
Published in Transactions on Machine Learning Research (04/2025)

Convex Relaxation for Solving Large-Margin Classifiers in
Hyperbolic Space

Sheng Yang shengyang@g.harvard.edu
John A. Paulson School of Engineering and Applied Sciences
Harvard University

Peihan Liu peihanliu@fas.harvard.edu
John A. Paulson School of Engineering and Applied Sciences
Harvard University

Cengiz Pehlevan cpehlevan@seas.harvard.edu
John A. Paulson School of Engineering and Applied Sciences
Center for Brain Science
Kempner Institute for the Study of Natural and Artificial Intelligence
Harvard University

Reviewed on OpenReview: https: // openreview. net/ forum? id= eIPwJgadfZ

Abstract

Hyperbolic spaces have increasingly been recognized for their outstanding performance in
handling data with inherent hierarchical structures compared to their Euclidean counter-
parts. However, learning in hyperbolic spaces poses significant challenges. In particular, ex-
tending support vector machines to hyperbolic spaces is in general a constrained non-convex
optimization problem. Previous and popular attempts to solve hyperbolic SVMs, primarily
using projected gradient descent, are generally sensitive to hyperparameters and initializa-
tions, often leading to suboptimal solutions. In this work, by first rewriting the problem
into a polynomial optimization, we apply semidefinite relaxation and sparse moment-sum-
of-squares relaxation to effectively approximate the optima. From extensive empirical ex-
periments, these methods are shown to achieve better classification accuracies than the
projected gradient descent approach in most of the synthetic and real two-dimensional hy-
perbolic embedding dataset under the one-vs-rest multiclass-classification scheme.

1 Introduction

The d-dimensional hyperbolic space Hd is the unique simply-connected Riemannian manifold with a constant
negative sectional curvature -1. Its exponential volume growth with respect to radius motivates representa-
tion learning of hierarchical data using the hyperbolic space. Representations embedded in the hyperbolic
spaces have demonstrated significant improvements over their Euclidean counterparts across a variety of
datasets, including images (Khrulkov et al., 2020), natural languages (Nickel & Kiela, 2017), and complex
tabular data such as single-cell sequencing (Klimovskaia et al., 2020).

On the other hand, learning and optimization on hyperbolic spaces are typically more involved than that on
Euclidean spaces. Problems that are convex in Euclidean spaces become constrained non-convex problems
in hyperbolic spaces. The hyperbolic Support Vector Machine (HSVM), as explored in recent studies Cho
et al. (2019); Chien et al. (2021), exemplifies such challenges by presenting as a non-convex constrained pro-
gramming problem that has been solved predominantly based on projected gradient descent. Attempts have
been made to alleviate its non-convex nature through reparametrization (Mishne et al., 2023) or developing
a hyperbolic perceptron algorithm that converges to a separator with finetuning using adversarial samples
to approximate the large-margin solution (Weber et al., 2020). To our best knowledge, these attempts are

1

https://openreview.net/forum?id=eIPwJgadfZ

Published in Transactions on Machine Learning Research (04/2025)

grounded in the gradient descent dynamics, which is highly sensitive to initialization and hyperparameters
and cannot certify optimality.

As efficiently solving for the large-margin solution on hyperbolic spaces to optimality provides performance
gain in downstream data analysis, we explore two convex relaxations to the original HSVM problem and
examine their empirical tightness through their optimality gaps. Our contributions can be summarized as
follows: in Section 3, we briefly introduce the necessary concepts for large-margin learning in hyperbolic
space, transform the original HSVM formulation into a quadratically constrained quadratic programming
(QCQP) problem, and later apply the standard semidefinite relaxation (SDP) (Shor, 1987) to this QCQP.
Empirically, SDP does not yield tight enough solutions, which motivates us to apply the moment-sum-of-
squares relaxation (Moment) (Nie, 2023). The problem with the Moment approach is its limited scalability as
it empirically requires a long runtime and large computation memory. However, there is a special star-shaped
sparsity structure in the HSVM problem. By exploiting such a sparcity pattern, we successfully reduce the
number of decision variables in the original moment-sum-of-squares relaxation and propose an equivalent
but sparse moment-sum-of-squares relaxation. In Section 4, we test the performance of our methods in
both simulated and real datasets, We observe small optimality gaps for various tasks (in the order of 10−2

to 10−1) by using the sparse moment-sum-of-squares relaxation and obtain better max-margin separators
in terms of test accuracy in a one-vs-rest 5-fold train-test scheme than projected gradient descent (PGD).
SDP relaxation, on the other hand, is not tight, but still yields better solutions than PGD, particularly
in the one-vs-one training framework. The section then ends with the limitations of our proposed method
and a brief practical guidance of when to use our methods. Lastly, we conclude and point out some future
directions in Section 5. Additionally, we propose without testing a robust version of HSVM in Appendix F.
The code to our implmentations is https://github.com/yangshengaa/hsvm-relax.

2 Related Works

Support Vector Machine (SVM) is a classical statistical learning algorithm operating on Euclidean features
Cortes & Vapnik (1995). This convex quadratic optimization problem aims to find a linear separator that
classifies samples of different labels and has the largest margin to data samples. The problem can be efficiently
solved through coordinate descent or Lagrangian dual with sequential minimal optimization (SMO) Platt
(1998) in the kernelized regime. Mature open source implementations exist such as LIBLINEAR Fan et al.
(2008) for the former and LIBSVM Chang & Lin (2011) for the latter.

Less is known when moving to statistical learning on non-Euclidean spaces, such as hyperbolic spaces.
The popular practice is to directly apply neural networks in both obtaining the hyperbolic embeddings and
perform inferences, such as classification, on these embeddings Ganea et al. (2018); Klimovskaia et al. (2020);
Nickel & Kiela (2017); Chami et al. (2020; 2019); Lensink et al. (2022); Skliar & Weiler (2023); Shimizu et al.
(2020); Peng et al. (2021). Recently, increasing attention has been paid to transferring standard Euclidean
statistical learning techniques, such as SVMs, to hyperbolic embeddings for both benchmarking neural net
performances and developing better understanding of inherent data structures Mishne et al. (2023); Weber
et al. (2020); Cho et al. (2019); Chien et al. (2021). Learning a large-margin solution on hyperbolic space,
however, involves a non-convex constrained optimization problem. Cho et al. (2019) propose and solve
the hyperbolic support vector machine problem using projected gradient descent; Weber et al. (2020) add
adversarial training to gradient descent for better generalizability; Chien et al. (2021) propose applying
Euclidean SVM to features projected to the tangent space of a heuristically-searched point to bypass PGD;
Mishne et al. (2023) reparametrize parameters and features back to Euclidean space to make the problem
nonconvex and perform normal gradient descent. All these attempts are, however, gradient-descent-based
algorithms, which are sensitive to initialization, hyperparameters, and class imbalances, and can provably
converge to a local minimum without a global optimality guarantee.

Another relevant line of research focuses on providing efficient convex relaxations for various optimization
problems, such as using semidefinite relaxation (Shor, 1987) for QCQP and moment-sum-of-squares (Blekher-
man et al., 2012) for polynomial optimization problems. The flagship applications of SDP includes efficiently
solving the max-cut problem on graphs Goemans & Williamson (1995) and more recently in machine learn-
ing tasks such as rotation synchronization in computer vision (Eriksson et al., 2018), robotics (Rosen et al.,

2

https://github.com/yangshengaa/hsvm-relax

Published in Transactions on Machine Learning Research (04/2025)

2020), and medical imaging (Wang & Singer, 2013). Some results on the tightness of SDP have been ana-
lyzed on a per-problem basis (Bandeira et al., 2017; Brynte et al., 2022; Zhang, 2020). On the other hand,
moment-sum-of-squares relaxation, originated from algebraic geometry (Blekherman et al., 2012; Lasserre,
2001), has been studied extensively from a theoretical perspective and has been applied for certifying pos-
itivity of functions in a bounded domain (Henrion & Lasserre, 2005). Synthesizing the work done in the
control and algebraic geometry literature and geometric machine learning works is under-explored.

3 Convex Relaxation Techniques for Hyperbolic SVMs

In this section, we first introduce fundamentals on hyperbolic spaces and the original formulation of the
hyperbolic Support Vector Machine (HSVM) due to Cho et al. (2019). Next, we present two relaxations
techniques, the semidefinite relaxation and the moment-sum-of-squares relaxation, that can be solved ef-
ficiently with convergence guarantees. Our discussions center on the Lorentz manifold as the choice of
hyperbolic space, since it has been shown in Mishne et al. (2023) that the Lorentz formulation offers greater
numerical advantages in optimization.

3.1 Preliminaries

Hyperbolic Space (Lorentz Manifold): define Minkowski product of two vectors x, y ∈ Rd+1 as x∗y =
x0y0 −

∑d
i=1 xiyi. A d-dimensional hyperbolic space (Lorentz formulation) is a submanifold embedded in

Rd+1 defined by,
Hd := {x = (x0, x) ∈ Rd+1| x ∗ x = 1, x0 > 0}. (1)

Tangent Space: a tangent space to a manifold at a given point x ∈ Hd is the local linear subspace
approximation to the manifold, denoted TxHd. In this case the tangent space is a Euclidean vector space of
dimension d written as

TxHd = {w ∈ Rd+1| w ∗ x = 0}. (2)

Exponential & Logarithmic Map: the exponential map expx(.) : TxHd → Hd is a transformation that
sends vectors in the tangent space to the manifold. The logarithmic map logx(.) : Hd → TxHd is the inverse
operation. Formally, given x ∈ Hd, v ∈ TxHd, we have

expx(v) = cosh(∥v∥Hd)x + sinh(∥v∥Hd) v

∥v∥Hd

, ∥v∥Hd =
√

−v ∗ v. (3)

w′

H2

w ∗ x < 0

w ∗ x > 0

Figure 1: Straight line (red) on Lorentz
manifold H2 as the intersection between
a hyperplane and the manifold, presented
similarly in Cho et al. (2019).

Exponential and logarithmic maps serve as bridges between Eu-
clidean and hyperbolic spaces, enabling the transfer of notion,
such as distances and probability distributions, between these
spaces. One way is to consider Euclidean features as residing
within the tangent space of the hyperbolic manifold’s origin.
From this standpoint, distributions on hyperbolic space can be
obtained through exp0.

Hyperbolic Decision Boundary: straight lines in the hy-
perbolic space are intersections between d-dimensional hyper-
planes passing through the origin and the manifold Hd. Sup-
pose w ∈ Rd+1 is the normal direction of the plane, then the
plane and hyperbolic manifold intersect if and only if w∗w < 0.
From this viewpoint, each straight line in the hyperbolic space
can be parameterized by w and can be considered a linear sep-
arator for hyperbolic embeddings. Hence, we can define a de-
cision function hw(.), by the Minkowski product of the feature

3

Published in Transactions on Machine Learning Research (04/2025)

with the decision plane, as the following,

hw(x) =
{

1, w ∗ x = −(w′)T x > 0,

−1, otherwise,
(4)

where w′ = [−w0, w1, ..., wd]. A visualization is presented in Figure 1.

Stereographic Projection: we visualize H2 by projecting Lorentz features isometrically to the Poincaré
space Bd. Denote Lorentz features as x = [x0, x1, ..., xd], then its projection is given by x̃ = [x1

1+x0
, ..., xd

1+x0
] ∈

Bd ⊂ Rd. Decision boundaries on the Lorentz manifold are mapped to arcs in the Poincaré space. The proof
is deferred to Appendix A.2.

3.2 Original Formulation of the HSVM

Cho et al. (2019) proposed the hyperbolic support vector machine which finds a max-margin separator
where margin is defined as the hyperbolic point to line distance. We demonstrate our results in a binary
classification setting. Extension to multi-class classification is straightforward using Platt-scaling (Platt
et al., 1999) in the one-vs-rest scheme or majority voting in one-vs-one setting.

