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ABSTRACT

Persistence spheres are a new functional representation of persistence diagrams.
In contrast to existing embeddings such as persistence images, landscapes, or
kernel-based methods, persistence spheres define a bi-continuous mapping: they
are Lipschitz continuous with respect to the 1-Wasserstein distance and admit a
continuous inverse on their image. This provides, in a theoretically optimal sense,
both stability and geometric fidelity, so that persistence spheres are the represen-
tation that most closely preserves the Wasserstein geometry of PDs in a linear
space. We derive explicit formulas for persistence spheres, show that they can be
computed efficiently, and note that they parallelize with minimal overhead. Empir-
ically, we evaluate them on clustering, regression, and classification tasks involv-
ing functional data, time series, graphs, meshes, and point clouds. Across these
benchmarks, persistence spheres consistently achieve state-of-the-art or competi-
tive performance when compared with persistence images, persistence landscapes,
persistence splines, and the sliced Wasserstein kernel. Additional simulations in
the appendices further support the method and provide practical guidance for tun-
ing its parameters.

1 INTRODUCTION

Topological Data Analysis (TDA) is an emerging field that leverages concepts from algebraic topol-
ogy to study the shape of data, offering coordinate-free and noise-robust methods for extracting
meaningful patterns. At the core of TDA lies persistent homology, a framework that captures multi-
scale topological features of a dataset. By recording the scales at which features such as connected
components, loops, and voids appear (birth) and disappear (death), persistent homology produces
compact descriptors of data shape. These descriptors are commonly represented as persistence dia-
grams (PDs) or barcodes, which provide stable and interpretable summaries amenable to qualitative
exploration and (limited) quantitative analysis (Edelsbrunner & Harer, [2010; |Oudot, 2015)).

Data Analysis with Persistence Diagrams. To integrate topological information into data analy-
sis pipelines, PDs are often compared using Wasserstein distances defined through partial optimal
transport (POT) (Divol & Lacombe} [2021). These distances play a crucial role in ensuring robust-
ness to perturbations, but they also impose a highly non-linear geometry on the space of PDs. This
non-linearity significantly limits the range of statistical tools that can be directly applied to PDs.
For instance, even basic operations such as computing averages are non-trivial: they are usually
formulated in terms of Wasserstein barycenters (Mileyko et al., [2011)), which are computationally
intensive to approximate and may fail to yield unique solutions.

Topological Machine Learning: Vectorizations and Kernel Methods. To overcome these lim-
itations, numerous vectorization methods have been developed to embed PDs into linear spaces,
enabling the use of classical statistical and machine learning techniques. Such embeddings underpin
the field of ropological machine learning (Papamarkou et al., 2024)), where topological features and
topological loss functions have proven effective in both predictive and representation learning tasks
(Moor et al., [2020; |Wayland et al.,|2024). For comprehensive surveys we refer to|Pun et al.| (2022);
Al et al.| (2023); Papamarkou et al.| (2024); here we only recall the main approaches.

Broadly, these methods fall into two main categories. The first consists of explicit embeddings
of PDs into linear spaces, while the second comprises kernel methods (Reininghaus et al.l 2015;
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Kusano et al., [2018; |Carriere et al.l 2017), which employ the kernel trick to define feature maps
implicitly. Within the class of explicit embeddings, one can further distinguish between approaches
based on descriptive statistics (Asaad et al.,[2022), algebraic representations exploiting polynomial
rings or tropical coordinates (Kalisnik, 2019;Monod et al.,[2019;|Di Fabio & Ferri| 2015)), functional
representations, which associate to each diagram a scalar field over a chosen domain (Bubenik,
2015; |Adams et al.| 2017; |Biscio & Mgller, 2019; |Dong et al., 2024; |Gotovac Dogas & Mandaric}
2025)) and other approaches (Mitra & Virkl 2024)).

Main Contributions. In this work, we build on the framework of |Gotovac Dogas & Mandari¢
(2025) (see Remark[2) and introduce a new functional representation of PDs, mapping each diagram
D to a function ¢ : S?> — R. We prove that this map is Lipschitz continuous with respect to
the 1-Wasserstein distance between diagrams, and that its inverse, on its domain of definition, is
also continuous. The continuity of the forward map guarantees stability, in the sense that similar
diagrams produce similar functions, while continuity of the inverse ensures that functional similarity
always reflects similarity at the level of diagrams. A key consequence, which will be explored in
future works, is that our representation can be directly employed as a loss function for statistical
learning and empirical risk minimization on PDs, with convergence controlled also at the diagram
level. Furthermore, this bi-continuity yields the strongest possible geometric relationship between
the Wasserstein space of PDs and their functional image, since a bi-Lipschitz embedding is known to
be impossible (Carriere & Bauer, 2019). To the best of our knowledge, no existing vectorization of
PDs simultaneously enjoys these properties. Stronger guarantees can only be obtained by restricting
to diagrams with at most n points, for some fixed n, as in|Carriere et al.| (2017)); Mitra & Virk|(2024).

2 PRELIMINARIES

2.1 CONVEX SETS AND SUPPORT FUNCTIONS

We briefly review the notation and concepts from convex analysis and geometry that will be used
throughout. Standard references include Rockafellar| (1997); |Salinetti & Wets| (1979).

Definition 1. Given two convex sets A, B C R?, their Minkowski sum and their multiplication with
a non-negative scalar X > 0, are defined as:

A®B={a+blac A, be B}, NDA={)a]|a€ A}
Definition 2. Given a compact convex set A C R?, its support function is defined as:
ha:R*> =R

x r;leaj(@, a).

One can check that 1) any support function is completely determined by its restriction on S?; 2) the
operator A — hy is linear: \{A @ Ao B +— Ahg + Aohp.

To compare different convex sets we will use the Hausdorff distance.

Definition 3. Given two compact subsets A, B C Z, with (Z,dz) being a metric space, their
Hausdorff distance is defined as:

dy(A,B) = max{lgleaj( dz(a,B), max dz(b,A)}

Now we can state the following classical result.
Proposition 1. Given two compact convex sets A, B C R?, the following holds:
ma | ha(®) = hi(0) 2= din (4, B).

In particular, the operator A — h 4 is injective.

2.2 INTEGRABLE MEASURES ON R2

For any Borel measure £ on R?, and any f : R? — R p-measurable, we set:

(s f) = /RQ f(p)du(p).
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Moreover, for any 7 > 0, we set B, = {p € R? ||| p [[2< r}, and BS = R? \ B,..

In the following we will use integrable measures and uniformly integrable sequences of measures.
See | Hendrych & Nagy|(2022) for more details on such topics.

Definition 4. A positive finite Borel measure on R?, pu, is called integrable if:

Gl -l = [ 12 I duto) < o

Similarly, a sequence of integrable measures { iy, }nen is uniformly integrable if:

lim sup/ || pll2 dpn(p) = 0.

r—00 neN

To compare measures, we need weak and vague convergence of measures, which are standard no-
tions in measure theory. See, for instance, [Kallenberg| (1997).

Definition 5. A sequence of integrable measures { i, }nen converges weakly to p if {fin, f) —
(u, f) for every f : R? — R continuous and bounded. Instead, if (i, f) — {u, f) for every
f : R? — R continuous and compactly supported, we say that {ji, } nen converges vaguely to .

We write j1,, — p for weak convergence and 1, — 1 for vague convergence.

2.3 PERSISTENCE DIAGRAMS

For a general overview on PDs and their relevance in TDA, refer to Appendix [A]l Here, we adopt a
measure-theoretic perspective to define PDs. First, we introduce the following notation:

Ri., = {(z,y) eR? |z <y}, A:={(z,y) eR? |z =y}
Definition 6. A PD is a positive finite measure pup = ZpG D CpOp, With b, being the Dirdc delta

centerec.l inp€R?% D C Ri<y being a finite set, and c, € N. We refer to the set D as the support
of the diagram.

Following Divol & Lacombe|(2021)) we give the following definition.
Definition 7. For any measure 1 and for any subset Z C R2, we define:

Persz(p) = %/Z(y —x)dpu((z,y)).

When Z = R?, we simply write Pers(u).

As proven in |Skraba & Turner| (2020), in the context of stability for linear operators defined on
spaces of measures, we are forced to work with the 1-Wasserstein metric. To introduce such a
metric with a notation convenient for the proofs that follow, we define the following terms.
Definition 8. Consider two diagrams jup and pp. A partial matching between pp =
and ppr =3 pr bpdy is a triplet (Do, DY,y : Dy — D7) such that:

peD ap0p
* D, CDand D!, C D';
* v: Dy — D is a bijection.

We may indicate a partial matching just with -, for the sake of brevity.

