
OWSM-CTC: An Open Encoder-Only Speech Foundation Model for
Speech Recognition, Translation, and Language Identification

Anonymous ACL submission

Abstract

There has been an increasing interest in large001
speech models that can perform multiple002
speech processing tasks in a single model. Such003
models usually adopt the encoder-decoder or004
decoder-only architecture due to their pop-005
ularity and good performance in many do-006
mains. However, autoregressive models can007
be slower during inference compared to non-008
autoregressive models and also have potential009
risks of hallucination. Though prior studies ob-010
served promising results of non-autoregressive011
models for certain tasks at small scales, it re-012
mains unclear if they can be scaled to speech-to-013
text generation in diverse languages and tasks.014
Inspired by the Open Whisper-style Speech015
Model (OWSM) project, we propose OWSM-016
CTC, a novel encoder-only speech foundation017
model based on Connectionist Temporal Clas-018
sification (CTC). It is trained on 180k hours019
of public audio data for multilingual automatic020
speech recognition (ASR), speech translation021
(ST), and language identification (LID). Com-022
pared to encoder-decoder OWSM, our OWSM-023
CTC achieves competitive results on ASR and024
up to 25% relative improvement on ST, while025
it is more robust and 3 to 4 times faster for026
inference. OWSM-CTC also improves the027
long-form ASR result with 20x speed-up. We028
will publicly release our codebase, pre-trained029
model, and training logs to promote open sci-030
ence in speech foundation models.031

1 Introduction032

The great success of large language models033

(LLMs) (OpenAI, 2023; Touvron et al., 2023; Anil034

et al., 2023b) has sparked a growing interest in035

developing foundation models in various modal-036

ities. Recent studies have explored different ap-037

proaches towards multilingual and multi-tasking038

speech foundation models (Radford et al., 2023;039

Zhang et al., 2023; Pratap et al., 2023; Ruben-040

stein et al., 2023; Barrault et al., 2023; Peng et al.,041

2023e). OpenAI’s Whisper (Radford et al., 2023)042
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Figure 1: Performance vs. speed for encoder-decoder
OWSM v3.1 and our encoder-only OWSM-CTC.

is a series of Transformer encoder-decoder mod- 043

els trained on 680k hours of proprietary labelled 044

audio. Whisper achieves strong results in multilin- 045

gual automatic speech recognition (ASR), any-to- 046

English speech translation (ST), and spoken lan- 047

guage identification (LID). Although it shows the 048

effectiveness of large-scale (weakly) supervised 049

pre-training, the full development pipeline includ- 050

ing training data details is not publicly accessible. 051

Recent work releases Open Whisper-style Speech 052

Models (OWSM) (Peng et al., 2023e, 2024) with 053

the aim of reproducing Whisper-style training us- 054

ing public data and open-source toolkits. However, 055

Whisper and OWSM adopt the encoder-decoder 056

architecture, which generates text tokens given 057

speech in an autoregressive manner. They might 058

hallucinate during inference, and the speed can be 059

slow. Other models with a decoder-only architec- 060

ture like AudioPaLM (Rubenstein et al., 2023) and 061

VioLA (Wang et al., 2023b) would suffer from the 062

same issues due to autoregressive decoding. 063
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Another type of work like Google’s USM (Zhang064