Suppose we are given {(xi, yi) : xi ∈ Hd, yi ∈ {1, −1}}n
i=1. The hard-margin HSVM is formulated as,

(HARD) min
w∈Rd+1,wT Gw>0

1
2wT Gw s.t. − yi(xT

i Gw) ⩾ 1, ∀i ∈ [n], (5)

whereas the soft-margin version allows misclassification using

(SOFT) min
w∈Rd+1,wT Gw>0

1
2wT Gw + C

n∑
i=1

l(−(yi(Gxi))T w), (6)

where G ∈ R(d+1)×(d+1) is a diagonal matrix with diagonal elements diag(G) = [−1, 1, 1, ..., 1] (i.e. all ones
but the first being -1), to represent the Minkowski product in a Euclidean matrix-vector product manner
and is the source of indefiniteness of the problem. In the soft-margin case, the hyperparameter C ⩾ 0
controls the strength of penalizing misclassification. This penalty scales with hyperbolic distances, defined
by l(z) = max(0, arcsinh(1) − arcsinh(z)).

As C approaches infinity, we recover the hard-margin formulation from the soft-margin one. In the rest of the
paper we focus on analyzing relaxations to the soft-margin formulation in Equation (6) as these relaxations
can be applied to both hyperbolic-linearly separable or unseparable data.

To solve the problem efficiently, we have two observations that lead to two adjustments in our approach.
Firstly, although the constraint involving w is initially posited as a strict inequality, practical considerations
allow for a relaxation. Specifically, when equality is achieved, wT Gw = 0, the separator is not on the
manifold and assigns the same label to all data samples. However, with sufficient samples for each class in
the training set and an appropriate regularization constant C, the solver is unlikely to default to such a trivial
solution. Therefore, we may substitute the strict inequality with a non-strict one during implementation.
Secondly, the penalization function, l, is not a polynomial. Although projected gradient descent is able
to tackle non-polynomial terms in the loss function, solvers typically only accommodate constraints and
objectives expressed as polynomials. We thus take a Taylor expansion of the arcsinh term to the first order
so that every term in the formulation is a polynomial. This also helps with constructing our semidefinite
and moment-sum-of-squares relaxations later on, which is presented in Appendix A.1 in detail. The new
formulation of the soft-margin HSVM outlined in Equation (6) is then given by,

min
w∈Rd+1ξ∈Rn

1
2wT Gw + C

n∑
i=1

ξi ,

s.t. ξi ⩾ 0, ∀i ∈ [n]
(yi(Gxi))T w ⩽

√
2ξi − 1, ∀i ∈ [n]

wT Gw ⩾ 0

, (7)

4

Published in Transactions on Machine Learning Research (04/2025)

where ξi for i ∈ [n] are the slack variables. More specifically, given a sample (xi, yi), if ξi = 0, the sample
has been classified correctly with a large margin; if ξi ∈ (0, 1√

2], the sample falls into the right region but
with a small hyperbolic margin; and if ξi > 1√

2 , the sample sits in the wrong side of the separator. We
defer a detailed derivation of Equation (7) to Appendix A.1 and its extension to curvatures other than −1
in Appendix A.3.

3.3 Semidefinite Formulation

Note that Equation (7) is a non-convex quadratically-constrained quadratic programming (QCQP) problem,
we can apply a semidefinite relaxation (SDP) (Shor, 1987). The SDP formulation is given by

(SDP) min
W ∈R(d+1)×(d+1)

w∈Rd+1

ξ∈Rn

1
2Tr(G, W) + C

n∑
i=1

ξi ,

s.t. ξi ⩾ 0, ∀i ∈ [n]
(yi(Gxi))T w ⩽

√
2ξi − 1, ∀i ∈ [n]

Tr(G, W) ⩾ 0[
1 wT

w W

]
⪰ 0

, (8)

where decision variables are highlighted in bold and that the last constraint stipulates the concatenated
matrix being positive semidefinite, which is equivalent to W − wwT ⪰ 0 by Schur’s complement lemma.
In this SDP relaxation, all constraints and the objective become linear in (W , w, ξ), which could be easily
solved. Note that if additionally we mandate W to be rank 1, then this formulation would be equivalent to
Equation (7) or otherwise a relaxation. Moreover, it is important to note that this SDP does not directly
yield decision boundaries. Instead, we need to extract w∗ from the solutions (W , w, ξ) obtained from
Equation (8). A detailed discussion of the extraction methods is deferred to Appendix B.1.

3.4 Moment-Sum-of-Squares Relaxation

The SDP relaxation in Equation (8) may not be tight, particularly when the resulting W has a rank
much larger than 1. Indeed, we often find W to be full-rank empirically. In such cases, moment-sum-of-
squares relaxation may be beneficial. Specifically, it can certifiably find the global optima, provided that the
solution exhibits a special structure, known as the flat-extension property (Curto & Fialkow, 2005; Henrion
& Lasserre, 2005).

We begin by introducing some necessary notions, with a more comprehensive introduction available in
Appendix C. We define the relaxation order as κ ⩾ 1 and our decision variables as q = (w, ξ) ∈ Rn+d+1.
Our objective, p(q), is a polynomial of degree 2κ with input q, where its coefficient is defined such that
p(q) = 1

2 wT Gw+C
∑n

i=1 ξi, thus matching the original objective. Hence, the polynomial p(·) has s(m, 2κ) :=(
m+2κ

2κ

)
number of coefficients, where m = n + d + 1 is the dimension of decision variables. Additionally, we

define z ∈ Rs(m,2κ) as the Truncated Multi-Sequence (TMS) of degree 2κ, and we denote a linear functional
f associated with this sequence as

fz(p) = ⟨fz, p⟩ = ⟨z, vec(p)⟩, (9)

which is the inner product between the coefficients of polynomial p and the vector or real numbers z. The
vector of monomials up to degree κ generated by q is denoted as [q]κ. With all these notions established,
we can then define the moment matrix of κ-th degree, Mκ[z], and localizing matrix of κ-th degree for
polynomial g, Lκ,g[z], as the followings,

Mκ[z] = ⟨fz, [q]κ[q]Tκ ⟩, (10)
Lκ,g[z] = ⟨fz, g(q) · [q]s[q]Ts ⟩, (11)

5

Published in Transactions on Machine Learning Research (04/2025)

where s is the max degree such that 2s + deg(g) ⩽ 2κ, [q]κ[q]Tκ is a matrix of polynomials with size
s(m, κ) by s(m, κ), and all the inner products are applied element-wise above. For example, if n = 1 and
d = 2 (i.e. 1 data sample from a 2-dimensional hyperbolic space), the degree-2 monomials generated by
q = (w0, w1, w2, ξ1) are

[q]T2 = [1, w0, w1, w2, ξ1, w2
0, w2

1, w2
2, ξ2

1 , w0w1, w0w2, w0ξ1, w1w2, w1ξ1, w2ξ1]. (12)

With all these definitions established, we can present the moment-sum-of-squares relaxation (Nie, 2023) to
the HSVM problem, outlined in Equation (7), as

(Moment) min
z∈Rs(m,2κ)

⟨vec(p), z⟩ .

s.t. Mκ[z] ⪰ 0
Lκ,ξi

[z] ⪰ 0, ∀i ∈ [n]
Lκ,−(yi(Gxi))T w+

√
2ξi−1[z] ⪰ 0, ∀i ∈ [n]

Lκ,wT Gw[z] ⪰ 0

. (13)

Note that g(q) ⩾ 0, as previously defined, serves as constraints in the original formulation. Additionally,
when forming the moment matrix, the degree of generated monomials is s = κ − 1, since all constraints
in Equation (7) has maximum degree 1. Consequently, Equation (13) is a convex programming and can
be implemented as a standard SDP problem using mainstream solvers. We further emphasize that by
progressively increasing the relaxation order κ, we can find increasingly better solutions theoretically, as
suggested by Lasserre (2018).

Figure 2: Star-shaped
Sparsity pattern in Equa-
tion (13) with n = 4

However, moment-sum-of-squares relaxation does not scale with the data size
due to the combinatorial factors in the dimension of truncated multi-sequence
z, leading to prohibitively slow runtimes and excessive memory consumption.
To address this issue, we exploit the sparsity pattern inherent in this problem:
many generated monomial terms do not appear in the objective or constraints.
For instance, there is no cross-terms among the slack variables, such as ξiξj for
i ̸= j ∈ [n]. Specifically, in this problem, we observe a star-shaped sparsity
structure, as ilustrated in Figure 2. We observe that, by defining sparsity
groups as q(i) = (w, ξi), two nice structural properties can be found: first,
the objective function involves all the sparsity groups, {q(i)}n

i=1 and can be
decomposed as sum of polynomials p(i), which involves only q(i) and thus has
a smaller number of coefficients s(m′, 2κ), where m′ = d + 2. Second, each
constraint is exclusively associated with a single group q(i) for a specific i. For
the remaining constraint, wT Gw, we could assign it to group i = 1 without loss of generality. Hence, by
leveraging this sparsity property, we can reformulate the moment-sum-of-squares relaxation equivalently into
its sparse version,

(Sparse-Moment) min
z(i)∈Rs(m′,2κ),∀i∈[n]

n∑
i=1

⟨vec(p(i)), z(i)⟩ ,

s.t. Mκ[z(i)] ⪰ 0, ∀i ∈ [n]
Lκ,ξi [z(i)] ⪰ 0, ∀i ∈ [n]
Lκ,−(yi(Gxi))T w+

√
2ξi−1[z(i)] ⪰ 0, ∀i ∈ [n]

Lκ,wT Gw[z(1)] ⪰ 0
(Mκ[z(i)])kl = (Mκ[z(1)])kl, ∀i ⩾ 2, (k, l) ∈ B

, (14)

where B is an index set of the moment matrix to entries generated by w along, ensuring that each moment
matrix with overlapping regions share the same values as required. We refer the last constraint as the sparse-
binding constraint. The nice thing about Equation (14) is that it is equivalent to Equation (13) and has a
fewer number of decision variables.

6

Published in Transactions on Machine Learning Research (04/2025)

Unfortunately, our solution empirically does not satisfy the flat-extension property and we cannot not cer-
tify global optimality. Nonetheless, in practice, it achieves significant performance improvements in selected
datasets over both projected gradient descent and the SDP-relaxed formulation. Similarly, this formula-
tion does not directly yield decision boundaries and we defer discussions on the extraction methods to
Appendix B.2.

4 Experiments

We validate the performances of semidefinite relaxation (SDP) and sparse moment-sum-of-squares
relaxations (Moment) by comparing various metrics with that of projected gradient descent (PGD)
on a combination of synthetic and real datasets. The PGD implementation follows from adapting the
MATLAB code in Cho et al. (2019), with learning rate 0.001 and 2000 epochs for synthetic and 4000 epochs
for real dataset and warm-started with a Euclidean SVM solution.

Datasets. For synthetic datasets, we construct Gaussian and tree embedding datasets following Cho et al.
(2019); Mishne et al. (2023); Weber et al. (2020). Regarding real datasets, our experiments include two
machine learning benchmark datasets, CIFAR-10 Krizhevsky et al. (2009) and Fashion-MNIST Xiao et al.
(2017) with their hyperbolic embeddings obtained through standard hyperbolic embedding procedure (Chien
et al., 2021; Khrulkov et al., 2020; Klimovskaia et al., 2020) to assess image classification performance. Ad-
ditionally, we incorporate three graph embedding datasets, such as football, karate, and polbooks obtained
from Chien et al. (2021), to evaluate the effectiveness of our methods on graph-structured data. We also ex-
plore cell embedding datasets, including Paul Myeloid Progenitors developmental dataset (Paul et al., 2015),
Olsson Single-Cell RNA sequencing dataset (Olsson et al., 2016), Krumsiek Simulated Myeloid Progenitors
dataset(Krumsiek et al., 2011), and Moignard blood cell developmental trace dataset from single-cell gene
expression (Moignard et al., 2015), where the inherent geometry structures well fit into our methods.

We emphasize that all features are on the Lorentz manifold, but visualized in Poincaré manifold through
stereographic projection if the dimension is 2.

Evaluation Metrics. The primary metrics for assessing model performance are average training and
testing loss, accuracy, and weighted F1 score under a stratified 5-fold train-test split scheme. Furthermore,
to assess the tightness of the relaxations, we examine the relative suboptimality gap, defined as

η = |f̂ − p∗|
1 + |p∗| + |f̂ |

, (15)

where f∗ is the unknown optimal objective value, p∗ is the objective value of the relaxed formulation, and f̂ is
the objective associated to the max-margin solution recovered from the relaxed model. Clearly p∗ ⩽ f∗ ⩽ f̂ ,
so if η ≈ 0, we can certify the exactness of the relaxed model.

