Under review as a conference paper at ICLR 2021

USING DEEP REINFORCEMENT LEARNING TO TRAIN
AND EVALUATE INSTRUCTIONAL SEQUENCING POLI-
CIES FOR AN INTELLIGENT TUTORING SYSTEM

Anonymous authors
Paper under double-blind review

ABSTRACT

We present STEP, a novel Deep Reinforcement Learning solution to the problem
of learning instructional sequencing. STEP has three components: 1. Simulate the
tutor by specifying what to sequence and the student by fitting a knowledge tracing
model to data logged by an intelligent tutoring system. 2. Train instructional se-
quencing policies by using Proximal Policy Optimization. 3. Evaluate the learned
instructional policies by estimating their local and global impact on learning gains.
STEP leverages the student model by representing the student’s knowledge state
as a probability vector of knowing each skill and using the student’s estimated
learning gains as its reward function to evaluate candidate policies. A learned pol-
icy represents a mapping from each state to an action that maximizes the reward,
i.e. the upward distance to the next state in the multi-dimensional space. We use
STEP to discover and evaluate potential improvements to a literacy and numeracy
tutor used by hundreds of children in Tanzania.

1 INTRODUCTION

An Intelligent Tutoring System (ITS) aims at teaching a set of skills to users by individualizing
instructions. Giving instruction to users requires many sequential decisions, such as what to teach,
what activities to present, what problems to include, and what help to give. Our aim is to take deci-
sions which maximize long-term rewards in the form of learning gains, so Reinforcement Learning
(RL) is a natural approach to pursue, and was first proposed by [Liu| (1960).

The goal of an RL agent is to learn a policy 7, defined as a mapping from state space S to action
space A. Given any state, the RL agent follows a series of actions proposed by the learned policy
to maximize the long-term expected reward. In the context of an ITS, we specify the RL agent as
follows:

e State s;: We define the state as a combination of the student state and the tutor state. The
tutor state determines the set of actions available to the RL agent at a given timestep. We
represent the student state as a vector of probabilities where element 7 is the estimated
probability that the student knows skill :.

e Action a;: The action taken by the RL agent corresponds to a tutor decision at a particular
grain size.

e Reward (s, ay): Defined as the average difference between prior and posterior knowl-
edge states based on the simulated student’s response to the tutor action a; to the student
simulator.

e Next state s;41: The knowledge vector of a student after a Bayesian update based on the
simulated student’s response to tutor action a; in state s; is the updated student knowl-
edge state. The updated tutor state is given by the tutor simulator. The updated student
knowledge state and tutor state, together gives the next state sy ;.

We instantiate STEP in the context of RoboTutor, a Finalist in the |Global Learning XPRIZE Com-
petition| to develop an open source Android tablet tutor to teach basic literacy and numeracy to chil-

http://learning.xprize.org
http://learning.xprize.org

Under review as a conference paper at ICLR 2021

dren without requiring adult intervention. XPRIZE independently field-tested the Swabhili version of
RoboTutor for 15 months in 28 villages in Tanzania.

Figure 1 shows an diagrammatic overview of STEP and the rest of the paper is organized as follows.
Section 2 discusses the simulation of tutor and student (the environment block). Section 3 elaborates
on the training of decision policies (the RL agent block). Section 4 evaluates the learned policies.
Section 5 relates this work to prior research. Section 6 concludes.

RL Agent
State: Knowledge State = Tutor State (Content area and position)
Action: Thresholds, Promotion Decisions, or activity

Action | Next state is returned as the
updated P{Know) after
F = === === === = = = knowledge fracing aka the
v I posterior and the updated tutor
I Tutor Simulator I state
I Tutor Simulator Reward: Avg across
1 presents I skills{Posterior_know -
stimulus based on Prior_Know)

| | tutor decisions (like !

promaotion rules, Tutor Simulator uses updated |
I | content area, matrix | | P(Know), thresholds, agent_type student model performe

position) and other factors to update ¢ | on;imu?ated resg onse

I content_area, matrix_position I R
A = - P - - e - e - . -

A

Student Simulator
r Simulates student
response

Environment

Figure 1: The RL setup for STEP

2 SIMULATING THE TUTOR AND THE STUDENT

To apply RL, we need to simulate the tutor’s actions and the student’s responses to them.