et al., 2023) and Meta’s MMS (Pratap et al., 2023)065

uses non-autoregressive models with Connection-066

ist Temporal Classification (CTC) (Graves et al.,067

2006), but these CTC-based models are designed068

for ASR only. Prior studies have also achieved069

promising results of CTC models for ST only, but070

they mainly focus on specific language pairs at071

much smaller scales (Inaguma et al., 2021; Chuang072

et al., 2021; Xu et al., 2023). Some of them em-073

ploy additional decoders (Inaguma et al., 2021;074

Yan et al., 2023) or cross-attention layers (Xu et al.,075

2023), making the model more complicated.076

A natural question now arises: Can we build a077

non-autoregressive encoder-only model for speech-078

to-text generation in diverse languages and multi-079

ple tasks like Whisper/OWSM? This research prob-080

lem has become increasingly important in the era081

of LLMs, because large-scale pre-trained speech082

encoders can serve as an adaptor between the083

speech and text modalities (Gong et al., 2023;084

Wang et al., 2023a), providing a promising avenue085

towards general-purpose multi-modal foundation086

models (Anil et al., 2023a).087

In this work, we propose OWSM-CTC, a novel088

encoder-only speech foundation model based on089

multi-task self-conditioned CTC (Nozaki and Ko-090

matsu, 2021) to imitate OWSM’s multilingual ASR,091

any-to-any ST, and LID functionalities. Follow-092

ing previous encoder-decoder OWSM v3.1 mod-093

els (Peng et al., 2024), we train a 1B OWSM-CTC094

model using 180k hours of public data covering095

151 languages. Extensive evaluations show that our096

OWSM-CTC exhibits strong performance and effi-097

ciency. Compared to the 1B OWSM v3.1 medium098

model, OWSM-CTC achieves comparable perfor-099

mance for ASR and superior performance for vari-100

ous ST directions (up to 25% relative improvement)101

while being more robust and showing 3 to 4 times102

inference speed-up. For long-form ASR, OWSM-103

CTC improves the WER and is 20 times faster due104

to the batched parallel decoding. OWSM-CTC105

also outperforms the other models on LID. We will106

publicly release our codebase, pre-trained model107

weights, and training logs to facilitate the develop-108

ment of large speech models.109

2 Related Work110

2.1 Speech foundation models111

Attention-based encoder-decoder. OpenAI’s112

Whisper (Radford et al., 2023) adopts the113

standard Transformer encoder-decoder architec- 114

ture (Vaswani et al., 2017) and scales the training 115

data to 680k hours of proprietary labelled audio.1 116

Despite its strong performance on ASR, ST, and 117

LID, the full development pipeline including train- 118

ing data details and training codebase is not pub- 119

licly available. A recent project OWSM aims to 120

reproduce Whisper-style training using public data 121

and open-source toolkits to promote transparency 122

and open science in this field (Peng et al., 2023e). 123

The latest OWSM v3.1 models (Peng et al., 2024) 124

employ E-Branchformer (Kim et al., 2023) as the 125

encoder and Transformer as the decoder, which 126

is trained with a joint ASR CTC loss (Kim et al., 127

2017). Although OWSM has promising results 128

using public corpora, it still follows the encoder- 129

decoder architecture, which can be slow and unsta- 130

ble at inference time. 131

Decoder-only. Several studies employ decoder- 132

only models for speech-to-text tasks. Au- 133

dioPaLM (Rubenstein et al., 2023) extends the tex- 134

tual PaLM-2 (Anil et al., 2023b) to support speech 135

understanding and generation tasks including ASR 136

and ST. DOTA (Gupta et al., 2024) is a decoder- 137

only Transformer model trained on 93k hours of 138

public English ASR data, but it does not support 139

other languages or ST. Decoder-only models face 140

the same slowness and robustness issues as encoder- 141

decoder due to autoregressive decoding. 142

CTC or Transducer. Another line of research 143

proposes to utilize CTC (Graves et al., 2006) 144

or Transducer (Graves, 2012) for ASR. Google’s 145

USM (Zhang et al., 2023) provides generic ASR 146

models, which are first pre-trained on 12M hours 147

of unlabelled audio and then fine-tuned on propri- 148

etary labelled data with CTC or Transducer. Meta’s 149

MMS (Pratap et al., 2023) pre-trains a wav2vec 2.0 150

model (Baevski et al., 2020) on massively multi- 151

lingual data and then fine-tunes it with CTC on la- 152

belled ASR data covering over 1k languages. These 153

models employ CTC only for ASR. In our OWSM- 154

CTC, we propose a single CTC-based encoder-only 155

model for ASR, ST and LID. Our supported tasks 156

are more similar to Whisper-style models. 157

2.2 Efficient speech models 158

Model compression. Various algorithms have 159

been utilized to compress speech models, includ- 160

ing knowledge distillation (Chang et al., 2022; Lee 161

et al., 2022; Peng et al., 2023d; Gandhi et al., 2023), 162

1Their latest large-v3 version uses 1M hours of labelled
audio and 4M hours of pseudo-labelled audio.
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pruning (Lai et al., 2021; Peng et al., 2023a), quan-163

tization (Yeh et al., 2023; Ding et al., 2023), and164

dynamic module execution (Yoon et al., 2022; Peng165

et al., 2023c; Strimel et al., 2023). These methods166

are typically applied to pre-trained models and are167

thus orthogonal to this work. In the future, we will168

apply compression to further improve efficiency.169

Efficient architectures. Better network architec-170

tures can also improve efficiency, including atten-171

tion with linear complexity (Beltagy et al., 2020;172

Wang et al., 2020b; Tay et al., 2023) and sequence173

length reduction (Burchi and Vielzeuf, 2021; Kim174

et al., 2022; Nawrot et al., 2023; Rekesh et al.,175

2023). In this work, we do not modify the atten-176

tion, but we use larger downsampling in CNN to177

reduce the sequence length. More details are in178

Appendix A.2 and B.1.179

2.3 CTC-based speech models180

Non-autoregressive models have a faster inference181

speed than their autoregressive counterparts due182

to parallel decoding. They have been utilized in183

machine translation (Gu et al., 2018; Ghazvininejad184

et al., 2019; Xiao et al., 2023), ASR (Chen et al.,185

2019; Higuchi et al., 2020; Ng et al., 2021; Chi186

et al., 2021; Lee and Watanabe, 2021; Nozaki and187

Komatsu, 2021), and ST (Inaguma et al., 2021;188

Chuang et al., 2021; Xu et al., 2023).189

CTC is originally proposed to label sequences190

without explicit segmentation (Graves et al., 2006).191

CTC-based ASR models learn a monotonic align-192

ment between speech features and text tokens.193

With parallel greedy decoding, they are much faster194

than autoregressive models. However, the accu-195

racy of CTC is generally inferior due to the con-196

ditional independence assumption between out-197

put tokens. To address this issue, Intermediate198

CTC (InterCTC) (Lee and Watanabe, 2021) cal-199

culates additional CTC losses using intermediate200

representations from the encoder. Self-conditioned201

CTC (Nozaki and Komatsu, 2021) further extends202

InterCTC by adding back predictions of inter-203

mediate CTC layers to the subsequent encoder.204

These approaches have shown to be highly effec-205

tive in speech-to-text generation tasks without a206

decoder (Higuchi et al., 2021).207

Although CTC assumes a monotonic alignment208

between input and output, it is promising for ST209

due to the reordering capability of self-attention (In-210

aguma et al., 2021; Chuang et al., 2021).211

Conventional CTC models are typically de-212

signed for a specific task or language. It re-213

mains under-explored whether such approaches 214

can be scaled to multilingual and multi-task sce- 215

narios. This work proposes a novel encoder-only 216

speech foundation model based on multi-task self- 217

conditioned CTC. This single model performs well 218

in multilingual ASR, ST and LID. 219

3 OWSM-CTC 220

3.1 Overall architecture 221

Figure 2 shows the architecture of OWSM-CTC. 222

Its main component is a speech encoder, which 223

takes speech features as input and predicts the spo- 224

ken language as well as the ASR or ST hypothe- 225

sis using CTC. To mimic Whisper-style models, 226

which condition text generation on an optional text 227

prompt (Radford et al., 2023; Peng et al., 2023e, 228

2024), we employ a separate Transformer encoder 229

to process the prompt and inject the output to the 230

main model through cross-attention. Then, the 231

model can potentially attend to the text prompt 232

when generating text. 233

3.2 Speech encoder 234

For an input waveform, we first extract log Mel fil- 235

terbanks and then apply a 2D convolution module 236

to downsample the feature sequence along the time 237

dimension. Let Xspeech ∈ RT×d be the downsam- 238

pled feature sequence of length T and feature size 239

d. To specify the language and task, we prepend 240

two special tokens to the sequence: 241

X = concat(elang, etask,Xspeech), (1) 242

where concat(·) is concatenation along time and 243

elang, etask ∈ R1×d are embeddings of special to- 244

kens <lang> and <task>, respectively. X now 245

has shape (T + 2) × d. If the spoken language 246

is known, the true language token will be used as 247

input. Otherwise, a special token <nolang> de- 248

noting “unknown language” will be used. During 249

training, we randomly replace the true language 250

with <nolang> according to probability 0.5 so that 251

either can be used for inference. The task token is 252

<asr> for speech recognition and <st_lang> for 253

translation to a target language. 254

Next, we add sinusoidal positional embeddings 255

to X, and apply a stack of N encoder layers: 256

X(0) = X+ PosEmb(X), (2) 257

X(l) = SpeechEnc(l)(X(l−1)), (3) 258

where l is a layer index from 1 to N , 259

PosEmb(·) generates positional embeddings, and 260
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Speech Encoder

CNNText Prompt 
(Optional)

Prompt Encoder

Speech Features

…

<task><lang>

Linear & Softmax
…

CTC Loss <lang><task> task-specific reference

Linear & Softmax CTC Loss

Linear & Add

Linear & Softmax CTC Loss

Linear & Add

<lang><task> task-specific reference

<lang><task> ASR reference
……

Cross-attention

Cross-attention

Figure 2: Architecture of our OWSM-CTC. For an input audio, it predicts a language token along with ASR or ST
text tokens depending on the task specifier. An optional text prompt can be provided, which mimics Whisper.