Given a partial matching v between up = ZpeD apdp and ppr = ZpeD, bpdp, forevery p € D,
we set 7y, := min{a,, by }. Similarly, for every ¢ € D!, we set v, := min{bg, a1, }. The cost
of v can then be defined as follows:

= Bl =70) o+ D (ap =) P = Allsc+ > (bg—70) 14— A oo +

peD, peD, qGD’
Yo oapllp-Alse+ D>, billa—Als-
pED\D, q€D'\D,

(D
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Definition 9. The 1-Wasserstein distance between PDs is defined as:
Wi (pp, upr) = inf{c(y) | v partial matching between pup and pup: }.
Remark 1. The definition of the 1-Wasserstein distance adopted here is equivalent to other formu-
lations in the literature. In particular, the bijection vy : D, — D/v can be interpreted as a transport
map between the measures 3., VpOp and ), Yq Oq. while the associated cost c(7y) corre-
y

sponds to the transportation cost, including the cost of sending the remaining mass of both diagrams
to the diagonal A (see|Divol & Lacombe|(2021))).

We recall the following key result from |Divol & Lacombel (2021)).
Theorem 1. W, (up,up, ) — 0 if, and only if, up, ~ up and Pers(up,) — Pers(up).

2.4 LIFT ZONOIDS OF DISCRETE MEASURES

We now introduce the final components needed to define our topological summaries. Throughout,
we adopt the following notation: for a point p = (z,y) € R?, we set (1,p) := (1,z,y) € R3.
The reader may refer to Figure || for a visual illustration of the constructions introduced below. For
conciseness, Figure [T] also anticipates material from the following sections and therefore includes
some notation that will be formally introduced later on.

As a preliminary step, we recall the construction of the lift zonoid associated with an integrable
measure, as presented in Koshevoy & Mosler| (1998)); [Hendrych & Nagy|(2022)). For simplicity and
coherence with our setting, we restrict attention to discrete measures.

Definition 10. Given a discrete measure | = 2?21 ¢ilp,, Di € R? and ¢; > 0, the lift zonoid of 1
is the following convex set (zonotope):

Z;L - @Ci[oa (Lpzﬂ - R37
=1

with [0, (1, p;)] being the segment joining the origin 0 € R3 and the point (1, p;). In particular, the
lift zonoid of the zero measure is the set {0} € R>.

Note that the lift zonoid construction is linear: A\qp1 + Agpip = A Z,, © Aa2Z,,. Moreover, the
support function of [0, (1, p)] amounts to v — ReLu((v, (1,p))) := max{0, (v, (1,p))} =, as the
maximum of the inner product is attained on one of the extremes of the segment. Hence, by linearity,
lift zonoids of discrete measures can conveniently be expressed as sums of rectified linear units.

Koshevoy & Mosler| (1998); [Hendrych & Nagy| (2022) prove the following result.
Proposition 2. Given an integrable measure p and a sequence of integrable measures {jin }nen,
the following hold:

du(Zu, Z,,) — 0if, and only if, ju, — p and {pn ynen is uniformly integrable.

3 PERSISTENCE SPHERES

We are now ready to define persistence spheres as the support functions (see Definition [2) of lift
zonoids associated with (weighted) PDs, restricted to S2. A running example of this construction is
provided in Figure

As for other functional representations of PDs, see |Adams et al.|(2017), we need to re-weight di-
agrams with a function w : R? — (0,1] so that the weight assigned to points goes to zero as
we approach A. Given a diagram pp = >_ ., ¢,0, and a function w : R? — (0,1], we set
Ky = ZpED w(p)epdp.
Definition 11. Given a PD pp and a function w : R? — (0, 1], the persistence sphere (PS) of j.p
with weighting w is defined as ;, | = (hz ., )|s2-

D

For any function w : R? — (0, 1] we set T',,(p) := w(p)(1,p). We want to control the decay of w as
points approach the diagonal. We do so with the following technical conditions.
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Figure 1: A detailed example illustrating the construction of the lift zonoid of a discrete measure. In
the upper left panel, we start from the measure associated with a PD D, endowed with aweighting
w (see Section [3). From the point p we obtain the segment w(p)[0, (1, p)], and analogously for g,
embedded in R” with coordinates (z, Birth, Death). We also provide a 2D representation given by
the projection onto the plane Death = 0. The lift zonoid Zp« is then obtained as the Minkowski
sum of these two segments. Finally, we report the explicit expression of its support function, which,
by linearity, is obtained as the sum of the support functions of each segment.

Definition 12. A function w : R? — (0,1] is called a stable lift weighting if:
e Ty, is C-Lipschitz for some C > 0;

* the following inequality is satisfied for every p = (x,y) € R2_, and some fixed C' > 0:
y—z
IR0 = ¢ (L55) == A .

In Definition[T2] we used the term “lift weighting” to emphasize its role in the context of lift zonoids.
Since no ambiguity arises in this work, we will omit the qualifier “lift” from now on for brevity.

Definition 13. A function w : R? — (0, 1] is called an effective (lift) weighting if for any sequence
of diagrams {up., }nen:

lim su / w(p) [Ipll2 dpn(p) =0 == lim sup Persp:(up,) = 0.
B

T—00 n r—00 n

Definition @ controls the behavior of I',, at infinity. To see that, note that, for every € > 0, there is

R such that for every » > R and p € B¢ we have: % > 1 — ¢. For any such 7:

(1-¢) sgp/Bcw(p) | (1,p) |2 dup, (p) < sglp/Bcw(p) | 2 dup, ().

Which means that, in the context of the definition, we have:

MNW/HM@MWm@%O @)
r—o 4 Jp

c
r

We now provide examples of stable and effective weightings.
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Yy—x

Proposition 3. Set \(p) := MTo)s

. The following are stable weightings:

w(p) = A(p)“, wx(p) = %arctan <>\;§ia) ,

forany K > 0 and o > 1. They are also effective weightings for o = 1.

In what follows, in case o« = 1, we write wg for simplicity. The weighting wf is our preferred
choice for constructing PS, because it performs very well in practice (see Section ). In addition,
the parameters K and « are highly interpretable and effective for handling noise in PDs, to the point
that they can potentially be qualitatively selected (see Appendix [B).

We conclude this section highlighting that, by linearity, the PS of a PD up = Zpe D CpOp, With
weighting function w, can be explicitly written as:
@i (V) = hz,. (v) = Y w(p)ey ReLu((v, (1,p))). 3)

peED

3.1 CONTINUITY THEOREMS

We now state our main results, which contain the continuity properties anticipated in the introduc-
tion. First we state and prove them in terms of lift zonoids and Hausdorff distances, which simplifies
the proofs, and then, using Proposition [} we derive the bi-continuity of PSs.

Theorem 2. Let jip, iy, be PDs and let w : R? — R be a stable weighting. We have:
dH(ZN% s ZN“E),/) < maX{C, C/} . Wl (//LD’ IU’D')a

with C,C" > 0 being the stability constants of w (see Definition|I2).

Theorem 3. Let {/.p, }nen be a sequence of PDs such that dy (Z, , Zys) — 0, withw : R? = R
being an effective weighting. Then, W1 (up,,, pip) — 0.

Summarizing the statements of Theorem [2] and Theorem [3| and writing them replacing lift zonoids
with PSs, we obtain the following result.

Corollary 1. Within the setting of the previous results, we have:

* for every p € [1,00] there exist C,, > 0 such that, for every pair of diagrams [ip, ip/, we
have || P Ip< CoWi(up, ppr);

* il ¢, — ¢np, llo— 0, then Wi(up,, pp) — 0.

As anticipated in the introduction, Corollary [I] provides the strongest possible correspondence be-
tween the Wasserstein space of PDs and an embedding into a Hilbert space, since a bi-Lipschitz
embedding is provably impossible (Carriere & Bauer} [2019). In line with this, in Appendix [B.2]we
report a simulation in which PS and SW, that is, the two methods for which inverse continuity results
are available (with some constraints in the case of SW), exhibit the highest fidelity with respect to
the 1-Wasserstein distance.

Remark 2. |Gotovac Dogas & Mandaric (2025) define their functional representation as ¢, |, with
w(p) = y — x. This weighting is not stable, since for any C > 0, |[T,(p)|| > Cllp — Allso
whenever ||p||2 is sufficiently large. In particular, the map pp w— @ fails to be stable. For

instance, let D, = {p,} = {(n?,n* + 1)}. Then Zp. = 1[0, (1,p,)]. If D = 0, we obtain
Wi(D,, D) =+ "2% 0, dy(Zp,Zp,) > L2 n® 22 .