Implementations Details. We use MOSEK (ApS, 2022) in Python as our optimization solver without any
intermediate parser, since directly interacting with solvers save substantial runtime in parsing the problem.
MOSEK uses interior point method to update parameters inside the feasible region without projections. All
experiments are run and timed on a machine with 8 Intel Broadwell/Ice Lake CPUs and 40GB of memory.
Results over multiple random seeds have been gathered and reported.

We first present the results on synthetic Gaussian and tree embedding datasets in Section 4.1, followed by
results on various real datasets in Section 4.2.

4.1 Synthetic Dataset

Synthetic Gaussian. To generate a Gaussian dataset on Hd, we first generate Euclidean features in Rd

and lift to hyperbolic space through exponential map at the origin, exp0, as outlined in Equation (3). We
adjust the number of classes K ∈ {2, 3, 5} and the variance of the isotropic Gaussian s ∈ {0.4, 0.6, 0.8, 1.0}.

7

Published in Transactions on Machine Learning Research (04/2025)

Three Gaussian embeddings in d = 2 are selected and visualized in Figure 3 and performances with C = 10
for the three dataset are summarized in Table 1.

In general, we observe a small gain in average test accuracy and weighted F1 score from SDP and Moment
relative to PGD. Notably, we observe that Moment often shows more consistent improvements compared
to SDP, across most of the configurations. In addition, Moment gives smaller optimality gaps η than SDP.
This matches our expectation that Moment is tighter than the SDP.

Although in some case, for example when K = 5, Moment achieves significantly smaller losses compared to
both PGD and SDP, it is generally not the case. We emphasize that these losses are not direct measure-
ments of the max-margin hyperbolic separators’ generalizability; rather, they are combinations of margin
maximization and penalization for misclassification that scales with C. Hence, the observation that the per-
formance in test accuracy and weighted F1 score is better, even though the loss computed using extracted
solutions from SDP and Moment is sometimes higher than that from PGD, might be due to the complicated
loss landscape. More specifically, the observed increases in loss can be attributed to the intricacies of the
landscape rather than the effectiveness of the optimization methods. Based on the accuracy and F1 score
results, empirically SDP and Moment methods identify solutions that generalize better than those obtained
by running gradient descent alone. We provide a more detailed analysis on the effect of hyperparameters
in Appendix E.2 and runtime in Table 5. Decision boundary for Gaussian 1 is visualized in Figure 5 as an
example.

(a) Gaussian with K = 2 (b) Gaussian with K = 3 (c) Gaussian with K = 5

(d) Tree 1 (e) Tree 2 (f) Tree 3

Figure 3: Three Synthetic Gaussian (top row) and Three Tree Embeddings (bottom row). All features are
in H2 but visualized through stereographic projection on B2. Different colors represent different classes. For
tree dataset, the graph connections are also visualized but not used in training. The selected tree embeddings
come directly from Mishne et al. (2023).

Synthetic Tree Embedding. As hyperbolic spaces are good for embedding trees, we generate random
tree graphs and embed them to H2 following Mishne et al. (2023). Specifically, we label nodes as positive
if they are children of a specified node and negative otherwise. Our models are then evaluated for subtree
classification, aiming to identify a boundary that includes all the children nodes within the same subtree.

8

Published in Transactions on Machine Learning Research (04/2025)

Such task has various practical applications. For example, if the tree represents a set of tokens, the decision
boundary can highlight semantic regions in the hyperbolic space that correspond to the subtrees of the data
graph. We emphasize that a common feature in such subtree classification task is data imbalance, which
usually lead to poor generalizability. Hence, we aim to use this task to assess our methods’ performances
under this challenging setting. Three embeddings are selected and visualized in Figure 3 and performance
is summarized in Table 1. The runtime of the selected trees can be found in Table 5. Decision boundary of
tree 2 is visualized in Figure 6.

Similar to the results of synthetic Gaussian datsets, we observe better performance from SDP and Moment
compared to PGD, and due to data imbalance that gradient-based methods typically struggle with, we have
a larger gain in weighted F1 score in this case. In addition, we observe large optimality gaps for SDP but
very tight gap for Moment, certifying the optimality of Moment even when class-imbalance is severe.

Table 1: Performance on synthetic Gaussian and tree dataset for C = 10.0: 5-fold test accuracy and weighted
F1 score plus and minus 1 standard deviation, and the average relative optimality gap η for SDP and Moment.

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

gaussian 1 84.50% ± 7.31% 85.50% ± 8.28% 85.50% ± 8.28% 0.84 ± 0.07 0.85 ± 0.08 0.85 ± 0.08 0.0847 0.0834
gaussian 2 85.33% ± 4.88% 84.00% ± 5.12% 86.33% ± 4.76% 0.86 ± 0.05 0.84 ± 0.06 0.87 ± 0.05 0.2046 0.0931
gaussian 3 75.8% ± 3.31% 72.80% ± 3.37% 77.40% ± 2.65% 0.75 ± 0.03 0.71 ± 0.04 0.77 ± 0.03 0.2204 0.0926

tree 1 96.11% ± 2.95% 100.0% ± 0.00% 100.0% ± 0.00% 0.94 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.9984 0.0640
tree 2 96.25% ± 0.00% 99.71% ± 0.23% 99.91% ± 0.05% 0.94 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.9985 0.0205
tree 3 99.86% ± 0.16% 99.86% ± 0.16% 99.93% ± 0.13% 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.3321 0.0728

4.2 Real Dataset

Real datasets consist of embedding of various sizes and number of classes in H2, visualized in Figure 4. We
first report performances of three models using one-vs-rest training scheme, described in Appendix D, in
Tables 6 to 8 for C ∈ {0.1, 1.0, 10} respectively, and report aggregated performances, by selecting the one
with the highest average test weighted F1 score, in Table 2. In general, we observe that Moment achieves the
best test accuracy and weighted F1 score, particularly in biological datasets with clear hyperbolic structures,
and have smaller optimality gaps compared to SDP relaxation, for nearly all selected data. However, it is
important to note that the optimality gaps of these two methods remain distant from zero, suggesting that
these relaxations are not tight enough for these datasets. Nevertheless, both relaxed models significantly
outperform projected gradient descent (PGD) by a wide margin. Furthermore, our observations reveal that
in the one-vs-rest training scheme, PGD shows considerable sensitivity to the choice of the regularization
parameter C from Tables 6 to 8, whereas SDP and Moment are less affected, demonstrating better stability
and consistency across different C’s.

One critical drawback of semidefinite and sparse moment-sum-of-squares relaxation is that they do not scale
efficiently with an increase in data samples, resulting in excessive consumption of time and memory, for
example, CIFAR10 and Fashion-MNIST using a one-vs-rest training scheme. The workaround is one-vs-
one training scheme, where we train for O(K2) number of classifiers among data from each pair of classes
and make final prediction decision using majority voting. We summarize the performance in Table 3 by
aggregating results for different C in Tables 9 to 11 as in the one-vs-rest case. We observe that in one-vs-
one training, the improvement in general from the relaxation is not as significant as it in the one-vs-rest
scheme, and SDP relaxation now gives the best performance in average test accuracy and test F1, albeit
with large optimality gaps. Note that in the one-vs-one scheme, PGD is more consistent across different C’s,
potentially because each subproblem-binary classifying one class against another-contains less data compared
to one-vs-rest, making it easier to identify solutions.

A more detailed analysis on the effect of regularization C and runtime comparisons are provided in Ap-
pendix E.3 and Table 12.

9

Published in Transactions on Machine Learning Research (04/2025)

Figure 4: Real datasets embedded on H2 visualized in B2. Different colors represent different classes. The
first three (football, karate, polbooks) are graph embeddings; the latter two (cifar10, fashion mnist) on the
top row are standard ML benchmarks; the last 5 dataset are single-cell sequencing data embedded on H2 for
cell type discovery and miscellaneous biomedical usages.
Table 2: Real dataset 5-fold test accuracy, F1, and optimality gap with one-vs-rest training. Best metrics
based on weighted F1 is reported here aggregating from Tables 6 to 8.

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 40.87% ± 4.43% 32.17% ± 4.43% 37.39% ± 4.43% 0.29 ± 0.03 0.23 ± 0.04 0.26 ± 0.03 0.3430 0.0999
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.66 ± 0.06 0.66 ± 0.06 0.66 ± 0.06 0.9155 0.0818

polbooks 84.76% ± 1.90% 84.76% ± 1.90% 84.76% ± 1.90% 0.79 ± 0.02 0.80 ± 0.03 0.80 ± 0.03 0.1711 0.0991
krumsiek 81.78% ± 2.66% 82.56% ± 2.01% 86.47% ± 0.64% 0.79 ± 0.03 0.80 ± 0.03 0.84 ± 0.00 0.7519 0.0921
moignard 63.37% ± 0.70% 63.68% ± 1.75% 63.78% ± 1.57% 0.62 ± 0.01 0.60 ± 0.02 0.60 ± 0.02 0.0325 0.0396

olsson 74.27% ± 5.15% 79.63% ± 3.54% 81.20% ± 3.68% 0.69 ± 0.07 0.77 ± 0.04 0.79 ± 0.04 0.4118 0.0976
paul 54.85% ± 1.26% 53.72% ± 2.42% 64.71% ± 2.36% 0.48 ± 0.02 0.47 ± 0.03 0.61 ± 0.02 0.4477 0.0861

myeloidprogenitors 69.34% ± 3.81% 70.12% ± 3.28% 76.84% ± 2.04% 0.66 ± 0.05 0.67 ± 0.04 0.75 ± 0.02 0.6503 0.1074

4.3 Limitations

Although our proposed SDP and sparse moment relaxation methods achieve generally better classification
performance compared to the PGD baseline in the one-vs-rest setting – and slightly less so in the one-vs-one
setting – the computational cost is significant due to their longer runtimes, as previously mentioned. One
naturally suspects that given equivalent computational resources (including time and memory), PGD might
achieve performance comparable to the sparse moment relaxation methods. This scenario becomes especially

Table 3: Real dataset 5-fold test accuracy, F1, and optimality gap with one-vs-one training. Best metrics
based on weighted F1 is reported here aggregating from Tables 9 to 11.

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 40.00% ± 5.07% 42.61% ± 5.07% 41.74% ± 7.06% 0.32 ± 0.06 0.35 ± 0.06 0.33 ± 0.07 0.6699 0.2805
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9986 0.0921

polbooks 83.81% ± 3.81% 86.67% ± 1.90% 83.81% ± 2.33% 0.80 ± 0.04 0.84 ± 0.03 0.81 ± 0.03 0.3383 0.1051
krumsiek 89.76% ± 0.80% 90.46% ± 1.18% 90.38% ± 1.49% 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.02 0.5843 0.3855
moignard 63.50% ± 1.35% 62.53% ± 1.10% 62.66% ± 1.17% 0.62 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.0312 0.0401

olsson 93.40% ± 2.75% 94.03% ± 2.12% 94.36% ± 0.78% 0.93 ± 0.03 0.94 ± 0.02 0.94 ± 0.01 0.9266 0.2534
paul 66.98% ± 2.89% 68.85% ± 2.26% 68.52% ± 2.39% 0.64 ± 0.03 0.66 ± 0.02 0.66 ± 0.03 0.7863 0.2130

myeloidprogenitors 79.81% ± 2.00% 80.28% ± 2.50% 80.60% ± 2.58% 0.80 ± 0.02 0.80 ± 0.02 0.81 ± 0.02 0.8911 0.1960
cifar 98.38% ± 0.14% 98.42% ± 0.17% 98.42% ± 0.17% 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.0825 0.0550

fashion-mnist 94.42% ± 1.10% 95.28% ± 0.16% 95.23% ± 0.15% 0.94 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.3492 0.0054

10

Published in Transactions on Machine Learning Research (04/2025)

plausible considering the large hyperparameter space available for PGD: a more aggressive grid search on
learning rates, total number of epochs, regularization parameters, and initializations could potentially yield
results that rival or even surpass those of the moment-based method.

