02e−6 6.56e−4 ± 2.42e−5 2.60e−3 ± 9.99e−5 4.82e−4 ± 1.32e−5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

Initialization

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Prediction

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Ground Truth

0.0

0.2

0.4

0.6

0.8

Figure 3: Qualitative assessment of the solution to the PDE-constrained optimization problem. (Left)
Initial function uc for random parameters c ∈ D. (Middle) Predicted function uĉ for the parameters
ĉ obtained after a few gradient descent steps using the approximation of the solution to the parametric
Poisson equation obtained with NWoS. (Middle) The groundtruth solution uc∗ .

scale to parametric problems, where a whole family of Poisson equations is solved simultaneously. We
observe that for this 5-dimensional problem (two spatial dimensions and three-parameter dimensions),
NWoS converges within 20 minutes to a relative L2-error of 0.79% (averaged over D × Ω). More
detailed results are shown in Appendix F.

In addition to solving PDE problems, we perform experiments on solving a trajectory optimization
problem with PDE constraint, where the solution is to find the optimal control to achieve the target
space while satisfying the PDE constraint. More detailed explanations are shown in Appendix F. It
shows that NWoS can be extended to parametric problems, where a whole family of Poisson equations
is solved simultaneously. We observe that for this 5-dimensional problem (two spatial dimensions
and three-parameter dimensions), NWoS converges within 20 minutes to a relative L2-error of 0.79%
(averaged over D × Ω). The trained network can then be used to solve the optimization problem
directly (where we use L-BFGS) without requiring an inner loop for the PDE solver. The results
show a promising relative ℓ2-error of 0.039 % for estimating the parameters c∗ leading to an accurate
prediction of the minimizer, see Figure 3.

4 CONCLUSION

We have developed Neural Walk-on-Spheres, a novel way of solving high-dimensional Poisson
equations using neural networks. Specifically, we provide a variational formulation with theoretical
guarantees that amortizes the cost of the standard Walk-on-Spheres algorithm to learn solutions on
the full underlying domain. The resulting estimator is more efficient than competing methods (PINNs,
Deep Ritz method, Neural Cache, WoS, and diffusion loss) while achieving better performance at
lower computational costs as well as faster convergence. We show that NWoS also performs better
on a series of challenging, high-dimensional problems and parametric PDEs. This also highlights
its potential for applications where such problems are prominent, e.g., in molecular dynamics and
PDE-constraint optimization.

5

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

ACKNOWLEDGMENTS

J. Berner acknowledges support from the Wally Baer and Jeri Weiss Postdoctoral Fellowship. A.
Anandkumar is supported in part by Bren endowed chair and by the AI2050 senior fellow program at
Schmidt Sciences.

REFERENCES

Kamyar Azzizadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. arXiv
preprint arXiv:2309.15325, 2023.

P. Baldi. Stochastic Calculus: An Introduction Through Theory and Exercises. Universitext. Springer
International Publishing, 2017.

Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen. Solving stochastic
differential equations and Kolmogorov equations by means of deep learning. arXiv preprint
arXiv:1806.00421, 2018.

Christian Beck, Weinan E, and Arnulf Jentzen. Machine learning approximation algorithms for high-
dimensional fully nonlinear partial differential equations and second-order backward stochastic
differential equations. Journal of Nonlinear Science, 29(4):1563–1619, 2019.

Julius Berner, Markus Dablander, and Philipp Grohs. Numerically solving parametric families of
high-dimensional Kolmogorov partial differential equations via deep learning. In Advances in
Neural Information Processing Systems, pp. 16615–16627, 2020a.

Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error: Empirical
risk minimization over deep artificial neural networks overcomes the curse of dimensionality in
the numerical approximation of Black–Scholes partial differential equations. SIAM Journal on
Mathematics of Data Science, 2(3):631–657, 2020b. doi: 10.1109/IWOBI.2017.7985525.

Ilia Binder and Mark Braverman. The rate of convergence of the walk on spheres algorithm.
Geometric and Functional Analysis, 22(3):558–587, 2012.

Tommaso Boggio. Sulle funzioni di green d’ordine m. Rendiconti del Circolo Matematico di Palermo
(1884-1940), 20:97–135, 1905.

Mireille Bossy, Nicolas Champagnat, Sylvain Maire, and Denis Talay. Probabilistic interpretation and
random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics.
ESAIM: Mathematical Modelling and Numerical Analysis, 44(5):997–1048, 2010.

Jingrun Chen, Rui Du, and Keke Wu. A comparison study of deep Galerkin method and deep Ritz
method for elliptic problems with different boundary conditions. arXiv preprint arXiv:2005.04554,
2020.

Xingyu Chen, Jianhuan Cen, and Qingsong Zou. Adaptive trajectories sampling for solving pdes
with deep learning methods. arXiv preprint arXiv:2303.15704, 2023.

AF Cheshkova. “walk on spheres” algorithms for solving helmholtz equation. Bulletin of the
Novosibirsk Computing Center: Numerical analysis, (4):7, 1993.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Madalina Deaconu and Antoine Lejay. A random walk on rectangles algorithm. Methodology and
Computing in Applied Probability, 8:135–151, 2006.

Weinan E and Bing Yu. The deep ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

6

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential equations.
Communications in Mathematics and Statistics, 5(4):349–380, 2017.

Lawrence C Evans. Partial Differential Equations, volume 19. American Mathematical Soc., 2010.

Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers. Polyharmonic boundary value problems:
positivity preserving and nonlinear higher order elliptic equations in bounded domains. Springer
Science & Business Media, 2010.

James A Given, Joseph B Hubbard, and Jack F Douglas. A first-passage algorithm for the hydrody-
namic friction and diffusion-limited reaction rate of macromolecules. The Journal of chemical
physics, 106(9):3761–3771, 1997.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed neural
operators. arXiv preprint arXiv:2207.05748, 2022.

Jiequn Han, Arnulf Jentzen, et al. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communi-
cations in mathematics and statistics, 5(4):349–380, 2017.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Jihun Han, Mihai Nica, and Adam R Stinchcombe. A derivative-free method for solving elliptic
partial differential equations with deep neural networks. Journal of Computational Physics, 419:
109672, 2020.

Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic
Schrödinger equation. Nature Chemistry, 12(10):891–897, 2020.

Chi-Ok Hwang and Michael Mascagni. Efficient modified “walk on spheres” algorithm for the
linearized Poisson–Bolzmann equation. Applied Physics Letters, 78(6):787–789, 2001.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving PDE-constrained
control problems using operator learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9):
4509–4522, 2017.

Shizuo Kakutani. Two-dimensional Brownian motion and harmonic functions. Proceedings of the
Imperial Academy, 20(10):706–714, 1944.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

Andreas E Kyprianou, Ana Osojnik, and Tony Shardlow. Unbiased ‘walk-on-spheres’ Monte Carlo
methods for the fractional Laplacian. IMA Journal of Numerical Analysis, 38(3):1550–1578, 2018.

Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus. Springer, 2016.

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan, and Steve Marschner.
Neural caches for Monte Carlo partial differential equation solvers. In SIGGRAPH Asia 2023
Conference Papers, pp. 1–10, 2023.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

Jianfeng Lu and James Nolen. Reactive trajectories and the transition path process. Probability
Theory and Related Fields, 161(1-2):195–244, 2015.

7

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Michael Mascagni and Chi-Ok Hwang. ϵ-shell error analysis for “walk on spheres” algorithms.
Mathematics and computers in simulation, 63(2):93–104, 2003.

Minoru Motoo. Some evaluations for continuous Monte Carlo method by using brownian hitting
process. Annals of the Institute of Statistical Mathematics, 11:49–54, 1959.

Mervin E Muller. Some continuous Monte Carlo methods for the dirichlet problem. The Annals of
Mathematical Statistics, pp. 569–589, 1956.

Nikolas Nüsken and Lorenz Richter. Interpolating between BSDEs and PINNs: deep learning for
elliptic and parabolic boundary value problems. arXiv preprint arXiv:2112.03749, 2021a.

Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton–Jacobi–Bellman PDEs
using neural networks: perspectives from the theory of controlled diffusions and measures on path
space. Partial Differential Equations and Applications, 2(4):1–48, 2021b.

Michael Penwarden, Ameya D Jagtap, Shandian Zhe, George Em Karniadakis, and Robert M Kirby.
A unified scalable framework for causal sweeping strategies for physics-informed neural networks
(PINNs) and their temporal decompositions. arXiv preprint arXiv:2302.14227, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Lorenz Richter and Julius Berner. Robust SDE-based variational formulations for solving linear PDEs
via deep learning. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 18649–18666. PMLR, 2022.

Karl K Sabelfeld. Random walk on spheres algorithm for solving transient drift-diffusion-reaction
problems. Monte Carlo Methods and Applications, 23(3):189–212, 2017.

Rohan Sawhney and Keenan Crane. Monte Carlo geometry processing: A grid-free approach to
PDE-based methods on volumetric domains. ACM Transactions on Graphics, 39(4), 2020.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. Grid-free Monte Carlo for PDEs
with spatially varying coefficients. ACM Transactions on Graphics (TOG), 41(4):1–17, 2022.

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. Walk on stars: A
grid-free Monte Carlo method for PDEs with Neumann boundary conditions. arXiv preprint
arXiv:2302.11815, 2023.

Michael Scherbela, Rafael Reisenhofer, Leon Gerard, Philipp Marquetand, and Philipp Grohs.
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing
deep neural networks. Nature Computational Science, 2(5):331–341, 2022.

René L Schilling and Lothar Partzsch. Brownian motion: an introduction to stochastic processes.
Walter de Gruyter GmbH & Co KG, 2014.

NA Simonov. Random walk-on-spheres algorithms for solving mixed and Neumann boundary-value
problems. Sibirskii Zhurnal Vychislitel’noi Matematiki, 10(2):209–220, 2007.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Kejun Tang, Xiaoliang Wan, and Chao Yang. DAS-PINNs: A deep adaptive sampling method for
solving high-dimensional partial differential equations. Journal of Computational Physics, 476:
111868, 2023.

Eric Vanden-Eijnden et al. Towards a theory of transition paths. Journal of statistical physics, 123(3):
503–523, 2006.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021.

8

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Rui Zhang, Qi Meng, Rongchan Zhu, Yue Wang, Wenlei Shi, Shihua Zhang, Zhi-Ming Ma, and
Tie-Yan Liu. Monte Carlo neural operator for learning pdes via probabilistic representation. arXiv
preprint arXiv:2302.05104, 2023a.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023b.

