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ABSTRACT

We propose Wolf , a WOrLd summarization Framework for accurate video cap-
tioning. Wolf is an automated captioning framework that adopts a mixture-of-
experts approach, leveraging complementary strengths of Vision Language Models
(VLMs). By utilizing both image and video models, our framework captures differ-
ent levels of information and summarizes them efficiently. Our approach can be
applied to enhance video understanding, auto-labeling, and captioning. To evaluate
caption quality, we introduce CapScore, an LLM-based metric to assess the simi-
larity and quality of generated captions compared to the ground truth captions. We
further build four human-annotated datasets in three domains: autonomous driving,
general scenes, and robotics, to facilitate comprehensive comparisons. We show
that Wolf achieves superior captioning performance compared to state-of-the-art
approaches from the research community (VILA1.5, CogAgent) and commercial
solutions (Gemini-Pro-1.5, GPT-4V). For instance, in comparison with GPT-4V,
Wolf improves CapScore both quality-wise by 55.6% and similarity-wise by 77.4%
on challenging driving videos. Finally, we establish a benchmark for video cap-
tioning and introduce a leaderboard, aiming to accelerate advancements in video
understanding, captioning, and data alignment.

1 INTRODUCTION

Video captioning is crucial as it facilitates content understanding and retrieval by providing accurate,
searchable descriptions. It also provides pairwise data for effective training of foundation models
for tasks like video generation, such as Sora (Brooks et al., 2024) and Runaway (Runway, 2024).
However, generating descriptive, accurate, and detailed video captions remains a challenging research
problem for several reasons: firstly, high-quality labeled data are scarce. Video captions from the
internet can be faulty and misaligned and human annotation is prohibitively expensive for large
datasets. Secondly, video captioning is inherently more challenging than image captioning due to the
additional complexity of temporal correlation and camera motion. Existing captioning models (Hong
et al., 2024; Zhang et al., 2023) struggle with temporal reasoning and fail to achieve accurate scene
understanding. Thirdly, there is no established benchmark to measure captioning progress. Existing
video QA benchmarks (Maaz et al., 2023) are often limited to short answers, making it difficult to
measure hallucinations in detailed long captions. Fourthly, the correctness and completeness of the
captions are crucial for safety-critical tasks. In the era of LLMs, text descriptions of scenarios used
by embodied agents for planning and control become increasingly common (Mao et al., 2023a;b;
Li et al., 2024; Ding et al., 2023). Consequently, a false or incomplete description of the scenario
may lead to the decision-making module overlooking a critical object after training on such caption
data, resulting in safety risks. For instance, missing the presence of a human in the vicinity of a
vegetable-chopping manipulator can lead to an injury.

To handle these challenges, we introduce WOrLd summarization Framework (Wolf ), a novel summa-
rization captioning framework, along with a captioning metric CapScore, and the Wolf captioning
benchmark with corresponding datasets. Unlike previous works that utilize a single model to generate
captions, we propose to use multiple models to collaborate (Jiang et al., 2024), producing much more
accurate captions. By leveraging multiple models, we can provide more fine-grained details while
reducing hallucinations. We show that Wolf achieves superior captioning performance compared
to state-of-the-art approaches from the research community (such as VILA (Lin et al., 2023c), Co-
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gAgent (Hong et al., 2024)) and commercial solutions (such as Gemini-Pro-1.5 (Team et al., 2023),
GPT-4V (OpenAI, 2023)). In summary, we have three main contributions:

1. We design the first world summarization framework Wolf for video captioning and introduce
an LLM-based metric CapScore for evaluating the quality of captions. We have further
verified that CapScore aligns with human evaluations. The results show that our method
improves CapScore by a large margin.

2. We introduce Wolf benchmark and four human-annotated benchmark datasets. These
datasets include autonomous driving, general scenes from Pexels, and robotics videos, along
with human-annotated captions, referred to as the Wolf Dataset.

3. The code, data and leaderboard will be open-sourced and maintained 1. Continuous efforts
and improvements will be made to refine the Wolf Dataset, codebase, and CapScore. We
hope that Wolf will raise awareness about the quality of video captioning, set a standard for
the field, and boost community development.