To explore this further, we provide an additional comparison between our methods and PGD under ap-
proximately equal computational time constraints using the one-vs-rest scheme. Specifically, according to
Table 5, the average runtime per training fold for the Moment method is approximately two orders of mag-
nitude larger than that for PGD. Therefore, we randomly generated 100 different initializations for PGD,
with each initialization vector drawn uniformly from the unit sphere subject to the condition wT Gw > 0,
and report the best performance among these random initializations in Table 4 below.

Table 4: Synthetic and real dataset accuracy, F1, and optimality gap with one-vs-rest training. PGD
(random init) results are the best among 100 random initializations.

data test acc test f1 (micro) η
PGD PGD (random init) SDP Moment PGD PGD (random init) SDP Moment SDP Moment

tree 1 96.11% ± 2.95% 93.63% ± 0.23% 100.0% ± 0.00% 100.0% ± 0.00% 0.94 ± 0.04 0.91 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.9984 0.0640
tree 2 96.25% ± 0.00% 96.25% ± 0.01% 99.71% ± 0.23% 99.91% ± 0.05% 0.94 ± 0.00 0.94 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.9985 0.0205
tree 3 99.86% ± 0.16% 96.07% ± 3.21% 99.86% ± 0.16% 99.93% ± 0.13% 0.99 ± 0.00 0.94 ± 0.05 0.99 ± 0.00 0.99 ± 0.00 0.3321 0.0728

football 40.87% ± 4.43% 39.13% ± 6.74% 32.17% ± 4.43% 37.39% ± 4.43% 0.29 ± 0.03 0.27 ± 0.06 0.23 ± 0.04 0.26 ± 0.03 0.3430 0.0999
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.66 ± 0.06 0.34 ± 0.07 0.66 ± 0.06 0.66 ± 0.06 0.9155 0.0818

polbooks 84.76% ± 1.90% 83.81% ± 2.33% 84.76% ± 1.90% 84.76% ± 1.90% 0.79 ± 0.02 0.79 ± 0.03 0.80 ± 0.03 0.80 ± 0.03 0.1711 0.0991
krumsiek 81.78% ± 2.66% 81.63% ± 1.71% 82.56% ± 2.01% 86.47% ± 0.64% 0.79 ± 0.03 0.78 ± 0.02 0.80 ± 0.03 0.84 ± 0.00 0.7519 0.0921
moignard 63.37% ± 0.70% 60.45% ± 1.02% 63.68% ± 1.75% 63.78% ± 1.57% 0.62 ± 0.01 0.58 ± 0.01 0.60 ± 0.02 0.60 ± 0.02 0.0325 0.0396

olsson 74.27% ± 5.15% 76.17% ± 5.38% 79.63% ± 3.54% 81.20% ± 3.68% 0.69 ± 0.07 0.73 ± 0.06 0.77 ± 0.04 0.79 ± 0.04 0.4118 0.0976
paul 54.85% ± 1.26% 54.12% ± 1.60% 53.72% ± 2.42% 64.71% ± 2.36% 0.48 ± 0.02 0.47 ± 0.02 0.47 ± 0.03 0.61 ± 0.02 0.4477 0.0861

myeloidprogenitors 69.34% ± 3.81% 69.02% ± 3.36% 70.12% ± 3.28% 76.84% ± 2.04% 0.66 ± 0.05 0.65 ± 0.04 0.67 ± 0.04 0.75 ± 0.02 0.6503 0.1074

It’s worth noting that for PGD, we follow Cho et al. (2019), where the initialization w is determined based
on the solution w′ of a soft-margin SVM in the ambient Euclidean space of the Lorentz model. This choice
typically ensures better initialization, contributing to the stability of optimization, especially when numerous
local optima may exist. Consequently, we observed that the best PGD performance among 100 different
random initializations do not significantly improve its performance in this regime. Nevertheless, we do not
exclude the possibility that more strategic hyperparameter tuning under similar computational constraints
might yield improved PGD performance

Based on these insights, we offer practical recommendations for method selection tailored to dataset char-
acteristics and scale. For small-scale, low-dimensional hyperbolic datasets, particularly in 2D, where a
hyperparameter-free solution is desired, the SDP and sparse moment relaxation methods clearly excel. Ad-
ditionally, we advocate exhibiting significant class overlap. For instance, arguably Gaussian 1 and 3 have
greater overlap compared to Gaussian 2 (Figure 3), leading to a notable performance drop in the PGD
method. We suspect that more mixing likely leads PGD to poor local minima, although this conjecture war-
rants further quantitative investigation. For larger dataset such as MNIST or comparable modern machine
learning benchmarks, in which generalization to unseen data takes priority over strict global optimality, we
recommend PGD due to its significantly lower computational demands compared to our relaxed proposals.

5 Discussions

In this paper, we provide a stronger classification performance on hyperbolic support vector machine using
semidefinite and sparse moment-sum-of-squares relaxations on the hyperbolic support vector machine prob-
lem compared to projected gradient descent. In the one-vs-rest settings, we observe that they achieve better
classification accuracy and F1 score than the existing PGD approach on both simulated and real dataset.
Additionally, we discover small optimality gaps for moment-sum-of-squares relaxation, which approximately
certifies global optimality of the moment solutions.

Perhaps the most critical drawback of SDP and sparse moment-sum-of-squares relaxations is their limited
scalability. The runtime and memory consumption grows quickly with data size and dimension. We at-
tempted dividing this challenge into sub-tasks, such as using one-vs-one training scheme, to cut overall
runtime and memory, but observe a smaller performance advantage over the PGD baseline as they seem to
perform better in this alternative setting. Also, if given the same computational resources as moment-sum-

11

Published in Transactions on Machine Learning Research (04/2025)

of-squares, we suspect that PGD may be able to perform on par with the moment-relaxation method using a
rather greedy hyperparameter hunt such as specifically tunning the learning rates and regularization factors.

But it is not completely without hope. For relatively large datasets, we could develop more heuristic
approaches for solving our relaxed optimization problems to achieve runtime comparable with projected
gradient descent. Combining the GD dynamic with interior point iterates in a problem-dependent manner
could be useful Yang et al. (2023).

It remains to show if we have performance gain in either runtime or optimality by going through the dual
of the problem or by designing feature kernels that map hyperbolic features to another set of hyperbolic
features (Lensink et al., 2022). Nonetheless, we believe that our work introduces a valuable perspective -
applying SDP and Moment relaxations - to the geometric machine learning community.

References
Mosek ApS. Mosek optimizer api for python. Version, 9(17):6–4, 2022.

Afonso S Bandeira, Nicolas Boumal, and Amit Singer. Tightness of the maximum likelihood semidefinite
relaxation for angular synchronization. Mathematical Programming, 163:145–167, 2017.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28. Princeton
university press, 2009.

Dimitris Bertsimas and Dick den Hertog. Robust and adaptive optimization. Dynamic Ideas LLC, 2022.

Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite optimization and convex algebraic
geometry. SIAM, 2012.

Lucas Brynte, Viktor Larsson, José Pedro Iglesias, Carl Olsson, and Fredrik Kahl. On the tightness of
semidefinite relaxations for rotation estimation. Journal of Mathematical Imaging and Vision, pp. 1–11,
2022.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural net-
works. Advances in neural information processing systems, 32, 2019.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-dimensional
hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545, 2020.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Eli Chien, Chao Pan, Puoya Tabaghi, and Olgica Milenkovic. Highly scalable and provably accurate clas-
sification in poincaré balls. In 2021 IEEE International Conference on Data Mining (ICDM), pp. 61–70.
IEEE, 2021.

Hyunghoon Cho, Benjamin DeMeo, Jian Peng, and Bonnie Berger. Large-margin classification in hyperbolic
space. In The 22nd international conference on artificial intelligence and statistics, pp. 1832–1840. PMLR,
2019.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297, 1995.

Raúl E Curto and Lawrence A Fialkow. Truncated k-moment problems in several variables. Journal of
Operator Theory, pp. 189–226, 2005.

Anders Eriksson, Carl Olsson, Fredrik Kahl, and Tat-Jun Chin. Rotation averaging and strong duality. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 127–135, 2018.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for
large linear classification. the Journal of machine Learning research, 9:1871–1874, 2008.

12

Published in Transactions on Machine Learning Research (04/2025)

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in neural
information processing systems, 31, 2018.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145,
1995.

Charles R. Harris, K. Jarrod Millman, StÃľfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime FernÃąndez del RÃŋo,
Mark Wiebe, Pearu Peterson, Pierre GÃľrard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585:357âĂŞ362, 2020. doi: 10.1038/s41586-020-2649-2.

Didier Henrion and Jean-Bernard Lasserre. Detecting global optimality and extracting solutions in gloptipoly.
In Positive polynomials in control, pp. 293–310. Springer, 2005.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95,
2007. doi: 10.1109/MCSE.2007.55.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyper-
bolic image embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6418–6428, 2020.

Anna Klimovskaia, David Lopez-Paz, Léon Bottou, and Maximilian Nickel. Poincaré maps for analyzing
complex hierarchies in single-cell data. Nature communications, 11(1):2966, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jan Krumsiek, Carsten Marr, Timm Schroeder, and Fabian J Theis. Hierarchical differentiation of myeloid
progenitors is encoded in the transcription factor network. PloS one, 6(8):e22649, 2011.

Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on
optimization, 11(3):796–817, 2001.

Jean B Lasserre. The moment-sos hierarchy. In Proceedings of the International Congress of Mathematicians:
Rio de Janeiro 2018, pp. 3773–3794. World Scientific, 2018.

Keegan Lensink, Bas Peters, and Eldad Haber. Fully hyperbolic convolutional neural networks. Research in
the Mathematical Sciences, 9(4):60, 2022.

Wes McKinney et al. Data structures for statistical computing in python. In Proceedings of the 9th Python
in Science Conference, volume 445, pp. 51–56. Austin, TX, 2010.

Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The numerical stability of hyperbolic represen-
tation learning. In International Conference on Machine Learning, pp. 24925–24949. PMLR, 2023.

Victoria Moignard, Steven Woodhouse, Laleh Haghverdi, Andrew J Lilly, Yosuke Tanaka, Adam C Wilkin-
son, Florian Buettner, Iain C Macaulay, Wajid Jawaid, Evangelia Diamanti, et al. Decoding the regulatory
network of early blood development from single-cell gene expression measurements. Nature biotechnology,
33(3):269–276, 2015.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations. Ad-
vances in neural information processing systems, 30, 2017.

Jiawang Nie. Moment and Polynomial Optimization. SIAM, 2023.

Andre Olsson, Meenakshi Venkatasubramanian, Viren K Chaudhri, Bruce J Aronow, Nathan Salomonis,
Harinder Singh, and H Leighton Grimes. Single-cell analysis of mixed-lineage states leading to a binary
cell fate choice. Nature, 537(7622):698–702, 2016.

13

Published in Transactions on Machine Learning Research (04/2025)

Franziska Paul, YaâĂŹara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-
Shaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, et al. Transcriptional hetero-
geneity and lineage commitment in myeloid progenitors. Cell, 163(7):1663–1677, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic deep neural
networks: A survey. IEEE Transactions on pattern analysis and machine intelligence, 44(12):10023–10044,
2021.

John Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. 1998.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers, 10(3):61–74, 1999.

David M Rosen, Luca Carlone, Afonso S Bandeira, and John J Leonard. A certifiably correct algorithm for
synchronization over the special euclidean group. In Algorithmic Foundations of Robotics XII: Proceedings
of the Twelfth Workshop on the Algorithmic Foundations of Robotics, pp. 64–79. Springer, 2020.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv preprint
arXiv:2006.08210, 2020.

Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems Sciences, 25:
1–11, 1987.

Andrii Skliar and Maurice Weiler. Hyperbolic convolutional neural networks. arXiv preprint
arXiv:2308.15639, 2023.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoencoders.
arXiv preprint arXiv:1911.08411, 2019.

Lanhui Wang and Amit Singer. Exact and stable recovery of rotations for robust synchronization. Information
and Inference: A Journal of the IMA, 2(2):145–193, 2013.

Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya K Menon, and Sanjiv Kumar. Robust large-
margin learning in hyperbolic space. Advances in Neural Information Processing Systems, 33:17863–17873,
2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Heng Yang, Ling Liang, Luca Carlone, and Kim-Chuan Toh. An inexact projected gradient method with
rounding and lifting by nonlinear programming for solving rank-one semidefinite relaxation of polynomial
optimization. Mathematical Programming, 201(1):409–472, 2023.

Richard Zhang. On the tightness of semidefinite relaxations for certifying robustness to adversarial examples.
Advances in Neural Information Processing Systems, 33:3808–3820, 2020.

A Proofs

A.1 Deriving Soft-Margin HSVM with polynomial constraints

This section describe the key steps to transform from Equation (6) to Equation (7) for an efficient implemen-
tation in solver as well as theoretical feasibility to derive semidefinite and moment-sum-of-squares relaxations
subsequently.

14

Published in Transactions on Machine Learning Research (04/2025)

By introducing the slack variable ξi as the penalty term in Equation (6), we can rewrite Equation (6) into

min
w∈Rd+1,ξi

1
2wT Gw + C

n∑
i=1

ξi

s.t. ξi ⩾ 0, ∀i ∈ [n]
ξi ⩾ arcsinh(1) − arcsinh(−(b(i))T w), ∀i ∈ [n]
wT Gw ⩾ 0

, (16)

then by rearranging terms and taking sinh on both sides, it follows that

−(b(i))T w ⩾ sinh(arcsinh(1) − ξi) = 1 −
√

2
2 eξi + 1 +

√
2

2 e−ξi =: g(ξi), (17)

where the last equality follows from hyperbolic trig identities. To make it ready for moment-sum-of-squares
relaxation, we turn the function into a polynomial constraint by taking the taylor expansion up to some odd
orders (we need monotonic decreasing approximation to g(.), so we need odd orders).

If taking up to the first order, we relax the problem into Equation (7) 1. If taking up to the third order, we
relax the original problem to,

min
w∈Rd+1,ξ∈Rn

1
2wT Gw + C

n∑
i=1

ξi .

s.t. ξi ⩾ 0, ∀i ∈ [n]

− (b(i))T w ⩾ 1 −
√

2ξi + ξ2
i

2 −
√

2ξ3
i

6 , ∀i ∈ [n]

wT Gw ⩾ 0

(18)

It’s worth mentioning that we expect the lower bound gets tighter as we increase the order of Taylor ex-
pansion. However, once we apply the third order Taylor expansion, the constraint is no longer quadratic,
eliminating the possibility of deriving a semidefinite relaxation. Instead, we must rely on moment-sum-of-
squares relaxation, potentially requiring a higher order of relaxation, which may be highly time-costly.

It is also worth noting that such a Taylor expansion is consistent with the arcsinh when we allow the
curvature of the hyperbolic space to vary. Specifically, one can show that as the curvature approaches 0 (i.e.
as the hyperbolic space tends to Euclidean), both the arcsinh formulation in Equation (6) and Equation (7)
formulation recovers the standard Euclidean SVM problem. This further justifies the naturalness of taking
such a Taylor expansion.

A.2 Stereographic projection maps a straight line on H2 to an arc on Poincaré ball B2

Suppose w = [w0, w1, w2] is a valid hyperbolic decision boundary (i.e. w ∗ w < 0), and suppose a point on
the Lorentz straight line, x = [x0, x1, x2] with w ∗ x = 0, is mapped to a point, v = [v1, v2].l in Poincaré
space, then we have

w0x0 − w1x1 − w2x2 = 0
x2

0 − x2
1 − x2

2 = 1
v1 = x1

1+x0

v2 = x2
1+x0

. (19)

If w > 0, we further have (
v1 − w1

w0

)2
+

(
v2 − w1

w0

)2
= w2

1 + w2
2

w2
0

− 1, (20)

1note that in (Cho et al., 2019), the authors use 1 − ξi instead of 1 −
√

2ξi. We consider our formulation less sensitive to
outliers than the former formulation.

15

Published in Transactions on Machine Learning Research (04/2025)

i.e. the straight line on Poincaré space is an arc on a circle centered at (w1
w0

, w2
w0

) with radius
√

w2
1+w2

2
w2

0
− 1.

One could show that if w0 = 0, then it is the "arc" of a infinitely large circle, or just a Euclidean straight line
passing through the origin with normal vector (w1, w2). With this simplification, one could plot the decision
boundary on the Poincaré ball easily.

A.3 An extension to curvature other than -1

Throughout the paper, we assume that the hyperbolic space has a constant negative curvature −1 without
loss of generality. Our analysis and relaxation easily extend to curvature other than −1.

Define c as the negative curvature. That is, all the discussions in the main text are about c = 1. To derive
the prooblem formulation and associated relaxation, we can follow Table 1 in Skopek et al. (2019) and retrace
the proof in the supplemental material in Chien et al. (2021), then we see that the decision function, the
objective, and many constraints stay the same except the following slack variable constraint in Equation (16):

ξi ⩾
1
c

arcsinh(1) − 1
c

arcsinh(−(b(i))T w), ∀i ∈ [n], (21)

and with some rearrangements, we have

−(b(i))T w ⩾ sinh(arcsinh(1) − cξi) = 1 −
√

2
2 ecξi + 1 +

√
2

2 e−cξi =: gc(ξi), (22)

whose Taylor expansion around ξi = 0 gives

gc(ξi) ≈ 1 −
√

2cξi. (23)

Essentially, this is nothing but adding a curvature factor c into the problem formulation, so that solving the
SVM problem in other curvature has no additional theoretical challenges. The rest follows likewise as in
Appendix A.1.

The intuition behind why only this single constraint is affected can be made as follows: SVM cares about
direction of the decision boundary, and if the optimal direction is found for an embedding in one c, the
"same" direction is also optimal for the same embedding stretched to other C; but since the slack variables
are associated to distance measures, they need to be scaled accordingly.

B Solution Extraction in Relaxed Formulation

In this section, we detail the heuristic methods for extracting the linear separator w̃ from the solution of the
relaxed model.

B.1 Semidefinite Relaxation

For SDP, we initially construct a set of candidates w̃ derived from (W , w, ξ). Then, among candidates in
this set, we choose the one that minimizes the loss function in Equation (7).

The candidates, denoted as w̃’s, include

1. Scaled top eigendirection: w̃ =
√

λmaxumax, where λmax and umax are the largest eigenvalue
and the eigenvector associated with the largest eigenvaue;

2. Gaussian randomizations: sample w̃ ∼ N (w, W − wwT)2. We empirically generate 10 samples
from this distributions;

2a method mentioned in slide 14 of https://web.stanford.edu/class/ee364b/lectures/sdp-relax_slides.pdf

16

https://web.stanford.edu/class/ee364b/lectures/sdp-relax_slides.pdf

Published in Transactions on Machine Learning Research (04/2025)

3. Scaled matrix columns: if it were the case that W = wwT , then each column of W contains w
scaled by some entry within itself. Using columns of W divided by the corresponding entry of w
(e.g. divide first column by w0, second column by w1, and so on), we get d + 1 many candidates
w̃ = w’s;

4. Nominal solution: w̃ = w, i.e. include w itself as a candidate.

Typically the top eigendirection is selected as the best candidate.

B.2 Moment-Sum-of-Squares Relaxation

In moment-sum-of-squares relaxation, the decision variable is the truncated multi-sequence z, but we could
decode the solution from the moment matrix Mκ[z] it generates. We are able to extract the part in TMS
that corresponds to w = [w0, w1, ..., wd], by reading off these entries from the moment matrix, which is
already a good enough solution.

For example, in d = 2, κ = 2, one of the sparcity group, say q(1) consists of [w, ξ1], which has monomials
generated in Equation (12). Define ⊗ as a binary operator between two vectors of monomials that generates
another vector with monomials given by the unique combinations of the product into vectors, such that

(w ⊗ w)T := [w2
0, w2

1, w2
2, w0w1, w0w2, w1w2]. (24)

Then, monomials generated can be more succinctly expressed as

[q(1)]T2 = [1, wT , ξ1, (w ⊗ w)T , (wξ1)T , ξ2
1], (25)

and the moment matrix can be expressed in block form as

M2[z(1)] = fz(1)

1 wT ξ1 (w ⊗ w)T (wξ1)T ξ2

1
w wwT wξ1 w(w ⊗ w)T w(wξ1)T w ⊗ ξ2

1
ξ1 (wξ1)T ξ2

1 ξ1(w ⊗ w)T ξ1(wξ1)T ξ3
1

w ⊗ w (w ⊗ w)wT w ⊗ wξ1 w ⊗ w(w ⊗ w)T w ⊗ w(wξ1)T w ⊗ wξ2
1

wξ1 wξ1wT wξ2
1 wξ1(w ⊗ w)T wξ1(wξ1)T wξ3

1
ξ2

1 ξ2
1wT ξ3

1 ξ2
1(w ⊗ w)T ξ3

1wT ξ4
1

 . (26)

Note that the value for w (the red part) is contained close to the top left corner of the moment matrix,
which provides us good linear separator w̃ in this problem.

C On Moment Sum-of-Squares Relaxation Hierarchy

In this section, we provide necessary background on moment-sum-of-squares hierarchy. We start by con-
sidering a general Polynomial Optimization Problem (POP) and introduce the sparse version. This section
borrows substantially from the course note 3.

C.1 Polynomial Optimization and Dual Cones

Polynomial optimization problem (POP) in the most generic form can be presented as

(POP) p∗ = min
x∈Rn

p(x) ,

s.t. hi(x) = 0 for i = 1, 2, ..., m

gi(x) ≥ 0 for i = 1, 2, ..., l,

where p(x) is our polynomial objective and hi(x), gi(x) are our polynomial equality and inequality constraints
respectively. However, in general, solving such POP to global optimality is NP-hard (Lasserre, 2001; Nie,

3Chapter 5 Moment Relaxation: https://hankyang.seas.harvard.edu/Semidefinite/Moment.html

17

https://hankyang.seas.harvard.edu/Semidefinite/Moment.html

Published in Transactions on Machine Learning Research (04/2025)

2023). To address this challenge, we leverage methods from algebraic geometry (Blekherman et al., 2012;
Nie, 2023), allowing us to approximate global solutions using convex optimization methods.

To start with, we define sum-of-squares (SOS) polynomials as polynomials that could be expressed as
a sum of squares of some other polynomials, and we define Σ[x] to be the collection of SOS polynomials.
More formally, we have

p(x) ∈ Σ[x] ⇐⇒ ∃q1, q2, ..., qm ∈ R[x] : p(x) =
m∑

k=1
q2

k(x),

where R[x] denotes the polynomial ring over R.

Next, we recall the definitions of quadratic module and its dual. Given a set of polynomials g =
[g1, g2, ..., gl], the quadratic module generated by g is defined as

Qmodule[g] = {σ0 + σ1g1 + ... + σlgl | σi’s are SOS for i ∈ [l]}

=
{

l∑
i=0

σigi | σi ∈ Σ[x] for i ∈ [l]
}

,

and its degree 2d-truncation is defined as,

Qmodule[g]2d =
{

l∑
i=0

σigi | deg(σigi) ≤ 2d, σi ∈ Σ[x] for i ∈ [l]
}

,

where g0 = 1. It has been shown that the dual cone of Qmodule[g]2d is exactly the convex cone defined by
the PSD conditions of the localizing matrices, M[g]2d = {z ∈ Rs(n,2d)|Md[z] ≽ 0, Ld,gi

[z] ≽ 0 for i ∈ [l]},
where Md[z] = fz([x]d[x]⊺d) refers to the dth order moment matrix, Ld,gi [z] = fz(gi(x) · [x]s[x]⊺s) refers to
the dth order localizing matrix of gi generated by z, and fz(gi) = ⟨fz, gi⟩ = ⟨z, vec(gi)⟩ refers to the linear
functional associated with z applied on gi ∈ R[x]2d. It is worth mentioning that the application of the linear
functional fz to the symmetric polynomial matrix g(x) · [x]s[x]⊺s is element-wise. Formally speaking, for all
g′ ∈ Qmodule[g]2d and for all g ∈ M[g]2d, we have ⟨g′, g⟩ ≥ 0.