9

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

A NEURAL PDE SOLVER FOR ELLIPTIC PDES

We start by defining our problem as well as describing previous deep learning methods for its
solution. Our goal is to approximate the solution4 u ∈ C(Ω) to elliptic PDEs with Dirichlet boundary
conditions of the form {

P[u] = f, on Ω,

u = g, on ∂Ω,
(6)

with differential operator
P[u] := 1

2Tr(σσ
⊤Hessu) + µ · ∇u.

In the above, Ω ⊂ Rd is an open, bounded, connected, and sufficiently regular domain, see, e.g., Baldi
(2017); Schilling & Partzsch (2014) for suitable regularity assumptions. Note that the formulation
in (6) includes the Poisson equation 1 for µ = 0 and σ =

√
2I.

In the following, we will summarize existing neural PDE solvers for these PDEs, see Table 1 for
an overview. On a high level, they propose different variational formulations minv∈V L[v] with
the property that every minimizer over a suitable function space V ⊂ C(Ω) is a solution u to the
PDE in (1). The space V is then typically approximated by a set of neural networks with a given
architecture, such that the minimization problem can be tackled using variants of stochastic gradient
descent.

A.1 STRONG AND WEAK FORMULATIONS OF ELLIPTIC PDES

Let us start with methods based on strong or weak formulations of the PDE in (6).

Physics-informed neural networks (PINNs). In its basic form, the loss of PINNs (Raissi et al.,
2019) or Deep Galerkin methods (Sirignano & Spiliopoulos, 2018), is given by

LPINN[v] := E
[
(P[v](ξ)− f(ξ))2

]
+ βLbnd[v], (7)

where
Lbnd[v] := E

[
(v(ζ)− g(ζ))2

]
.

In the above, β ∈ (0,∞) is a penalty parameter, and ξ and ζ are a suitable random variables
distributed on Ω and ∂Ω, respectively. While improved sampling methods have been investigated,
see, e.g., Tang et al. (2023); Chen et al. (2023), the default choice is to pick uniform distributions.
Given a set of samples, the expectations are approximated with standard MC estimators.

By minimizing the point-wise residual of the PDE, PINNs have gained popularity as a universal
and simple method. However, PINNs are sensitive to hyperparameter choices, such as β, and suffer
from training instabilities or high variance (Wang et al., 2021; Krishnapriyan et al., 2021; Nüsken &
Richter, 2021b). Moreover, the objective in (7) requires the evaluation of the derivatives appearing in
P[v]. While this can be done exactly using automatic differentiation, it leads to high computational
costs, see Figure 1.

Deep Ritz method. For the Poisson equation in (1) one can avoid this cost by leveraging weak
variational forms, see, e.g., Evans (2010). Rather than directly optimizing the regression loss in (7),
the Deep Ritz method (E et al., 2017) proposes to minimize the objective

LRitz[v] := E

[
∥∇v(ξ)∥2

2
− f(ξ)v(ξ)

]
+ βLbnd[v]. (8)

Under suitable assumptions, the minimizer again corresponds to the solution to the PDE in (1).
However, the objective only requires computing the gradient∇v instead of the Laplacian ∆v. Using
backward mode automatic differentiation, this reduces the number of backward passes from d+ 1 to
one, see also the reduced cost in Figure 1. Moreover, we note that the loss in (8) allows for weak
solutions that are not twice differentiable. We refer to Chen et al. (2020), for an extensive comparison
of the Deep Ritz method to PINNs for elliptic PDEs with different boundary conditions.

4For simplicity, we assume that a sufficiently smooth strong solution exists.

10

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Finally, we mention that both methods suffer from the fact that the interior losses only consider local,
pointwise information at x ∈ Ω. At the beginning of the training, the interior loss might thus not
be meaningful. Specifically, the boundary condition g first needs to be learned via the boundary
loss Lbnd, and then propagate from the boundary ∂Ω to an interior point x via the local interior
loss. There exist some heuristics to mitigate this issue by, e.g., progressively learning the solution,
see Penwarden et al. (2023) for an overview. The next section describes more principled ways of
including boundary information in the loss and directly informing the interior points of the boundary
condition.

A.2 STOCHASTIC FORMULATIONS OF ELLIPTIC PDES

From weak solutions, we will now proceed to stochastic representations of elliptic PDEs in (6). To
this end, consider the5 solution Xξ to the stochastic differential equation

dXξ
t = µ(Xξ

t)dt+ σ(Xξ
t)Wt, Xξ

0 ∼ ξ, (9)

where W is a standard d-dimensional Brownian motion. Moreover, we define the stopping time τ as
the first exit time of the stochastic process Xξ from the domain Ω, i.e.,

τ = τ(Ω, ξ) := inf{t ∈ [0,∞) : Xξ
t ̸= Ω}. (10)

An application of Itô’s lemma to the process u(Xξ
t∧τ) shows that we almost surely have that

u(Xξ
τ) = u(Xξ

0) +

∫ τ

0

P[u](Xξ
t) dt+ Su

τ ,

where Su
τ is the stochastic integral

Su
τ :=

∫ τ

0

(σ⊤∇u)(Xξ
t) · dWt.

Using the fact that Xξ
0 = ξ and assuming that u solves the elliptic PDE in (6), we arrive at the formula

g(Xξ
τ) = u(ξ) + F ξ

τ + Su
τ , (11)

where we used the abbreviation

F ξ
τ :=

∫ τ

0

f(Xξ
t) dt.

