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ABSTRACT

The paradoxical nature of T-cell receptor (TCR) specificity, which requires both
precise recognition and adequate coverage of antigenic peptide-MHCs (pMHCs),
poses a fundamental challenge in immunology. Efforts at modeling this complex
many-to-many mapping have focused on the detection of reactive TCR-pMHC
pairs as a binary classification task, with little success on unseen epitopes. Here,
we present TCR-TRANSLATE, a framework that adapts low-resource machine
translation techniques including semi-synthetic data augmentation and multi-task
objectives to generate target-conditioned CDR3β sequences for unseen input
pMHCs. We examine twelve model variants derived from the BART and T5
model architectures on a target-rich validation set of well-studied antigens, find-
ing an optimal model, TCRT5, that samples known and native-like CDR3β se-
quences for unseen epitopes. Our findings highlight both the potential and lim-
itations of sequence-to-sequence modeling in rapidly generating antigen-specific
TCR repertoires, emphasizing the need for experimental validation to bridge the
gaps between predictions, metrics, and functional capacity.

1 INTRODUCTION

T-cell receptors (TCRs) are highly specific, stochastically generated pattern recognition receptors
that enable the immune system’s T cells to recognize nonself cells such as those that are infected or
malignant. These TCRs interact with intracellular peptides presented on major histocompatibility
complexes (MHCs) at the surface of most somatic cells, giving rise to a network of TCR:peptide-
MHC (pMHC) specificities capable of self-nonself discrimination with single-amino acid precision
(Kalergis et al., 1999). T cell based therapies including CAR-T, engineered TCRs, and TCR bis-
pecifics have shown durable treatment across a variety of indications (Tzannou et al., 2017; Chung
et al., 2024; Harrison, 2024) but are bottlenecked by laborious and low-yield in-vitro TCR discovery
platforms for identifying specific and self-tolerant TCRs (Liu et al., 2022). In-silico methods to deci-
pher the TCR::pMHC mapping have the potential to transform the field of precision immunotherapy
by operationalizing a potent mechanism of targeting cells at the sub-protein resolution.
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Experimentally, individual TCRs have been shown to recognize up to 106 unique peptides
(Wooldridge et al., 2011), and vice versa (Bentzen et al., 2018; Sewell, 2012). The resulting many-
to-many mapping is further confounded by sparse and biased paired experimental data, with most
antigen-specific TCRs being identified in the context of only a few, well-studied diseases (Hudson
et al., 2023). Current approaches in modeling antigen-specificity revolve around the CDR3β loop
of the TCR, a highly variable portion of the TCR that plays a strong role in determining antigen
specificity, and frame the problem as a binary classification task (Gao et al., 2023; Nielsen et al.,
2024; Zhang et al., 2024b)-with limited utility in TCR design (Wu et al., 2021). Prior work on
generative models focus on unconditional generation of TCR sequences that recapitulate repertoire
level statistics in the aggregate (Davidsen et al., 2019; Isacchini et al., 2021). More recent work on
conditional generation in Fast et al. (2023) demonstrates the potential for sequence based genera-
tion strategies using a 1-D CNN encoder and LSTM decoder to sample CDR3β sequences against a
known antigen. Though transformer architectures for this task were introduced in Yang et al. (2023)
and Karthikeyan et al. (2023), and related research has since emerged in Zhou et al. (2024) and
Lin et al. (2024), a deep understanding of the real-world utility and limitations of conditional TCR
sequence generation remains elusive.

In this work, we adopt the framework from Karthikeyan et al. (2023) (See B.1) and systematically
trained twelve sequence-to-sequence (seq2seq) (Figure 1a) model variants of the BART (Lewis et al.,
2019) and T5 (Raffel et al., 2020) architectures (Figure 1b) using techniques derived low-resourced
machine translation (Haddow et al., 2022). Specifically, we sought to leverage the reflexive nature of
sequence co-dependencies between source-target pairs by jointly learning a bidirectional mapping
(Niu et al., 2018; Yang et al., 2019), sharing representations and aligning latent spaces across both
sequences (Ding et al., 2021). To the best of our knowledge, these approaches have not been applied
to the functional protein design domain.

We deeply characterize the performance of our models under optimal conditions of our validation
dataset comprising the top-20 pMHCs with the most known cognate TCRs (Figure 1c-d, B.2). By
forfeiting their inclusion in the training data to maximize exact sequence matches during evalua-
tion, we find some methods increased performance at the cost of diversity, driven by the generation
of polyspecific TCRs observed to bind multiple unrelated pMHCs. This along with the conserved
model performance across pMHCs, highlight the critical role of training data composition and its
relationship to the validation set. Finally, in order to evaluate performance of our model in a simu-
lated real-world scenario, we demonstrate better-than-random performance of our flagship model on
a subset of test antigens from last year’s IMMREP2023 TCR specificity challenge not seen during
training or model selection. Furthermore, these epitopes are highly dissimilar to epitopes seen dur-
ing training with a minimum edit distance of 5. Our results emphasize the potential and qualify the
drawbacks of sequence-to-sequence modeling for sampling real antigen-specific TCR sequences in
a severely data-constrained setting.

2 RESULTS

For our in-silico exploration and validation experiments, we considered three different training
schemes for the BART and T5 models each, stratified by their pre-training status for a total of twelve
model variants (See B.3). All models were evaluated on CDR3β sequence generation (Figure 2a).
Our baseline models (TCRBART-0 and TCRT5-0) were trained on the pMHC → TCR direction with
no pre-training. The bidirectional models (TCRBART-0 (B) and TCRT5-0 (B)) were trained on con-
ditional sequence generation in both directions (pMHC ↔ TCR). Finally the multi-task models were
trained on both directions as well a masked language modeling loss term for both TCR and pMHC
sequences (TCRBART-0 (M) and TCRT5-0 (M)). Similarly, six models were pre-trained and then
finetuned using the same learning tasks to add TCRBART-FT, TCRBART-FT (B), TCRBART-FT
(M), TCRT5-FT, TCRT5-FT (B), and TCRT5-FT (M) (Figure 2b). Model checkpoints were chosen
according to B.6, to compare training paradigms by their best representative model performances.

We first calibrate our metrics by benchmarking conditional models P (TCR|pMHC) against un-
conditional generation P (TCR). We evaluated our baseline conditional models TCRBART-0 and
TCRT5-0 on a reduced set of metrics to determine the advantage of target-conditioning. As our
unconditional baseline, we used soNNia’s ‘Ppost’ (Isacchini et al., 2021), a generative model
that extends V(D)J recombination to include thymic selection, sampling a TCR distribution closer
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to what is observed in the periphery. In addition, to investigate our training set composition’s im-
pact on validation performance, we evaluated sequences from TCRBART-0 and TCRT5-0 derived in
an input-free manner (TCRBART-Unconditional, TCRT5-Unconditional). As expected, we found
that the conditional models outperformed unconditional approaches across all metrics except global
diversity (Figure 1e). Surprisingly, TCRT5-Unconditional achieved non-zero F1s, revealing high-
likelihood training CDR3β sequences in the validation set.