On the other hand, reasoning as above one can verify that w(p) = y — x is effective. Consequently,
Theorem 3] holds for the functional representation in|Gotovac Dogas & Mandarid|(2025), although
this fact is not established in that work. Moreover, in Appendix |E| we test this weight function
showing how it leads to inferior performances.
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4 EXPERIMENTS

We evaluated PSs on a range of clustering, regression, and classification case studies, comparing
their performance with persistence images (PIs), persistence landscapes (PLs), persistence splines
(PSpl) (Dong et al., [2024), the sliced Wasserstein kernel (SWK), and PersLay architectures (for
supervised problems with sufficient sample size). For PSs, PIs, PSpl, and PLs we used random
forest classifiers and regressors, while SWK was coupled with SVMs. Performance was measured
using R? for regression and accuracy for classification, averaged over 5 independent runs for the
“Eyeglasses” case study and 10 runs for all other supervised tasks. Clustering performance was
evaluated via the Rand index, averaged over 200 independent repetitions. Computational aspects
and runtime simulations are discussed in Appendix [C]

4.1 DATASETS

Clustering Case Study We consider an unsupervised simulation based on a standard functional
data analysis (FDA) generative model (Ramsay & Silverman, [2005)). We first construct two smooth
random functions f and g by cubic-spline interpolation of points in [0, 1] x R: on a regular grid
0=m < < @00 = 1 wesample y/ ~ N(0,502), i = 1,...,200, j = 1,2, independently,

and interpolate {(mwyf) 122% to obtain f (j = 1) and ¢g (j = 2). For a fixed noise level o > 0,

we generate 50 noisy realizations of each function by sampling uniformly {a?}%% i.i.d. in [0, 1]
and setting b) = f(al) + ¢!, &l ~ N(0,0?), and analogously for g. The noise level takes values
o € {10,15,30}. Each noisy curve is encoded as a 0-dimensional PD, obtained from the sublevel-
set filtration of the linear interpolation of the sampled points. For each topological summary, as
well as for the 1-Wasserstein and sliced Wasserstein distances, we compute the pairwise distance
matrix, perform hierarchical clustering with average linkage, cut the dendrogram into two clusters,
and evaluate the partition via the Rand index. The whole pipeline is repeated 200 times for each o
and the best performing algorithm is selected via grid-search.

“Eyeglasses” Case Study The “Eyeglasses” dataset is a regression case study we designed using
the eyeglasses generative model from the scikit—tda python package (Saul & Traliel2019). This
model takes two radii as parameters, and a noise variable which was kept equal to 1. The first radius
was always set equal to 20, while the second was sampled according to a normal distribution with
mean 10 and standard variation 2.5. We sampled 2000 point clouds and 1-dimensional PDs where
obtained from the Vietoris-Rips filtration. For 5 independent runs, we used a 30% — 70% split
between training and test data and threefold cross-validation was used to select hyper-parameters,

Functional datasets from the scikit-fda Package For the following functional datasets, we
used zero-dimensional persistent homology derived from the sublevel set filtration of the functions.
Data were split into training and test sets in a 70%—30% ratio, and hyperparameters were selected
via threefold cross-validation. All datasets are freely available in the scikit—fda Python package
(Ramos-Carreno et al. [2024). The datasets “Growth” and “NO,”” were smoothed using Nadaraya-
Watson kernel smoother with bandwidth 3, chosen by visual inspection.

The “Tecator” dataset (https://lib.stat.cmu.edu/datasets/tecator) consists of
publicly available measurements collected using the “Tecator Infratec Food and Feed Analyzer”.
Building on the derivatives of these curves, we explore the same regression problem as in [Ferraty &
Vieu| (2006)), trying to regress the fat content of the food samples.

The “NO,” dataset (Febrero et al., |2008) contains hourly measurements of daily nitrogen oxides
(NO,,) emissions in the Barcelona area. The data is labeled based on whether the emission curve
was recorded on a weekday or a weekend, and our goal is thus to reconstruct this labeling through
supervised classification.

The “Growth” dataset (Tuddenham & Snyder, [1954), also known as “The Berkeley Growth Study”,
contains height measurements of girls and boys, recorded yearly between ages 1 and 18. A com-
mon approach is to analyze the first derivative of the growth curves to distinguish growth dynamics
between boys and girls (Vitelli et al., 2010).


scikit-tda
scikit-fda
https://lib.stat.cmu.edu/datasets/tecator
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Datasets from Bandiziol & De Marchi| (2024) The classification case studies involving the
datasets “DYN SYS”, “ENZYMES JACC”, “POWER”, and “SHREC14” were taken from Ban-
diziol & De Marchi| (2024). As in the previous setting, we used a 70%—30% train—test split,
with hyperparameters selected via threefold cross-validation. For these datasets, we could di-
rectly rely on the PDs associated with the classification tasks, which are publicly available at
https://github.com/cinziabandiziol/persistence_kernelsl

In selecting the problems, we prioritized classification tasks with balanced classes and diversity in
data type, including point clouds, graphs, time series, and 3D meshes. We now summarize the
considered datasets; further details can be found in[Bandiziol & De Marchi| (2024).

The dataset “DYN SYS”, first introduced in |Adams et al.| (2017) and referred to as “Orbit Recog-
nition” in |Bandiziol & De Marchi| (2024)), consists of point clouds generated by a one-parameter
discrete dynamical system, with the parameter ranging in {2.5,3.5,4,4.1,4.3}. The classification
task, considered in /Adams et al.|(2017); Bandiziol & De Marchi| (2024) as well as in our work, is to
predict the parameter value from the associated point cloud, a problem also studied in|Carriere et al.
(2017). For each parameter value, 50 independent point clouds were generated, each containing
1000 points with starting positions chosen uniformly at random, yielding a dataset of 250 elements.
The PDs computed by |Bandiziol & De Marchi| (2024) contain only one-dimensional features.

The dataset “ENZYMES JACC” addresses a graph classification problem. Graphs represent
protein tertiary structures obtained from the BRENDA enzyme database (https://www.
brenda-enzymes.org/), and the task is to classify each of the 600 graphs into one of six
enzyme classes. Edges were weighted by their Jaccard index, and PDs were computed from the
resulting sublevel set filtration, combining both zero- and one-dimensional features.

The dataset “POWER”, from the UCR Time Series Classification Archive (https://www.
cs.ucr.edu/~eamonn/time_series_data_2018/), consists of 1096 time series. The
pipeline in this case applied the sliding window embedding (Ravishanker & Chen, 2021]), followed
by the extraction of zero-, one-, and two-dimensional features, which were then merged into a single
diagram for each time series.

Finally, the dataset “SHREC14” (Pickup et al.,|2014) is a benchmark for non-rigid 3D shape classi-
fication. It contains meshes of human models across 20 poses and 15 body types (e.g., man, woman,
child), resulting in 300 total meshes. In Bandiziol & De Marchil (2024), the Heat Kernel Signature
(HKS) (Sun et al., 2009; Bronstein & Kokkinos, 2010) was used to extract one-dimensional PDs
from the corresponding sublevel set filtrations.

Datasets “Human Poses” and “Mc Gill 3D Shapes” The remaining datasets, “Human Poses”
and “McGill 3D Shapes”, were obtained from https://github.com/ctralie/TDALabs/
blob/master/3DShapes. ipynbl The corresponding classification pipelines are documented
in the referenced notebook: for the human pose task, a sublevel set filtration of the height function
was used, while for the McGill shape classification task, a sublevel set filtration of the HKS was ap-
plied. We note that the “McGill 3D Shapes” dataset used here is a subsample of the original version,
which is no longer fully accessible online. In both case studies, the train—test split (80%-20%) was
imposed by the dataset limitation of having only 10 samples per class.

4.2 PARAMETERS DETAILS

Now we describe the parameters used for the vectorization and kernel methods, while we defer the
discussion of the employed PersLay architectures to Appendix

Random Forests and SVM Parameters We used SVM pipelines with a regularization parameter
C, chosen from {1073,1072,1071,1,10,10%,10%,10*} and precomputed kernel (SWK). For the
Random Forests models the number of estimators trained by each forest was chosen in {100, 200}.
Both were implemented using the scikit—1learn Python package (Pedregosa et al.,|[2011).

Linearization Methods Parameters We now summarize the hyperparameters used for each lin-
earization method. For PIs, PSpl and PLs, the range/support parameters were selected by inspecting
the full dataset, independently of the training/test split; this introduces a minor inconsistency, which


https://github.com/cinziabandiziol/persistence_kernels
https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/ctralie/TDALabs/blob/master/3DShapes.ipynb
https://github.com/ctralie/TDALabs/blob/master/3DShapes.ipynb
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Figure 2: Data, PDs, and PSs from some of the experiments in Section@

could be avoided in practice by choosing sufficiently generous bounds based only on the training
data. For PS the domain is fixed and compact, so this issue does not arise.