Since the stochastic integral Sτ
u has zero expectation, see, e.g., Baldi (2017, Theorem 10.2), we can

rewrite (11) as a stochastic representation, i.e.,

u(x) = E
[
g(Xξ

τ)− F ξ
τ

∣∣ξ = x
]
, (12)

which goes back to Kakutani’s Theorem (Kakutani, 1944) and is a special case of the Feynman-Kac
formula.

While the above representation allows us to establish MC methods for the pointwise approximation
of u at a given point x ∈ Ω, it also allows us to derive variational formulation for learning u on the
whole domain Ω. Based on the above results, we can derive the following three losses.

Feynman-Kac loss. The Feynman-Kac loss is given by

LFK[v] := E
[(
v(ξ)− g(Xξ

τ) + F ξ
τ

)2]
(13)

and follows from the fact that the solution to a quadratic regression problem as in (13) is given by the
conditional expectation in (12). Notably, this variational formulation does neither require a derivative
of the function v nor an extra boundary loss Lbnd.

5We assume that there is a unique solution, see, e.g., Le Gall (2016) for corresponding conditions.

11

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 4: Left: Illustration of the solution Xξ to the SDE in (9) and its stopping time τ(Ω, ξ) in (10)
for the domain Ω = [0, 1]2. Right: Realization of the Walk-on-Spheres algorithm in Section 2.

BSDE loss. Since the formula in (11) holds if and only if u solves the PDE in (6), we can derive
the BSDE loss

LBSDE[v] := E
[(
v(ξ)− g(Xξ

τ) + F ξ
τ + Sv

τ

)2]
. (14)

Compared to the Feynman-Kac loss in (13), the BSDE loss requires computing the gradient of v
at every time discretization of the SDE Xξ in order to compute Sτ

v . However, due to (11), Sτ
v acts

as a control variate and causes the variance of the MC estimator of (14) to vanish at the optimum,
see Richter & Berner (2022) for details.

For the previous two losses, boundary information is directly propagated along the trajectory of the
SDE Xξ to the interior. However, simulating a batch of realizations of the SDE until they reach the
boundary ∂Ω, i.e., until the stopping time τ , can incur prohibitively high costs.

Diffusion loss. The diffusion loss (Nüsken & Richter, 2021a) circumvents long simulation times
by stopping the SDE at s = τ ∧ T , i.e., at the minimum of a prescribed time T ∈ (0,∞) and the
stopping time τ . Since the trajectories might not reach the boundary, it is required to supplement the
loss with a boundary loss. This yields the variational formulation

LDiff [v] := E
[(
v(ξ)− v(Xξ

s) + F ξ
s + Sv

s

)2]
+ βLbnd[v].

Note that this can be viewed as an interpolation between the BSDE loss (for s → ∞) and the
PINN loss (for s→ 0 and rescaling by s−2). In the same way, it also balances the advantages and
disadvantages of both losses, see also Table 1.

B SOURCE TERM AND GREEN’S FUNCTION DERIVATION

To compute the second term in (4), we need to accumulate values of the form

v(z) := E
[
−F z

τ(B,z)

]
(15)

with a given ball B = Br(z). By (12), we observe that v is just the solution of a Poisson equation on
the ball B with zero Dirichlet boundary condition evaluated at z.

By (12), we observe that v is just the solution of a Poisson equation on the ball B with zero
Dirichlet boundary condition evaluated at z. We can thus use classical results by Boggio (1905), see
also Gazzola et al. (2010), to write the solution in terms of Green’s functions. Specifically, we have
that

v(z) = −|Br(z)|E[f(γ)Gr(γ, z)], (16)

where γ ∼ U(Br(z)) and

Gr(y, z) :=

{
1
2π log r

∥y−z∥ , d = 2,

Γ(d/2−1)
4πd/2

(
∥y − z∥2−d − r2−d

)
, d > 2,

In practice, we can now approximate the expectation in (16) using an MC estimate.

12

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

B.1 DERIVATION

To compute integrals of the form (15), we look at a special case of a Poisson equation on a ball
B = Br(z) with zero Dirichlet boundary condition, i.e.,{

∆v = f, on B,

v = 0, on ∂B.

Analogously to (12), we obtain that

v(z) = E

[
−
∫ τ(B,z)

0

f(Xz
t) dt

]
, (17)

where τ(B, z) is the corresponding stopping time, see (10). However, since we simplified the domain
to a simple ball, we can write the solution in terms of Green’s functions. Specifically, we have that

v(z) = −
∫
B

f(y)Gr(y, z) dy (18)

where

Gr(y, z) :=

{
1
2π log r

∥y−z∥ , d = 2,

Γ(d/2−1)
4πd/2

(
∥y − z∥2−d − r2−d

)
, d > 2.

We note that (18) is equivalent to (16).

While this is a classical result by Boggio (1905), see also Gazzola et al. (2010), we will sketch a proof
in the following. We consider the Laplace equation ∆Φx = δx for given x ∈ Rd in the distributional
sense. It is well known that the fundamental solution Φx is given by

Φx(y) =

{
1
2π log ∥y − x∥, d = 2,

−∥y−x∥2−d

(d−2)ωd
, d > 2,

where

ωd = |∂B1(0)| =
2πd/2

Γ(d/2)
=

4πd/2

(d− 2)Γ(d/2− 1)
is the surface measure of the d-dimensional unit ball B1(0). Under suitable conditions, it further
holds that the solution to (17) is given by

v(x) =

∫
B

f(y) (Φx(y)− ϕx(y)) dy (19)

for every x ∈ B, where the corrector function ϕx satisfies the Laplace equation{
∆ϕx = 0, on B,

ϕx = Φx, on ∂B.

see Evans (2010, Chapter 2.2). Based on (12) and the fact that Φz is constant at the boundary of
B = z +Br(0), we can compute the value of the corrector function ϕz , i.e.,

ϕz(y) = E[Φz(X
y
τ(B,y))] =

{ 1
2π log r, d = 2,

− r2−d

(d−2)ωd
, d > 2.