2.1 MULTI-TASK TRAINING INCREASES ACCURACY METRICS WHILE DECREASING
DIVERSITY METRICS OF GENERATED SEQUENCES

Under our evaluation framework, no models outperformed the others on all metrics across all
pMHCs, making identifying an optimal model and training mode difficult (Table 1). For exam-
ple, while mean and median sequence recoveries increased for bidirectional and multi-task variants,
their Char-BLEU scores decreased (Figure 2c). On F1 score, some models excelled on a small
subset of examples and others showed marginal improvements across a broader set, observed as a
divergence in the mean and median scores. Reassuringly, however, all training procedures main-
tained or improved F1 performance for over 50% of validation pMHCs over baseline (Figure 2d).
Using mean average precision (mAP) to assess calibration, we found that the bidirectional models
outperformed baseline, and both outperformed multi-task variants (Figure 2e). Diversity metrics,
however, revealed a decline in unique sequences generated across pMHCs going from the baseline
models to the bidirectional and multi-task ones. This was most evident for TCRBART-0 (M), which
had strong accuracy metrics despite a drop of over 80% in unique sequences generated (Figure
2f), highlighting the importance of using both accuracy and diversity between pMHCs to represent
model performance and demonstrate learned input sensitivity.

Therefore, to holistically characterize the models on accuracy and diversity, we visualized perfor-
mance on a biaxial plot of average F1 score and mean pairwise Jaccard dissimilarity. We chose the
average F1 score to summarize model accuracy for its sensitivity to capturing positive outliers, a
useful property given the sparsity of data availability. Viewed through this lens, we found that while
pre-training and finetuning pushed the diversity/accuracy pareto front for the TCRT5-FT variants,
we observed the complete opposite effect of degradation in both model performance and diversity for
the TCRBART-FT models (Figure 2g). Since both TCRBART-FT and TCRT5-0 generated less than
10% of the maximum number of unique sequences, with average Jaccard dissimilarities of less than
0.5, we fix the TCRBART-0 and TCRT5-FT variants as the best BART and T5 models, and restrict
further analyses to these models. However, the differences between the baseline, bidirectional, and
multi-task models of TCRBART-0 and TCRT5-FT were less obvious. Crucially, remained the fact
that the bidirectional and multi-task model variants generated fewer sequences and still improved
performance. When we examined the generated sequences, we saw an enrichment for empirically
de-risked CDR3β sequences, which we suspect yielded low loss as a binder to many training pMHCs
and incidentally multiple validation examples (Figure S3).

2.2 MULTI-TASK MODELS PREFERENTIALLY SAMPLE POLYSPECIFIC CDR3β SEQUENCES
VIA TRAINING SET STATISTICS

While some level of TCR cross-reactivity is essential to TCR function, distinctly ‘polyspecific’
TCRs (Wucherpfennig et al., 2007) bind sufficiently unrelated pMHCs (Figure 3a). While Quin-
iou et al. (2023) lay out the criteria for a polyspecific TCR as: (i) possessing higher probabilities
of generation (ii) sampling particular V and J genes at a higher rate (iii) shared CDR3 sequences
between individuals, and (iv) activation by multiple unrelated peptides, we identify an ’ML-centric’
notion of polyspecificity and identify CDR3β sequences found in multiple disease conditions and
bound more than two epitopes (n=915 CDR3β sequences). To understand competitive performance
at a fraction of the diversity we qualify the translations’ polyspecificity status. Between TCRBART-
0 and TCRT5-FT, we found that the multi-task models generated more polyspecific CDR3β se-
quences for both TCRBART-0 (pbidxn = 0.048, pmulti < 0.0001) and TCRT5-FT (pbidxn = 0.002,
pmulti = 0.009) and their mean polyspecificity increased as well (Figure 3b-c). We observed an in-
verse correlation between the number of polyspecific TCRs and unique sequences generated (Pear-
son’s r: -.957).
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Table 1: Performance Metrics on Top-20 Validation pMHCs. Mean/Median values are reported
where applicable. Best in class metric is highlighted in bold.

Model Char-BLEU (↑) F1@100 (↑) %Rec. (↑) mAP (↑) Nunique (↑)

TCRBART-0 93.5 .057/.010 81.7/81.5 0.163 1276
TCRBART-0 (B) 93.0 .055/.015 81.9/83.9 0.196 1302
TCRBART-0 (M) 91.7 .042/.030 84.3/85.9 0.140 240

TCRBART-FT 87.4 .013/0.00 84.1/85.1 0.049 240
TCRBART-FT (B) 89.8 .014/.010 83.5/84.6 0.062 185
TCRBART-FT (M) 86.1 .023/.010 84.5/85.0 0.048 127

TCRT5-0 89.5 .040/.030 83.2/84.7 0.142 129
TCRT5-0 (B) 34.8 .054/.035 84.5/85.9 0.167 139
TCRT5-0 (M) 37.8 .054/.020 84.7/85.9 0.129 177
TCRT5-FT 96.4 .091/.020 84.9/85.0 0.246 1300
TCRT5-FT (B) 93.5 .083/.015 84.6/85.1 0.279 933
TCRT5-FT (M) 94.4 .082/.020 84.7/84.6 0.180 833

However, given our dataset’s deduplication step, these polyspecific CDR3β sequences were also
more represented than those with fewer known binders. To determine if the models were parroting
sequences seen most during training at similar frequencies, we examined the translations’ rank order
against potential explanatory variables such as polyspecificity, number of cognate epitopes/alleles,
and training set incidence. We found that while the highly ranked sequences were more common in
the training set, they also had more dissimilar known cognate epitopes, suggesting robustness in cap-
turing polyspecificity (Figure S4a-b). Regression analysis of occurrence across validation pMHCs
and training frequency showed that this relationship was surprisingly attenuated in the multi-task
models with Pearson’s correlation coefficients of 0.41, 0.42, and 0.3 for TCRT5-FT, TCRT5-FT (B),
and TCRT5-FT (M), respectively and 0.43, 0.35, and 0.2 for TCRBART-FT, TCRBART-FT (B),
and TCRBART-FT (M) as well (Figure S4c). These results suggest that the multi-task models are
sampling more polyspecific CDR3β sequences, somewhat independent of training frequency.

Since our validation set is comprised of highly immunogenic viral peptides known to be the targets
of polyspecific TCRs, we checked if our F1 performance could be explained solely by polyspecific
generations. Although many of the models’ translations across pMHCs were polyspecific with high
model likelihoods, we found that the baseline models sampled both more non-polyspecific and non-
polyspecific true positive binders than the bidirectional and multi-task models (Figure 3e). Given our
desire for a model that generates CDR3β sequences to rare epitopes, we find polyspecific TCR gen-
eration a potentially misleading avenue for metric hacking, misrepresenting true usefulness. Thus,
while the bidirectional and multi-task models show promise in increasing accuracy through self-
consistency for the receptor:ligand design problem, we note that their utility may be limited given
the current asymmetrically sampled TCR:pMHC landscape. We therefore select TCRT5-FT as our
flagship model and henceforth refer to it simply as TCRT5.

2.3 TCRT5 GENERATES REAL UNSEEN ANTIGEN-SPECIFIC CDR3β SEQUENCES

Having selected TCRT5 for its superior accuracy, diversity, and minimal reliance on polyspecific
TCRs, we proceeded to assess model usefulness in a more qualitative manner. First, to evaluate
how well TCRT5’s translations reflected the global statistics of our reference set, we examined the
distributions of CDR3β lengths and generation probabilities (Figure 4a). TCRT5 captures CDR3β
lengths with a slight decrease in spread (mean: 14.6, sd: 1.2) compared to the reference set (mean:
14.5, sd: 2.0). However, its generations had a significantly higher log pgen (mean: -7.04, sd: 0.85)
than the reference set (mean: -9.83, sd: 2.356), indicating TCRT5 was missing lower probability
sequences. This reduction in repertoire diversity was also captured by various sequence embedding
models (Figure S5a-c) (Jiang et al., 2023; Zhang et al., 2024a). To determine whether this effect
stemmed from our choice of decoding algorithm, we compared pgen’s from beam search and an-
cestral sampling against reference CDR3βs and found beam search shifted the distribution towards
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sequences of higher biological likelihood than ancestral and reference (Figure S6a). Interestingly,
these pgen values correlated with model log-likelihood scores (Figure S6b).