2 RELATED WORKS

Image Captioning. Visual language models (VLMs) have shown rapid advancements, achieving
leading performance in image captioning tasks, largely due to the success of large language models.
CLIP (Radford et al., 2021) pioneered this field by training a shared feature space for vision and
language modalities on image-caption pairs. Building on CLIP, BLIP (Li et al., 2022) and BLIP-2 (Li
et al., 2023) improved performance by aligning the pre-trained encoder with large language models.
Following the direction, LLaVA (Liu et al., 2023) and InstructBLIP (Dai et al., 2023) demonstrated
that jointly training on diverse datasets as an instruction-following task leads to strong generalization
across various tasks. VILA (Lin et al., 2023c) highlighted the importance of pre-training with diverse
data, and therefore significantly scaled up the pre-training dataset. Kosmos-2 (Peng et al., 2023) and
PaLI-X (Chen et al., 2023a) further introduced pseudo-labeling bounding boxes from open-vocabulary
object detectors to scale up the size of pre-training dataset.

Video Captioning. As image-based VLMs are not specifically trained with video data, they are
limited in describing details present in the video data. To improve video captioning, PLLaVa (Xu
et al., 2024) builds on top of LLaVa and introduced a parameter-free pooling strategy to enhance
the caption quality. Video-llava (Lin et al., 2023a) achieves state-of-the-art performance on several
benchmarks by conducting joint training on images and videos, thereby learning a unified visual
representation. Additionally, Video-LLama (Zhang et al., 2023) incorporates both video and audio
into LLMs by introducing two Q-formers to extract features. Vid2seq (Yang et al., 2023) conducts
large-scale pre-training with narrated videos for dense video captioning. Meanwhile, MV-GPT (Seo
et al., 2022) employs an automated speech recognition (ASR) model to provide additional labeling
for the videos.

LLM-based Summarization. Recently many works have found that it is efficient to summarize
useful information using LLMs. For example, LLaDA (Li et al., 2024) can provide users with helpful
instructions based on the user request and corresponding traffic rules in the desired location. OpenAI
team finds re-captioning (Betker et al., 2023) via LLMs can be very helpful.

3 WOLF: CAPTIONING EVERYTHING WITH A WORLD SUMMARIZATION
FRAMEWORK

We propose Wolf, which is an automated captioning summarization framework that adopts a mixture
of experts approach to generate long, accurate, and detailed captions for videos. Figure 1 provides
an overview of our framework. In this paper, we use CogAgent (Hong et al., 2024), GPT-4V (Mao
et al., 2023a) to generating image-level captions, and use VILA-1.5 (Lin et al., 2023c), Gemini-Pro-
1.5 (Team et al., 2023) to generate video captions.

Chain-of-thought Summarization in Image-level Models. As image-level models (image-based
VLMs) have been pre-trained with a larger amount of data than video-level models (video-based
VLMs), we first use image-based VLMs to generate captions. We design a Chain-of-thought program
to obtain video captions from image-level models. As illustrated in Figure 1, we first split the video

1We also provide ethical statement and reproducibility in Appendix.
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Figure 1: Overview of proposed Wolf framework. Wolf utilizes both image-level and video-level
models to generate diverse and detailed captions, which are then summarized for cross-checking.

into sequential images, sampling two key-frames every second. We start by feeding Image 1 into the
Image-level Model to obtain Caption 1, where we require the model to generate detailed scene-level
information and object locations. Given the temporal correlation between key frames in a video,
we then feed both Caption 1 and Image 2 into the model to generate Caption 2. By repeating this
procedure, we generate captions for all sampled frames. Finally, we use GPT-4 to summarize the
information from all captions with the prompt “Summarize all the captions to describe the video with
accurate temporal information”. Additionally, we extract the bounding box locations for each object
in each frame, then feed them into LLMs to summarize the trajectory of the moving object. For
example, in a driving video, a blue car is driving into the right lane, and the centers of the bounding
boxes are (0,0), (1,1), (1,2). We provide the car’s location to the LLM, and it outputs ’the blue car is
driving to the right,’ which we refer to as a Motion Caption.