This shows that the value of the Green’s function at the center z of the ball B is given by
Φz(y)− ϕz(y) = −Gr(y, z),

which, together with (19), establishes the claim.

B.2 STABILIZING NUMERICAL ERRORS

For numerical stability, we directly compute the quantity G̃r(γ, z) := |Br(z)|Gr(γ, z) in practice, as
needed in (16). The volume of the hyper-sphere |Br(z)| is given by

|Br(z)| =
πd/2

Γ(d/2 + 1)
rd,

such that we obtain

G̃r(γ, z) :=

r2

2 log r
∥γ−z∥ , d = 2,

rd

d(d−2)

(
∥γ − z∥2−d − r2−d

)
, d > 2.

13

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

C THEORETICAL ANALYSIS OF WOS

Having established the learning problem in Section 2.2, we can analyze both approximation and
generalization errors. For the former, Hermann et al. (2020) bounded the size of neural networks vθ
to approximate the solution u up to a given accuracy. In particular, the number of required parameters
θ only scales polynomially in the dimension d and the reciprocal accuracy, as long as the functions f ,
g, and dist(·, ∂Ω) can be efficiently approximated by neural networks.

One can then leverage results by Berner et al. (2020b) to show that also the generalization error does
not underlie the curse of dimensionality when minimizing the empirical risk, i.e., a MC approximation
of (5), over a suitable set of neural networks vθ. Specifically, the number of required samples of ξ to
guarantee that the empirical minimizer approximates the solution u up to a given accuracy also scales
only polynomially in the underlying dimension and the reciprocal accuracy.

D IMPROVEMENTS OF NWOS

In this section, we discuss several strategies to trade off accuracy and computational cost, and to
reduce the variance of MC estimators of LNWoS in 5.

WoS with Maximum Number of Steps: For sufficiently regular geometries, the probability for a
walk to take more than k steps, is exponentially decaying in k (Binder & Braverman, 2012). However,
if a single walk in our batch needs significantly more steps, it slows down the overall training. We thus
introduce a deterministic maximum number of steps κ ∈ N. However, we do not want to introduce
non-negligible bias by just projecting to the closest point on the boundary.

Instead, we want to enforce the mean-value property on subdomains of Ω based on our recursion
in Section 2. We thus propose to use the model v instead of the boundary condition g if the walk does
not converge after κ steps, i.e., we define

yξ,v :=

{
v(ξκ), d(ξκ, ∂Ω) > ε,

g(ξ̄κ), else.

We can then replace the second term in (5) by

WoS(ξ, v) := yξ,v −
κ−1∑
k=0

|Brk(ξk)|f(ξk)Grk(γk, ξk).

This helps to reduce the bias when d(ξκ, ∂Ω) is non-negligible while exploiting the faster convergence
assuming that we obtain increasingly good approximations vθ ≈ u during training of a neural network
vθ. Our approach bears similarity to the diffusion loss, see Appendix A, however, we do not need to
use a time-discretization of the SDE.

Boundary Loss: We find empirically that an additional boundary loss can further improve the
performance of our method. While it is theoretically not required to converge to the correct solution,
it can especially help for a smaller number κ of maximum steps (see the previous paragraph). In
general, we thus sample a fraction of the points on the boundary ∂Ω and optimize

LNWoS[v] + βLbnd[v],

where Lbnd is defined6 as in (7).

Variance-Reduction: While not necessarily needed for the objective in (5), we can still compute
multiple WoS trajectories N ∈ N per sample of ξ to reduce the variance. This leads to the estimator

L̂NWoS[v] :=
1

m

(
m∑
i=1

v(ξi)− 1

N

N∑
n=1

WoSn(ξi)

)
,

6Note that Lbnd can be interpreted as a special case of LNWoS where the WoS method directly terminates
since the initial points are sampled on the boundary.

14

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

where ξi are i.i.d. samples of ξ and WoSn(ξi) are i.i.d. samples of WoS(ξi), i.e., N trajectories with
the same initial point ξi, see (5). Note that we vectorize the WoS simulations across both the initial
points as well as the trajectories, making our NWoS method highly parallelizable and scalable to the
large batch sizes.

We further introduce control variates to reduce the variance of estimating WoS(x), where we focus
on a fixed x ∈ Ω for the ease of presentation. Control variates seek to reduce the variance by using
the estimator

E [WoS(x)] ≈ E[δ] + 1

N

N∑
i=1

WoSn(x)− δn,

where δn are i.i.d. samples of a random variable δ with known expectation. Motivated by Sawhney &
Crane (2020), we use an approximation of the first-order term of a Taylor series of u in the direction
of the first WoS step. We assume that∇vθ provides an increasingly accurate approximation of the
gradient∇u during training and propose to use

δn := ∇vθ(x) · (ξn1 − x),

where ξn1 is the first step of WoSn(x). In particular, ξn1 ∼ U(∂Br1(x)) and thus E[δ] = 0 holds for
any function vθ. While we need to compute the gradient ∇vθ(x) for the control variate, we mention
that this operation can be detached from the computational graph. In particular, we do not need to
compute the derivative of ∇vθ(x) w.r.t. to the parameters θ as is necessary for PINNs, the Deep
Ritz method, the diffusion loss, and the BSDE loss. In Appendix G, we empirically show that the
overhead of using the control variate is insignificant.