We then assessed the intra-sequence diversity of the individual translations for the validation
pMHCs. Sequence logo plots of the cognate sequences for well-known canonical epitopes revealed
a decrease in diversity, particularly near the start of the sequence (Figure 4b), a loss of entropy quan-
tified using the positional ∆entropy value (Figure 4c), likely due to the bias of starting sequences
with the ‘CASS’ motif. Additionally, we used the Jensen-Shannon divergence to assess shifts in
k-mer frequencies between the reference and translation sequences. SoNNia generated sequences
demonstrated divergence from reference k-mer usage at lower values of k, while TCRT5 recovers
at longer k-mer lengths and both converge at large k (Figure 4d). We found consistent results at
k=1,000 (Figure S7). To determine TCRT5’s input-specificity, we computed the Jaccard index to
assess overlap between translation sequences across pMHCs (Figure 4e) and found sequences with
high similarity clustered together, such as melanoma antigens EAAGIGILTV and ELAGIGILTV,
though more data is required to determine to what extent this is true. Finally, we compared genera-
tion probabilities, polyspecificity, and training set frequency and found higher generation probability
sequences were more frequently sampled, with no clear correlation between training frequency and
increased sampling (Figure 4f).

Finally, to test whether TCRT5 could generate known binders not seen during training, we stratified
the validity (OLGA pgen > 0), known specificity, and training set membership of each of the 100 x
20 = 2,000 input:translation pairs and found that of the 2,000 generations, 1,996 of them had nonzero
generation probabilities, 181 were known binders, and 7 were TCRs that were not seen during the
supervised training (Figure 4g). Notably, one of these seven was not found in the pre-training set,
indicating a real potential for sampling de novo TCRs spanning multiple pMHCs: KLGGALQAK
(A*03:01), LLWNGPMAV (A*02:01), YLQPRTFLL (A*02:01), and YVLDHLIVV (A*02:01),
demonstrating that the performance wasn’t localized to a single pMHC.

2.4 TCRT5 ACHIEVES NON-RANDOM PERFORMANCE ON SPARSELY VALIDATED EPITOPES

The goal of a TCR design model like TCRT5 is to sample TCRs against rare epitopes not seen during
training, especially when few or no known TCRs exist. As highlighted in the recent IMMREP2023
TCR specificity competition, models for binary prediction often struggle to outperform random pre-
dictors in this regime (Nielsen et al., 2024). We sought to evaluate TCRT5 in this context by generat-
ing CDR3β sequences for unseen ‘private’ epitopes from the IMMREP dataset that were absent our
training and validation set (FTDALGIDEY, SALPTNADLY, TSDACMMTMY, TDLGQNLLY-all
presented on HLA-A*01:01) (Figure 5a, See Table S2). While there are no publicly available mod-
els that condition on peptide-MHC information, we compare our model against the unconditional
soNNia (Isacchini et al., 2021) as well as GRATCR (Zhou et al., 2024) and ER-BERT (Yang et al.,
2023), which both sample CDR3β sequences from epitopes in an MHC-agnostic manner. For these
analyses we generated 1,000 generations per pMHC and observed only TCRT5 yielded a known
sequence, one of the twelve known binders for FTDALGIDEY at rank 514. We observed that while
TCRT5 and GRATCR achieve comparable performance, ER-BERT had consistently lower metrics
(Figure 5b). GRATCR as implemented (See B.7.1), generated a significant number of repeated
sequences within each epitope compared to TCRT5 and ER-BERT (Figure S8). We compared cal-
culated sequence recovery rates found that TCRT5 and GRATCR achieved a higher mean sequence
recovery across all peptides as compared to soNNia and ER-BERT (Figure 5c). Interestingly, we
found ER-BERT did not consistently generate the N-terminus cysteine or the C-terminus pheny-
lalanine, which we suspect explains its reduced performance on sequence recovery based metrics.
However, when we compared the conditional likelihoods of the known binders against the synthetic
negatives from the IMMREP dataset, we found the performance between TCRT5 and ER-BERT to
be comparable (Figure S9).

While mean sequence recovery of generations serves as a preliminary sanity check for antigen-
specificity, we sought to further assay whether both models generated more useful individual se-
quences than an unconditional generator (soNNia). Since we found the dynamic range for nonzero
F1 scores to occur when sequence recovery was greater than 90% (Figure S2c-e), we checked to see
if any of the models generated more sequences with ≥ 90% sequence identity to the true cognate
sequences compared to random. We found that only TCRT5 generated sequences within this thresh-
old for the test peptides. To determine the significance of this, we established two independent, but
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complementary null distributions of our test statistic computed using: 1) soNNia generations with
real reference sequences 2) TCRT5 generations with a randomized size-matched reference set. We
found that for all of the test epitopes except one, TCRT5 generations showed statistical significant
at a threshold of α=0.05 (Figure 5d, See B.8). For the soNNia random generations null, we observe
p1-values of < .0001, .079, < .0001, and .004 for FTDALGIDEY, SALPTNADLY, TDLGQNLLY,
and TSDACMMTMY, respectively. For the random references null, we observe p2-values of .006,
.254, .028, and .024. These results indicate that while TCRT5 generates sequences closer to ground
truth than random, there may be some degree of non-specific generation as as well.

3 DISCUSSION

One of the most fundamental questions in immunology is how T-cell receptors (TCRs) achieve
precise recognition of ”nonself” pMHCs through a complex interaction network that has posed a
significant challenge to modeling efforts. Addressing this challenge would significantly advance
our understanding of T cell biology, offering new insights into adaptive immune receptor speci-
ficity and providing a foundation for diverse applications in cutting-edge therapeutic modalities.
Our work demonstrates the potential of generative models to sample antigen-specific repertoires
with high fidelity and diversity in a data-sparse domain. This capability would have profound im-
plications for cellular therapies, enabling the rapid generation of TCRs that can be screened for
cross-reactivity with self-epitopes, streamlining the traditional labor-intensive TCR discovery pro-
cess. While our study reveals the advantages and limitations of sequence-to-sequence models in
capturing TCR specificity, it also underscores the need for further validation to bridge the gap be-
tween computational predictions and functional relevance. As more data becomes available, both
model performance and evaluation metrics are expected to improve, moving the field closer to scal-
able, high-precision TCR design for precision immunotherapy.
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A REFLECTION

In this study we set out to investigate the potential of seq2seq models to design antigen-specific TCR
sequences for unseen epitopes and characterize these generations beyond simple metrics. Building
on our previous framing of TCR design as a sequence-to-sequence task, we explored low-resource
machine translation techniques to address the scarcity of labeled TCR-epitope data. To this end,
we introduced joint pre-training, bidirectional training, and semi-synthetic data augmentation, and
evaluated these approaches on a target-rich dataset of well-studied pMHCs. Remarkably, the mod-
els demonstrated an ability to generalize outside a skewed training distribution, achieving exact
sequence matches to reference CDR3β sequences of viral epitopes and neoantigens. This learned
input sensitivity, while not perfect, suggests robustness to data imbalance, which can help inform
in-vitro data generation strategies on depth vs. breadth-first discovery of antigen-specific TCRs for
rare pMHCs.