2.1 TUTOR SIMULATOR

The data for this paper comes from the version of RoboTutor used during the last 3 months of
XPRIZE’s 15-month field study. This version rotates through three content areas (literacy, numeracy,
and stories), tracking the child’s position in each area’s curricular sequence of successively more
advanced activities. It lets the child select among doing the activity at that position, advancing to
the next activity, repeating the same activity (from the previous content area), or exiting RoboTutor.
After selecting an activity, the child may complete all or part of it before selecting the next activity.
RoboTutor has 1710 learning activities, each of which gives assisted practice of one or more skills
on a sequence of items, such as letters or words to write, number problems to solve, or sentences to
read. Each item requires one or more steps. Each step may take one or more attempts.

Lo MID Hi

100
¥ Y VAN
M N N

A

—— =

T T T T
BACK SAME NEXT SKIP

Figure 2: Threshold on percentage of correct attempts and their effects on tutor decisions.

The simulated tutor state identifies the current content area and the child’s position in it. RoboTutor
(actual or simulated) updates the position in the content area based on the percentage of correct
attempts to perform the steps in an activity. Specifically, it uses fixed heuristic thresholds (called

Under review as a conference paper at ICLR 2021

LOW, MID, HI) on this percentage to demote BACK to the previous position, stay at the SAME
position, promote to the NEXT position, or SKIP to the position thereafter. Figure 2 gives an
illustration of the same.

2.2 STUDENT SIMULATOR

A student simulator should behave like students who use the tutor. Accordingly, the simulator uses
a Bayesian Knowledge Tracing (BKT) student model trained on logged data using HOT-DINA. It
has the same Guess, Slip, and Learn parameters as standard BKT, but estimates the Knew parameter
based on skill difficulty and discrimination and student proficiency from Item Response Theory.
Thus, HOT-DINA extrapolates from the student’s knowledge of other skills, and other students’
knowledge of this skill, albeit at a high computational cost to fit the model. [Xu & Mostow| (2014
found HOT-DINA to have higher predictive accuracy than standard BKT.

To limit computation time, we fit the model on logged data from a single village, consisting of
42,010 attempts by 8 children to apply 22 skills. We fit one proficiency parameter for each child and
5 parameters for each skill (Guess, Slip, Learn, Difficulty, and Discrimination), 118 parameters in
total. (Fitting 5 separate parameters per activity instead of per skill might achieve higher accuracy
but would require fitting 8,558 parameters.) We use MCMC sampling for Bayesian inference with
PyStan rather than the OpenBUGS Gibbs sampling package used in the original HOT-DINA work
because PyStan is faster and handles larger datasets. Nevertheless, fitting the 118-parameter HOT-
DINA model to 42,010 attempts took approximately 4 days on a supercomputer with 128 GB and
28 cores.

Table 1: Converged parameters for the HOT-DINA student model
| Parameter | Mean (converged) [SD (converged) |

0 0.17 0.03
05 .77 0.64
05 0.65 0.72
0, 0.73 .13
05 0.38 0.78
06 0.28 0.55
07 1048 0.7
Os 0.14 0.47
by 1.25 0.73
by 1.25 0.72
by 1.25 0.72
by 1.25 0.72
bs 142 0.71
be .49 0.68

Table 1 shows converged values for a subset of HOT-DINA parameters. For example, the eight
0 values refer to the 8 student proficiency parameters of the student model. For simplicity, we
show only the first 6 values of b (skill difficulty parameter) in the table. Once we obtain the model
parameters, we need two things to be done for the student simulator to be successful: given an
activity, we should be able to simulate whether a student gets an activity right or wrong. Based on
this response, we should be able to perform knowledge tracing over multiple skills to update the
student’s knowledge probabilities. For simulating a student’s performance on an activity we first
estimate P(Getting Activity j Correct) as in equations 2 and 3 below. We then simulate the student
response (right or wrong) by doing a biased coin flip based on this estimated probability. Since we
now have a simulated student response, we perform knowledge tracing over multiple skills using
the update equations 3-5. The next few lines cover some basic notation and update equations for
simulated learning of a student. It should be noted that variables «,y, and Y are all binary, ie.,
they take on value of either 1 or 0.