LLM-based Video Summarization. Besides obtaining the captions from image-level models, we
then summarize all captions into one. We use the prompt “Please summarize on the visual and
narrative elements of the video in detail from descriptions from Image Models (Image-level Caption
and Motion Caption) and descriptions from Video Models (Video-level Caption)”. Optionally, we
can also add the annotated caption to the summarization. Based on this simple scheme, Wolf can
capture a rich variety of details of the video and reduce hallucinations (in Figure 2). We assume this
is because the model can compare the captions and reduce redundant and hallucinated information.
After obtaining the descriptions from the image-level and video-level models, we next apply the
prompt “Please describe the visual and narrative elements of the video in detail, particularly the
motion behavior”.

4 WOLF BENCHMARK: BENCHMARKING VIDEO CAPTIONING

To showcase the effectiveness of Wolf, we constructed four distinct datasets. These include two
autonomous driving video captioning datasets based on the open-sourced NuScenes (Caesar et al.,
2019) dataset (Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public
License), a general daily video captioning dataset from Pexels 2, and a robot manipulation video cap-
tioning dataset from an open-source robot learning dataset (Padalkar et al., 2023). These benchmark
datasets are tailored to assess the caption model’s scene comprehension and its behavior understand-
ing capabilities, both of which are vital for auto-labeling in embodied AI tasks. All captions were
generated using a combination of ground truth information, rule-based heuristics, human labeling,
and GPT-based rewriting.

4.1 BENCHMARK DATASET CURATION

4.1.1 AUTONOMOUS DRIVING DATASET
High-quality captions of driving videos are crucial not only for training video generation models
but also for training VLMs to interpret the dynamic traffic environment. The NuScenes dataset is
a large-scale collection of driving videos designed to accelerate autonomous driving research. It
features 1,000 annotated scenes from Boston and Singapore. Each scene consists of a 20-second
driving video clip that provides an ego-centric view from the ego vehicle. We split each scene into
5-second segments and provide the corresponding captions. Our captions emphasize the high-level
driving behavior of the ego vehicle to stress-test the scene understanding ability and the behavior

2https://www.pexels.com/
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Caption: The video shows a yellow industrial robotic arm positioned over a
table with a green cover. The robotic arm is attempting to push a green
bottle from the left side to the right side. However, during the process, the
bottle falls onto the table.

t = 4 [s]. Key features:
robot arm, bottle, table.

t = 6 [s]. Key features: 
push the bottle.

t = 8 [s]. Key features: 
the bottle falls onto table.

t = 0 [s]. Key features: lane.

Caption: The footage captures a car navigating through an urban
area where traffic cones are placed in its path. The cones
indicate a construction zone ahead and block the vehicle's
lane. The car maintains a steady speed and smoothly switches
lanes to pass by each traffic cone on the right side.

t = 2 [s]. Key features: lane, traffic cones, construction zone.

t = 5 [s]. Key features: lane, traffic cones, construction zone, lane 
change.

t = 1 [s]. Key features: 
person, beach, ocean, 
long hair, sunglass.

Caption: The video opens with a person standing on a rocky beach, holding a
smartphone. They are dressed in a white shirt and dark shorts, with long
hair and sunglasses. In the background, there are other beachgoers and the
ocean. The person is seen taking a selfie, with the smartphone's screen
visible in some frames. The lighting suggests it is late afternoon or early
evening, with the sun low on the horizon, casting a warm glow on the scene.
The person's actions are casual and relaxed, as they pose and interact with
the camera. The ocean is calm, and the sky is clear, indicating good
weather.

t = 4 [s]. Key features: 
person, ocean, smile, 
sunglass, phone.

t = 8 [s]. Key features: 
person, ocean, white 
shirt, dark shorts.

Figure 2: Wolf Dataset examples. We display the videos and corresponding human-annotated captions
of autonomous driving (Left), Pexels (Top-Right), and Robot learning video dataset (Bottom-Right),
totaling 25.7 hours for now, and the dataset size will be regularly updated and expanded.
understanding ability of the captioning model. Our dataset contains 500 intensely interactive
video-caption pairs (≈0.7 hours) in which the ego vehicle is involved in intense interactions with
its surrounding traffic agents (such as navigating around construction zones and overtaking static
obstacles) and 4785 normal driving scene video-caption pairs (≈6 hours). Our caption generation
process consists of three steps: i) agent-level motion annotation, ii) ego-centric interaction annotation,
and iii) GPT-rewriting.