After confirming the utility of target-conditioning, we leveraged low resource machine translation
methods including pre-training and bidirectional training to learn the intra- and inter- sequence co-
dependencies of TCR and pMHC. Interestingly, we found that pre-training had opposite effects for
TCRBART, which used BERT(Vaswani et al., 2023)-style token masking, and TCRT5, pre-trained
on T5-style span masking. Since both used a masking rate of 15%, we suspect that the higher order
k-mers learned by span masking may be better suited for CDR3β sequences, though more work is
necessary to confirm this. For both TCRBART and TCRT5, the bidirectional and multi-task models
achieved higher sequence recovery and median F1 scores across validation pMHCs, driven by a bias
towards sampling polyspecific TCRs. Unsurprisingly, the performance of all models correlated with
the density of reference data for each pMHC. Notably, we found a significant increase in F1 sensi-
tivity above a 90% sequence identity threshold, suggesting this metric may be a more meaningful
indicator than mean sequence recovery for assessing antigen-specific repertoire quality.

Putting it all together, we selected TCRT5 as the most well-rounded model for its high accuracy, di-
versity, and attenuated reliance on polyspecific generations. We rigorously benchmarked the model,
highlighting a reduction in repertoire diversity driven by preferential sampling of sequences with
high V(D)J generation probabilities via beam search. Still, we show TCRT5’s utility by generating
validated antigen-specific CDR3β sequences not encountered during training. We further demon-
strate its greater than random performance on the IMMREP2023 unseen antigens, possessing sub-
stantially fewer known cognate TCRs, providing a pathway for generating functionally relevant TCR
repertoires for sparsely sampled epitopes likely to be encountered in a real therapeutic scenario. Ad-
ditionally we benchmark ER-BERT and GRATCR, and show performance comparable to TCRT5 on
individual metrics while TCRT5 scores well across all metrics, especially sequence recovery above
90%. Together, these results highlight the exciting potential of seq2seq models while underscoring
the importance of carefully considering metrics in prioritizing models and predictions.

The current iteration of our study has many limitations, stemming from both our approach and an
innate scarcity of available data. First and foremost, is our focus on the CDR3β loop of the TCR,
even though the α chain and V and J genes have been shown to play an important role in determining
specificity (Springer et al., 2021; Henderson et al., 2024). In its current state, our model would
require template TCRs for which the CDR3β can be designed. Second, given the sparse nature of
data, we risk high variance across recall-based metrics. To mitigate this, we leveraged on our target-
rich dataset for model/checkpoint selection and to thoroughly characterize the models’ behavior.
We understand and accept that this introduces leakage through model selection. However, we argue
for its necessity given the severe data sparsity to evaluate pMHCs stemming from multiple disease
contexts. Importantly, TCRT5 demonstrates consistent, monotonic improvement in performance
across training checkpoints, suggesting that our final model demonstrates real learning rather than
random fluctuations to its parameters. Additionally, we test TCRT5 on the IMMREP2023 epitopes
that were not used for training or in validation with a
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B METHODS

B.1 SEQUENCE REPRESENTATION

Following our prior work (Karthikeyan et al., 2023), we adopted the same sequence-to-sequence
(seq2seq) framework, relaxing the direction of pMHC → TCR source-target pairs to train on both
directions, but evaluate on the former. To represent the TCR:pMHC trimeric complex, comprised
of three sub-interactions (TCR-peptide, TCR-MHC, peptide-MHC) as a source-target sequence
pair, we made a few simplifying assumptions that allowed for a more straightforward problem for-
mulation. First, we assume a stable pMHC complex, reducing the problem to a dimeric interaction
between TCR and pMHC. Second, we focus on the amino acid residues at the binding interface.
For the TCR, we use the CDR3β loop, a contiguous span of 8-20 amino acids that typically make
the most contact with the peptide (Yu et al., 2019). Similarly, for the pMHC, we use the whole
peptide and the MHC pseudo-sequence, defined in (Hoof et al., 2009) as a reduced, noncontiguous,
string containing the polymorphic amino acids within 4.0 Å of the peptide. We opt for a single
character amino-acid level tokenization, primarily for its interpretibility (Dotan et al., 2023). In
addition to the 20 canonical amino acids, we use standard special tokens including the start/end of
sequence, masking, padding, and a separator token to delineate the boundary between the concate-
nated peptide and pseudo-sequence. For TCRT5, we additionally employ the use of sequence type
tokens, retained from T5’s use of task prefixes (Raffel et al., 2020), to designate translation direction:

TCRBART:

[SOS]EPITOPE[SEP]PSEUDOSEQUENCE[EOS] ↔ [SOS]CDR3BSEQ[EOS]

TCRT5:

[PMHC]EPITOPE[SEP]PSEUDOSEQUENCE[EOS] ↔ [TCR]CDR3BSEQ[EOS]

B.2 DATASET CONSTRUCTION

B.2.1 Parallel Corpus

Our parallel corpus comprised experimentally validated immunogenic TCR:pMHC pairs taken from
publicly available databases (McPAS (Tickotsky et al., 2017), VDJdb (Shugay et al., 2017), and
IEDB (Vita et al., 2018)). Additionally, we used a large sample of partially-labeled data derived
from the MIRA (Dines et al., 2020) dataset, which contained CDR3β and peptide sequences, but
contained MHC information at the haplotype resolution instead of the actual presenting MHC al-
lele. Therefore, the presenting MHC allele was inferred from the individual’s haplotype using
MHCFlurry2.0’s (O’Donnell et al., 2020) top-ranked presentation score. Of importance, these semi-
synthetic examples were not used in evaluation. To aggregate the data spanning various sources,
formats, and nomenclature, we mapped the columns from each individual dataset to a common
consensus schema and concatenated the data along the consensus columns. Missing values were
reasonably imputed according to other information for that data instance. To keep only the cytotoxic
(CD8+) T cells, we filtered the instances where the cell-type was provided or where the HLA-Allele
was of MHC-class I. Where the granularity of the HLA-information or TR genes was at the serotype
level, we inferred the canonical gene/allele by starting off with the subgroup ‘*01’ and incremented
it until a matching IMGT gene was found. This step has the potential of introducing minor differ-
ences between the unknown ground truth and the imputed pseudo-sequence, as it is well conserved
within serotype. Once the data was aggregated and values were imputed, we applied the following
column-level standardization for each source of information:

• Complementarity Determining Region (CDR3β), Epitope, and MHC
Pseudo-sequence: All amino acid representations were normalized used the
‘tidytcells.aa.standardise’ function found in the TidyTcells python
package (Nagano & Chain, 2023).

• TR Genes: The TidyTcells package (Nagano & Chain, 2023) was once again used to
standardize the nomenclature surrounding the T-Cell Receptor genes (e.g. TRB-V and
TRB-J).
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• HLA-Allele: HLA alleles were imputed where allele level information when necessary and
then normalized using the MHCgnomes package to the standard HLA-[A,B,C]*XX:YY
format.