0, Proficiency of student n
ag Discrimination of skill k

Under review as a conference paper at ICLR 2021

b Difficulty of skill k
Gjk 1 if activity j exercises skill k, O otherwise

aff,z =1 Probability that student n knows skill k at time-step t
Yy = 1

y®W =1 Probability that student n gets activity j correct at time-step t

nj

Probability that student n answers an activity exercising only skill k at time-step t

K

qjik
(0) 1 :
= 1
“nk kl;[l <1 + exp(—1.7ax (0, — bk))) M
(") = 1) = (1 — stipy) (@) = 1) + guessi(al) = 0))
K
(v =1 = [T = 3)
k=1
qjk
1— sl
(ynk = 1)
qjk
(af) =11V =0) = (al) = 0) « [T2 5)
(@l =1) = (@) = 1Y) + (tearny = (alf) = 0] Y ?)) ©6)

3 TRAINING POLICIES WITH PPO

We have already discussed the student simulator and tutor simulator in last section. In this section,
we discuss the training a policy using STEP in the context of RoboTutor.

3.1 THE REWARD FUNCTION

The RL agent learns a decision policy — that is, a mapping from states to actions — that maximizes
the total expected reward of following the policy mg. As the reward function for student n, we use the
knowledge gain as estimated by the student model, i.e. posterior minus prior estimates of Pr(student
i knows skill k), averaged over all skills. The posterior and prior refer to the knowledge states before
and after applying the bayesian updates (equations 3-5) on an activity decided by action a;. The
information for prior knowledge is implicitly present in the knowledge state of s; In order to save
computational time, we learn policy for episodes of 100 timesteps using PPO after which the episode
terminates. Though our experiments stick to finite-horizon undiscounted returns with 100 steps, it
is trivial to extend this approach to any finite number of steps or even to infinite-horizon discounted
returns with discount factor v € (0, 1) so the rewards vanish at large timesteps. The reward function
r¢ for student n at a given step is given by learning gains of a student due to attempting an activity,
as given in equation (7) where K is the total number of skills (22 for RoboTutor). The returns are
just the sum of rewards over T=100 steps. (Previous methods used reward=0 or 1 based on correct
attempt or something else. Useful to mention this?)

K
S =1~ (@) =1

Tt(Sm at) — k=t K @)

According to the student model trained by HOT-DINA on the 8 children’s log data, their prior
averaged 0.55 and their posterior averaged 0.73, a gain of 0.18 over their final usage consisting of
42,010 attempts (up to 3 months). Their posterior after their first 100 attempts averaged across the 8
students was 0.64, for an average gain per attempt of 0.09/100 = 0.0009.
We can train different types of RL agents depending on their state space and range of actions, which
depend on how far they depart from RoboTutor’s current decision policy.

Under review as a conference paper at ICLR 2021

3.2 STATES, ACTIONS AND RL AGENT TYPES

We model student n’s state as the vector of estimated probabilities of student n knowing skill k

[(aﬁf} =1),.., (as 1)< = 1)]”. Depending on the RL agent type, the tutor state may include the
current (active) content area (literacy, numeracy or stories) and the student’s current position in the
curricular sequence for that area; just the content area; or neither.

Alternative ranges of actions for each agent type:

e Type 1: 3 threshold actions (LOW, MID, HI), each action € (0.0, 1.0)

e Type 2: promote-demote decisions choosing one of BACK, SAME, NEXT, and SKIP. 1
action from a Discrete(4) action space.

e Type 3: an activity from the current content area. 1 action from a Discrete(x) action space
where x is the number of activities in the current content area.

o Type 4: any activity from any content area. 1 action from a Discrete(1710) action space.