Agent-level motion annotation. The NuScenes dataset provides full annotation of the traffic
elements in each scene, including the 3-D bounding box and categories of traffic elements, and
semantic map information. Similar to Tian et al. (2024), we leverage this ground-truth information
and the lane-topology information (Naumann et al., 2023) to annotate both the speed and angular
motion characteristics of the ego vehicle and other traffic participants within a video clip. Specifically,
we categorize agent actions into 11 types such as Stopping, Accelerating, Decelerating, Lane Changes,
Turns, and more, based on their observed movements and behaviors.

Figure 3: Illustration of homotopy types of differ-
ent relative motions between a pair of vehicles.

Ego-centric interaction annotation. We are
also interested in the ego vehicle’s interaction
with the other traffic participants (e.g., crossing
pedestrians, blocking traffic cones, etc.) shown
in the video clip. To efficiently caption the in-
teraction, we leverage two types of categorical
modes to describe the lane-relationship between
a traffic participant and the ego vehicle (agent-

ego lane mode) and the relative motion between a traffic participant and the ego vehicle (homo-
topy)(Chen et al., 2023b). Agent-ego lane mode at a time step t encodes the topology relationship
between the ego’s current lane and the traffic agent’s lane, including: LEFT, RIGHT, AHEAD,
BEHIND, and NOTON, where NOTON describes that the traffic agent is not on any derivable lanes
in the scene (e.g., a parked vehicle in a parking lot). To compute the agent-ego lane mode for each
traffic agent, we follow (Chen et al., 2023b) to first identify the lane on which each agent is located
and then leverage the lane topology map to annotate the agent-ego lane mode. We project the agent’s
center to the lane polyline and use its relative position in the local Frenet frame to determine its lane
association. Homotopies describe the relative motion between a pair of agents shown in the video,
including: [S, CW, CCW] (static, clockwise, counterclockwise), as shown in Figure 3.

GPT-rewriting. Combining agent-ego lane mode, homotopy, agent ground truth state information,
and scene context information (e.g., ego is located near intersection) together, we can leverage
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heuristics to annotate the interaction shown in the video clip. For example, in a video clip, a static
object’s agent-ego lane mode changes from AHEAD, to LEFT, to BEHIND, and the ego vehicle’s first
performs RIGHT-LANE-CHANGE, KEEP-LANE, then LEFT-LANE-CHANGE, indicating the ego
vehicle overtakes that object from the ego vehicle’s left side. We identified 6 interaction categories
from the NuScenes dataset: 1) bypass blocking traffic cones to navigate around construction zone; 2)
yield to crossing pedestrians; 3) yield to incoming vehicles; 4) overtake traffic agents via straddling the
lane dividers; 5) overtake traffic agent via lane-change; 6) other non-intensive interactions. With both
agent-level motion annotation and ego-centric interaction annotation, we use GPT 3.5 to summarize
each clip to build the final caption.

4.1.2 ROBOT MANIPULATION DATASET

In addition to the driving environment, we collect 100 robot manipulation videos (each has a length
ranging from 5 seconds to 1 minute) from Padalkar et al. (2023) that demonstrate complex robot
manipulations (e.g., pick and place, push, ect.) in various environments, including kitchen, office, lab,
and open world. We manually caption each video. The captions focus on the description of the scene
and the interaction between the robot and the objects (see the example in Figure 2).

4.1.3 PEXELS DATASET

To evaluate caption models in general daily environments, we further collect high quality (360p to
1080p) videos from Pexels 3. It consists of 473 high-quality videos sourced globally, where each
video has a length varying between 10 seconds and 2 minutes and the content includes 15 popular
categories (details in Appendix). This diversity not only adds depth to our dataset but also provides a
wide range of scenarios and contexts for our analysis.