B.2.2 Training/Validation Split

To accurately assess the capacity of the models to sample antigen-specific sequences on unseen
epitopes, we held out a validation set of the top-20 most target-rich pMHCs, which collectively
account for over 80% of the labeled TCR sequences. We trained on the remaining data, further
removing the occurrences of the held-out epitopes bound alternate MHCs to ensure a clean validation
split (Figure 1c). We retained training sequences with a low edit distance to the validation pMHCs
to better understand their influence on performance. The degree to which these sequences exhibit
training set similarity is reflected in (Table S1). The parallel corpus was subsequently deduplicated
to remove near duplicates (peptides with the same allele and a ¿= 6-mer overlap) which we found
to marginally help overall performance, in accordance with (Lee et al., 2022). This resulted in a
final dataset split of ≈330k training sequence pairs (N=6989 pMHCs) and 68k validation sequence
pairs (N=20 pMHCs). A key limitation of this dataset is its highly skewed bias towards mainly viral
epitopes and a very narrow HLA distribution towards well studied alleles (Figure 1d).

B.2.3 Unlabeled ‘Monolingual’ Data

We hypothesized that pre-training the encoder:decoder model using self-supervised methods on
pMHC and TCR sequences could help boost the translation performance of the model by learn-
ing better representations for source and target sequences as in (Cooper Stickland et al., 2021),
which crucially has been shown to improve performance in the low-resource setting (Haddow et al.,
2022). For the unlabeled pMHC sequences, we used the positive MHC ligand binding assay data
from IEDB (N≈740K) (Vita et al., 2018). For the TCR sequences, we used around (N≈14M) se-
quences from TCRdb (Chen et al., 2020) of which around 7M CDR3β sequences were unique.
For this dataset we chose to retain duplicate CDR3β sequences as the TCRdb was amassed over
multiple studies and populations, so we felt that the inclusion of duplicate CDR3βs was reflective
of convergent evolution in the true unconditional TCR distribution.

B.3 MODEL TRAINING

B.3.1 Pre-Training

TCRBART was pre-trained using masked amino acid modeling (BERT-style (Elnaggar et al., 2020)),
while TCRT5 utilized masked span reconstruction, learning to fill in randomly dropped spans with
lengths between 1 and 3. Of importance, neither model was trained on complete sequence recon-
struction to reduce the possibility of memorization during pre-training. Both models were trained on
unlabeled CDR3β and peptide::pseudo-sequences, simultaneously pre-training the encoder and de-
coder, inspired by the MASS/XLM approach (Song et al., 2019; Lample & Conneau, 2019). Unlike
MASS/XLM, we omitted learned language embeddings, allowing the model to learn from the size
differences between CDR3β and pMHC sequences. To address the imbalance in sequence types, we
upsampled sequences for a 70/30 TCR to pMHC split.

B.3.2 DIRECT TRAINING/FINETUNING

For the parallel data, we used the same three training regimes (baseline, bidirectional, multi-task)
for direct training from random initialization as well as finetuning from a pretrained model. This
was done by extending the standard categorical cross entropy loss function (Equation 1), favored in
seq2seq tasks for its desired effect of maximizing the conditional likelihoods over target sequences
(Sutskever et al., 2014; Cho et al., 2014). For the baseline training, we used the canonical form of
the cross entropy loss, as shown below:
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L = CE(y, ŷ) = −
n∑

i=1

yi log ŷi

= −
n∑

i=1

k∑
j−1

yij log pθ(yij |x)
(1)

The bidirectional and multi-task models were trained using mutli-term objectives, forming a linear
combination of individual loss terms corresponding to the cross entropy loss of each task/direction.

Lbidxn = Lpmhc→tcr + Ltcr→pmhc (2)

Lmulti = Lmlm + Lpmhc→tcr + Ltcr→pmhc (3)

In order to mitigate effects of model forgetting with stacking single-task training epochs, we shuf-
fled the tasks across the epoch using a simple batch processing algorithm (Algorithm 1). After
the batch was sampled, it was rearranged into one of four sequence-to-sequence mapping possi-
bilities and trained on target reconstruction with the standard cross entropy loss, which was used
for back-propagation. In this way, we could ensure that the model was simultaneously learning
multiple tasks during training. For the bidirectional model, this was straightforward as we could
swap the input and output tensors during training to get the individual loss contributions of the
Lpmhc→tcrandLtcr→pmhc (Equation 2). For the multi-task model, the mapping possibilities are: 1)
pMHC → TCR 2) TCR → pMHC 3) Corrupted pMHC* → pMHC 4) Corrupted TCR* → TCR,
which combine to to form Lmulti (Equation 3). These tasks and sequence mappings as seen by
TCRBART and TCRT5 are summarized in Figure 2b.

Algorithm 1 Multi-Task Training Step

Batched Input: source pMHCs: X, target TCRs: Y
Sample a ∼ Bernoulli(0.5)
if a > 0.5 then

Swap X and Y
Compute attention masks

end if
Sample b ∼ Bernoulli(0.5)
if b > 0.5 then

Set X = X* and Y = X
Compute attention masks

end if
do Predict Ŷ = ϕ(X) and gradient updates on CE(y, ŷ)

B.4 EVALUATION

To evaluate antigen-specificity, we build our framework around sampling exact CDR3β sequences
from published experimental data on well-characterized validation epitopes not seen during
training. This approach has an interpretable bias compared to black-box error profiles, at the
cost of potentially under-representing actual performance. We calculate sequence similarity-based
metrics beyond exact overlap to create a more robust evaluation framework, and characterize their
concordances for future use on epitopes with fewer known cognate sequences. Broadly, our metrics
can be summarized as evaluating the accuracy of the returned sequences, their diversity, or some
combination of the two. They are summarized in brief below:

Accuracy Metrics

• Char-BLEU: Following BLEU-4 (Papineni et al., 2002), the character-level BLEU cal-
culates the weighted n-gram precision against the k = 20 closest reference sequences to
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abate unintended penalization of accurate predictions under a large reference set. We use
the NLTK’s ‘sentence bleu’ function to calculate a single translation’s BLEU score
and the ‘corpus bleu’ function to compute the BLEU score over an entire dataset.

• Native Sequence Recovery: We compute the index-matched sequence overlap with the
closest known binder of the same sequence length, when available. This is the same as the
length-normalized Hamming distance. The Levenshtein distance normalized to the length
of closest reference was used for cases where a size-matched reference did not exist.

• Mean Average Precision (mAP): Borrowed from information retrieval, mean average pre-
cision measures the average precision across the ranked model predictions. Here, we rank
the generations by model log-likelihood scores and take the average of the precisions at
the top-1, top-2, top-3, ... top-k ranked outputs. Then we take the mean over the vari-
ous pMHCs’ average precision (AP) values to get the mean average precision. This metric
gauges both the accuracy of the model as well as the calibration of its sequence likelihoods.

• Biological Likelihood: To assess the plausibility of model outputs independent of antigen-
specificity or labeled data, we compute generation probability of predictions using OLGA,
a domain specific generative model that infers CDR3β sequence likelihood (Sethna et al.,
2019).

Diversity Metrics

• Total Unique Sequences: As a measure of global diversity, we compute the number of total
unique generations across the top-20 validation pMHCs as a diversity metric that captures
model degeneracy and input specificity.

• Jaccard Similarity/Dissimilarity Index: The Jaccard Index or the Jaccard similarity score
is used to measure the similarity of two sets and is calculated as the size of the intersection
divided by the union of the two sets. Since the Jaccard Index is inversely proportional to
diversity, one minus the Jaccard Index is often to use to represent diversity between two
sets.

• Positional ∆Entropy: In order to quantify the change in diversity between the models’
outputs and the reference distribution per CDR3β position, we report H(qi)−H(pi) over
the KL divergence to get a signed change in entropy between the amino acid usage distri-
bution of reference distribution q and sample distribution p at position i.