Buffer: Motivated by Li et al. (2023), we can use a buffer to cache training points (ξ(i),WoS(ξ(i))).
Since we only update the buffer after a given number of training steps, this accelerates the training.
Note that this is not possible for the other methods since they require evaluation of the current model.
In every buffer update, we average over further trajectories for a fraction of points to improve their
accuracy. However, different from Li et al. (2023), we also evict a fraction of points from the buffer
and replace them with WoS estimates on newly sampled points in the domain Ω to balance the
diversity and accuracy of the training data.

E IMPLEMENTATION DETAILS

We implement all methods in PyTorch and provide pseudocode in Algorithms 1 and 2. The experi-
ments have been conducted on A100 GPUs.

For all our training, we use the Adam optimizer and limit the runtime to 25d + 750 seconds for a
fair comparison. In every step, we sample uniformly distributed samples (ξ, ζ) in the domain Ω and
on the boundary ∂Ω to approximate the expectations of the loss and boundary terms. Moreover,
we employ an exponentially decaying learning rate, which reduces the initial learning rate by two
orders of magnitude throughout training. We choose a feedforward neural network with residual
connections, 6 layers, and width 256, and GELU activation function. We also perform the grid search
for the boundary loss penalty term, i.e.,

β ∈ {0.5, 1, 5, 50, 100, 500, 1000, 5000}.

We further include the batch size m ∈ {2i}17i=7 in our grid-search. To have a fair comparison, we set
a fixed GPU memory budget of 2GiB for training, leading to different maximal batches for network
sizes and methods, see also Figure 1. Let us detail the hyperparameter choices specific to each method
in the following.

Neural Walk-on-Spheres (NWoS): For all experiments with NWoS, we set ε = 10−4. If using a
boundary loss, we sweep over {0.1, 0.2, 0.3, 0.4, 0.5} in the grid search to find the optimal proportion
of the batch size for the boundary loss. We choose to do a grid search on control variate, neural target,
and buffer to ensure that a combination with the best performance is chosen. We fix the buffer size
to 10 times that of the batch size, and we sweep the frequency to update buffers over the grid of
{10, 100, 1000}. We also sweep the max step in {0, 1, 5, 10, 50, 100} and the number of trajectories
in {1, 10, 100, 200, 300, 400, 500, 1000}.

15

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Algorithm 1 Training of our NWoS method
Input: neural network vθ with initial parameters θ, optimizer method step for updating the parame-

ters, WoS method WoS in Algorithm 2, maximum number of iterations T , batch size m,n, b for
points in domain, boundary and buffer, buffer B of size B, boundary function g, buffer update
period L, boundary term coefficient β

Output: optimized parameters θ
B ← {(xi, g(xi))}Bi=1 ▷ Sample points in ∂Ω and

▷ initialize the buffer
for k ← 0, . . . , T do

if k mod L == 0 then
xΩ ← sample from ξ⊗m ▷ Sample points in Ω
xB ← sample from B ▷ Samples points in B
x← [xΩ, xB] ▷ Concatenate points
[yΩ, yB]← vmap[WoS(x, vθ)] ▷ WoS
B ← update with (xB, yB) ▷ Update the buffer
B ← replace with (xΩ, yΩ) ▷ Replace the buffer

end if
x∂Ω ← sample from ζ⊗n ▷ Sample points in ∂Ω
(xB, yB)← sample from B ▷ Sample points in B
L̂Ω = MSE(vθ(xB), yB) ▷ Domain loss
L∂Ω = MSE(vθ(x∂Ω), g(x∂Ω)) ▷ Boundary loss
L̂NWoS = L̂Ω + βL̂∂Ω ▷ Compute loss
θ ← step

(
γ,∇θL̂NWoS

)
▷ SGD step

end for

Algorithm 2 Walk-on-Spheres (WoS)
Input: neural network vθ at step k, source term f , boundary term g, point for evaluation x, maximum

number of steps κ, stopping tolerance ε, number of trajectories N
Output: estimator v̂ of solution v to PDE in (1) at x

v̂ ← 0
for i← 1, . . . , N do ▷ Batched in implementation

s← 0
for k ← 0, . . . , κ− 1 do

r ← dist(x, ∂Ω) ▷ Compute distance to ∂Ω
if r < ε then

Break ▷ Reach boundary
end if
γ ← sample from U(Br(x)) ▷ Estimate source
s← s+ |Br(x)|f(x)Gr(x, γ)
u← sample from U(∂Br(x))
if k = 0 & use control variate then

s← s−∇xvθ(x) · u ▷ Variance reduction
end if
x← x+ u ▷ Walk to next point

end for
if dist(x, ∂Ω) < ε then ▷ Estimate solution at x

v̂ ← s+ g(x)
else

v̂ ← s+ vθ(x)
end if

end for
v̂ ← 1

N v̂ ▷ Take the average

16

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

1 5 10
Maximum Steps

0.00

0.01

0.02

0.03

0.04

Ti
m

e
pe

r i
te

ra
tio

n
(s

)

Base
Control Variate
Terminal Eval

1 5 10
Maximum Steps

10 2

2 × 10 2

3 × 10 2

4 × 10 2

Ti
m

e
pe

r i
te

ra
tio

n
(s

)

Deep Ritz
Diffusion Loss
PINN

Figure 5: Left: Decomposition of the time for training one iteration of NWoS in the plain version
(Section 2.2), as well as using our improvements from Appendix D, i.e., the control variate and a
neural network evaluation for trajectories that did not converge in the given maximum number of
steps κ. Right: Time for training one iteration for all considered methods. For NWoS we present the
comparison for different maximum numbers of steps κ.