* PS: we used the weighting function w$ with K € {0,1074,1073,1072,10~%,0.25,0.5},
and o € {1,3,5}, where K = 0 denotes (with a slight abuse of notation) the constant
weight p — 1. PSs are functions on S? in spherical coordinates and were expanded in
spherical harmonics using pyshtools (Wieczorek & Meschedel [2018),
yielding an orthonormal feature representation for scikit-learn. With a Driscoll-
Healy grid (Driscoll & Healy}[1994) having 2 Ny latitudinal and 4 Ny longitudinal nodes, the
feature dimension is Nj /2; we cross-validated 2Ny € {30, 40, 50,60, 70}. For the clus-
tering pipeline we used 2N.9 =100, K € {1073,1072,1071,0.3,0. 6} and a € {1,4,8}.
Only for the McGill 3D Shapes dataset, we cons1dered 2Ng = 14.

e PI: with scikit-tda persim, we set pixel_size by enclosing all PDs in a
birth—persistence rectangle and dividing its shortest side by Ny, € {100,500}, then
rounding to the nearest power of 10. Using the default Gaussian kernel, we took ¢ =
pixel_size/N,, N, € {0.1,1,10,10%,10% 10% 10%}, and the persistence exponent
n € {1,2,4,8} in weight_params. For clustering we restricted to Npix € {100,500},
N, € {1073,1072,107%,10%}, and n € {2,4,8}, and for McGill 3D Shapes, we re-
stricted to Npix € {5, 10, 20}.

» PL: all persistence landscapes were evaluated on a common grid of 5000 points and con-
catenated (no hyperparameters). For clustering we used a grid of 1000 points.

 PSpl: following (Dong et al., [2024), we used a spline grid of size h? with h €
{5,10,20, 40,50} and iterations in {5, 10,50, 100}. As eminence function, we adopted
the persistence-based one from the original mat lab code, ported to python from “emi-
nencef.m”. For clustering we restricted to h € {10, 20,40} and iterations in {10, 50, 100}.

* SWK: we used the sliced Wasserstein kernel from gudhl (Project, 2025)), fixing M = 100
directions and tuning o € {107°,107%,1073,1072,10~%, 1,10} for the Gram matrix.
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Table 1: Results of the case studies: we report average R? for regression and average accuracy for
classification, across 5 runs for Eyeglasses and 10 runs for the remaining supervised tasks. Unsuper-
vised clustering (FDA rows) is evaluated via Rand index over 200 runs. We report mean =+ standard
deviation. Bold entries denote the best-performing method in each row; a dagger T marks methods
whose 95% confidence interval overlaps with that of the best method.

\ | PS | P [ PL | Pspl | PersLay [ SWK |
Unsupervised
FDA ¢ = 10 (0.810 + 0.221) | 0.845 +0.158 | 0.786 £0.165 | 0.753 +0.213 0.556 + 0.097 0.762 + 0.220
FDA ¢ = 15 (0.717 + 0.223) | 0.806 +0.167 | 0.730 £0.159 | 0.676 +0.200 0.538 + 0.062 0.696 + 0.207
FDA o = 30 (0.548 + 0.107) | 0.688 +0.144 | 0.621 £0.103 | 0.542 4+ 0.085 0.518 +0.014 0.578 +0.120
Regression
Eyeglasses 0.966 +0.003T ] 0.9224+0.009 [ 0.955+0.0187 | 0.971 +0.0117 | 0.248 +£0.031 | 0.971 + 0.0037
Tecator 0.969 +£0.009" | 0.900 +£0.064 | 0.954+0.011F | 0.970+£0.010" | 0.895+0.029 | 0.953 £ 0.010
Classification
Growth 0.850 +0.0527 | 0.743 +£0.135" | 0.768 + 0.060 0.807 +0.0337 | 0.807 4 0.043" | 0.768 + 0.058
NOx 0.869 +0.0417 | 0.780 +0.060 | 0.789 +0.062 0.8234+0.0337 [ 0.717+0.078 | 0.840 % 0.0557
DYN_SYS 0.829 4 0.0287 [ 0.4194+0.150 | 0.840 +0.0247 | 0.829 +0.032T | 0.696 £0.044 | 0.828 +0.028"
ENZYMES_JACC 0.349 +0.036" | 0.342+0.036" | 0.377 £0.0327 | 0.373 +£0.0447 | 0.2434+0.023 | 0.283 +0.055
POWER 0.769 +£0.0217 | 0.653 £0.066 | 0.756 = 0.0187 | 0.748 £0.0227 | 0.725 £0.038 | 0.767 + 0.1507
SHREC14 0.93140.0227 | 0.894 4 0.071F | 0.943 +0.0247 | 0.949 + 0.023" | 0.8794+0.018 | 0.886 + 0.092
Human Poses 0.640 +£0.0777 | 0.530 = 0.0817 | 0.405 + 0.106 0.510 + 0.102 0.345 + 0.082

McGill 3D Shapes

0.544 4 0.085%

0.461 £+ 0.151

0.678 + 0.102f

0.561 =+ 0.104F

0.567 & 0.130F

4.3 RESULTS

As reported in Table[T} PSs consistently matched or outperformed established topological represen-
tations across all the considered tasks. PSplines also performed very well in all supervised settings,
suggesting a robust and remarkably low-dimensional representation that is particularly convenient
for fitting supervised models; however, in line with Appendix [B.2] they performed markedly worse
than the other methods in the unsupervised scenario. It is also worth noting that PersLay was likely
penalized by the relatively small sample sizes (often between 100 and 1000 observations) and, in
the case of Eyeglasses, by the fact that we were unable to identify a network architecture yielding
competitive performance (see also Appendix D).

In keeping with the fact that all considered methods have been successfully used in the literature,
none of them was dramatically inferior overall. The main practical difficulty arose with PIs, for
which identifying suitable parameter ranges proved more delicate and occasionally led to very long
runtimes due to slow convergence of random forests (and other supervised models we tried). Finally,
for the McGill 3D Shapes dataset we observed that PSs and, in particular, PIs were more unstable and
harder to optimize, with higher variability in accuracy compared to the other methods; in response,
we substantially reduced the dimensionality of their vectorizations. We did not observe similar
behaviour on any of the other datasets, as further illustrated in Appendix [E]

5 CONCLUSION AND BROADER IMPACT

We introduced PSs, a novel functional representation of persistence diagrams that is both Lipschitz
continuous and admits a continuous inverse on its image, yielding a bi-continuous correspondence
with respect to the 1-Wasserstein geometry. This combination of stability and geometric fidelity
sets PSs apart from existing vectorization methods. Empirically, we find that PSs are not only
competitive with, but frequently outperform, widely used alternatives such as PIs, PLs, and SWK.

Several avenues for future work remain. Alternative weighting schemes may yield more expressive
summaries. Tools from FDA could support advanced statistical methodologies, such as confidence
sets, hypothesis testing, and limit theorems for point processes Biscio et al.| (2020). Reconstruction
techniques for recovering PDs from scalar fields on the sphere are under development, exploiting
existing optimization frameworks for ReLU neural networks. Visualization strategies could enhance
interpretability. Integration, via differentiable loss functions, of with PersLay compatible layers
with modern representation learning techniques will broaden applicability. Finally, extending the
construction to signed measures could provide a natural vectorization for bi-parameter persistence
Loiseaux et al. (2023)).
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REPRODUCIBILITY STATEMENT

Section[4.2)and Appendix [C|provide the main details required to reproduce our results. All datasets
used are publicly available, and the explicit formulation of our method in Section [3| ensures repro-
ducibility. We also submit the code necessary to run the experiments as supplementary material
(excluding the data).

THE USE OF LARGE LANGUAGE MODELS

Large Language Models were occasionally employed to refine and polish the writing.
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A FILTRATIONS AND PERSISTENCE DIAGRAMS

As mentioned in the introduction, TDA provides a wide range of techniques to extract features with
desirable invariance properties. It does so by leveraging algebraic topology, which offers a natural
framework for identifying structures that remain unchanged under continuous deformations of the
domain (Hatcher, |2000). A central tool in TDA is persistent homology, which builds on these ideas
to track the evolution of homological features, such as path-connected components (0-dimensional
holes) and loops (1-dimensional holes), across a filtration, that is, a nested family of topological
spaces.

Filtrations generated by real-valued functions and point clouds are among the most general and
widely used. Given a topological space X and a function f : X — R, one considers the sublevel
sets X; = f~1((—o0,t]). The changing topology of the family { X; };cr encodes information about
the structure of f.

Similarly, for a finite set X C R™, one can consider the filtration

X; = U{pER”:Hx—pH<t}.
zeX

A visual representation of this filtration, known as the Cech filtration of X, is provided in Figure

To extract topological information from a filtration, one typically applies homology functors
Hy, Hy, ... with coefficients in a field. The resulting families of vector spaces, usually referred
to as persistence modules, track the birth and death of features such as path-connected components
and loops.

To make this information amenable to data analysis, persistence modules are encoded by topological
summaries. Among these, persistence diagrams are arguably the most widely used in TDA; for a
detailed survey, see, for instance, (Edelsbrunner & Harer, [2008)).

Loosely speaking, a persistence diagram is a multiset of points (¢, ¢, ) in the upper half of the plane,
with ¢, > ¢, where ¢, denotes the value of the parameter ¢ at which a homology class in X first
appears (its birth), and c, is the value of ¢ at which the same class either disappears or merges with
a previously born class (its death).