Both

• Precision, Recall, and F1@K: Also taken from information retrieval, these metrics gauge
precision, recall, and F1 by sampling K = 100 times, without rank, and measuring the
exact sequence overlap with the reference sequences. In the case of beam search decod-
ing, since we observed beam search to return unique sequences at our choice of decoding
parameters, all of these metrics were equivalent and are simply represented by the F1 score.

• K-mer Spectrum Shift: As used in the DNA sequence design space (Sarkar et al., 2024),
the k-mer spectrum shift measures the Jensen-Shannon (JS) divergence between the k-mer
usage frequency distributions of two sets of sequences across different values of k. Here
we compare the JS divergence between the distribution of k-mers derived from a pMHC’s
model generations and its reference set of sequences.

B.5 HYPERPARAMETER OPTIMIZATION

We first investigated the impact of course grained choices in the larger model such as the width and
depth by sweeping over model architecture and training algorithm values. For the model architecture
we varied the number of attention heads, batch size, dmodel, feed forward layer dimension, and num-
ber of total layers. All models were trained using the cross entropy loss with the AdamW optimizer.
For the optimizer, we varied the learning rate and weight decay parameters. To compare model
parameters from both the zero-pre-training and pre-training+finetuning regimes, we ran a sweep
on samples of the ‘monolingual‘ (unlabeled TCR and pMHCs) and ‘parallel‘ (paired TCR:pMHC)
corpuses to tune performance on the pre-training and seq2seq task, respectively. Due to time and
compute constraints, the sweeps were performed on a reduced sample of of 100k TCRs and 100k
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pMHCs from the monolingual texts for pre-training. Interestingly, we found that while the optimal
configurations for the BART models were relatively consistent, the optimal T5 configurations for
pre-training was a deeper, more narrow network and the one for direct training was a wider more
shallow network. To reconcile these we adopted the following heuristic: if the values were close,
the higher parameter count was chosen and an intermediate value was chosen when the parameter
values were far. Slight adjustments were performed at the layer count level to adjust for parameters
and make TCRBART and TCRT5 comparable. The final TCRBART architecture uses 6 encoder
and decoder layers at dmodel = 768, totaling around 46 million parameters. The final TCRT5 im-
plementation used dmodel = 256 and 10 encoder and decoder layers for a total of 42M parameters.

B.6 CHECKPOINT SELECTION

In deciding to choose which checkpoints to use for each model, we observed a marked difference
between the performance dynamics of the models with and without pre-training. This is most clearly
observed when plotting the diversity and accuracy metrics for each of the model checkpoints, show-
ing distinct training trajectories in the utility space (Figure S2a-b). The pre-trained models demon-
strate asymptotically increasing model performance across checkpoints for both the F1@100 and
native sequence recovery metrics while the models that were trained directly from random initial-
ization showed signs of potential overfitting, as both metrics peaked early on during training and
dropped over additional iterations (Figure S2c-d). This was observed on reduced learning rates as
well, indicating a possible regularization effect from pre-training(Erhan et al., 2010). A distinct
difference between TCRBART and TCRT5 variants was the effect of including pre-training. While
TCRT5 showed a significant improvement given pre-training, TCRBART showed worse perfor-
mance. However, the finetuning’s performance dynamics proved to be more stable than the non-
pre-trained version, complicating the benefit of adding pre-training to TCRBART. Additionally we
examined the number of unique sequences for the models over the checkpoints and saw that the
TCRBART-0 and TCRT5-FT showed increasing number of unique sequences over training steps
(Figure S2e). For each of the models, the checkpoint with the best performance on F1 was chosen
as representatives of the best performances for each training paradigm.

B.7 BENCHMARKING

B.7.1 GRATCR

For running GRATCR on the IMMREP epitopes, we followed the instructions
provided by the GRATCR team (Zhou et al., 2024) at their hosted GitHub
https://github.com/zhzhou23/GRATCR. We ran the beam search decoding as pro-
vided. The script to sample the finetuned GRATCR:

python GRA.py --data_path="./data/IMMREP_peptides.csv"
--tcr_vocab_path="./Data/vocab/total-beta.csv"
--pep_vocab_path="./Data/vocab/total-epitope.csv"
--model_path="./model/gra.pth" --bert_path="./model/bert_pretrain.pth"
--gpt_path="./model/gpt_pretrain.pth" --mode="generate"
--result_path="./results.csv" --batch_size=1 --beam=1000

B.7.2 ER-BERT

ER-BERT was run using the UAA (unique amino acid) model for a more direct comparison to
TCRT5. We utilize the seq generate method as described in their codebase with the default
parameters as shown in https://github.com/TencentAILabHealthcare/ER-BERT/
under Code/evaluate seq2seq MIRA.py as used by the ER-BERT team (Yang et al., 2023).

B.8 STATISTICS

For evaluating TCRT5 on the IMMREP epitopes, we constructed two independent nulls to evalu-
ate the comparative performance of unconditional generation as well as test the conformity to an
epitope-specific repertoire. The first null distribution was constructed by bootstrapping our test
statistic using soNNia generated sequences, counting the number of instances where the soNNia
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CDR3β sequences (out of 1000 sequences per simulation) achieved at least a 90% sequence recov-
ery. The second null was constructed by calculating the sequence recovery rate of TCRT5 genera-
tions against a reference size-matched sample of random CDR3β sequences generated by soNNia to
evaluate the specificity of TCRT5 to a particular epitope-specific repertoire over a random repertoire.
We calculated empirical p-values based on the fraction of simulations where the null distributions
matched or exceeded the observed TCRT5 performance with the ground truth sequences.
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C FIGURES