4.2 EVALUATION METRIC AND LEADERBOARD

4.2.1 CAPSCORE: EVALUATING CAPTIONS WITH LLMS

Video captioning has been an ill-posed problem since there is no metric to evaluate the quality of
captions and the alignment between the video and the caption. Inspired by BERTScore (Zhang et al.,
2019) and CLIPScore (Hessel et al., 2021), we introduce CapScore (Captioning Score), a quantitative
metric to use LLMs to evaluate the similarity between predicted and human-annotated (ground-truth)
captions. We tried both GPT-4 and LLama 3.1 (Dubey et al., 2024) as our LLM to summarize the
captions. We noticed that GPT-4 can always obtain stable results over 3 runs. However, for LLama
3.1, the results varied over different runs. We tried to lower the temperature (from 0.9 to 0.5) to make
the inference stable, however, we noticed that the scores are not consistent with human evaluation.
Therefore we select GPT-4 as our LLM to conduct the experiments. Assume we have 6 captions, we
feed all the captions into GPT-4 and add the prompt “Can you give a score (two decimal places) from
0 to 1 for captions 1, 2, 3, 4 and 5, indicating which one is closer to the ground truth caption (metric
1) and which contains fewer hallucinations and less misalignment (metric 2)? Please output only the
scores of each metric separated only by a semicolon. For each metric, please output only the scores
of captions 1, 2, 3, 4 and 5 separated by commas, in order—no text in the output. ”. We ask GPT-4 to
output two scores: caption similarity and caption quality.

Caption Similarity. Caption similarity is based on how well each caption aligns with the ground
truth description on a scale from 0 to 1, considering the key criteria mentioned. GPT-4 lists the
requirements that affect the score: this metric measures how similar each caption is to the ground
truth caption. The evaluation focuses on the content and context described in the captions, assessing
whether they capture the main themes and details of the ground truth.

Caption Quality. Caption quality evaluates whether the caption contains reduced hallucination
and mistakes compared to the ground truth captions on a scale from 0 to 1. GPT-4 lists the criteria
that affect the score: this metric evaluates the accuracy and relevance of each caption, identifying
any extraneous or incorrect details (hallucinations). Captions with fewer hallucinations and better
alignment receive higher scores.

4.2.2 HUMAN-EVALUATION SCORE AND CAPSCORE

Through our experiments, we find that GPT-4 is very robust for calculating the scores. We have run
the experiments for 1-3 times, the results appear to be stable and less than 0.05 changes. To alleviate

3https://www.pexels.com/
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(a) Comparison on Caption Similarity. (b) Comparison on Caption Quality.

Figure 4: Comparisons on Human-Evaluation Score and CapScore.

concerns related to human alignment and correlation, we randomly selected 10 users to evaluate our
set of 100 robotics videos, as detailed in Table 1 of the paper. The evaluators were presented with
the videos, the generated captions, and the corresponding ground truth captions. We asked them to
assign human-evaluation scores based on the CapScore standard, with the following prompt: “After
reviewing the video and all the captions, please assign the caption similarity and caption quality
score (floating point values) from 0 to 1 for different captions, indicating which caption is closest to
the ground truth (caption similarity) and which one has fewer hallucinations and less misalignment
(caption quality).” We show the results in Table 1 the corresponding visual comparison in Figure 4.

Method Caption Similarity ↑ Caption Quality (eg. reduced hallucination) ↑
Human-Evaluation Score CapScore Human-Evaluation Score CapScore

CogAgent (Hong et al., 2024) 0.28 0.38 0.34 0.43
GPT-4V (Achiam et al., 2023) 0.43 0.34 0.42 0.35
VILA-1.5 (Lin et al., 2023c) 0.62 0.62 0.68 0.67
Gemini-Pro-1.5 (Team et al., 2023) 0.66 0.63 0.72 0.67

Wolf 0.74 0.72 0.80 0.75

Table 1: Comparison of Human-Evaluation Score and CapScore on 100 Wolf Robotics Videos.
4.2.3 BENCHMARKING VIDEO CAPTIONING

As far as we know, no standard evaluation benchmarks have been established for video understanding
and captioning. To accelerate the advancement of this field, we have developed the first leaderboard
for video captioning. As LLM evaluation has become increasingly popular (Chiang et al., 2024),
we realized the lack of a standard platform to evaluate VLM’s performance on video understanding.
We assume this is due to the difficulty of collecting ground-truth captions that accurately align with
videos. We will release the initial version of our captioning leaderboard upon publication.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data Setup. We use four sets of data to evaluate the validity of Wolf: 1) 500 Nuscences Interactive
Videos; 2) 4,785 Nuscences Normal Videos; 3) 473 general videos and 4) 100 robotics videos. We
extract 2 frames per second for autonomous driving videos. For robotics videos, we extract 1 frame
per second. For short videos that sample less frames, we will increase fps to capture more details.