SpeechEnc(l)(·) is the l-th encoder layer. The en-261

coder is E-Branchformer (Kim et al., 2023), an262

enhanced version of Branchformer (Peng et al.,263

2022), which shows excellent performance across264

a wide range of benchmarks (Peng et al., 2023b).265

We compute the CTC loss using the final encoder266

output X(N) and an augmented reference ytask. To267

create this reference, we simply preprend <lang>268

and <task> to the original groundtruth text of the269

desired task. Hence, the model will learn to predict270

the language token in addition to ASR or ST text271

tokens. This CTC loss is denoted as follows:272

L(N) = − logPCTC(ytask | softmax(X(N)W1)), (4)273

where W1 ∈ Rd×V is a linear layer and V is the274

size of the CTC vocabulary.275

As discussed in Section 2.3, we apply self-276

conditioned CTC (Nozaki and Komatsu, 2021) at277

intermediate layers S ⊆ {1, . . . , N − 1} to alle-278

viate the conditional independence assumption of279

CTC. For any layer s ∈ S, Equation 3 is replaced280

by the following operations:281

A(s) = SpeechEnc(s)(X(s−1)), (5)282

B(s) = softmax(A(s)W1), (6)283

X(s) = A(s) +B(s)W2, (7)284

where W2 ∈ RV×d is a linear layer. The interme-285

diate CTC loss at layer s is defined as follows:286

L(s) = − logPCTC(y
(s) | B(s)), (8)287

where y(s) is the augmented reference at layer s. 288

Similar to ytask in Equation 4, we prepend the lan- 289

guage and task tokens to the original groundtruth 290

text. Note that the choice of the reference text 291

depends on the task. If the task for the current 292

input is ASR, we simply use the ASR transcript 293

to create y(s) for all s, which is consistent with 294

conventional ASR models. However, if the task is 295

ST, we empirically find that the model cannot con- 296

verge if we use the translated text as the reference 297

at all intermediate layers S (see Appendix B.2 for 298

discussions). Therefore, as shown in Figure 2, we 299

utilize the ASR transcript at the first NASR layers 300

and the ST text at the remaining NST layers, where 301

NASR +NST = |S| ≤ N − 1. This design mimics 302

a cascaded system that first performs ASR and then 303

ST, but our entire model is optimized jointly and 304

trained from scratch. In other words, the first NASR 305

CTC layers always perform ASR regardless of the 306

task token (named “ASR-only CTC”), whereas the 307

other CTC layers are multi-tasking - they can per- 308

form ASR or ST according to the task token (named 309

“task-specific or task-dependent CTC”). 310

The overall training loss is an average of the loss 311

terms defined in Equation 4 and Equation 8: 312

Ltotal =
1

1 + |S|

(
L(N) +

∑
s∈S

L(s)

)
. (9) 313

3.3 Prompt encoder 314

Whisper-style models generate text conditioned on 315

an optional text prompt (Radford et al., 2023; Peng 316
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Params Time shift Training data GPU hours

Whisper (encoder-decoder) (Radford et al., 2023)
base 74M 20ms 680k hours unknown
small 244M 20ms 680k hours unknown
medium 769M 20ms 680k hours unknown

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base 101M 40ms 180k hours 2.3k
medium 1.02B 40ms 180k hours 24.6k

OWSM-CTC (ours)
medium 1.01B 80ms 180k hours 19.2k

Table 1: Summary of model size, training data and
training cost measured on NVIDIA A100 GPU (40GB).