Similarly, given a set of polynomials h = [h1, h2, ..., hm], the ideal generated by h is defined as,

Ideal[h] =
{

m∑
i=1

λihi | λi ∈ R[x] for i ∈ [l]
}

,

and its degree 2d-truncation is defined as,

Ideal[h]2d =
{

m∑
i=1

λihi | λi ∈ R[x], deg(λigi) ≤ 2d for i ∈ [l]
}

,

where λi’s are also called polynomial multipliers. Interestingly, it is shown that we can perfectly characterize
the dual of the sum of ideal and quadratic module,

(Ideal[h]2d + Qmodule[g]2d)∗ = Z[h]2d ∩ M[g]2d,

where Z[h]2d = {z ∈ Rs(n,2d)|Ld,hi [z] = 0 for i ∈ [l]} is the linear subspace that linear functionals vanish on
Ideal[h]2d and M[g]2d = {z ∈ Rs(n,2d)|Md[z] ≽ 0, Ld,gi [z] ≽ 0 for i ∈ [l]} is the convex cone defined by the
PSD conditions of the localizing matrices.

With these notions setup, we can reformulate the POP above into the following SOS program for arbitrary
κ ∈ N as the relaxataion order,

γ∗
κ = max γ

s.t. p(x) − γ ∈ Ideal[h]2κ + Qmodule[g]2κ,

18

Published in Transactions on Machine Learning Research (04/2025)

whose optimal value produces a lower bound to p∗, i.e. γ∗
κ ≤ p∗, and its dual problem of the SOS program

above is,

β∗
κ = min

z∈Rs(n,2d)
⟨fz, p⟩ .

s.t. y ∈ Z[h]2d ∩ M[g]2d

z1 = 1

This pair of SOS programs is called the moment-sum-of-squares hierarchy first proposed in Lasserre
(2001). It is particularly useful as it has been shown that

γ∗
κ ≤ β∗

κ ≤ p∗, for all κ ∈ N,

and {γ∗
κ}κ and {βκ∗}κ are two monotonically increasing sequences. In our work, we implement our SOS

programs following the dual route.

C.2 Sparse Polynomial Optimization

In this section, we briefly discuss how sparse moment-sum-of-squares is formulated. Using the same sparsity
pattern defined in Section 3 (i.e. q(i) = (w, ξi)), we first introduce the notion of correlated sparsity.

Definition 1. Correlated Sparsity for an objective p ∈ R[x] and associated set of constraints means

1. For any constraint gi(q), ∀i ∈ [l], it only involves term in one sparsity group q(i) for some i ∈ [n]

2. The objective can be split into

p(q) =
n∑

i=1
pi(q(i)), for pi ∈ R[q(i)], ∀i ∈ [n]

3. The grouping satisfies the running intesection property (RIP), i.e. for all i ∈ {1, 2, ..., n − 1}, we
have (

∪i
k=1q(i)

)
∩ q(i+1) ⊂ q(s), for some s ⩽ i

In our case, the first property is straightforward. For the second, we may define explicitly pi(q(i)) =
pi(w, ξi) = 1

2n wT Gw + Cξi so that we get back the original objective after summation. The last property
direct follows from the star-shaped structure, i.e. ∀i ∈ {1, 2, ..., n − 1}, we indeed have

(
∪i

k=1q(i)) ∩ q(i+1) =
w ⊂ q(1). Hence, our sparsity group indeed satisfies all three property and thus we have correlated sparsity
in the problem.

With correlated sparsity and data regularity (Putinar’s Positivestellentz outlined in Nie (2023)), we are
able to decompose the Qmodule generated by the entire set of decision variables into the Minkowski sum of
Qmodules generated by each sparsity group of variables, effectively reducing the number of decision variables
in the implementations. For a problem with only inequality constraints, which is our case for HSVM, the
sparse POP for our problem reads as

max γ ,

s.t. p(x) − γ ∈
n∑

i=1
Qmodule[g(qi)]2κ

and we could derive its dual accordingly and present the SDP form for implementation in Equation (14).

19

Published in Transactions on Machine Learning Research (04/2025)

D Platt Scaling (Platt et al., 1999)

Platt scaling (Platt et al., 1999) is a common way to calibrate binary predictions to probabilistic predictions
in order to generalize binary classification to multiclass classification, which has been widely used along with
SVM. The key idea is that once a separator has been trained, an additional logistic regression is fitted on
scores of the predictions, which can be interpreted as the closeness to the decision boundary.

In the context of HSVM, suppose w∗ is the linear separator identified by the solver, then we find two scalars,
A, B ∈ R, with

P (yi = 1|xi) = 1
1 + exp{A(w∗ ∗ xi) + B}

(27)

where ∗ refers to the Minkowski product defined in Equation (1). The value of A and B are trained on the
trained set using logistic regression with some additional empirical smoothing. For one-vs-rest training, we
will then have K sets of (A, B) to train, and at the end we classify a sample to the class with the highest
probability. See detailed implementation here https://home.work.caltech.edu/ htlin/program/libsvm/doc/-
platt.py in LIBSVM.

E Detailed Experimental Results

This section documents the experiment details. The code base is adapted partly from LIBSVM 4 with a
BSD-3-Clause license for Platt scaling, hyplinear 5 with an MIT license for PGD implementation, and
stable-hyperbolic 6 with an MIT license for hyperbolic related functions and obtaining tree embeddings.
The data used is described in Section 4.

Our Python code also uses some common publicly available packages, including NumPy (Harris et al., 2020)
with a BSD license, Matplotlib (Hunter, 2007) with a BSD license, Pandas (McKinney et al., 2010) under a
BSD license, scikit-learn (Pedregosa et al., 2011) with a BSD license, MOSEK (ApS, 2022) a closed-source
commercial solver, and toml with an MIT license.

E.1 Visualizing Decision Boundaries

Here we visualize the decision boundary of for PGD, SDP relaxation and sparse moment-sum-of-squares
relaxation (Moment) on one fold of the training to provide qualitative judgements.

We first visualize training on the first fold for Gaussian 1 dataset from Figure 3 in Figure 5. We mark the
train set with circles and test set with triangles, and color the decision boundary obtained by three methods
with different colors. In this case, note that SDP and Moment overlap and give identical decision boundary
up to machine precision, but they are different from the decision boundary of PGD method. This slight
visual difference causes the performance difference displayed in Table 1.

We next visualize the decision boundary for tree 2 from Figure 3 in Figure 6. Here the difference is dramatic:
we visualize both the entire data in the left panel and the zoomed-in one on the right. We indeed observe
that the decision boundary from moment-sum-of-squares relaxation have roughly equal distance from points
to the grey class and to the green class, while SDP relaxation is suboptimal in that regard but still enclosing
the entire grey region. PGD, however, converges to a very poor local minimum that has a very small radius
enclosing no data and thus would simply classify all data sample to the same class, since all data falls to one
side of the decision boundary. As commented in Section 4, data imbalance is to blame, in which case the
final converged solution is very sensitive to the choice of initialization and other hyperparameters such as
learning rate. This is in stark contrast with solving problems using the interior point method, where after
implementing into MOSEK, we are essentially care-free. From this example, we see that empirically sparse
moment-sum-of-squares relaxation finds linear separator of the best quality, particularly in cases where PGD
is expected to fail.

4https://github.com/cjlin1/libsvm
5https://github.com/hhcho/hyplinear
6https://github.com/yangshengaa/stable-hyperbolic

20

https://home.work.caltech.edu/~htlin/program/libsvm/doc/platt.py
https://home.work.caltech.edu/~htlin/program/libsvm/doc/platt.py
https://github.com/cjlin1/libsvm
https://github.com/hhcho/hyplinear
https://github.com/yangshengaa/stable-hyperbolic

Published in Transactions on Machine Learning Research (04/2025)

data
Train
Test

method
PGD
SDP
Moment

Figure 5: Decision boundary obtained by each method on one fold of train test split on Gaussian 1 dataset
in Figure 3. While SDP and moment overlap, they differ from the PGD solution.

Figure 6: Decision boundary visualization of the train test split from the first fold. The left panel shows
all the data and the right panel zooms in to the decision boundary. PGD gets stuck in a bad local minima
(a tiny circle in the right panel) and thus classify all data samples to one class. While both SDP and
moment relaxation give a decision boundary that demarcate one class from another, Moment has roughly
equal margin to samples from the grey class and to samples from the green class, which is preferred in
large-margin learning.

21

Published in Transactions on Machine Learning Research (04/2025)

E.2 Synthetic Gaussian

To generate mixture of Gaussian in hyperbolic space, we first generate them in Euclidean space, with the
center coordinates independently drawn from a standard normal distribution. K such centers are drawn for
defining K different classes. Then we sample isotropic Gaussian at respective center with scale s. Finally,
we lift the generated Gaussian mixtures to hyperbolic spaces using exp0. For simplicity, we only present
results for the extreme values: K ∈ {2, 5}, s ∈ {0.4, 1}, and C ∈ {0.1, 10}.

For each method (PGD, SDP, Moment), we compute the train/test accuracy, weighted F1 score, and loss
on each of the 5 folds of data for a specific (K, s, C) configuration. We then average these metrics across
the 5 folds, for all methods and configurations. To illustrate the performance, we plot the improvements of
the average metrics of the Moment and SDP methods compared to PGD as bar plots for 15 different seeds.
Outliers beyond the interquartile range (Q1 and Q3) are excluded for clarity, and a zero horizontal line is
marked for reference. Additionally, to compare the Moment and SDP methods, we compute the average
optimality gaps similarly, defined in Equation (15), and present them as bar plots. Our analysis begins by
examining the train/test accuracy and weighted F1 score of the PGD, SDP, and Moment methods across
various synthetic Gaussian configurations, as shown in Figures 7 to 10.

Across various configurations, we observe that both the Moment and SDP methods generally show improve-
ments over PGD in terms of train and test accuracy as well as weighted F1 score. Notably, we observe that
Moment method often shows more consistent improvements compared to SDP. This consistency is evident
across different values of (K, s, C), suggesting that the Moment method is more robust and provide more
generalizable decision boundaries. Moreover, we observe that 1. for larger number of classes (i.e. larger
K), the Moment method consistently and significantly outperforms both SDP and PGD, highlighting its
capability to manage complex class structures efficiently; and 2. for simpler datasets (with smaller scale s),
both Moment and SDP methods generally outperform PGD, where the Moment method particularly shows
a promising performance advantage over both PGD and SDP.

Next, we move to examine the train/test loss improvements compared to PGD and optimality gaps com-
parison across various configurations, shown in Figures 11 to 14. We observe that for K = 5, the Moment
method achieves significantly smaller losses compared to both PGD and SDP, which aligns with our previous
observations on accuracy and weighted F1 scores. However, for K = 2, the losses of the Moment and SDP
methods are generally larger than PGD’s. Nevertheless, it is important to note that these losses are not
direct measurements of our optimization methods’ quality; rather, they measure the quality of the extracted
solutions. Therefore, a larger loss does not necessarily imply that our optimization methods are inferior
to PGD, as the heuristic extraction methods might significantly impact the loss. Additionally, we observe
that the optimality gaps of the Moment method are significantly smaller than those of the SDP method,
suggesting that Moment provides better solutions. Interestingly, the optimality gaps of the Moment method
also exhibit smaller variance compared to SDP, as indicated by the smaller boxes in the box plots, further
supporting the consistency and robustness of the Moment method.