Comparison Setup. We use our proposed CapScore to evaluate the similarity between predicted
and ground truth captions. CogAgent and GPT-4V are image-level methods, so we upload sequential
frames into the model to obtain the output. VILA-1.5 and Gemini-Pro 1.5 are video-based methods,
so we directly feed a video into the model. As for the prompt for each captioning model, we
use “elaborate on the visual and narrative elements of the video in detail, particularly the motion
behavior". We compare with four state-of-the-art image-level and video-level captioning method
CogAgent (Hong et al., 2024), GPT-4V (Achiam et al., 2023), VILA-1.5 (Lin et al., 2023c) and
Gemini-Pro-1.5 (Team et al., 2023). As for CogAgent, we feed the middle frame of the video into the
model to obtain the captions. As for GPT-4V, we uniformly sample 16 frames from a video and feed
the sequential images into the model to obtain captions. As for VILA-1.5 and Gemini-Pro-1.5, we
feed the video into the model to obtain the captions.
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Wolf!: The video presents a series of scenes depicting city streets 
bustling with various vehicles such as cars, trucks, motorcycles, and a 
person riding a bicycle. The scenes are often divided into panels, each 
showcasing a different vehicle in motion, including a yellow taxi, a blue 
car, a red car, a white truck, and a silver car. The streets are marked with 
white lines and are surrounded by green trees and buildings, 
contributing to an urban landscape setting. The video captures the 
typical flow of traffic through a four-way intersection, with vehicles 
moving in different directions. The vehicles are shown in various 
positions in the lanes, implying movement through the area. The 
sequence likely shows vehicles accelerating and decelerating as 
they approach and leave the intersection in response to traffic signals or 
the flow of other vehicles. The video is a wide-angle shot of the street 
intersection, split into three sections, providing a panoramic view. The 
left section shows the road the viewer is on, the center focuses on the 
intersection itself, and the right section provides a view of the crossing 
traffic. The lighting suggests a sunny day, with a bright spot from the sun 
on the left section and more even lighting on the right. The video 
captures the typical flow of traffic at an intersection, with vehicles 
approaching, some waiting their turn while others proceed 
through the intersection when it's clear. The cars driving on 
the right side of the road suggest the location might be a country where 
right-hand drive is the standard. The absence of sound enhances the 
focus on the visual information and allows the viewer to interpret the 
scene without auditory cues. Overall, the video provides a snapshot of 
everyday life at a busy intersection, highlighting the complexities of 
navigating a traffic intersection. The wide-angle perspective and focus 
on movement create a sense of dynamism.

t= 0 [s]

t= 1 [s]

t= 4 [s]

t= 2 [s]

t= 3 [s]

t= 5 [s]

Figure 5: Wolf example for driving videos that focus on interactive operations. Wolf captions
discusses the motion behavior in details and serves as a good reference for autonomous driving.

Method Caption Similarity ↑ Caption Quality (eg. reduced hallucination) ↑
Nuscenes Pexels Robotics Nuscenes Pexels Robotics

CogAgent (Hong et al., 2024) 0.18 0.68 0.38 0.24 0.72 0.43
GPT-4V (Achiam et al., 2023) 0.31 0.72 0.34 0.36 0.75 0.35
VILA-1.5 (Lin et al., 2023c) 0.21 0.85 0.62 0.25 0.86 0.67
Gemini-Pro-1.5 (Team et al., 2023) 0.42 0.87 0.63 0.45 0.87 0.67

Wolf 0.55 0.88 0.72 0.56 0.89 0.75

Table 2: Comparison on 500 highly interactive (difficulty and challenging) Nuscenes videos, 473
Pexels videos and 100 robotics videos. The best and second results are highlighted with bold and
underline. Our Wolf exhibits better performance than both open- and closed-source models.

5.2 QUALITATIVE RESULTS

To illustrate enhanced captioning ability by Wolf, we show the qualitative results in Figure 5 (please
check details in Appendix). We noticed that although GPT-4V is good at recognizing the scenes,
capturing temporal information in a video is not ideal. Gemini-Pro-1.5 can capture video information
such as “waiting their turn while others proceed through the intersection when it’s clear”, but it fails
to describe the detailed motions. In comparison to these two state-of-the-art approaches, we observed
that Wolf not only captures the motion described in Gemini-Pro-1.5 but also successfully captures
“vehicles moving in different directions” and “vehicles accelerating and decelerating as they approach
and leave the intersection in response to traffic signals or the flow of other vehicles”.