et al., 2023e, 2024). During training, this prompt317

is simply the previous sentence in the same au-318

dio recording. During inference, it can be pro-319

vided by the user to potentially adjust the output.320

For encoder-decoder models like Whisper, the text321

prompt is a prefix to the autoregressive decoder.322

For our encoder-only model, we leverage a separate323

Transformer encoder to process the prompt and in-324

ject it to the speech encoder through cross-attention.325

If no prompt is provided, a special token <na> will326

be used. Let Xprompt ∈ RT ′×d′ be the output of327

the prompt encoder. We insert a cross-attention328

layer at a subset of layers T ⊆ {1, . . . , N} of329

the speech encoder. For any t ∈ T , the original330

SpeechEnc(t)(·) in Equation 3 or Equation 5 be-331

comes SpeechEncCA(t)(·, ·):332

D(t) = SpeechEnc(t)(X(t−1)), (10)333

SpeechEncCA(t)(X(t−1),Xprompt) =334

D(t) + CrossAtt(D(t),Xprompt,Xprompt), (11)335

where CrossAtt(·, ·, ·) is a cross-attention layer336

with three arguments: query, key, and value.337

Our training data is a mixture of public ASR and338

ST datasets. Some of them provide unsegmented339

long audio, but the others only release segmented340

short audio. At training time, if the sample does341

not have a previous sentence, we will use <na>.342

Otherwise, we use either <na> or the previous sen-343

tence as the prompt according to 0.5 probability.344

Section 4.6 shows that OWSM-CTC can leverage345

the prompt’s information when necessary.346

4 Experiments347

4.1 Experimental setups348

Table 1 is a brief summary of model size, training349

data, and training cost.350

Data format. Our training data is prepared us-351

ing scripts publicly released by OWSM v3.1 (Peng352

et al., 2024). It is a mixture of more than 25 pub- 353

lic ASR and ST corpora covering 151 languages 354

and various translation directions. The total au- 355

dio duration is 180k hours. To create long-form 356

data, consecutive utterances from the same audio 357

recording are concatenated to a duration of no more 358

than 30 seconds. The input audio to the model is 359

always padded to a fixed length of 30 seconds. Ap- 360

pendix A.1 and Table 10 present the training data 361

statistics. The original Whisper-style data contains 362

the start and end timestamps for each utterance. 363

These timestamp tokens are predicted along with 364

normal text tokens during the autoregressive de- 365

coding. In OWSM-CTC, we do not include any 366

explicit timestamps since the time-aligned hypothe- 367

sis can be obtained by forced alignment if desired. 368

Model architecture. Our speech encoder is a 27- 369

layer E-Branchformer with a hidden size of 1024 370

and 16 attention heads. Four intermediate layers 371

(6, 12, 15, and 21) are used for self-conditioned 372

CTC. The first three are ASR only, while the oth- 373

ers are task-specific. The prompt encoder is a 4- 374

layer Transformer with a hidden size of 512 and 375

8 attention heads. It is injected into the speech 376

encoder at every third layer. The total model size 377

is 1.01B, which matches the size of the encoder- 378

decoder OWSM v3.1 medium (1.02B). More de- 379

tails about the architecture are in Appendix A.2 380

(see Table 11). 381

Implementation. We implement OWSM-CTC 382

in ESPnet (Watanabe et al., 2018) based on Py- 383

Torch (Paszke et al., 2019). FlashAttention (Dao 384

et al., 2022) is used to improve training efficiency, 385

but it is not used for inference. The batch size per 386

GPU is 4, and 64 NVIDIA A100 GPUs (40GB) 387

are used with distributed data parallel. The total 388

training time is approximately 300 hours. For opti- 389

mization, we employ the Adam optimizer (Kingma 390

and Ba, 2015) with the piece-wise linear learning 391

rate schedule (Peng et al., 2024). The peak learning 392

rate is 2e-4. Other training hyperparameters can be 393

found in Appendix A.3 (see Table 12). 394

Evaluation. We fairly compare our encoder-only 395

OWSM-CTC with the previously released encoder- 396

decoder OWSM v3.1 models (Peng et al., 2024) 397

since they are trained on the same data. We also 398

show the results of Whisper under the same decod- 399

ing setup for reference, but we note that they are not 400

comparable with ours due to completely different 401

training data. By default, short-form audio without 402

any text prompt is used, but we also evaluate the 403

long-form ASR performance in Section 4.5 and 404
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Accuracy % (↑)

Whisper (encoder-decoder) (Radford et al., 2023)
base 47.6
small 53.1
medium 54.8

OWSM v3 (encoder-decoder) (Peng et al., 2023e)
medium 81.4

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base 41.9
medium 75.6

OWSM-CTC (ours)
medium 87.6

Table 2: Spoken language identification results on the
FLEURS test set. Bold: the best result. Underlined: our
OWSM-CTC outperforms OWSM v3.1 medium.
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base 25.2 12.4 5.1 12.0 13.4 25.7 6.3 10.2 5.0 12.8 2.40x
small 15.7 9.6 3.3 7.7 9.1 22.2 4.6 8.5 4.3 9.4 1.46x
medium 11.9 6.4 2.8 6.5 10.2 19.4 5.1 7.6 2.9 8.1 0.76x

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base 21.5 14.8 3.6 9.1 12.0 22.9 7.8 12.0 5.3 12.1 2.97x
medium 12.6 9.0 2.4 5.0 7.1 16.3 5.1 8.4 3.5 7.7 1.00x

OWSM-CTC (ours)
medium 12.1 9.9 2.4 5.2 7.3 16.9 4.9 8.6 4.2 7.9 3.63x

Table 3: WER % (↓) of English ASR. Speed-up (↑) is
measured using the average decoding time. Whisper is
trained on 438k hours of English audio, whereas OWSM
v3.1 and our OWSM-CTC are trained on only 73k hours.
Bold: the best result. Underlined: our OWSM-CTC
outperforms OWSM v3.1 medium.

investigate the effect of text prompt in Section 4.6.405

4.2 Language identification406

Table 2 presents the LID results on the FLEURS407

test set. Our OWSM-CTC achieves a top-1 accu-408

racy of 87.6%, outperforming the other encoder-409

decoder models by a large margin. This is likely410

because spoken LID requires a powerful encoder411

to extract useful information from the input audio.412

Our encoder-only model is especially suitable for413

this type of task.414

4.3 Speech recognition415

Table 3 presents word error rates (WERs) on mul-416

tiple English ASR test sets. Following Peng et al.417

(2023e, 2024), we leverage greedy decoding and418

apply the Whisper English text normalizer before419
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data size 11.1 9.8 13.3 2.1 2.6 8.6 4.3 23.4 8.0 8.0 7.1

Whisper (encoder-decoder) (Radford et al., 2023)
base 14.5 25.2 19.9 30.9 32.9 23.5 25.2 39.1 27.0 22.9 54.1 28.7
small 9.1 13.6 11.5 18.2 21.3 13.8 12.5 25.1 24.0 15.4 32.5 17.9
medium 6.1 9.7 8.1 12.2 15.6 8.9 6.8 15.7 17.6 12.8 25.3 12.6

data size 2.0 2.5 3.7 1.7 0.7 0.3 0.3 16.3 1.0 1.0 18.9

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base 18.5 24.2 18.7 28.6 33.7 44.9 49.7 12.2 23.8 26.1 11.2 26.5
medium 9.0 12.1 10.8 18.1 20.2 21.6 25.2 6.4 16.7 18.9 7.9 15.2

OWSM-CTC (ours)
medium 10.3 12.9 11.9 20.4 22.1 23.5 31.6 6.4 14.8 16.5 8.1 16.2

Table 4: Multilingual ASR results. CER % (↓) is shown
for Chinese (zh), Korean (ko) and Japanese (ja), while
WER % (↓) is shown for the others. Data sizes are in
thousand hours. Bold: the best result. Underlined: our
OWSM-CTC outperforms OWSM v3.1 medium.