Diffusion loss: For the diffusion loss (Nüsken & Richter, 2021a), also set ε = 10−4. Moreover, we
perform grid search for max step s ∈ {1, 5, 10, 50} and time step ∆t ∈ {10−3, 10−4, 10−5}. We use
10% of the batch size for boundary points.

PINNs: For PINNs (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018), we use automatic
differentiation to compute the Laplacian ∆vθ. We use 10% of the batch size for boundary points.

Deep Ritz: For the Deep Ritz method (E et al., 2017), we additionally experiment with the network
architecture proposed in their paper. We sweep the number of blocks in {4, 6, 8}, the number of layers
in {2, 4}, and the hidden dimension in {64, 128, 256}. Moreover, we observed better performance
using the GELU activation function. We use 10% of the batch size for boundary points.

Neural Cache: For the neural cache method (Li et al., 2023), we also search cache
size over the grid of {10000, 20000, 100000, 1000000}, training period (i.e. period to
update the cache) over {1, 10, 100, 1000, 5000, 10000}, the number of trajectories over
{1, 10, 20, 30, 40, 50, 100, 500, 1000}.

WoS: For Walk-on-Spheres (Muller, 1956), we directly approximate the solution at the evaluation
points. We batch trajectories to saturate the memory budget and present the best result for different
configurations within the given runtime. Specifically, we pick the number of trajectories in the grid
{1, 10, 100, 1000, 10000, 100000} and the maximum step in {0, 1, 10, 100, 1000}.

F EXPERIMENT DETAILS

Let us describe our considered PDEs in the following.

Laplace Equation: The first PDE is a Laplace equation on a square domain given by

f(x) = 0, g(x) =
∑d/2

i=0 x2ix2i+1, x ∈ Ω = (0, 1)d.

To test our models, we compare against the analytic solution as u(x) =
∑d/2

i=0 x2kx2k+1. Follow-
ing Jin et al. (2017), we consider the case d = 10.

Poisson Equation: Next, we consider the Poisson equation presented in Jin et al. (2017), i.e.,

f(x) = 2d, g(x) =
∑d

i=1 x
2
i , x ∈ Ω = (0, 1)d,

17

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

with analytic solution u(x) =
∑d

i=1 x
2
i . We choose d = 50 and present results with7 d ∈ {100, 500}

in Appendix I.

Poisson Equation with Rectangular Annulus: We also consider a Poisson equation on a rectan-
gular annulus

Ω = [−1, 1]d \ [−c, c]d

with sinusoidal boundary condition and source term

g(x) =
1

d

d∑
i=1

sin(2πxi), f(x) = −4π2

d

d∑
i=1

sin(2πxi).

We choose c = 0.25
1
d and d = 10 and note that the analytic solution is given by u(x) =

1
d

∑d
i=1 sin(2πxi).

Committor Function: The fourth equation deals with committor functions from molecular
dynamics. These functions specify likely transition pathways as well as transition rates between
(potentially metastable) regions or conformations of interest (Vanden-Eijnden et al., 2006; Lu &
Nolen, 2015). They are typically high-dimensional and known to be challenging to compute. To
compare NWoS, we consider the setting in Nüsken & Richter (2021a). The task is to estimate the
probability of a particle hitting the outer surface of an annulus

Ω = {x ∈ Rd : a < ∥x∥ < b}, a, b ∈ (0,∞),

before the inner surface. The problem can then be formulated as the Laplace equation given by

f(x) = 0, g(x) = 1{∥x∥=b}, x ∈ Ω.

For this specific Ω, a reference solution can be computed as

u(x) =
a2 − ∥x∥2−da2

a2 − b2−da2
.

We further use the setting by Nüsken & Richter (2021a) and choose a = 1, b = 2, and d = 10.

PDE-Constrained Optimization: We want to solve the optimization problem

min
u∈H1

0 (Ω),m∈L2(Ω)

1

2

∫
Ω

(u− ud)
2dx+

α

2

∫
Ω

m2dx

constraint to u being a solution to the Poisson equation with g(x) = 0 and f(x) = −m(x) for
x ∈ Ω = [0.1]2. The goal of the optimization problem is to balance the energy of the input control
m with the proximity of the state u and the target state ud, while satisfying the PDE constraint.
Following Hwang et al. (2022), we choose ud = 1

2π sin(πx1) sin(πx2) as target state.