5.3 QUANTITATIVE RESULTS

0.20

0.25

0.30

0.35

0.40

Captioning Similarity Caption Quality

VILA-1.5 After Finetuning VILA-1.5 with Wolf Captions

Figure 6: Comparison between VILA-1.5 and fine-
tuned VILA-1.5 with Wolf provided captions. on
500 highly interactive Nuscenes videos.

We compare Wolf with various state-of-the-art
captioning models and display the results on 4
datasets in Table 2 and 3. In the default setting,
Wolf uses CogAgent, GPT-4V, VILA-1.5, and
Gemini-Pro-1.5 as Video-level models. Due to
the running cost, we use Wolf (based on VILA-
1.5) on the Nuscenes Normal dataset, which only
uses CogAgent and VILA-1.5. We notice that
existing image-level models fail to capture the
temporal information in detail. Video-level mod-
els perform better, while Wolf can achieve the
best results compared to all state-of-the-art cap-
tioning models.
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Method Caption Similarity ↑ Caption Quality (eg. reduced hallucination) ↑
CogAgent (Hong et al., 2024) 0.27 0.30
VILA-1.5 (Lin et al., 2023c) 0.35 0.39

Wolf (based on VILA-1.5) 0.56 0.60

Table 3: Comparison on 4,785 normal Nuscenes videos. The quality of Wolf is consistently better.

Method Caption Similarity ↑ Caption Quality (eg. reduced hallucination) ↑
CogAgent 0.18 0.24
Wolf CogAgent part (chain-of-thought) 0.26 0.32
Wolf (based on VILA-1.5) 0.35 0.37
Wolf (based on VILA-1.5+Gemini-Pro-1.5) 0.48 0.49
Wolf (based on VILA-1.5+Gemini-Pro-1.5+GPT-4V) 0.55 0.56

Table 4: Ablation study on 500 highly interactive Nuscenes videos.

5.4 FINETUNING VIDEO CAPTIONING MODELS

To further verify the effectiveness of Wolf, we finetune VILA-1.5 based on Wolf’s captions on 4,785
normal Nuscenes videos and evaluate it on 500 highly interactive Nuscenes videos, which have much
more difficult captions and complex scenarios. We follow the original VILA’s training setup and
launch supervised-finetuning with Wolf generated video-caption pairs for one epoch. The training
is performed on 8xA100 GPUs with batch size 8. We set the learning rate to 10−4 with warmup
strategy. No weight decay is applied.

We demonstrate the results in Figure 6, corresponding to Table 2. We observe that finetuning with
Wolf boosts the model performance to 71.4% on caption similarity and 48.0% on caption quality,
which outperforms GPT-4V and approaches Gemini-Pro-1.5. This suggests that Wolf captions can be
easily applied to push VLMs’ performance to a higher level.

5.5 ABLATION STUDY ON VIDEO-LEVEL MODEL SELECTION

To further evaluate how various video-level models affect the performance, we conduct an ablation
study on the components of the models in Table 4. We first compare the caption from the middle
frame of CogAgent with Wolf CogAgent Caption based on the chain-of-thought approach. The chain-
of-thought procedure could largely improve the video understanding quality from an image-level
model such as CogAgent. Then we compare Wolf with various combinations of video captions. We
notice that Wolf consistensly shows better CapScore as it incorporates additional video captions.

5.6 COMPARISON OF FINETUNED MODELS

While it is difficult to directly and scalable measure the quality of captions, we compare the same
model (VILA-1.5-13B) trained w/ Wolf captions and w/o Wolf captions to study the effectiveness. We
benchmark the WOLF-finetuned models on two widely used video datasets ActivityNet (Caba Heil-
bron et al., 2015) and MSRVTT (Xu et al., 2016) and display the results in Table 5.

5.7 ABLATION STUDY ON TOKEN EFFICIENCY

It is well-known that the LLMs finetuned with RLHF favor longer response (Singhal et al., 2023),
a phenomenon referred to as verbosity issue. To better assess the efficiency of the captions, we
performed additional evaluation using the CapScore judge. Specifically, we separate each caption
result into sentences, then incrementally use more sentences to form shortened captions, starting from
only using the first sentence, to the whole original caption. These shortened captions are scored via
CapScore, and we plot the score against the number of tokens used. We show the results in Figure 7.