B THE ROLE OF THE WEIGHTING FUNCTION AND THE ASSOCIATED
PARAMETERS IN PSs

In this section, we examine the weighting function

wr(p) = 2 arctan(Mp)a) ,

T K«

which is the one used in our simulations and case study, and we analyze the effect of its parameters
K and «. Observe that studying this function on R;>,, is, by symmetry, equivalent to extending it
to R? by replacing y — z with |y — 2|. We will adopt this viewpoint throughout the section.

We begin with an informal, qualitative description, aimed at providing an intuitive overview of the
roles played by wg, K, and «, and then move on to a rigorous mathematical justification of the
claims. The reader may find it helpful to refer to Figure 4] and Figure 5] throughout the discussion.

At a high level, the function wg is a smooth step function on the plane: it starts from 0 along the
diagonal y = x and, as we move rotating towards y = —x, it transitions monotonically to higher
values, bounded by 1. The parameter K controls both the location and the width of this transition
region: it determines where the weight assigned to points begins to decrease from 1 towards smaller
values as their persistence approaches 0, and how spread out this transition is. By contrast, the
parameter « primarily affects the steepness of the step, without shifting its location (see Figure [).

Recall that increasing « beyond 1 generally breaks the bi-continuity guarantees of the PS represen-
tation. However, as we will see in Appendix [B.1I] choosing v > 1 can still be beneficial in practice
when working with particularly noisy diagrams. For the rest of this section, we focus on the case
a=1.
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Figure 3: A schematic illustration of a point cloud in R?, its Cech filtration, and the associated
persistence diagrams in homology dimensions 0 and 1. Path-connected components consisting of
singletons are highlighted with red circles, while 1-cycles are emphasized using colored polygons.
The colors of the polygons are consistent with those of the corresponding points in the diagram
associated with H; and with the horizontal bars representing the life-spans of topological features.
Red bars are path connected components.

We now make the above qualitative picture more precise, trying to derive an explicit characteriza-
tions of how K affects the step function. In doing so, a central role is played by the quantity

_ Y-z
M) = Sl

which, for each point p = (z,y), measures the ratio between its persistence and the Euclidean
norm of the corresponding vector (1, p) in the lift-zonoid representation (in the unweighted case).
Alternatively, one can see:

y—x O
®) = Zlonh VL

The term \/%m‘ is the cosine of the angle between the vectors (x,y) and (—1, 1), while the second
2

term is constant if we keep ||(p)||2 constant. As a consequence, A vanishes on the diagonal y = z,
its values increase with the angle between (z, y) and the vector (1, 1), and they are maximized along
y = —x, while remaining strictly smaller than 1. Feeding this function into a sigmoidal nonlinearity
such as the arctan produces a step-like function that is 0 on ¥y = z, increases as we move away from
the diagonal, and gradually flattens out as we approach y = —x, as in Figure ]

By linearity, multiplying A by the factor 1/K rescales all its values, and hence it rescales inversely
the Lipschitz constant of A(p)/K. Using the inequality arctan(z) < z for z > 0, we deduce that
this rescaling transfers to the Lipschitz constant of wg: if L denotes the Lipschitz constant of w;,
then L - K is an upper bound on the Lipschitz constant of wg. In other words, K controls the
steepness of the resulting step function and shrinks or enlarges the transition region between the
diagonal y = x and the plateau where the weight is close to 1 (see Figure [).

As shown in Figure[d] the level sets of the weighting are not parallel to the diagonal, which would be
the case if wx depended only on the persistence of the points. Instead, they exhibit a radial behavior
with respect to the origin. This feature is implicitly enforced by the definition of the lift zonoid,
which is built from segments of the form [0, (1, p)], and is somewhat analogous to what happens
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with the sliced Wasserstein kernel, where points are projected onto straight lines passing through the
origin. In fact, both representations induce metrics which are not translation invariant on PDs.

Building on this picture, we now add a further layer of mathematical rigor by deriving explicit
expressions for the (asymptotes of the) level sets of A/ K. These formulas underpin the visualizations
reported in Figure ] and Figure [5] and the practical considerations we discuss in Remark [3]

Since y > x, for a fixed value z we can write

AMp) _ y-—=
Ko 2K|(1,z,y)ll2”

0<z= (y—z)* = (2Kz)*(1+ 2 + ).

This identity leads to

y*((2K2)* — 1) + 2*((2K2)* — 1) 4 22y + (2K 2)* = 0. 4)
Suppose momentarily that (2K2)? — 1 # 0. Since A is maximized along the direction y = —z,
from [|(1, z, ) |2 > [/(z, y)[|2 we obtain

1
z < —, 2K2)? < 2.
A K<

As a consequence, ((2K2)? — 1)? — 1 < 0. Using this, one can show that Equation (4) describes
a hyperbola, centered at the origin, whose focal points lie on the line y = —xz (indeed, y = «

corresponds to z = 0 and thus cannot be intersected by the hyperbola when z > 0). This means that
we can interpret the level sets of A/ K via the asymptotes of this hyperbola.

Introducing the notation A = 2Kz and B = 1 — A2, the slope of asymptotes of this hyperbola can
be written as

1++v1— B?

mig=——FH - ©)
B

Recall that A% € [0,2] and B € [—1, 1]. Moreover, B is a monotone decreasing function w.r.t. K

(and so 1 — B? is monotone increasing) and changes sign at K = i

To get an even more interpretable view on this, let 6; be the angle between the vectors (1,m;)
(representing the asymptotes) and (1, 1) (representing y = x). That is:

0; = cos~! _Ltmi > 0.
2(1+m?)

Figure [5| displays the functions 6;(K'), whose behaviour we now briefly discuss. As K grows, the
lines identified by each angle 8; move from the line y = x to the line y = —x, with the line of slope
m, rotating counterclockwise and that of slope m rotating clockwise. At first sight, Figure [5a|may
seem to contradict this interpretation for larger values of K, as 6; suddenly decreases, but a closer
inspection shows that this is not the case.

When B changes sign, also m; » change sign. Moreover, when K — i, m1 — oo and so, when

mq changes sign, it goes from pointing upward almost vertically, to pointing downward almost
vertically, and so the angle 6; jumps, as represented in Figure [5al but the line it represents still
moves counterclockwise, and our interpretation remains consistent. Instead, since mo — 0, it does
not jump when K goes across i, as shown in Figure

To summarize, K governs the geometry of the level sets wi (p) = z, i.e. the loci of points in the
diagram that are assigned a fixed weight z. For instance, as K — 0, we have m; » — 1, meaning
that the corresponding level sets move toward the diagonal y = x. Conversely, as K increases, the
level sets associated with a fixed value z move farther away from the diagonal. The case A = 1
(and B = 0) yields a singularity, which now admits a clear interpretation: the asymptote with
coefficient m; becomes the vertical line z = 0. Indeed, substituting 2Kz = 1 into Equation
gives 2zy — 1 = 0.

Figure [5|also provides additional insight, with practical implications, into the behavior of 91,2(K ),
which quantifies how quickly the asymptotes are displaced as K varies. The region most relevant
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for applications is typically the one close to the diagonal (i.e., for smaller values of K), where the
dependence on K is essentially linear.

For example, and as illustrated in Figure [5b] setting K = 0.5 corresponds to assigning a score of
0.5 = Z arctan(1) to points lying at an angle of 7/4 with respect to y = x, that is, at an angle of
/2 with the xz-axis (namely, on the y-axis, halfway between y = = and y = —x). By approximate
linearity, choosing K = (.25 instead assigns the same score 0.5 = % arctan(1) to points near an
angle of 7/8 with y = x, and so on.

In other words, for K < 0.5, the relationship between K and the angle can be bounded as
V2K < 6, < 5 K. In particular, V22K is a first-order approximation of 6, o(K) for K
close to zero. Before proving this, we summarize these considerations and their practical implica-
tions in the following remark.

Remark 3. Taken together, these observations show that any regular grid in (0,0.5] will move
the level set wi(p) = 0.5 from arbitrarily close to the diagonal y = x towards the y-axis in
roughly uniform angular steps. Since noise in persistence diagrams typically lies near y = z, it
is often preferable, as we do in practice, to instead use an irregular grid that is denser near the
lower end of this interval. Additional values larger than 0.5 can also be considered, especially for
unsupervised analyses, if the data are concentrated in the quadrant x < 0, y > 0 (see Figure
and are strongly affected by noise; in that case, values of a > 1 should be explored as well, as
illustrated in Appendix[B.1] trading bicontinuity guarantees for increased stability. Note, however,
that K = 1/+/2 = 0.7 corresponds to the level set wi (p) = 0.5 lying on the diagonal y = —x. We
emphasize that this entire analysis is driven solely by the structure of \] K and does not depend on
the specific choice of the sigmoidal nonlinearity. Consequently, the qualitative behavior of the level
sets and their dependence on K would carry over to other sigmoid functions beyond arctan(z).