To tackle this problem and showcase the capabilities of NWoS, we first solve a parametric Pois-
son problem, where we parametrize the control as mc = c1 sin(c2x1) sin(c3x2) with c ∈ D :=
[0.5, 1.0]× [2.5, 3.5]2. Similar to Berner et al. (2020a), we can sample random c ∈ D in every gradi-
ent descent step to use NWoS for solving a whole family of Poisson equations. Freezing the trained
neural network parameters afterwards, we can reduce the PDE-constraint optimization problem to a
problem over c ∈ D. In this illustrative example, we can compute the ground-truth parameters as
c∗ = [1

1+4απ4 , π, π] and choose α = 10−3.

G ABLATION STUDIES

In this section, we analyze the speed of NWoS and perform comparisons with PINNs, Deep Ritz, and
the diffusion loss. We assume the batch size to be fixed to m = 512 and test on the Poisson equation
in Appendix F in 100d.

7While d = 100 is considered by Jin et al. (2017), we find that a simple projection outperforms all models in
sufficiently high dimensions for this benchmark.

18

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0 200 400 600 800 1000
Time (s)

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

Figure 6: Convergence of the relative L2-error when solving the Committor function in 10d using
our considered methods.

0 200 400 600 800 1000
Time (s)

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

10 3

10 2

10 1

100

Re
la

tiv
e

L2 e
rro

r

Neural WoS (Ours)
DeepRitz
Diffusion Loss
PINN
Neural Cache

Figure 7: Convergence of the relative L2-error when solving the Poisson equation in 10d on a
rectangular torus (left) and the Poisson equation in 50d (right) using our considered methods.

Figure 5 decomposes the training time per iteration into the time for the base NWoS algorithm and
the time for the additional features from Appendix D, namely the control variate as well as the neural
network evaluation for a fixed number of steps K. Since both methods incur negligible overheads,
we always used them in our experiments to reduce the bias and variance of our estimator.

Figure 5 shows the comparison of NWoS with DeepRitz, NSDE, and PINN with different maximum
number of steps K, see Appendix E. Taking into account the logarithmic scaling of the plot, the
training time of NWoS is significantly faster than both NSDE and PINN while slightly slower than
Deep Ritz for higher maximum steps. In particular, the best results in Table Table 2 used K = 10 and
outperformed Deep Ritz. However, choosing K we can also trade-off between high-fidelity solutions
and fast training.

H CONVERGENCE OF THE RELATIVE L2 ERROR

In this section, we illustrate the convergence of the relative L2 error for other PDEs.

Figure 6 and 7 all demonstrate that neural WoS achieves the fastest convergence to the best optimum
in comparison to all baseline methods provided time constraints.

I FURTHER EVALUATIONS

We further evaluate our method on the Poisson equation in 100d and 500d as proposed by E & Yu
(2018). Table 3 demonstrates that our method is better than the baselines. However, we discover
empirically that, for this benchmark, a simple projection to the boundary achieves the highest

19

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 3: Relative L2-error (and standard deviations over 5 independent runs) of our considered
methods, estimated using MC integration on 106 uniformly distributed (unseen) points in Ω.

Method Problem
Poisson (100d) Poisson (500d)

PINN 1.49e−3 ± 3.21e−5 2.42−2 ± 6.06e−4

Deep Ritz 1.77e−2 ± 1.94e−4 9.92e−3 ± 2.56e−5

Diffusion loss 6.71e−4± 1.31e−5 9.47e−3 ± 3.81e−5

Projection 2.92e−4 ± 5.17e−7 1.19e−5 ± 1.67e−8

NWoS (ours) 6.22e−4 ± 1.18e−5 9.14−3 ± 6.31e−5

accuracy. This can be motivated by the smoothness of the solution and the fact that uniformly
distributed evaluation samples concentrate at the boundary in high dimensions.

J EXTENSIONS AND LIMITATIONS

NWoS is currently only applicable to Poisson equations with Dirichlet boundary conditions. While
this PDE appears frequently in applications, we also believe that future work can extend our method.
For instance, one can try to leverage WoS adaptations to spatially varying coefficients Sawhney
et al. (2022), drift-diffusion problems Sabelfeld (2017), Neumann boundary conditions Sawhney
et al. (2023); Simonov (2007), fractional Laplacians Kyprianou et al. (2018), the screened Poisson
or Helmholtz equation Sawhney & Crane (2020); Cheshkova (1993), as well as linearized Poisson-
Bolzmann equations Hwang & Mascagni (2001); Bossy et al. (2010). Moreover, one can also take
other elementary shapes in each step, e.g., rectangles or stars Deaconu & Lejay (2006); Sawhney et al.
(2023), and omit the need for ε-shells for certain geometries Given et al. (1997). using the Green’s
function first-passage algorithm Given et al. (1997).

Finally, while NWoS can tackle parametric PDEs, we need to have a fixed parametrization of the
source or boundary functions. It would be promising to extend the ideas to neural operators, which
currently only use losses based on PINNs Goswami et al. (2022); Li et al. (2021) or diffusion losses
for parabolic PDEs Zhang et al. (2023a).

20

	Introduction
	Neural Walk-on-Spheres (NWoS) Method
	Walk-on-Spheres
	Learning Problem

	Experiments
	Conclusion
	Neural PDE Solver for Elliptic PDEs
	Strong and weak formulations of elliptic PDEs
	Stochastic formulations of elliptic PDEs

	Source Term and Green's Function Derivation
	Derivation
	Stabilizing Numerical Errors

	Theoretical Analysis of WoS
	Improvements of NWoS
	Implementation Details
	Experiment Details
	Ablation Studies
	Convergence of the Relative L2 Error
	Further Evaluations
	Extensions and Limitations