Figure 1: Overview of TCR-TRANSLATE. (a) Casting antigen-specific TCR design as a sequence-to-
sequence (seq2seq) task. We make use of an encoder:decoder abstraction to process peptide:MHC sequence
information and autoregressively sample target-conditioned CDR3β sequences. (b) Specific architecture of
TCRBART and TCRT5. Transformer architecture juxtaposing BART and T5 encoder and decoder layers
highlighting key operations to the residual stream, inspired by (Vaswani et al., 2017). (c) Dataset creation.
Given severe data-sparsity, the top-20 pMHCs from IEDB, VDJdb, and McPAS in terms of known TCRs was
witheld as validation, while the remainder was used for training with semi-synthetic pMHCs from MIRA.
(d) Composition of validation set. Breakdown of epitopes, alleles, and disease contexts of the top-20 real
pMHCs. (e) Conditional generation outperforms unconditional generation methods. Radar plot showing
the performance of TCRBART and TCRT5 models trained without pre-training (TCRBART-0, TCRT5-0)
evaluated against their unconditional generations (TCRBART-Unconditional, TCRT5-Unconditional) as well
as the the averaged metrics over 1000 simulations of the statistical soNNia generative model.
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Figure 2: Multi-task training increases accuracy and decreases diversity metrics. (a) Diagram outlining
pre-training, seq2seq training/finetuning, and their common generation scheme (inference). (b) Sequence I/O
representation of TCRBART and TCRT5 broken down by task. (c) TCR-TRANSLATE accuracy metrics.
Swarm plots showing the median, quartile, and individual contributions of each of the validation pMHCs
for Char-BLEU, F1@100, and native sequence recovery. (d) Fraction of pMHC F1@100 scores that remain
equivalent to or greater than the baseline models (TCRBART-0, TCRT5-0). (e) Model calibration as measured
by mean average precision (mAP) across pMHCs calculated using sequence likelihood based rank per model.
(f) Barplot of global diversity calculated as the total number unique sequences across pMHCs (20 x 100=2000
max). (g) Scatterplot summarizing model performance on accuracy and diversity metrics. Accuracy is taken
as the mean F1@100 score and diversity is shown both in terms of the total number of unique sequences
generated (size of each data point) as well as the mean pairwise Jaccard dissimilarity scores across pMHCs.
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Figure 3: Multi-task training promotes degenerate sampling of polyspecific TCRs. (a) Diagram of showing
polyspecific TCRs binding different, unrelated pMHCs juxtaposed against regular TCRs sharing a more conserved
cross reactivity profile. (b) Scatterplot of the number of polyspecific generations as a percentage as well as the mean
polyspecificity (number of distinct peptides) of the polyspecific TCRs per model is shown. (c) Distribution of TCR
polyspecificity across the parallel data and model generations. Density plot of cognate peptide counts for polyspecific
TCRs aggregated from the combined training and validation set (reference CDR3βs) and the model variants per class.
(d) Venn diagrams of translation overlaps for TCRBART-0 and TCRT5-FT model variants. (e) TCRBART and TCRT5
sample polyspecific and known binders with higher sequence likelihoods than those of unknown specificities. Discrete
heatmaps where rows indicate individual pMHCs, columns indicate ranked translation, and color indicates known bind-
ing and polyspecificity status are shown for TCRBART-0 and TCRT5-FT variants.
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Figure 4: Qualitative assessment of TCRT5. (a) Repertoire-level features of reference and generated
CDR3βs. TCRT5 captures the tails of the CDR3β length distribution but preferentially samples sequences
at the right tail of OLGA generation probabilities. (b) Sequence logo plots showing the decrease in se-
quence diversity position across the generated and reference CDR3β sequences for three canonical pMHCs
[GILGFVFTL (Influenza-A), KLGGALQAK (EBV), YLQPRTFLL (SARS-CoV2)]. (c) Generated sequences
experience a decrease in Shannon entropy for nearly all positions compared to reference sequences across all
pMHCs. Barplots for individual pMHCs are overlaid on one another. (d) K-mer spectrum shift plot showing
the Jensen Shannon divergence between generated and reference sequences. Mean JS divergence for soNNia
generations for 100 sequences sampled per pMHC across 100 simulations are shown for reference. Error bars
mark the mean and 1-standard deviation across validation pMHCs. (e) Heatmap of Jaccard Index scores show-
ing the generated sequence co-occurrence across different pMHC pairs. (f) TCRT5 repeats sequences across
pMHCs in line with biological probabilities and is robust to training set abundance. Scatterplot visualizing the
occurrence across pMHCs with the OLGA pgen, polyspecificity, and training set frequency. (g) TCRT5 gen-
erates experimentally validated antigen-specific CDR3β sequences unseen during training. Sankey diagram
showing the validity (non-zero OLGA pgen), known antigen-specificity status, and training set membership of
generated sequences across the validation pMHCs are shown.
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Figure 5: Benchmark Performance on IMMREP23 Unseen Epitopes. (a) Table of unseen pMHCs along
with their species, originating proteins’ amino acids, and the number of validated cognate TCRs. FTDAL-
GIDEY, SALPTNADLY, TSDACMMTMY are designated ”unseen” epitopes from IMMREP23 since they do
not appear in IEDB and VDJdb. Here we include TDLGQNLLY in the unseen epitopes given its absence from
our training set. (b) Metrics colored by model for k=1000 generations. Mean values are reported with error
bars (1 SD). (c) Distribution of sequence recoveries are shown for 1000 conditional generations from TCRT5,
GRATCR, and ER-BERT vs the unconditional soNNia ‘-ppost’ generative model. (d) Bootstrapped test
of significance. Our chosen test statistic is the number of generations that have at least a 90% sequence re-
covery rate for a fixed number of generations (k), in this case k=1000. We compare the observed test statistic
using TCRT5’s generations against the soNNia (yellow) and random reference (purple) null distributions. The
observed statistic for GRATCR (red arrow) and ER-BERT (blue arrow) are reported as well. The soNNia null
is constructed by sampling 1000 sequences from soNNia ‘ppost’ and computing the sequence recoveries
against the ground truth CDR3β sequences. The random reference null uses soNNia ‘ppost’ to generate
fake ground truth CDR3β sequences, equal in number to the ground truth TCRs per epitope, to use for se-
quence recovery calculations with the TCRT5 generations. Empirical p-values p1 and p2 are calculated as the
number of cases from null distribution 1 and 2 respectively where the test statistics are greater than or equal
to the observed statistic divided by the number of trials (1000). A p-value of 0.0 is binned as < .0001.
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D EXTENDED DATA FIGURES

Extended Data Figure 1: Training dynamics highlight the robustness of pretrained models across check-
points. Diversity vs. accuracy (F1) plotted for model checkpoints with smoothed interpolated splines and as-
sociated arrows showing the direction of model checkpoints through their training trajectory for: (a) Randomly
initialized models (zero pre-training) (b) Pre-trained and finetuned models (c) Native sequence recovery for
each checkpoint, colored by model, with panel split by pre-training status. (d) F1@100 for all checkpoints by
pretraining status. (e) Number of unique generations for each checkpoint across training for all models with
panel split by pre-training status. All models checkpoints were taken every 2000 steps across 20 epochs.
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Extended Data Figure 2: Atomic Metrics. (a) Box and whisker plot of sequence recoveries split by in-
dividual pMHC and model. (b) Barplot showing F1@100 score per model and pMHC. Each subplot is de-
marcated with the number of reference CDR3βs in the top right corner. (c) Scatterplot showing relationship
between accuracy metrics (sequence recovery and F1@100) and input features (edit distance to closest train-
ing pMHC, TCR overlap with closest training pMHC (by edit distance), and number of references (known
TCR binders). (d) Correlation plot between sequence-derived metrics. Pairplot showing the pairwise relation-
ships of F1@100, Char-BLEU, and (modified) sequence recovery, across model variants. Modified sequence
recovery is calculated by first removing exact matches to the generated sequences from the reference sets and
calculating sequence recovery to the closest sequence. (e) Histogram of modified sequence recovery values
stratified by known binding status.
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Extended Data Figure 3: Multi-task models sample more known validated polyspecific TCR sequences.
(a) Subset of TCRBART-0 generations across model variants that are known binders to more than one vali-
dation pMHC (may be from the same disease context). (b) Subset of TCRT5-FT generations across model
variants that are known binders to more than one validation pMHC (may be from the same disease context).
Each row is an individual CDR3β sequence that was generated for and found in the experimentally validated
set of reference TCRs for the listed validation pMHCs.
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Extended Data Figure 4: Exploring polyspecificity vs. training set statistics across baseline, bidirec-
tional, and multi-task model variants (a) Heatmap of ranked TCRBART-0 translations across pMHCs col-
ored by number of known alleles, known epitopes, training set frequency, epitope dissimilarity, and member-
ship status in the 915 polyspecific TCRs. (b) Analogous heatmap as panel ‘a’ but for TCRT5-FT generations.
(c) Correlation plots for TCRBART-0 and TCRT5-FT model generations and training set occurrence. Line of
best fit is shown in red. Pearson’s r and Spearman’s ρ are also provided for each model. (c) Correlation plots
for TCRBART-0 and TCRT5-FT sampling frequency across epitopes and training OLGA pgen. Line of best
fit is shown in red. Pearson’s r and Spearman’s ρ shown at bottom right for each subplot.
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Extended Data Figure 5: CDR3β embeddings highlight reduction in sampled TCR space. PCA di-
mensionality reduction of embeddings generated by sequence based methods are shown for: (a) TCR-BERT
(Wu et al., 2021) (b) catELMo (Zhang et al., 2024a) (c) TCR2vec (Jiang et al., 2023). Red points indicate
sequences generated by TCRT5, gray corresponds to reference translations, and blue points are soNNia gen-
erated sequences. Reference TCRs are downsampled to 200 sequences and 100 background sequences are
shown.
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Extended Data Figure 6: TCRT5 Sequence Likelihoods. (a) Histograms showing the OLGA pgen values
for the reference CDR3βs as well as those generated by beam search and ancestral sampling methods. (b)
Correlation plots showing the model scores (model sequence likelihoods) against the biophysical OLGA pgen.
Axes are log10 scaled. Red line is the best fit line with associated Pearson’s R.
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Extended Data Figure 7: TCRT5 Metrics @1000 (a) Sequence logo plot generated from TCRT5 for the
canonical GILGFVFTL (Influenza A), KLGGALQAK (CMV), and YLQPRTFLL (SARS-CoV2) from 1000
generations instead of 100. (b) TCRT5@1000 with beam search still preferentially samples sequences at
the right tail of OLGA generation probabilities. (c) Generated sequences experience a decrease in Shannon
entropy across most positions, however, some pMHC examples exhibit an increase in entropy compared to
reference sequences. Barplots for individual pMHCs are overlaid on one another. (d) K-mer spectrum shift
plot showing the Jensen Shannon divergence between generated and reference sequences for TCRT5@1000.
Error bars mark the mean and 1-standard deviation across validation pMHCs. Mean soNNia values are shown
per simulated run, with 1000 generations per pMHC per run over 100 simulations. (e) Sankey diagram of
TCRT5@1000 generations showing the validity as measured by nonzero generation probability, known bind-
ing status, and training set membership.
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Extended Data Figure 8: Unique Sequences at Sampling Depth k Number of unique sequences returned
per pMHC by beam search decoding as implemented in TCRT5, GRATCR, and ER-BERT. Markers indicate
the mean number of unique sequences and error bars represent the standard deviation across the IMMREP2023
”private” antigens.