Lastly we derive the first order approximation of 6 (K) for K — 0.
By Taylor:

X =cos(f)=1- g + O(6*) for 6 ~ 0.
Thus, we can write 2 ~ 2 — 2X for X = 1. Set:
cos(6;) = X; = 21(1_4-%

For K — 0, we have X; — 1. Again by Taylor:

(m; — 1)

2-2X,; =
4

+O((m; — 1)3) for m; — 1.
Lastly, consider:

2 2
(ni—1)® _L(1EVI=B2 ) L (1EAvV2— AT ) A s
1 i B i R — 2 ’

for A — 0. Remember that A = 2Kz, soif K — 0then A — 0.
Putting the pieces together, we have:

(2K z)?

07 ~

K2

, for K =~ 0.
Since we know that 8; > 0, we obtain: 6; ~ v/2zK for K =~ 0.

B.1 THE ROLE OF «

To illustrate the effect of o and its potential relevance in practice, we propose the following simula-
tion study. The guiding idea is that, when persistence diagrams contain an overwhelming number of
points close to the diagonal that can be regarded as noise (i.e. do not carry meaningful variability),
the 1-Wasserstein distance can be severely affected. Indeed, among the p-Wasserstein distances, the
case p = 1 is the least robust, since the cost of sending points to the diagonal scales linearly with
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(2/m) arctan(1) = 0.5. (2/m) arctan(1) = 0.5.

Figure 4: Comparison of the step function wyx for different values of K and «. In the first row,
decreasing K shrinks toward the diagonal y = x the region where the weight is significantly reduced
for low-persistence points, thereby enlarging the area where the weighting flattens out near 1. The
asymptotes, shown for the level set wg (p) = 0.5, highlight how the location of a fixed score shifts
under different values of K. Moreover, the transition from lower to higher scores becomes more
gradual for larger K, reflecting a smaller Lipschitz constant. In the second row, the role of «
in handling highly noisy diagrams is illustrated: increasing « leaves the level set wg (p) = 0.5
unchanged in position, but sharply increases the steepness of the step. This produces an extended
flat region with low scores near the diagonal, and a correspondingly large flat region with high scores
farther away from it.

persistence. On the other hand, precisely this linear sensitivity can make the 1-Wasserstein distance
particularly effective for discrimination tasks.

To mitigate the influence of near-diagonal noise, other linearization methods such as PIs and persis-
tence splines adopt more rapidly decaying weighting schemes. For instance, in the case of PIs one
may use higher powers of persistence as weights. This is exactly the role played by « for PSs: as
shown in Figure larger values of « induce a sharper decay of the weighting as one approaches
the diagonal y = x.

We now present a simple simulation to demonstrate this effect in practice. We generate persistence
diagrams belonging to two classes 7 = 1, 2, each of cardinality 50, such that within each class there
is a comparable “core” of points away from the diagonal, together with a highly variable number of
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where m1 becomes singular and the corresponding
level set acquires a vertical asymptote.

Figure 5: Behavior of the angular coefficient (in radians) of the asymptotes to the level sets as a
function of K. Near the diagonal y = x (slope 7/4), the angular coefficient varies approximately
linearly with /', and then starts to increase more rapidly as K approaches 1/(1/2 z). The region
close to 0 (i.e. near the diagonal) is the most relevant for handling noise, and the essentially linear
dependence on K there implies that a simple uniform grid in K explores uniformly the correspond-
ing range of angles.

points near y = x. Formally, each diagram has the form

Df = {(¥F, d)}je, U (@), dy)

Jr 73/ 5=1

mp
r=1

and is sampled as follows:

ny, ~ N(N,5%), g ~U([L, N~ 1]),

ny, = | |7k, mi = |7,

b: ~iia N (M, (M;/10)%),  j=1,...,n, 0% ~iia N (M, (M;/10)%),  j=1,...,my,
Pl ~iia N(M;, (M;/10)%),  j=1,... n, Py ~iia N(M;/10,(M;/10)?), j=1,...

&= b3+ 15, = b+ 15

The first subset {(b;C ,d5)}7: | represents the informative points in the diagram, while {(bF, dFyyme
captures the noisy points near the diagonal. The parameter N controls the expected cardinality of

the informative part, whereas N/ governs the noisy part. Note that 7 are sampled uniformly in
[1, N’ — 1], and therefore have much higher variance than 77.

50, M, 100, and M,

In our experiments, we set N 70, and consider N/ €

{10, 1000, 5000, 10000}

For each value of N’, we compute PSs from the sampled diagrams and then perform hierarchical
clustering with average linkage on the resulting PS distance matrix. Cutting the dendrogram to
obtain two clusters, whose partition we evaluate with the Rand index.

We report the results obtained with PS using &' = 0.2 (chosen by visual inspection; see Figure [6)
and two values of o, namely o = 1 and o = 6. For reference, we also compare with PIs (with
parameters selected on a grid to maximize clustering accuracy), using persistence as the weighting
function, first with p = 1 and then with p = 6. The results in Table 2] indicate that higher levels of
stability, corresponding to larger values of p and «, lead to improved clustering performance.
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Table 2: Rand index for different methods and noise levels N’.

Method N’'=10 N’=1000 N’=5000 N’'=10000
PSa=1 0.97 0.66 0.59 0.60
PSa=6 0.97 0.97 0.92 0.96
PIlp=1 1.00 1.00 0.71 0.81
PIp=6 1.00 1.00 1.00 1.00

Class 1, K=0.2, a =1, N'=5000.

60 80 100 120 140

(a) A plot of all diagrams from
class 1, for N = 5000, colored
using wx with K = 0.2.

Class 1, K=0.2, a=1, N'=5000.

250

225

200

175

150

125

100

50 0.0

(b) A plot of all diagrams from
class 1, for N’ = 5000, col-
ored using wx with K = 0.2
and o = 1.

N’ =10000

(c) A plot of all diagrams sam-
pled when N’ = 5000, colored
according to their classes.

Figure 6: Figures related to Appendix We display the data and the effect of increasing « to
sharpen the transition between low and high weight points. The parameter K = 0.2 whose chosen
by visual inspection to separate the noisy points from the others.

B.2 K: AN UNSUPERVISED SIMULATION

In this section, we present a simulation study illustrating that the main effect of the parameter K
is to modulate the contribution of points near the diagonal, thereby altering the geometry of the
vectorizations only when many noisy points are present. To demonstrate this, we consider a setting in
which points are uniformly distributed in R, -, i.e., with a negligible amount of noise, and examine
how varying K changes the relationships between different diagrams. We extend this experiment
to all vectorization methods considered in the paper, assessing how well each topological summary
reflects the Wasserstein geometry of the underlying persistence diagrams.

To this end, we generate independent random pairs of persistence diagrams and compare their 1-
Wasserstein distance with the distances induced by the corresponding vectorizations (or the sliced
Wasserstein distance in the case of SWK). Specifically, we sample 500 independent pairs of dia-
grams, compute their 1-Wasserstein distances, and correlate these values with the distances between
their vectorized representations.

Each diagram is generated as follows: we first draw an integer N uniformly from [1,10%], then
sample an N x 2 matrix with entries independently and uniformly drawn from [1, 10%]. Finally, we
add the first coordinate to the second to enforce the constraint x < y.

The results, reported in Table 3] for different parameter choices across methods, show the impact of
these hyperparameters in an unsupervised setting. The ranges explored for PI and PSpl are chosen
based on the best-performing configurations in the case studies, while for PS we fix Ny = 100 and
a=1

Table 3] also provides a practical validation of Corollary [T} for this generative process, PS achieves
the highest correlation with the original Wasserstein distances, independently of the choice of K.
The next best performance, with almost identical results, is obtained by the sliced Wasserstein dis-
tance, which is the other vectorization method for which a form of inverse continuity has been
established |Carriere et al.|(2017). By contrast, PSpl exhibits by far the weakest agreement with the
Wasserstein geometry, suggesting that it may be ill-suited for unsupervised analyses, as confirmed
by Table[]
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Table 3: Correlation with 1-Wasserstein distance for different parameter settings (values rounded to
107%).

SW (s) PS (K) PI ((Npix, No)) PL PSpl ((h, iter))
5:0.9989 0:0.9993 (50,0.001) : 0.9283  0.9650 (10,5) : 0.1831
10:0.9989 0.001:0.9993  (50,0.1) : 0.9220 - (10,10) : 0.1752
20:0.9989  0.01:0.9993 (50,1) : 0.9216 - (20, 5) : 0.2609

- 0.1:0.9994 (50,10) : 0.9214 (20,10) : 0.2433
- 0.5:0.9996  (100,0.001) : 0.9283 (40,5) : 0.3805
- - (100,0.1) : 0.9220 —  (40,10) : 0.3316
- - (100,1) : 0.9216
- - (100, 10) : 0.9214

C COMPUTATIONAL ASPECTS, RUNTIMES, AND ADDITIONAL
IMPLEMENTATION DETAILS

The computation of a PS scales linearly with both the number of points in the diagram and the size
of the evaluation grid. As shown in Equation (3), it reduces to evaluating standard mathematical
functions in one or two variables. Since these evaluations are independent across points, the process
can be efficiently parallelized with O(1) work per core. As a result, PSs are potentially cheaper than
PIs, which require binning and integration, and PLs, whose fastest known algorithm has complexity
O(nlogn + nN) (Bubenik & Dtotkol 2017), where n = #D and N is the number of nonzero
landscapes. Approximating SWK incurs a similar computational cost of O(n logn) (Carriere et al.,
2017). When evaluated on a grid, PSs have the same dimensionality as PIs on a comparable grid,
since both are scalar fields on 2D manifolds.