Table 2 summarizes 4 types of RL agents we consider, whose tutor simulators operate in the follow-
ing ways:

e Type 1 preserves RoboTutor’s current choices but adjusts thresholds that affect promote-
demote decisions indirectly

e Type 2 eliminates the need for thresholds by choosing promote-demote decisions directly
from state rather than from thresholds

e Type 3 can jump to any activity within the current content area

e Type 4 can jump to any activity in any content area; area rotation constraint is removed

Table 2: Tutor state and action range for each agent type

[Type | Tutor State \ Action Range | #Actions
1 Content area, position in curriculum Thresholds 3, Continuous
2 Content area, position in curriculum BACK, SAME, NEXT, SKIP 1, Discrete
3 Content area Any activity in content area 1, Discrete
4 None Any activity in any content area 1, Discrete

4 EVALUATING LEARNED POLICIES

We evaluate the learned policies along two metrics which assess the local and global impacts. The
local impact is the average change in reward by replacing a single historical choice of activity with
the activity chosen by the policy. The global impact is the overall change in reward per attempt by
following the learned policy from the first attempt. Table 3 evaluates the learned policies, per agent
type, by their impact on learning gains (expected reward) of the first 100 attempts averaged across
the 8 children, compared to the historical baseline of 0.0009.

Table 3: Evaluating policies based on local and global impact
| Agent Type | Local impact | Global impact |

1 9.98x 1.37x
2 10.81x 1.44x
3 10.99x 1.66x
4 11.64x 2.47x

From the table, we see an increasing trend for both the local and global impacts and is in-line with
our beliefs that less constrained the RL agent is, the greater the impact. Interestingly, local impacts
seem to exceed global impacts for all 4 cases. This is because successive attempts have independent

Under review as a conference paper at ICLR 2021

rewards since the Prior(Know at step ¢) does not depend on the policy-proposed-action at step ¢t — 1
for local impacts. Thus, if some less-known activity allows a large one-time gain at step t — 1, the
local impact allows it to occur multiple times in subsequent steps, beating average global gains per
step.

Figure 3 evaluates the current RoboTutor policy (red) versus the agent’s learned policy on the sim-
ulated student for agent types 1 to 4. Every agent type has 8 subplots associated to each simulated
student built off the 8 students’ data that we logged through RoboTutor. The y-axis corresponds to
student’s average knowledge across skills and the x-axis corresponds to the number of attempts of
a student. Since we restricted the time-horizon to 100, we can see that the x-values have an upper
limit of 100 attempts.

Figure 3: RoboTutor policy (red) vs learned policy (green) studying student knowledge vs attempts
for all 4 agent types

5 RELATION TO PRIOR WORK

Various researchers have worked on Reinforcement Learning for instructional sequencing |Doroudi
et al.| (2019). Table 4 summarizes work that used BKT for student modeling or Deep RL for opti-
mization.

Prior work by [Yudelson et al.| (2013) and |Pardos & Heffernan| (2011) used BKT methods that fit
a parameter for the probability of already knowing a skill prior to instruction. In contrast, we use
HOT-DINA, a higher-order BKT-IRT hybrid that estimates this probability based on skill difficulty
and student proficiency, achieving higher accuracy than standard BKT.

Recent work by |Shen et al.| (2018)) on instructional sequencing used deep reinforcement learning,
specifically Deep Q-Networks. STEP uses a more powerful deep RL method, namely Proximal
Policy Optimization (PPO)|Schulman et al.[(2017).

Under review as a conference paper at ICLR 2021

Some prior work reviewed by [Doroudi et al.|(2019) specifies the reward as 1 when the probability
of knowing a skill reaches 0.95 and 0 otherwise. In contrast, we define reward as estimated learning
gain, so as to differentiate between actions that yield different gains in student knowledge.