Table 5: Average runtime to finish 1 fold of training for each model on synthetic dataset.

data runtime
PGD SDP Moment

gaussian 1 0.99s 0.52s 6.60s
gaussian 2 2.83s 0.56s 30.59s
gaussian 3 4.19s 0.76s 51.84s

tree 1 2.17s 0.95s 39.89s
tree 2 2.16s 0.92s 51.18s
tree 3 1.67s 0.74s 59.68s

22

Published in Transactions on Machine Learning Research (04/2025)

sdp moment

0.002

0.001

0.000

0.001

0.002

train accuracy improvement

sdp moment

0.000

0.001

0.002

0.003

0.004

0.005

test accuracy improvement

sdp moment

0.002

0.001

0.000

0.001

0.002

train f1 improvement

sdp moment

0.000

0.001

0.002

0.003

0.004

0.005

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=2, s=0.4, and C=0.1)

sdp moment
0.004

0.003

0.002

0.001

0.000

0.001

0.002

train accuracy improvement

sdp moment

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

test accuracy improvement

sdp moment
0.004

0.003

0.002

0.001

0.000

0.001

0.002

train f1 improvement

sdp moment

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=2, s=0.4, and C=10.0)

Figure 7: Train/test accuracy and train/test f1 improvements compared to PGD across various C ∈ {0.1, 10}
for K = 2 and s = 0.4

23

Published in Transactions on Machine Learning Research (04/2025)

sdp moment

0.004

0.002

0.000

0.002

0.004

0.006

0.008

train accuracy improvement

sdp moment

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

test accuracy improvement

sdp moment

0.004

0.002

0.000

0.002

0.004

0.006

0.008

train f1 improvement

sdp moment

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=2, s=1.0, and C=0.1)

sdp moment0.012

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004
train accuracy improvement

sdp moment

0.005

0.000

0.005

0.010

0.015

0.020

0.025

test accuracy improvement

sdp moment
0.012

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004
train f1 improvement

sdp moment

0.005

0.000

0.005

0.010

0.015

0.020

0.025

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=2, s=1.0, and C=10.0)

Figure 8: Train/test accuracy and train/test f1 improvements compared to PGD across various C ∈ {0.1, 10}
and C for K = 2 and s = 1.0

24

Published in Transactions on Machine Learning Research (04/2025)

sdp moment

0.000

0.025

0.050

0.075

0.100

0.125

0.150

train accuracy improvement

sdp moment

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

test accuracy improvement

sdp moment

0.00

0.05

0.10

0.15

0.20 train f1 improvement

sdp moment

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=5, s=0.4, and C=0.1)

sdp moment

0.04

0.02

0.00

0.02

train accuracy improvement

sdp moment

0.02

0.01

0.00

0.01

0.02

0.03

test accuracy improvement

sdp moment

0.08

0.06

0.04

0.02

0.00

0.02

train f1 improvement

sdp moment

0.06

0.04

0.02

0.00

0.02

0.04

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=5, s=0.4, and C=10.0)

Figure 9: Train/test accuracy and train/test f1 improvements compared to PGD across various C ∈ {0.1, 10}
for K = 5 and s = 0.4

25

Published in Transactions on Machine Learning Research (04/2025)

sdp moment

0.02

0.00

0.02

0.04

0.06
train accuracy improvement

sdp moment
0.04

0.02

0.00

0.02

0.04

0.06

test accuracy improvement

sdp moment

0.04

0.02

0.00

0.02

0.04

0.06

0.08

train f1 improvement

sdp moment

0.04

0.02

0.00

0.02

0.04

0.06

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=5, s=1.0, and C=0.1)

sdp moment
0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

train accuracy improvement

sdp moment

0.03

0.02

0.01

0.00

0.01

test accuracy improvement

sdp moment

0.08

0.06

0.04

0.02

0.00

0.02

train f1 improvement

sdp moment

0.06

0.04

0.02

0.00

0.02

test f1 improvement

Train/test accuracy and train/test f1 improvements compared to gd (for K=5, s=1.0, and C=10.0)

Figure 10: Train/test accuracy and train/test f1 improvements compared to PGD across various C ∈ {0.1, 10}
for K = 2 and s = 1.0

26

Published in Transactions on Machine Learning Research (04/2025)

sdp moment
0

2

4

6

8

10

12

train loss improvement

sdp moment
0

2

4

6

8

10

12

test loss improvement

sdp moment
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=2, s=0.4, and C=0.1)

sdp moment

0

20

40

60

80

100

train loss improvement

sdp moment

0

20

40

60

80

100

test loss improvement

sdp moment
0.0

0.2

0.4

0.6

0.8

1.0
optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=2, s=0.4, and C=10.0)

Figure 11: Train/test loss improvements compared to PGD and optimality gaps comparison across various
C ∈ {0.1, 10} for K = 2 and s = 0.4

27

Published in Transactions on Machine Learning Research (04/2025)

sdp moment
0.00

0.05

0.10

0.15

0.20

0.25

0.30

train loss improvement

sdp moment

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
test loss improvement

sdp moment
0.08

0.10

0.12

0.14

0.16

0.18

optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=2, s=1.0, and C=0.1)

sdp moment

5.0

2.5

0.0

2.5

5.0

7.5

10.0
train loss improvement

sdp moment

15

10

5

0

5

10
test loss improvement

sdp moment
0.065

0.070

0.075

0.080

0.085

0.090

0.095

optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=2, s=1.0, and C=10.0)

Figure 12: Train/test loss improvements compared to PGD and optimality gaps comparison across various
C ∈ {0.1, 10} for K = 2 and s = 1

28

Published in Transactions on Machine Learning Research (04/2025)

sdp moment10

0

10

20

30

train loss improvement

sdp moment

10

0

10

20

30

test loss improvement

sdp moment

0.2

0.3

0.4

0.5

0.6

optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=5, s=0.4, and C=0.1)

sdp moment
100

0

100

200

300

400

500

600

700

train loss improvement

sdp moment

0

200

400

600

800

test loss improvement

sdp moment

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=5, s=0.4, and C=10.0)

Figure 13: Train/test loss improvements compared to PGD and optimality gaps comparison across various
C ∈ {0.1, 10} for K = 5 and s = 0.4

29

Published in Transactions on Machine Learning Research (04/2025)

sdp moment

4

2

0

2

4

train loss improvement

sdp moment

4

2

0

2

4

6

test loss improvement

sdp moment
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=5, s=1.0, and C=0.1)

sdp moment

0

250

500

750

1000

1250

1500

1750
train loss improvement

sdp moment

0

500

1000

1500

2000

test loss improvement

sdp moment

0.10

0.15

0.20

0.25

optimality gap

Train/test loss improvements compared to gd & optimality gaps (for K=5, s=1.0, and C=10.0)

Figure 14: Train/test loss improvements compared to PGD and optimality gaps comparison across various
C ∈ {0.1, 10} for K = 5 and s = 1

Lastly, we compare the computational efficiency of these methods, where we compute the average runtime
to finish 1 fold of training for each model on synthetic dataset, shown in Table 5. We observe that sparse
moment relaxation typically requires at least one order of magnitude in runtime compared to other methods,
which to some extent limits the applicability of this method to large scale dataset.

E.3 Real Data

In this section we provide detailed performance breakdown by the choice of regularization C for both one-
vs-one and one-vs-rest scheme in Tables 6 to 11.

30

Published in Transactions on Machine Learning Research (04/2025)

Table 6: Real dataset performance (C = 0.1), one-vs-rest

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 40.00% ± 5.07% 31.30% ± 1.74% 37.39% ± 4.43% 0.28 ± 0.05 0.21 ± 0.01 0.26 ± 0.03 0.3928 0.1145
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9155 0.0818

polbooks 83.81% ± 2.33% 84.76% ± 1.90% 84.76% ± 1.90% 0.79 ± 0.02 0.80 ± 0.03 0.80 ± 0.03 0.6334 0.3908
krumsiek 67.24% ± 2.64% 82.56% ± 2.01% 85.69% ± 0.85% 0.65 ± 0.02 0.80 ± 0.03 0.83 ± 0.01 0.6844 0.2025
moignard 58.13% ± 2.31% 63.50% ± 1.96% 63.60% ± 1.66% 0.52 ± 0.03 0.60 ± 0.02 0.60 ± 0.02 0.0435 0.0482

olsson 54.23% ± 0.62% 78.99% ± 1.31% 81.51% ± 3.32% 0.43 ± 0.01 0.76 ± 0.02 0.79 ± 0.04 0.6734 0.3418
paul 32.03% ± 1.23% 53.72% ± 2.42% 64.53% ± 2.47% 0.22 ± 0.02 0.47 ± 0.03 0.60 ± 0.03 0.4477 0.1214

myeloidprogenitors 50.39% ± 2.75% 69.65% ± 4.73% 76.69% ± 2.31% 0.42 ± 0.03 0.65 ± 0.05 0.75 ± 0.02 0.6320 0.3018

Table 7: Real dataset performance (C = 1.0), one-vs-rest

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 40.87% ± 4.43% 32.17% ± 4.43% 37.39% ± 4.43% 0.29 ± 0.03 0.23 ± 0.04 0.26 ± 0.03 0.3430 0.1196
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9789 0.0816

polbooks 84.76% ± 1.90% 84.76% ± 1.90% 84.76% ± 1.90% 0.79 ± 0.02 0.80 ± 0.03 0.80 ± 0.03 0.3828 0.1685
krumsiek 78.19% ± 1.83% 81.55% ± 1.13% 86.16% ± 0.81% 0.74 ± 0.02 0.78 ± 0.02 0.84 ± 0.01 0.7520 0.1014
moignard 63.37% ± 0.70% 63.68% ± 1.75% 63.78% ± 1.57% 0.62 ± 0.01 0.60 ± 0.02 0.60 ± 0.02 0.0299 0.0401

olsson 58.31% ± 0.64% 79.63% ± 3.54% 81.20% ± 3.68% 0.48 ± 0.00 0.77 ± 0.04 0.79 ± 0.04 0.5281 0.0976
paul 54.86% ± 1.26% 48.66% ± 3.69% 64.64% ± 2.37% 0.48 ± 0.02 0.41 ± 0.05 0.61 ± 0.02 0.4053 0.0936

myeloidprogenitors 59.94% ± 0.96% 70.12% ± 3.28% 76.84% ± 2.04% 0.54 ± 0.02 0.67 ± 0.04 0.75 ± 0.02 0.6570 0.1074

Table 8: Real dataset performance (C = 10.0), one-vs-rest

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 41.74% ± 6.51% 34.78% ± 6.15% 37.39% ± 4.43% 0.29 ± 0.05 0.23 ± 0.07 0.26 ± 0.03 0.3130 0.0999
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9986 0.0921

polbooks 83.81% ± 2.33% 84.76% ± 1.90% 84.76% ± 1.90% 0.79 ± 0.02 0.80 ± 0.03 0.80 ± 0.03 0.1711 0.0991
krumsiek 81.78% ± 2.66% 78.66% ± 2.12% 86.47% ± 0.64% 0.79 ± 0.03 0.74 ± 0.03 0.84 ± 0.00 0.8008 0.0921
moignard 60.40% ± 1.03% 63.60% ± 1.80% 63.78% ± 1.57% 0.58 ± 0.02 0.60 ± 0.02 0.60 ± 0.02 0.0338 0.0396

olsson 74.27% ± 5.15% 79.63% ± 3.54% 79.94% ± 4.11% 0.69 ± 0.07 0.77 ± 0.04 0.77 ± 0.05 0.4118 0.0659
paul 46.61% ± 1.95% 47.16% ± 2.20% 64.71% ± 2.36% 0.36 ± 0.02 0.37 ± 0.03 0.61 ± 0.02 0.4034 0.0861

myeloidprogenitors 69.34% ± 3.81% 65.74% ± 3.58% 76.69% ± 2.14% 0.66 ± 0.05 0.61 ± 0.04 0.75 ± 0.02 0.7076 0.0842

In one-vs-rest scheme, we observe that the Moment method consistently outperforms both PGD and SDP
across almost all datasets and C in terms of accuracy and F1 scores. Notably, the optimality gaps, η, for
Moment are consistently lower than those for SDP, indicating that the Moment method’s solution obatin a
better gap, which underscore the effectiveness of the Moment method in real datasets.