For PSpl we ported in python the matblab code found in https://github.com/ZC119/PB,
since the size of PSpls was never exceeding 502, even without optimizing the code, we were able
to run all the needed experiments. Still, since our code is not optimized, the upcoming runtimes
comparison will not feature PSpls.

C.1 RUNTIME SIMULATION

In this simulation, we aim to illustrate the linear computational cost of PSs. To this end, we randomly
sample PDs of varying sizes and compute the corresponding PS, PL, and PI representations. To keep
the comparison fair, we choose grids so that the resulting vectorizations have comparable sizes:
PSs are computed on a grid of shape (100, 200) (so their spherical harmonics representation has
1250 coefficients), Pls on a grid of shape (200, 100), and PLs on a grid of 500 points, yielding a
representation whose size depends on the number of landscapes. We also report runtimes for PSs
including the decomposition into spherical harmonics, so as to compare against the runtimes of the
actually employed vectorization.

The generative process for the random PDs is straightforward: foreach N € {5,10,10%, 103,104, 2-
10*}, we sample a matrix of shape (NN, 2) with entries drawn independently and uniformly from
[1,10%]. We then add the first coordinate to the second to enforce = < y. For each value of N, we
generate 1000 random diagrams.

The results, reported in Figure[7] clearly display a linear relationship between runtime and the num-
ber of points in the diagrams (see in particular Figure [7f), and show that the spherical-harmonics-
based vectorization is very efficient. At the same time, Figure [/|indicates that PIs and PLs are
often computed more quickly. Recall that, for PIs and PLs, we relied on the highly optimized
scikit—-tda persim module. We therefore expect that our current PS implementation could be
further optimized and potentially integrated into this module.
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Figure 7: Figures associated with Appendix [C| The boxplots indicate that PSs achieve runtimes
comparable to established implementations of PIs and PLs, while Figure [7f] illustrates an almost
perfectly linear growth of the median PS runtime with respect to the number of points in a diagram.

D PERSLAY ARCHITECTURES

In our experiments with PersLay, each persistence diagram is first rescaled to lie in [0, 1] X
[0,2] and then processed by a multi-branch architecture combining up to four topological chan-
nels with a small dense head. Between Ngauss 1 and Ngauss = 3 branches employ
GaussianPerslayPhi at different image resolutions, namely 10 x 10, 20 x 20, or 50 x 50,
on the fixed birth—death box [0, 1] x [0, 2]; the corresponding variance parameter is learned during
training. The remaining branch uses TentPerslayPhi evaluated on a grid of Ny samples in
[0, 2], with Nient ranging from 100 to 1000, and the sample locations treated as trainable parame-
ters. In all branches we adopt GaussianMixturePerslayWeight with a mixture of Kgauss
components on the birth—death plane, where K qayss Varies between 5 and 15. Within each branch,
weighted features are aggregated over points by sum pooling and passed through a branch-specific
batch-normalization layer; the Gaussian-image outputs and the tent output are then flattened and
concatenated into a single feature vector.

On top of this representation we place a small fully connected head: a first dense layer with N,y
ReLU units, where Nger,u € {16, ...,48}, followed by a dropout layer with rate rq.op, € [0,0.4],
and a second dense layer with Ngey,u/2 ReLU units. This is followed by a task-specific output layer:
for classification we use a softmax layer with C' (number of classes) units and optimize categorical
cross-entropy, while for regression we use a single linear unit optimized with mean squared error.
In all cases, the network is trained with the Adam optimizer. During our analyses, we explored
different configurations within the parameter ranges described above, monitoring training runs of 20
to 50 epochs (depending on network size) with batch size 32, and then selected the final architectures
reported in Table[d] All other experimental choices (e.g. train—test splits) were kept consistent with
the remaining pipelines.

As already mentioned in the main text, we were unable to identify a PersLay architecture that
achieved competitive performance on the Eyeglasses dataset, even after adjusting the train—test ratio
to increase the amount of training data. We therefore focused on very shallow networks, motivated
by the low intrinsic dimensionality of this case study: PCA on the spherical harmonics representation
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Dataset NGauss Ntent KGauss NReLU Tdrop 2-dim PCA of Eyeglasses Dataset (PSs)
Eyeglasses 1 0 10 16 0 204 °
Tecator 3 500 15 16 0.15 R LN
Growth 3 500 15 16 025 . e s 0t 1
NOx 3 500 15 16 025 10 ce e e
DYN_SYS 3 500 15 48 0.40 o, ¥, 2
ENZYMES_JACC 3 500 15 48 0.40 . .‘!3.. WO o ?
POWER 3 500 15 48 040 |0 Fg T "
SHREC14 3 500 15 48 0.40 = S I
‘. % *Q
~10 o ®o o s
o0
Table 4: PersLay hyperparameters used for each case e .
study. o0 . 6
° 4

-150 -100 -50 o 50 100 150 200
PC1

Figure 8: PS-based PCA of the Eye-
glasses dataset.

of PS shows that the first principal component alone explains 0.985 of the variance (see Figure[8). In
the end, the best-performing architecture used a single GaussianPerslayPhi layer with resolu-
tion 10 X 10, no TentPerslayPhi branch, no dropout, and a Gaussian mixture with Kgauss = 10
components.

Lastly, we note that, by choosing as point transformation (Carriere et al., 2020)
p— ReLU((v, (1,p))), v e S?,

one essentially recovers the basic building block of PSs. This suggests that PSs could, in principle,
be integrated directly into a PersLay architecture as an additional topological channel, for instance
by treating a grid on S? as trainable feature, along with the weights, in close analogy with how the
landscape-based transformation is handled.

E ABLATION STUDIES

Lastly, we present a set of ablation studies designed to isolate the practical impact of individual
PS parameters on performance. To this end, we considered the four datasets from |Bandiziol &
De Marchi|(2024) and, in each experiment, varied a single parameter while keeping all others fixed.
These datasets were chosen because, for a fixed method, they exhibit substantial variability in clas-
sification accuracy: some case studies are considerably more challenging than others.

The default parameter configuration, i.e., the values used whenever a parameter was not under abla-
tion, was set to n = 40, K = 10~2, and o = 1. The number of estimators in the random forest was
fixed to 100 throughout.

We first varied 2Ny € {30, 40, 50}. We then explored K € {—1,0,0.01,0.1,0.5}, where K = —1,
K = 0 respectively denote, with an abuse of notation, the weighting function p — (y — x)/2 (used
by |Gotovac Dogas & Mandaric| (2025)), and the constant weighting function equal to 1. Finally, we
examined o € {1,2,4,8}.

The results, reported in Table [5] show that PSs are very robust to parameter choices in supervised
case studies. This is largely because, in supervised settings, the learning algorithm can compensate
for suboptimal weighting functions and still effectively suppress noise in the data (which is precisely
the role of K and «). In unsupervised situations, the choice should be guided by Appendix
Remarkably, the only choice which yielded considerably worst results is K’ = —1, which we used
to indicate the weighting function used in|Gotovac Dogas & Mandaric|(2025)).

Performance is also highly stable with respect to the choice of grid (and thus the dimension of
the vectorization), despite the different sizes and difficulty levels of the considered case studies. We
attribute this to the fact that each PS is a Lipschitz function on the sphere, and therefore well behaved
and not overly difficult to approximate via spherical harmonics expansions.