scoring. We record the average decoding time 420

across all English test sets on NVIDIA A40 GPU 421

and calculate the relative speed-up. Results show 422

that our non-autoregressive OWSM-CTC gener- 423

ally has comparable WERs with the autoregressive 424

OWSM v3.1 medium (average: 7.9 vs. 7.7), both of 425

which have 1B parameters. However, OWSM-CTC 426

achieves 3.63x speed-up due to parallel decoding. 427

Notably, OWSM-CTC is even faster than OWSM 428

v3.1 base, which has only 100M parameters, and 429

our WERs are much lower (average: 7.9 vs. 12.1). 430

Compared to Whisper models trained on signifi- 431

cantly more data, our OWSM-CTC is still com- 432

petitive in many cases, and our inference is much 433

faster. These results demonstrate that OWSM-CTC 434

achieves an excellent trade-off between recognition 435

accuracy and inference efficiency. 436

Table 4 shows the results of multilingual ASR. 437

We perform greedy decoding and apply the Whis- 438

per basic text normalizer before scoring. Our 439

OWSM-CTC is slightly worse than OWSM v3.1 440

in terms of the average WER/CER (16.2 vs. 15.2). 441

For European languages in MLS (Pratap et al., 442

2020), OWSM-CTC generally falls behind. But 443

for East Asian languages like Chinese, Japanese 444

and Korean, OWSM-CTC is on par with or better 445

than OWSM v3.1 medium. This difference might 446

be related to the training data size and tokenization. 447

4.4 Speech translation 448

We evaluate the ST performance using the CoVoST- 449

2 (Wang et al., 2020a) test sets. Again, we perform 450
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Src Lang. de es fr ca Average (↑) Speed-up (↑)

data size 4.3 6.7 4.5 0.2

Whisper (encoder-decoder) (Radford et al., 2023)
base 11.4 19.2 13.1 9.7 13.4 1.84x
small 25.0 32.8 26.4 21.7 26.5 1.54x
medium 33.6 39.7 34.4 29.2 34.2 0.84x

data size 0.2 0.1 0.3 0.1

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base 7.3 10.0 11.1 9.0 9.4 2.78x
medium 17.1 22.3 22.7 18.4 20.1 1.00x

OWSM-CTC (ours)
medium 21.1 28.2 27.7 23.7 25.2 3.35x

Table 5: BLEU (↑) of X-to-En ST on CoVoST-2. Speed-
up is measured using average decoding time. Data sizes
are in thousand hours. Bold: the best result. Underlined:
our OWSM-CTC outperforms OWSM v3.1 medium.

greedy decoding and calculate BLEU scores using451

lowercase without punctuation. For X-to-En trans-452

lation, we follow OWSM v3.1 (Peng et al., 2024) to453

report results of directions where the training data454

size is over 100 hours. For the other low-resource455

directions, both OWSM v3.1 and our OWSM-CTC456

do not work in general. For En-to-X translation,457

we report results in all 15 directions. We calculate458

the speed-up based on the average decoding time459

on the NIVIDA A40 GPU.460

Table 5 shows the X-to-En results. Notably,461

our encoder-only OWSM-CTC consistently out-462

performs the encoder-decoder OWSM v3.1 by a463

large margin. The average BLEU score is improved464

from 20.1 to 25.2 (25% relatively). We also achieve465

3.35x speed-up for inference.466

Table 6 presents En-to-X results. OpenAI Whis-467

per does not support these directions. Similarly,468

our OWSM-CTC achieves superior performance469

than OWSM v3.1 in 12 out of 15 translation direc-470

tions. The average BLEU is improved from 13.3 to471

15.0 (13% relatively), and the inference speed-up472

is 4.20 times.473

We have the following observations from the ST474

results: (1) Our non-autoregressive OWSM-CTC475

generally achieves 3 to 4 times speed-up compared476

to the encoder-decoder baseline, which is consis-477

tent with ASR. (2) OWSM-CTC even improves478

the ST performance sometimes by a large margin.479

One reason is that the autoregressive model suffers480

from hallucination and error propagation, while the481

non-autoregressive model is more stable. (3) The482

BLEU improvement of X-to-En is larger than that483

of En-to-X, likely because: (i) the OWSM training484

set contains lots of English ASR data and OWSM-485

CTC might obtain strong capability of generating 486

English text; (ii) X-to-En has fewer training data 487

than En-to-X, and the encoder-decoder model may 488

need a sufficient amount of training data to achieve 489

good performance for translation. 490

Our findings reveal that large-scale CTC-based 491

models are also promising for ST in various lan- 492

guage pairs, which is consistent with prior investi- 493

gations at smaller scales (Yan et al., 2023). 494

4.5 Long-form speech recognition 495

For long-form ASR, a model takes as input an un- 496

segmented audio recording of arbitrary length and 497

generates the entire transcription without explicit 498

voice activity detection. Whisper and encoder- 499

decoder OWSM can predict start and end times- 500

tamps of each utterance within a fixed-length seg- 501

ment. Those timestamps are used to shift the recog- 502

nition window for chunk-wise long-form ASR. 503

However, this chunk-wise recognition is a sequen- 504

tial process because the location of the next chunk 505

depends on the predicted timestamp in the current 506

chunk. By contrast, our OWSM-CTC performs 507

chunk-wise recognition in a fully parallel man- 508

ner. We first split the entire audio into overlapped 509

chunks of 30s, where the overlapped region serves 510

as the left and right context.2 We then perform 511

CTC greedy decoding on batched chunks. The 512

batch size is 32 on a single NVIDIA A40 GPU 513

(48GB). Table 7 shows the WER and speed-up 514

with different context lengths. Our OWSM-CTC 515

achieves lower WERs than the encoder-decoder 516

OWSM v3.1, while being approximately 20 times 517

faster due to the batched parallel decoding. OWSM- 518

CTC is also robust to different context lengths. 519

These observations indicate that CTC-based non- 520

autoregressive models perform very well for long- 521

form ASR, which is consistent with prior find- 522

ings (Koluguri et al., 2023). 523

4.6 Effect of text prompt 524

As described in Figure 2 and Section 3.3, OWSM- 525

CTC can take an additional text prompt as input 526

which might change the output. During training, 527

either a special token <na> or the previous sentence 528

in the same audio is used as the prompt according 529

to a probability of 0.5, which follows the setup 530

of Whisper and OWSM. To verify that OWSM- 531

CTC can utilize information from the prompt when 532

2We follow this tutorial for long-form ASR with
CTC: https://github.com/NVIDIA/NeMo/blob/main/
tutorials/asr/Streaming_ASR.ipynb
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Tgt Lang. de ca zh fa et mn tr ar sv lv sl ta ja id cy Average (↑) Speed-up (↑)

data size 14.0 0.4 13.7 0.8 0.4 0.4 0.9 0.9 0.4 0.4 0.4 0.4 1.0 0.4 0.4

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base 14.6 7.7 14.5 3.0 1.8 1.0 1.2 1.6 8.1 1.3 0.7 0.0 8.7 5.1 4.5 4.9 2.39x
medium 25.4 19.6 32.1 10.1 7.7 4.6 6.5 7.2 20.3 6.4 9.0 0.0 19.6 16.1 15.3 13.3 1.00x

OWSM-CTC (ours)
medium 25.5 23.0 35.1 10.0 9.2 4.8 6.8 8.2 23.8 7.7 12.0 0.0 18.5 21.0 19.4 15.0 4.20x

Table 6: BLEU (↑) of En-to-X ST on CoVoST-2. Speed-up is measured using the average decoding time across all
15 directions. Data sizes are in thousand hours. Bold: the best result. Underlined: our OWSM-CTC outperforms
OWSM v3.1 medium. Note that Whisper (Radford et al., 2023) does not support En-to-X translation.