Table 4: Prior work and their approaches

Paper Student model | Adaptive policy
David et al.|(2016) BKT Threshold
| [Whitehill & Movellan[(2017) POMDP Policy Gradient
| |Doroudi et al.| (2017) BKT Mastery
| Shen et al.[(2018) Model-Free DOQN
Segal et al.[(2018) BKT Threshold
| |Doroudi et al.[(2019) BKT Inc Time
o This paper HOT-DINA PPO

6 CONCLUSION

This paper contributes a novel framework for optimizing instructional sequencing in an intelligent
tutoring system by combining knowledge tracing with deep reinforcement learning and evaluating
the learned decision policy on historical data. We fit a simulated student on authentic log data from
real children using RoboTutor in Tanzania, in contrast to earlier work that used synthetic data. We
trained the student model using HOT-DINA because it is more accurate than other knowledge tracing
methods. We used Proximal Policy Optimization because it learns better than previous reinforce-
ment learning methods applied previously to ITS. We use knowledge probabilities estimated by the
student model as a state and directly optimize for learning gains which we set as the reward. We
evaluated the learned policies’ local and global impact on expected knowledge gains relative to a
historical baseline and explained the somewhat surprising results we observed.

The work has several limitations. The evaluation is based on data from 8 children from one village
to save computational expense. The evaluation extrapolates from historical data. Future work should
test the actual impact of learned policies on children’s learning. We also do not make predictions
on kids backing out while doing activities and remove the 10-item per activity constraint while
performing our experiments. Future work should include predicting student disengagement.

We use a 118-parameter HOT-DINA model to save computational expense, while the 8,558-
parameter HOT-DINA model might have been more accurate since it has parameters per activity
instead of per skill. Developing other student models that are more accurate than HOT-DINA might
be fruitful. We focused on learning decision policies for choosing activities. Future work could
explore optimizing tutor decisions at other levels of granularity, such as selecting which items to
practice and what assistance to provide.

REFERENCES

Y. B. David, A. Segal, and Y. K. Gal. Sequencing educational content in classrooms using bayesian
knowledge tracing. Proceedings of the Sixth International COnference on Learning Analytics
Knowledge, pp. 354-363, 2016.

S. Doroudi, V. Aleven, and Brunskill. Robust evaluation matrix: Towards a more principled of-
fline exploration of instructional policies. Proceedings of the Fourth (2017) ACM Conference on
Learning@ Scale, pp. 3—12, 2017.

S. Doroudi, V. Aleven, and E. Brunskill. Where’s the reward? Int J Artif Intell Educ, 29:568—620,
2019.

Chung Laung Liu. A study in machine-aided learning. PhD thesis, Massachussets Institute of
Technology, 1960.

Z. A. Pardos and N. T. Heffernan. Kt-idem: Introducing item difficulty to the knowledge tracing
model. UMAP, 2011.

Under review as a conference paper at ICLR 2021

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

A. Segal, Y. B. David, J. J. Williams, K. Gal, and Y. Shalom. Combining difficulty ranking with
multi-armed bandits to sequence educational content. arXiv preprint arXiv:1804.05212, 2018.

S. Shen, M. S. Ausin, B. Mostafavi, and M. Chi. Improving learning & reducing time: A constrained
action-based reinforcement learning approach. Proceedings of the 2018 Conference on User
Modeling Adaptation and Personalization, 2018.

J. Whitehill and J. Movellan. Approximately optimal teaching of approximately optimal learners.
IEEE Transactions on Learning Technologies, 2017.

Yanbo Xu and Jack Mostow. A unified 5-dimensional framework for student models. Proceedings
of the EDM2014 Workshop on Approaching Twenty Years of Knowledge Tracing, 2014.

Michael V. Yudelson, Kenneth R. Koedinger, and Geoffrey J. Gordon. Individualized bayesian
knowledge tracing models. International Conference on Artificial Intelligence in Education, 2013.

	Introduction
	Simulating the tutor and the student
	Tutor Simulator
	Student Simulator

	Training policies with PPO
	The reward function
	States, actions and RL agent types

	Evaluating learned policies
	Relation to prior work
	Conclusion