As noted in Section[4.3] the McGill 3D Shapes dataset is the only exception to this pattern: despite
its modest size, substantially increasing the dimensionality of the PS vectorization led to clearly
improved results.
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Table 5: Ablation Studies. Mean = standard deviation (over 10 runs) for each dataset and parameter

setting.
POWER DYN_SYS SHREC14 ENZYMES_JACC
2Ny =30 0.760£0.026 0.779 £0.035 0.909 £ 0.020 0.364 £ 0.028
2Np =40 0.764£0.019 0.783 +£0.018 0.887 £0.035 0.354 £ 0.028
2Ny =50 0.768£0.016 0.81740.021 0.881 £0.037 0.378 £ 0.022
2Ny =60 0.754£0.015 0.809+0.026 0.893 £0.032 0.386 £ 0.026
K=-1 0.481+£0.012 0.155+£0.012 0.031 £ 0.011 0.134 £0.010
K=0 0.763 £0.013 0.809+0.029 0.847 £0.023 0.349 £+ 0.027
K =0.01 0.773£0.018 0.790+0.029 0.884 £ 0.023 0.362 £ 0.041
K =01 0.766 £0.024 0.806 £0.022 0.912 + 0.031 0.371 £ 0.027
K=05 0763£0.017 0.801+0.015 0.907£0.033 0.357 £ 0.025
a=1 0.770 £0.027 0.783 £ 0.037 0.893 £0.028 0.364 £ 0.031
o =2 0.769 £0.020 0.805+0.030 0.877 £ 0.026 0.368 £+ 0.035
a=14 0.755 £ 0.019 0.799+0.017 0.886 £ 0.030 0.347 £ 0.038
a=238 0.774£0.015 0.803 +£0.022 0.908 £ 0.028 0.371 £ 0.024

F PROOFS OF THE RESULTS

Proposition 4. Set \(p) :=

forany K > 0 and a > 1. They are also effective weightings for o = 1.

Yy—x

w(p) = A(p)?, wi(p) = %arctan <

21 (Lp)ll2

The following are stable weightings:

Alp)®
Ka

Proof. The functions I, have the following forms:

Lipschitzianity is obtained because the components of the functions I'z; and I, are differentiable
and have bounded partial derivatives on R

).

) = —WZB
e = e i Y
(y —x)®
2K | (L.7) ||a> (L.23).

2
Ly, (z,y) = - arctan (

2
<y

To check the norm condition for stability, we write down the expressions of || I, ||o:

2
H FwK (x,y) ||2= 7rarctan(

I T (2, y) [l2=

At this point, we observe that:

and that:

arctan (

(y —x)”

20 || (1,z,9) 571

(y — )

(y — )"

201 || (1,2,) 57

(y —z)*

combined, prove it for wg.

=) L2y <
20K« ” (vay) ”2)

The first observation is enough to prove stability for w, while the second and the first observations,
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Now we prove that both weightings are effective for o = 1, exploiting Equation (Z). Note that the
functions have become:

— )
2

Y
1 Taey) o= Y= o p— A o

2 (y —x)
Fw ) - tan 17 ) .
|| K(m y) ||2 arcta. <2K— H (17 7y) ”2) || ( z y) H2

To see that I'; is effective, it suffices to observe that, plugging the expression of || I'z ||2 in Equa-
tion (2), we directly obtain the thesis.

Now we deal with I'y,,.. Set up,, =3 . an pop.

We rewrite Equation (2) as:

lim sup Y [ Tup(p) lo< limsup 7 any | Tu(p) [l 0.

n
PEDy,|Ipll2>r PEDy,[|pll2>r

Thus, for every € > 0, there is R > 0 such that, for every » > R the following holds:

sup Y || Tue(p) [lo< e 6)

n
PEDy,||pll2>r

Hence, for every n, we have:

(y —x) e
Z arctan (2[(|(171‘7y)||2) < 5 (7)

p=(2,y)EDn,||pll2>r

In particular, Equation (7)) implies m — 0 for r — oo. Equivalently, for every C' > 0,

there is ¢ such that < C.

(y—z)
2K[(1,2,y)]l2
The key observation now, is that, due to the concavity of z — arctan(z), which is easy to see due
to the strict monotonicity of its derivative 1—5-% we have:
arctan(e)

z < arctan(z) < z
€

arctan(e)

for every z € [0, ¢], and every fixed ¢ > 0. In fact, z > =

z is the straight line joining (0, 0)

and (g, arctan(g)). Thus, for every C' > 0 and for every r¢ such that 21{‘?2/1;;)?/”‘2 < C, we have
for every n:
anp(y — ) 2ap (y — )
' P < . arctan Lz, y) |2,
2 2 L K Gy le) |00
PEDn,||pll2>rc PEDn,||pll2>rc

. ; __ 2arctan(C)

In particular, we can find C’ > 0 such that:

! s < .
C" lim sup Pers(up,, ) < Tgrgosup Z anp || Tug (p) |l2— 0.

T—00 n n
PEDy,|Ipll2>r

And the thesis follows. O

Theorem 4. Let jip, iy, be PDs and let w : R? — R be a stable weighting. We have:
dH(ZM“é ) Zu“é,) < max{C, C/}Wl (,UD, /U‘D')a

with C, C' > 0 being the stability constants of w.
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Proof. Consider yip = 3, ap0p, i’ = >~ ¢ pr bgdq and a partial matching v between them.
Without loss of generality, suppose C' = C".

A generic point in Z,,» has the form:
P= Z apsplu(p) € Zys
peD

with s;, € [0, 1]. We start by considering p € D., and P € Z,» with the following form:
P =yly(p). (®)

Note that, by definition, v, € N and vy, > 1.

Consider the point:
Q=7lu(v(p))
Since v, < b.(y). there is s € [0, 1] such that b,y = ,. Thus, Q € Z#%

‘We have:

[ P=Q 2<% I Tu(p) = Tu(v(®) 2 %C [ o —~(p) |15 -

For P in the form of Equation (8), we define ®(P) := Q.

Consider now a generic P € Z,4:

P = Z apsple,(p) = Z Tosplw(p) + Z (ap — Yp)spluw(p) + Z apspl'u(p),

peD peD, pED~ pED—D,

We build ) as follows:
Q= Z sp®(plw(p))-

p€DS
‘We have:
| P—Q 2= Z spp || Tw(p) — ) M2 + Z splap —7p) | Tw(p) [l2 +
D D,
e e ©)
Y spap [ Tulp) llz -

pED—D,Y
Plugging into Equation (9) the following facts:
LI To®) 2 Cllp = Al
2. M2< V2 lllloos

3. sp < 1foreveryp € D,

we obtain:

I P—Qll2<
C \/iz%u”p_"/ Hoo‘f'z =) [P = Al + Z ap [ P — A |l

pED, peED, peED—-D,

Since we can do this construction for any partial matching v, for every P € Z,«, we found ) such
that:

| P—Q |2< CWi(up, o).
Reversing the role of up and ;1. we obtain the thesis. O
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Dy ) = 0, withw : R? - R

w w
Dy D

Theorem 5. Let {p, }nen be a sequence of PDs such that dp (Z),
being an effective weighting. Then W1 (up,,, tp) — 0.

Proof. Combining Proposition 2| and Theorem |1 we obtain that dp(Z,.x s, ) — 0 implies
% 25 44, and that {1, } is uniformly integrable. We immediately have %, 5ous. We
only need to check that Pers(up, ) — Pers(up).

Set up, = ZpeDn A, pOp.

By uniform integrability we have:

lim sup/ w(p) | pll2 dup, (p) = lim sup/ | pll2 dup, (p) = 0.
B T—00 B

T neN.J B¢ neNJBe

Since w is an effective weighting, this implies:

lim sup Persp.(up,) — 0,
T neN

For any » > 0 we can write:

2Pers(up, ) = / (y — z)dup, ((z,y)) = /

R§<y B

(v — @)y, (z,4)) + / (v — 2)dpio, ().

By

c
T

Similarly, we can write:

2PerS(uD):/ (y—x)duD((x,y)):/

RZ<y B

(v — 2)dup () + / (v — 2)dpp (. )).

B

If r is big enough, being D finite, we have supp(D) C B,, and so [, (y — )dup((z,y)) = 0 and
S, (v = @)y (2,y)) = 2 Pers(yup). ’
Fix some r big enough so that the above holds. Since B,. is compact we can write a positive test
function g : RS _,, — [0, 1] such that:

g is continuous;

e g=1onB,;

* supp(g) is compact.

For such a g, we obtain:

0< [ w-adun. (@) < [ alen)y =), (@0).

™ z <y

Moreover, using vague convergence, we get:

[, s@nt=adup, (@) 5 2Persiup).

<y

But:
/Rz 9(z,y)(y — )dup, ((z,y)) =

9(z,y)(y — x)dup, ((x,y)) + /B 9(z,y)(y — x)dup, ((z,y)) =

(v — 2)dup, ((,y)) + / o, 9)(y — 2)dup, (. 1))-

- Be¢
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Thus:
0< /R§<y g(z,y)(y — z)dup, ((z,y)) — /B (y — z)dup, ((z,y)) =
/ g(z,y)(y — z)dpp, ((x,y)) < / (y — x)dpp, (2, y)).
Be Be

Putting the pieces together, for every € > 0 there exist r. and N, such that, for every n > N.:

| 2Pers(up, ) - /B (v — 2)dup, (1) |< .

| 2Pers(up) — /2 9(z,y)(y — )dup, ((z,9)) |< e,

IRz<y

oz 9)(y — 2)dpp, (z,9)) - / (v — 2)dup, (2,9)) < &,

2
<y B7's

o< |
R

entailing 2 | Pers(up, ) — Pers(up) |< 3e, concluding the proof.
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