Context Length WER % (↓) Speed-up (↑)

Whisper (encoder-decoder) (Radford et al., 2023)
base - 5.3 1.40x
small - 4.4 1.62x
medium - 3.8 0.86x

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
base - 9.6 1.40x
medium - 5.7 1.00x

OWSM-CTC (ours)

medium

2s 5.4 22.40x
4s 5.2 19.35x
6s 5.2 16.07x
8s 5.2 12.09x

Table 7: Long-form ASR results on the TEDLIUM (Her-
nandez et al., 2018) test set which consists of 11 audio
recordings ranging from 6 to 27 minutes. Bold: the
best result. Underlined: our OWSM-CTC outperforms
OWSM v3.1 medium.

Dataset Previous text as prompt? WER % (↓)

TEDLIUM dev
No 4.9
Yes 4.1

Table 8: Using the previous sentence (groundtruth) as a
text prompt improves the ASR WER of OWSM-CTC.
The optional prompt encoder is defined in Figure 2 and
Section 3.3.

necessary, we perform greedy decoding on the533

TEDLIUM dev set, where the previous sentence of534

each utterance is available. As shown in Table 8,535

using the previous sentence as the text prompt re-536

duces the WER from 4.9% to 4.1%. Appendix C537

provides an example where the previous sentence538

also affects the output text style.539

4.7 Robustness540

To investigate the robustness, we first consider ran-541

dom noise as input. Table 9 shows the ASR outputs542

generated by three models. Encoder-decoder mod-543

els including Whisper and OWSM v3.1 tend to544

generate some text that looks meaningful, while545

our OWSM-CTC only generates some punctuation546

marks without actual meaning. Note that punc-547

Input length 5s 10s 20s

Whisper (encoder-decoder) (Radford et al., 2023)
large-v3 Fjell Fusilet Rekordverk

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)
medium thank you thank you (Applause)

OWSM-CTC (ours)
medium . ( ( )

Table 9: ASR outputs with random noise as input.

tuation marks are typically removed before ASR 548

scoring, so our error rate will be zero. 549

Another typical issue for autoregressive decod- 550

ing is that the generation might fall into an infinite 551

loop of a few characters or words until reaching the 552

maximum output length. Table 16 in Appendix D 553

presents two examples from ASR and ST, respec- 554

tively. Our non-autoregressive model is more ro- 555

bust in such cases. 556

5 Conclusion 557

We propose OWSM-CTC, a novel encoder-only 558

speech foundation model built upon 180k hours 559

of public audio data and open-source toolkits. 560

OWSM-CTC employs multi-task self-conditioned 561

CTC for multilingual ASR, any-to-any ST, and 562

LID. We conduct extensive experiments to compare 563

OWSM-CTC with the encoder-decoder OWSM 564

models trained on the same data. We find that 565

OWSM-CTC achieves competitive performance 566

on ASR and superior performance on ST for both 567

X-to-En (25% relative improvement) and En-to- 568

X (13% relative improvement), while being more 569

robust and 3 to 4 times faster at inference time. Ad- 570

ditionally, OWSM-CTC improves the long-form 571

ASR WER with 20 times faster inference due to the 572

batched parallel decoding. OWSM-CTC also out- 573

performs the baselines on LID. To promote open 574

research on large speech models, we will publicly 575

release our codebase, pre-trained model weights 576

and training logs. 577
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Limitations578

Although our OWSM-CTC is several times faster579

and has comparable or superior performance than580

the encoder-decoder OWSM v3.1 in a wide range581

of benchmarks, it may still generate incorrect ASR582

or ST outputs due to limited training in certain583

languages. Care should be taken when using our584

model for low-resource ASR or ST. Besides, we585

have only evaluated our model with greedy decod-586

ing as it has the fastest inference speed. The non-587

autoregressive model sometimes makes mistakes588

in spelling or grammar due to lack of language589

models.590

Broader Impacts and Ethics591

Our OWSM-CTC is a novel encoder-only speech592

foundation model built upon public datasets and593

open-source toolkits. It achieves very strong per-594

formance and efficiency compared to other popular595

choices. We adhere to the ACL ethics policy and596

there is no violation of privacy in our experiments.597

We plan to publicly release all scripts, pre-trained598

models, and training logs, which can promote trans-599

parency and open science. We believe this will600

benefit the entire speech research community and601

it can make the latest speech technology available602

to a broader range of people all over the world.603
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A Details of Experimental Setups1164

A.1 Training data1165

Table 10 summarizes the training data statistics.1166

We prepare the training data mixture using the1167

scripts publicly released by OWSM v3.1 (Peng1168

et al., 2024). This ensures fair comparison be-1169

tween our OWSM-CTC and the previously released1170

encoder-decoder OWSM models.1171

Our use of the data is consistent with their in-1172

tended use. These datasets have been widely used1173

in speech research. They do not violate the pri-1174

vacy of creators or users, nor do they contain any1175

offensive content. Specifically, the individual train-1176

ing datasets and licenses are listed below: AI-1177

DATATANG (CC BY-NC-ND 4.0)3, AISHELL-1178

1 (Apache 2.0) (Bu et al., 2017), AMI (CC BY1179

4.0) (Carletta, 2007), Babel4, CommonVoice (CC0-1180

1.0) (Ardila et al., 2020), CoVoST2 (CC BY-NC1181

4.0) (Wang et al., 2020a), Fisher Switchboard1182

(LDC) (Godfrey et al., 1992), Fisher Callhome1183

Spanish (LDC) (Post et al., 2013), FLEURS (CC-1184

BY-4.0) (Conneau et al., 2023), Googlei18n5, Gi-1185

gaSpeech (Apache 2.0) (Chen et al., 2021), GigaST1186

(CC BY-NC 4.0) (Ye et al., 2022), KsponSpeech1187

(MIT License) (Bang et al., 2020), LibriSpeech1188

3https://www.openslr.org/62/
4https://www.iarpa.gov/research-programs/

babel
5Resources 32, 35, 36, 37, 41, 42, 43, 44, 52, 53, 54, 61,

63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, and
86 from openslr.org.