Table 9: Real dataset performance (C = 0.1), one-vs-one

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 39.13% ± 9.12% 42.61% ± 5.07% 41.74% ± 7.06% 0.31 ± 0.06 0.35 ± 0.06 0.33 ± 0.07 0.8495 0.7177
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9155 0.0818

polbooks 81.90% ± 4.67% 86.67% ± 1.90% 83.81% ± 2.33% 0.79 ± 0.05 0.84 ± 0.03 0.81 ± 0.03 0.9237 0.6320
krumsiek 89.76% ± 0.80% 90.46% ± 1.18% 90.38% ± 1.49% 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.02 0.5843 0.3855
moignard 64.31% ± 1.13% 62.38% ± 1.56% 62.35% ± 1.39% 0.63 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.0852 0.0576

olsson 93.41% ± 1.84% 94.04% ± 1.21% 94.36% ± 0.78% 0.93 ± 0.02 0.94 ± 0.01 0.94 ± 0.01 0.5102 0.4412
paul 64.86% ± 2.50% 68.85% ± 2.26% 67.75% ± 2.26% 0.62 ± 0.03 0.66 ± 0.02 0.65 ± 0.03 0.6974 0.5787

myeloidprogenitors 79.50% ± 2.50% 80.44% ± 2.47% 80.44% ± 1.84% 0.79 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 0.6504 0.5340
cifar 98.43% ± 0.16% 98.42% ± 0.18% 98.43% ± 0.18% 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.1505 0.0902

fashion-mnist 95.04% ± 0.21% 95.28% ± 0.16% 95.12% ± 0.18% 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.4262 0.1555

31

Published in Transactions on Machine Learning Research (04/2025)

Table 10: Real dataset performance (C = 1.0), one-vs-one

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 40.00% ± 6.39% 42.61% ± 5.07% 41.74% ± 7.06% 0.32 ± 0.06 0.35 ± 0.06 0.33 ± 0.07 0.7842 0.5012
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9789 0.0816

polbooks 82.86% ± 3.81% 86.67% ± 1.90% 83.81% ± 2.33% 0.79 ± 0.04 0.84 ± 0.03 0.81 ± 0.03 0.7263 0.2733
krumsiek 89.05% ± 1.56% 90.46% ± 1.18% 90.22% ± 1.66% 0.89 ± 0.02 0.90 ± 0.01 0.90 ± 0.02 0.8171 0.2330
moignard 63.22% ± 0.92% 62.43% ± 1.11% 62.66% ± 1.19% 0.62 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.0402 0.0419

olsson 92.47% ± 2.35% 94.03% ± 2.12% 94.36% ± 0.78% 0.92 ± 0.03 0.94 ± 0.02 0.94 ± 0.01 0.7517 0.3635
paul 66.98% ± 2.89% 68.89% ± 2.28% 67.97% ± 2.34% 0.64 ± 0.03 0.66 ± 0.02 0.66 ± 0.03 0.7191 0.4195

myeloidprogenitors 80.13% ± 1.99% 80.28% ± 2.50% 80.44% ± 1.84% 0.80 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 0.7540 0.3519
cifar 98.42% ± 0.16% 98.42% ± 0.17% 98.42% ± 0.17% 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.0959 0.0573

fashion-mnist 94.97% ± 0.22% 95.27% ± 0.16% 95.20% ± 0.16% 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.3635 0.0581

Table 11: Real dataset performance (C = 10.0), one-vs-one

data test acc test f1 (micro) η
PGD SDP Moment PGD SDP Moment SDP Moment

football 40.00% ± 5.07% 42.61% ± 5.07% 41.74% ± 7.06% 0.32 ± 0.06 0.35 ± 0.06 0.33 ± 0.07 0.6699 0.2805
karate 50.00% ± 6.39% 50.00% ± 6.39% 50.00% ± 6.39% 0.34 ± 0.07 0.34 ± 0.07 0.34 ± 0.07 0.9986 0.0921

polbooks 83.81% ± 3.81% 86.67% ± 1.90% 83.81% ± 2.33% 0.80 ± 0.04 0.84 ± 0.03 0.81 ± 0.03 0.3383 0.1051
krumsiek 89.52% ± 0.75% 90.46% ± 1.18% 89.60% ± 1.68% 0.89 ± 0.01 0.90 ± 0.01 0.89 ± 0.02 0.9211 0.1349
moignard 63.50% ± 1.35% 62.53% ± 1.10% 62.66% ± 1.17% 0.62 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.0312 0.0401

olsson 93.40% ± 2.75% 94.03% ± 2.12% 94.36% ± 0.78% 0.93 ± 0.03 0.94 ± 0.02 0.94 ± 0.01 0.9266 0.2534
paul 65.45% ± 2.41% 68.85% ± 2.26% 68.52% ± 2.39% 0.63 ± 0.03 0.66 ± 0.02 0.66 ± 0.03 0.7863 0.2130

myeloidprogenitors 79.81% ± 2.00% 80.28% ± 2.50% 80.60% ± 2.58% 0.80 ± 0.02 0.80 ± 0.02 0.81 ± 0.02 0.8911 0.1960
cifar 98.38% ± 0.14% 98.42% ± 0.17% 98.42% ± 0.17% 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.0825 0.0550

fashion-mnist 94.42% ± 1.10% 95.28% ± 0.16% 95.23% ± 0.15% 0.94 ± 0.01 0.95 ± 0.00 0.95 ± 0.00 0.3492 0.0054

In one-vs-one scheme however, we observe that the SDP and Moment have comparative performances, both
better than PGD. Nevertheless, the optimality gaps of SDP are still significantly larger than the Moment’s,
for almost all cases.

Similarly, we compare the average runtime to finish 1 fold of training for each model on these real datasets,
shown in Table 12. We observe a similar trend: the sparse moment relaxation typically requires at least an
order of magnitude more runtime compared to the other methods.

Table 12: Average runtime to finish 1 fold of training for each model on real dataset.

data one-vs-rest runtime one-vs-one runtime
PGD SDP Moment PGD SDP Moment

football 5.908s 0.581s 20.522s 21.722s 1.119s 17.907s
karate 2.437s 0.501s 1.124s 2.472s 0.525s 1.176s

polbooks 2.205s 0.547s 5.537s 1.748s 0.544s 4.393s
krumsiek 9.639s 3.053s 294.077s 15.728s 1.561s 169.176s
moignard 9.690s 13.000s 368.433s 9.271s 4.826s 293.234s

olsson 7.695s 0.738s 106.584s 10.567s 0.653s 38.487s
paul 34.452s 22.717s 1487.205s 75.878s 3.542s 1313.008s

myeloidprogenitors 6.566s 1.170s 112.341s 10.769s 1.291s 84.402s
cifar - - - 237.019s 2606.295s 9430.741s

fashion-mnist - - - 285.604s 2840.226s 13128.220s

32

Published in Transactions on Machine Learning Research (04/2025)

F Robust Hyperbolic Support Vector Machine

In this section, we propose the robust version of hyperbolic support vector machine without implemention.
This is different from the practice of adversarial training that searches for adversarial samples on the fly
used in the machine learning community, such as Weber et al. (2020). Rather, we predefine an uncertainty
structure for data features and attempt to write down the corresponding optimization formulation, which
we call the robust counterpart, as described in Ben-Tal et al. (2009); Bertsimas & Hertog (2022).

Denote x̄i as the features observed, or the nominal values, the QCQP can be made robust by introducing an
uncertainty set Ux̄i

which defines the maximum perturbation around x̄i that we think the true data could
live in. More precisely, the formulation is now

(QCQP-robust) min
w∈Rd+1ξ∈Rn

1
2wT Gw + C

n∑
i=1

ξi ,

s.t. ξi ⩾ 0, ∀i ∈ [n]
(yi(Gx))T w ⩽

√
2ξi − 1, ∀i ∈ [n], ∀x ∈ Ux̄i

wT Gw ⩾ 0

(28)

where we add data uncertainty to each classifiability constraint (the second constraint).

However, we could not naively add Euclidean perturbations around x̄i and postulate that as our uncertainty
set, since Euclidean perturbations to hyperbolic features highly likely would force it outside of the hyperbolic
manifold. Instead, a natural generalization to Euclidean noise in the hyperbolic space is to add the noise
in the Euclidean tangent space and subsequently ‘project’ them back onto the hyperbolic space, so that all
samples in the uncertainty set stay on the hyperbolic manifold. This is made possible through exponential
and logarithmic map.

We demonstrate our robust version of HSVM using a l∞ example. Define Ux̄ the uncertainty set for data
x̄ ∈ Hd as

Ux̄ = {x ∈ Hd| x = exp0(log0(x̄) + z), ∥z∥∞ ⩽ ρ}, (29)

where ρ ⩾ 0 is the robust parameter, controlling the scale of perturbations we are willing to tolerate. In this
case, all perturbations are done on the Euclidean tangent space at the origin. Since the geometry of the set
is complicated, for small ρ we may relax the uncertainty set to its first order taylor expansion given by

Ũx̄ = {x ∈ Hd| x = x̄ + Jx̄z, ∥z∥∞ ⩽ ρ}, Jx̄ = D exp0(.)|.=x̄ (30)

where Jx̄ is the Jacobian of the exponential map evaluated at x̄. Suppose x̄ = [x0, xr], where xr ∈ Rd,
x0 ∈ R (i.e. partitioned into negative and positive definite parts), and further suppose v = log0(x̄), then we
could write down the Jacobian as

Jx̄ =
[

xT
r(

cosh(∥v∥2)
∥v∥2

− sinh(∥v∥2)
∥v∥3

2

)
vvT + sinh(∥v∥2)

∥v∥2
Id

]
∈ R(d+1)×d.

Then, by adding the uncertainty set to the constraints, we have

(yi(Gx))T w ⩽
√

2ξi − 1, ∀x ∈ Ũxi
⇐⇒ (yi(Gxi + GJxi

z))T w ⩽
√

2ξi − 1, ∥z∥∞ ⩽ ρ (31)
⇐⇒ (yi(Gxi))T w + ρ∥yi(GJxi

)T w∥1 ⩽
√

2ξi − 1, (32)

33

Published in Transactions on Machine Learning Research (04/2025)

where the last step is a rewriting into the robust counterpart (RC). We present the l∞ norm bounded robust
HSVM as follows,

min
w∈Rd+1,ξ∈Rn

1
2wT Gw + C

n∑
i=1

ξi .

s.t. ξi ⩾ 0, ∀i ∈ [n]
(yi(Gxi))T w + ρ∥yi(GJxi

)T w∥1 ⩽
√

2ξi − 1, ∀i ∈ [n]
wT Gw ⩾ 0

. (33)

Note that since yi ∈ {−1, 1}, we may drop the yi term in the norm and subsequently write down the SDP
relaxation to this non-convex QCQP problem and solve it efficiently with

(SDP-Linf) min
W ∈R(d+1)×(d+1)

w∈Rd+1

ξ∈Rn

1
2Tr(G, W) + C

n∑
i=1

ξi .

s.t. ξi ⩾ 0, ∀i ∈ [n]
(yi(Gxi))T w + ρ∥(GJxi)T w∥1 ⩽

√
2ξi − 1, ∀i ∈ [n]

Tr(G, W) ⩾ 0[
1 wT

w W

]
⪰ 0

. (34)

For the implementation in MOSEK, we linearize the l1 norm term by introducing extra auxiliary variables,
which we do not show here. The moment relaxation can be implemented likewise, since this is constraint-wise
uncertainty and we preserve the same sparsity pattern so that the same sparse moment relaxation applies.
Remark 1. Since we take a Taylor approximation to first order, Ũx also does not guarantee that all of its
elements live strictly on the hyperbolic manifold Hd. One could seek the second order approximation to the
defining function, which make the robust criterion a quadratic form on the uncertainty parameter z.
Remark 2. Equation (33) arises from a l∞ uncertainty set. We could of course generalize this analysis to
other types of uncertainty sets such as l2 uncertainty and ellipsoidal uncertainty, each with different number
of auxiliary variables introduced in their linearization.

34

	Introduction
	Related Works
	Convex Relaxation Techniques for Hyperbolic SVMs
	Preliminaries
	Original Formulation of the HSVM
	Semidefinite Formulation
	Moment-Sum-of-Squares Relaxation

	Experiments
	Synthetic Dataset
	Real Dataset
	Limitations

	Discussions
	Proofs
	Deriving Soft-Margin HSVM with polynomial constraints
	Stereographic projection maps a straight line on H2 to an arc on Poincaré ball B2
	An extension to curvature other than -1

	Solution Extraction in Relaxed Formulation
	Semidefinite Relaxation
	Moment-Sum-of-Squares Relaxation

	On Moment Sum-of-Squares Relaxation Hierarchy
	Polynomial Optimization and Dual Cones
	Sparse Polynomial Optimization

	Platt Scaling platt1999probabilistic
	Detailed Experimental Results
	Visualizing Decision Boundaries
	Synthetic Gaussian
	Real Data

	Robust Hyperbolic Support Vector Machine