From the result, we observe that for the better performing models (Wolf, Gemini-Pro-1.5 and GPT-4V)
the similarity scores grow with token length when caption lengths are short, but quickly plateau
or even drop as the caption lengths get too long. The caption quality score demonstrates quite
diverse patterns from different models. GPT-4V maintains a relatively consistent quality score while
Gemini-Pro-1.5 and Wolf display better quality when the caption length is short.

ActivityNet MSRVTT

VILA-1.5-13B 54.7 60.2
VILA-1.5-13B (fine tuned with Wolf) 55.2 60.9

Table 5: QA Accuracy Comparison of fine-tuned model on Activity and MSRVTT datasets.
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Figure 7: Caption Similarity / Quality evaluated by GPT-4 under varying caption length.

6 DISCUSSION AND FUTURE WORKS

Limitations and Optimization. Wolf is still significantly more cost-effective for autolabeling and
captioning than procuring human labels. However, there is an efficiency concern when using an
ensemble method like ours. This must be handled with great care to ensure that GPU resources are
used effectively to mitigate any throughput degradation compared to using single models, even though
Wolf offers a significant improvement in caption quality. Modern GPUs are based on a massively
parallel pipeline, and our goal is to saturate this pipeline with meaningful work. We consider three
primary areas for optimization to make Wolf a unified and efficient framework: Low-Hanging Fruit,
Batched Inference, and Model Quantization. For example, we reduce the size of the model weights
for model quantization. Several recent works (Lin et al., 2023b; Dettmers et al., 2024; Ma et al.,
2024) have noted that LLMs and VLMs can produce highly accurate results even when their weights
are quantized to low bit depths. Therefore, we quantize all constituent models used in Wolf to 4
bits to further improve efficiency. This has two benefits. First, it reduces the bandwidth required
for computation. These algorithms work by packing two 4-bit numbers into a single 8-bit type, so
when moving data on the GPU, only half the number of bits need to be moved. Since all currently
released GPUs support native instructions on 8-bit floating point numbers, the two 4-bit numbers
are extracted and expanded by each kernel. In other words, two computations can be performed for
every move operation. Next-generation GPUs will natively support 4-bit data types, and we expect
further efficiency improvements from having dedicated 4-bit multiply and add instructions. Second,
it synergizes with batched inference since the model weights, which are traditionally 16-bit, now only
require one quarter of the GPU memory they would ordinarily use. This allows us to fit larger batch
sizes on each GPU and process more videos in parallel. Please check our appendix for details.

Safety Considerations. As an ensemble of captioners, Wolf mitigates the possibility of missing out
on crucial information in the captions and rectifying any hallucinations that do not agree with the
output of most models, which is a fundamental pillar for developing safe autonomous systems, as
specified in the functional safety standard ISO 26262 (ROHM). Beyond the benefits of Wolf, there
are still various open questions pertaining to safety of VLM captioners in deployment which we aim
to explore more in future: (i) We need to align the captions with the task at hand; e.g., in a driving
scenario, a detailed description of the foliage around the road, even if correct, is irrelevant and can
potentially act as distractor for the decision maker. (ii) Complementary to the first point, we need to
measure how well a caption aligns with the task at hand and develop an advanced version of CapScore.
(iii) Finally, we need an approach to quantify the confidence we have in the captions by leveraging
techniques from learning theory, such as conformal prediction (Shafer & Vovk, 2008). Most prior
work in this direction assumes an MCQ-styled outputs or those where a unique correct answer exists
(Ren et al., 2023; 2024), but these approaches do not translate to free-form text descriptions.

7 CONCLUSION

In this work, we propose Wolf, a captioning framework designed to automatically and accurately
annotate any video, with significant improvements in data alignment. We find out that adopting a
mixture of captioning models and summarization can largely boost the quality of the captions. This
enables obtaining long, detailed, and accurate video captioning. Beyond that, we set up a leaderboard
to boost the development of video captioning, which preserves a guarantee for data alignment. We
will also set up a thorough library that contains different types of videos with high-quality captions,
regional information such as 2D or 3D bounding boxes and depth, and multiple object motions.
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