(CC BY 4.0) (Panayotov et al., 2015), Multilin- 1189

gual LibriSpeech (CC BY 4.0) (Pratap et al., 2020), 1190

MagicData (CC BY-NC-ND 4.0)6, MuST-C (CC 1191

BY NC ND 4.0 International) (Cattoni et al., 2021), 1192

SPGISpeech (O’Neill et al., 2021), TEDLIUM3 1193

(CC BY-NC-ND 3.0) (Hernandez et al., 2018), Rea- 1194

zonSpeech (Apache 2.0 / CDLA-Sharing-1.0) (Yin 1195

et al., 2023), Russian OpenSTT (CC-BY-NC)7, 1196

VCTK (CC BY 4.0)8, VoxForge (GPL)9, Vox- 1197

Populi (Attribution-NonCommercial 4.0 Interna- 1198

tional) (Wang et al., 2021), WenetSpeech (Cre- 1199

ative Commons Attribution 4.0 International Li- 1200

cense) (Zhang et al., 2022). 1201

A.2 Model architectures 1202

Table 11 shows the model configurations. Our 1203

OWSM-CTC mostly follows the design of OWSM 1204

v3.1 medium (Peng et al., 2024), but we only use 1205

an encoder. To match the total model size, we 1206

increase the number of layers to 27, leading to a 1207

total of 1B parameters. Note that the sequence 1208

length of the encoder is usually longer than that of 1209

the decoder. Hence, the encoder-only model can 1210

have a higher computational cost than the encoder- 1211

decoder model. To alleviate this issue, we apply 1212

a larger downsampling rate in the CNN module 1213

to reduce the sequence length. Our final time 1214

shift is 80ms, as opposed to 40ms of the encoder- 1215

decoder OWSM models. We observe that our train- 1216

ing time for a fixed number of updates is roughly 1217

the same as that of OWSM v3.1 medium. We also 1218

investigated different downsampling strategies at 1219

a smaller scale, as discussed in Appendix B.1 and 1220

Table 13. 1221

A.3 Training hyperparameters 1222

Table 12 presents the training hyperparameters of 1223

OWSM v3.1 and our OWSM-CTC. Again, we fol- 1224

low the previous OWSM v3.1 (Peng et al., 2024) 1225

for fair comparison, except that we adopt self- 1226

conditioned CTC (Nozaki and Komatsu, 2021) at 1227

four intermediate layers (see Section 3.2). 1228

B Small-Scale Ablation Studies 1229

Before the large-scale training using the entire 180k 1230

hours of audio data, we also conducted prelimi- 1231

nary experiments on MuST-C v2 En-De (Cattoni 1232

et al., 2021) to investigate the effect of the CNN 1233

6https://openslr.org/68/
7https://github.com/snakers4/open_stt
8https://huggingface.co/datasets/vctk
9https://www.voxforge.org/
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Model Unlabelled English ASR Other ASR ST Languages Vocabulary Size

Whisper (Radford et al., 2023)
Initial versions - 438k hours 117k hours 125k hours 99 52k
large-v3 4M hours 1M hours of labelled in total 100 52k

OWSM v3.1 (Peng et al., 2024)
- 73k hours 67k hours 40k hours 151 50k

OWSM-CTC (ours)
- 73k hours 67k hours 40k hours 151 50k

Table 10: Details of training data. Our training data is prepared using the scripts released by OWSM v3.1 (Peng
et al., 2024).

Model Params Encoder Decoder Layers Hidden Size Attention Heads Time Shift

Whisper (Radford et al., 2023)
tiny 39M Transformer Transformer 4 384 6 20ms
base 74M Transformer Transformer 6 512 8 20ms
small 244M Transformer Transformer 12 768 12 20ms
medium 769M Transformer Transformer 24 1024 16 20ms
large 1.55B Transformer Transformer 32 1280 20 20ms
large-v3 1.55B Transformer Transformer 32 1280 20 20ms

OWSM v3.1 (Peng et al., 2024)
base 101M E-Branchformer Transformer 6 384 6 40ms
medium 1.02B E-Branchformer Transformer 18 1024 16 40ms

OWSM-CTC (ours)
medium 1.01B E-Branchformer - 27 1024 16 80ms

Table 11: Details of model architectures. Whisper (Radford et al., 2023) and OWSM v3.1 (Peng et al., 2024) are
encoder-decoder models, whereas our OWSM-CTC is an encoder-only model. We mostly follow the design of
OWSM v3.1 medium, but we increase the number of encoder layers to match the overall model size.

downsampling rate and the choice of the task for1234

intermediate CTC layers. Specifically, we train1235

24-layer E-Branchformer-CTC models on the com-1236

bined ASR and ST data from MuST-C v2 En-De.1237

The input is always English audio, but the output1238

can be the English ASR transcript or its German1239

translation depending on the task specifier (see Fig-1240

ure 2).1241

B.1 Effect of downsampling strategies1242

Table 13 compares different downsampling strate-1243

gies while the other configurations are kept the1244

same. The attention is implemented with FlashAt-1245

tention (Dao et al., 2022). Self-conditioned CTC is1246

applied at three intermediate layers: 6, 12, and1247

18. The first two CTC layers always perform1248

ASR, while the others are task-dependent. The1249

results show that using 8x downsampling in the1250

CNN module leads to a slight degradation on WER1251

and BLEU but reduces the GPU memory usage1252

by a half. We thus decide to employ 8x downsam-1253

pling in our large-scale OWSM-CTC, enabling a1254

doubled batch size per GPU. As mentioned in Ap- 1255

pendix A.2, with this strategy, we observe a similar 1256

training speed compared to the encoder-decoder 1257

OWSM model. 1258

B.2 Choice of the CTC task 1259

As discussed in Section 3.2, the intermediate CTC 1260

layers can be configured to perform a specific task 1261

like ASR or multiple tasks depending on the input 1262

task token. Table 14 compares different choices at 1263

a small scale using MuST-C v2 En-De. If all CTC 1264

layers are task-dependent (i.e., multi-tasking), the 1265

model cannot converge when trained from scratch. 1266

As more layers are used for ASR only, the ASR 1267

WER is improved, but the ST BLEU is slightly 1268

decreased. A good trade-off is to use the first half 1269

for ASR only and the second half for multi-tasking. 1270

Therefore, in our large-scale OWSM-CTC with 27 1271

layers, we configure the 6th, 12th and 15th layers 1272

to perform ASR only and the other two CTC lay- 1273

ers (i.e., 21st and 27th layers) to be multi-tasking. 1274

This design also mimics the conventional cascaded 1275

15



Model Batch Size Total Steps Warmup Steps Max Learning Rate InterCTC Layers S

OWSM v3.1 (Peng et al., 2024)
base 256 675k 60k 1e-3 -
medium 256 675k 60k 2e-4 -