Extended Data Figure 9: Conditional Likelihoods of IMMREP23 Sequences Conditional likelihoods of
true positive ’1’ and synthetic negative ’0’ CDR3β sequences from the IMMREP dataset were passed through
TCRT5 (right) and ER-BERT (left) to get conditional likelihoods for each source-target pair. P-values were
computed using the one-sided Mann-Whitney U test.
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Extended Data Table 1: Characterization of Train/Val. Target Overlap

VAL. PEPTIDE CLOSEST TRAIN PEPTIDE(S) EDIT DISTANCE CDR3β OVERLAP

AVFDRKSDAK RLFRKSNLK 5 0/1655
AVFDRKSDAK AAFKRSCLK 5 0/1655
AVFDRKSDAK AVGVGKSAL 5 0/1655

CRVLCCYVL PVTLACFVL 5 0/435
CRVLCCYVL CFVECAPVC 5 0/435
CRVLCCYVL WPVTLACFVL 5 4/435

EAAGIGILTV AAGIGILTV 1 2/487

ELAGIGILTV ELAGIGALTV 1 1/1919
ELAGIGILTV ELAAIGILTV 1 1/1919
ELAGIGILTV ELAGIGLTV 1 5/1919

GILGFVFTL GILEFVFTL 1 1/8083
GILGFVFTL GILGLVFTL 1 1/8083
GILGFVFTL GIWGFVFTL 1 0/8083

GLCTLVAML ALNTLVKQL 4 0/7388

IVTDFSVIK IPTDFTISV 5 0/563
IVTDFSVIK ITNFKSVLY 5 0/563
IVTDFSVIK YTDFSSEII 5 0/563
IVTDFSVIK HVTFFIYNK 5 0/563

KLGGALQAK ALGGLLTMV 5 0/12660
KLGGALQAK KLFAAETLK 5 0/12660
KLGGALQAK CLGGLLTMV 5 1/12660
KLGGALQAK MLWGYLQYV 5 0/12660

LLLDRLNQL LLLLDRLNQL 1 146/2095

LLWNGPMAV LLFGPVYV 4 0/2458
LLWNGPMAV LLEWLAMAV 4 0/2458
LLWNGPMAV LLFGYPVAV 4 0/2458

LPRRSGAAGA LPSYAAFAT 5 0/2140
LPRRSGAAGA LPSYAALAT 5 0/2140

LVVDFSQFSR HLVDFQVTI 6 1/1871
LVVDFSQFSR RVVVLSFEL 6 0/1871
LVVDFSQFSR VVDSYYSLL 6 0/1871
LVVDFSQFSR ALVYFLQSI 6 0/1871
LVVDFSQFSR LLHGFSFYL 6 0/1871
LVVDFSQFSR LVQSTQWSL 6 0/1871
LVVDFSQFSR VLCNSQTSL 6 0/1871

NLVPMVATV NLVPVVATV 1 1/8456
NLVPMVATV NLVPQVATV 1 1/8456
NLVPMVATV NLVPMVASV 1 1/8456
NLVPMVATV NLVAMVATV 1 2/8456
NLVPMVATV NLVGMVATV 1 1/8456
NLVPMVATV ALVPMVATV 1 1/8456
NLVPMVATV NLVPTVATV 1 1/8456

RAKFKQLL RLSFKELLV 4 0/916

SPRWYFYYL LPRWYFYYL 1 14/3355

STLPETAVVRR GLPWNVVRI 6 0/925

TPRVTGGGAM APRITFGGL 5 0/2606

TTDPSFLGRY HTTDPSFLGRY 1 46/451

YLQPRTFLL YLQPRTFL 1 606/1636
YLQPRTFLL YLRPRTFLL 1 0/1636

YVLDHLIVV KVLEYVIKV 5 1/8317
YVLDHLIVV SVLLFLAFV 5 1/8317
YVLDHLIVV TVYSHLLLV 5 2/8317
YVLDHLIVV VLLFLAFVV 5 0/8317
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Extended Data Table 2: Characterization of Train/IMMREP23 Target Overlap

TEST PEPTIDE CLOSEST TRAIN PEPTIDE(S) EDIT DISTANCE CDR3β OVERLAP

FTDALGIDEY ATDALMTGY 5 0/12

SALPTNADLY SLYNTVATLY 5 0/16
SALPTNADLY ALPETTADI 5 0/16
SALPTNADLY SLFNTVATLY 5 0/16
SALPTNADLY NLQSNHDLY 5 0/16

TDLGQNLLY TALALLLLD 5 0/32
TDLGQNLLY VSDGGPNLY 5 0/32
TDLGQNLLY FLTENLLLY 5 0/32
TDLGQNLLY TLYSLTLLY 5 0/32
TDLGQNLLY GTDLEGNFY 5 0/32
TDLGQNLLY TPSGTWLTY 5 0/32
TDLGQNLLY TLSGTWLTY 5 0/32

TSDACMMTMY TSAMHTMLF 5 0/11
TSDACMMTMY TSAMQTMLF 5 0/11
TSDACMMTMY ATDALMTGY 5 0/11
TSDACMMTMY NSSTCMMCY 5 0/11
TSDACMMTMY SSSTCMMCY 5 0/11
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