OWSM-CTC (ours)
medium 256 600k 60k 2e-4 6, 12, 15, 21

Table 12: Training hyperparameters. We mostly follow the training config of OWSM v3.1 medium (Peng et al.,
2024). As described in Section 3.2, we employ self-conditioned CTC at four intermediate layers.

Downsampling Strategy Params GPU VRAM (↓) Speed-up (↑) ASR WER (↓) ST BLEU (↑)

4x in CNN 55M 38GB 1.00x 8.3 22.0
6x in CNN 55M 22GB 1.12x 8.6 21.3
8x in CNN 55M 19GB 1.13x 8.8 21.5
4x in CNN + 2x in the middle of Encoder 55M 38GB 1.03x 9.7 21.6

Table 13: Comparison of different downsampling strategies on MuST-C v2 En-De. The other configurations such
as batch size are kept the same. Using 4x downsampling achieves the best ASR and ST results, while using 8x
downsampling significantly reduces the GPU memory usage, which enables a larger batch size per GPU. We employ
8x downsampling in our large-scale OWSM-CTC to reduce training cost.

ASR-Only CTC Layers Task-Dependent CTC Layers ASR WER (↓) ST BLEU (↑)

- 6, 12, 18, 24 diverged
6 12, 18, 24 9.0 21.6
6, 12 18, 24 8.8 21.5
6, 12, 18 24 8.4 21.2

Table 14: Effect of the CTC type. This small-scale model has 24 layers with 8x downsampling in CNN. As described
in Section 3.2, we employ self-conditioned CTC at some intermediate layers. These CTC layers can perform a
single task like ASR or multiple tasks depending on the task specifier. If we allow all CTC layers to perform
multiple tasks (ASR and ST), the model cannot converge from scratch. Therefore, we leverage the first few CTC
layers for ASR only and the remaining ones for multi-tasking.

system for ST.1276

C Effect of text prompt1277

Table 15 is an example from the TEDLIUM dev1278

set, which shows that the text prompt can poten-1279

tially change the output style. When there is no1280

prompt, the ASR output of OWSM-CTC is in true1281

case with punctuation, and the apostrophes are com-1282

bined with the previous words. However, when the1283

previous sentence is used as a prompt, the style of1284

the ASR hypothesis becomes more similar to that1285

of the prompt. Specifically, the text is now in lower1286

case without punctuation marks, and the apostro-1287

phes are separate from previous words. This style1288

is more consistent with the groundtruth transcript.1289

Although the above example looks promising for1290

biasing the model’s output towards certain direc-1291

tions, we note that this is not guaranteed to work in1292

a zero-shot manner. We have also tried zero-shot1293

contextual biasing, where we provide a few biasing 1294

words in the prompt (e.g., person names), but we 1295

find that the model may not be able to generate the 1296

correct word in many cases. This is mainly because 1297

the model is not really trained to perform this type 1298

of tasks - we just provide the previous sentence 1299

(according to some probability) as the prompt dur- 1300

ing training, which might not be useful at all; thus, 1301

our non-autoregressive model can simply ignore 1302

it in most cases. A more practical way to utilize 1303

this feature is to fine-tune our pre-trained model 1304

using some carefully designed data for contextual 1305

biasing. We will explore this in the future. 1306

D Robustness 1307

Table 16 shows that autoregressive decoding some- 1308

times fails to generate the correct output for either 1309

ASR or ST, while the non-autoregressive decoding 1310

is generally more robust to this type of errors. 1311
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Input audio content Previous sentence ASR w/o previous ASR w/ previous

future ’s over here wind
sun a new energy grid
new investments to cre-
ate high paying jobs re-
power america it ’s time
to get real there is an old
african proverb that says
if you want to go quickly
go alone if you want to go
far go together we need to
go far quickly thank you
very much

with one hundred percent
clean electricity within
ten years a plan to put
america back to work
make us more secure and
help stop global warming
finally a solution that ’s
big enough to solve our
problems repower amer-
ica find out more this is
the last one it ’s about re-
powering america one of
the fastest ways to cut our
dependence on old dirty
fuels that are killing our
planet

Future’s over here. Wind,
sun. A new energy grid.
New investments to cre-
ate high-pan jobs. Re-
power America. It’s time
to get real. There’s an
old African proverb that
says, "If you want to go
quickly, go alone. if you
want to go far, go to-
gether." We need to go far
quickly. Thank you very
much. (Applause)

future ’s over here wind
sun a new energy grid
new investments to cre-
ate high pan jobsrepower
america it ’s time to get
real there ’s an old african
proverb that says if you
want to go quickly go
alone if you want to go
far go together we need to
go far quickly thank you
very much

Table 15: Using a previous sentence as the prompt might change the output style. The optional prompt encoder is
defined in Figure 2 and Section 3.3.

Groundtruth reference OWSM v3.1 output OWSM-CTC output (ours)

in search of the mythical treasure your
grandfather is supposed to have secreted
there he laughed and the girl instinctively
shuddered with a newborn distrust there
was no mirth in the sound

in search of the mythical treasure your
grandfather is supposed to have secreted
there ha ha ha ha ha ha ha ha ha ha ha ha
ha ha ha ha ha ha ...

in search of the mythical treasure your
grandfather is supposed to have secreted
there he laughed and the girl instinctively
shuddered with a new-born distrust there
was no mirth in the sound

and with her they began a national tour
that took them all around the country

they take a national gira which leads to
rerererererererererererererere ...

with learn a national tour that leads them
to run the entire country

Table 16: Autoregressive decoding sometimes gets trapped in an infinite loop for both ASR (row 1, MLS en) and
ST (row 2, CoVoST-2 es-en). Our OWSM-CTC is more robust.
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