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ABSTRACT

We present a mutually aligned diffusion framework for cross-modal time-series
generation that treats paired modalities X and Y as complementary observations of
a shared latent dynamical process and couples their denoising trajectories through
stepwise alignment of local latent embeddings. We instantiate this as LaMbDA
(Local latent eMbedDing Alignment), a lightweight objective that enforces phase
consistency by encouraging local latent neighborhoods of X and Y to inhabit a
shared local manifold. LaMbDA augments the diffusion loss by incorporating first-
order sequence-contrastive and second-order covariance alignment terms across
modalities at matched timesteps. Aligning their local embeddings allows each
modality to help denoise the other and resolve ambiguities throughout the reverse
process. Human biomechanics provides a strong testbed for this approach: paired,
synchronized measurements (e.g., joint kinematics and ground-reaction forces)
capture the same movement state while reflecting practical constraints such as
sensor dropout and cost. We evaluate LaMbDA extensively on biomechanical data
and complement this with controlled studies on canonical synthetic dynamical
systems (Lorenz attractor; double pendulum in non-chaotic and chaotic regimes)
to probe generality under varying dynamical complexity. Across all these settings,
aligning local latent statistics consistently improves generation fidelity, phase
coherence, and representation quality for downstream probes, without architectural
changes or inference overhead.

1 INTRODUCTION

Many real-world systems produce multiple data streams that are different views of the same evolv-
ing process Ren et al. (2022); Ashe & Briscoe (2006). These paired observations, measured by
distinct sensors at different rates and with varying noise characteristics, often offer complementary
perspectives of a shared underlying state Ren et al. (2022); Ashe & Briscoe (2006). Yet, they are
rarely modeled jointly in a way that allows one stream to systematically disambiguate the other
during generation and inference. Human movement is a representative example: joint kinematics,
joint moments, and ground-reaction forces are synchronized, physically coupled measurements
of a common locomotor state Winter (2009), but practical considerations (cost, setup complexity,
occlusions, dropouts) often prevent observing all of them together or cleanly. A method that leverages
complementarities between paired streams while remaining robust to partial, noisy observations
would be broadly useful across such settings.

We introduce a mutually aligned cross-modal diffusion framework (Fig. 1) that treats two temporal
modalities X and Y as complementary observations of a shared latent dynamical process. The
core idea is to couple their reverse-diffusion trajectories by aligning local latent statistics at every
diffusion step. Intuitively, local neighborhoods that correspond to the same phase should lie in
nearby regions with similar variability. Enforcing this coherence allows each modality to help
denoise and disambiguate the other throughout sampling. We instantiate this as LaMbDA (Local
Latent Embedding Alignment), a lightweight objective that augments standard conditional diffusion
without architectural changes or inference-time overhead. Two conditional models, pθ(X | Y )
and pϕ(Y | X), are trained in parallel, and at each diffusion step, they produce local embeddings
from their noisy inputs. LaMbDA then encourages temporally matched windows to agree in their
local statistics, while standard denoising losses train each model to reconstruct its target sequence.
LaMbDA includes a first-order sequence-contrastive loss and a second-order covariance alignment
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Figure 1: (Left) Mutually aligned cross-modal diffusion with latent embedding alignment. Diffusion
processes, pθ(X|Y) and pϕ(Y|X), generate data for modalities, X and Y, respectively, guided by
a condition derived from the other modality. During training, the latent representations, hX(Xt, t)
and hY (Yt, t), of the two models are aligned using a local latent embedding alignment (LaMbDA)
objective. Additionally, denoising and energy conservation objectives are applied to each modality’s
generated samples, X̂ and Ŷ. During sampling, the model for each modality diffuses a noise signal
across T timesteps, guided by a condition from the other modality to generate samples of a given
modality that temporally corresponds to the guiding signal.

loss between the modalities’ latent spaces, ensuring that local neighborhoods not only match in their
immediate representations but also preserve consistent internal correlation structure. The procedure
is motivated by a dynamical-systems view: if both modalities are generated by the same latent state,
then temporally matched windows from the two observation streams are related by a smooth change
of coordinates Sauer et al. (1991).

We used human biomechanics as the primary testbed to evaluate this approach: paired, synchronized
signals with clear physical coupling (angles, moments, forces) make it straightforward to verify
whether cross-modal generation respects known relationships. The setting also reflects realistic
sensing constraints—forces and moments are informative but expensive to measure, while kinematics
are more accessible yet ambiguous—making biomechanics a stringent, informative setting for
evaluating cross-modal diffusion under practical conditions. To probe generality to other dynamical
systems and to study behavior under controlled dynamical complexity, we complement the real-world
experiments with three canonical synthetic systems: the Lorenz attractor and the double pendulum in
non-chaotic and chaotic regimes.

To the best of our knowledge, this is the first study to demonstrate cross-modal diffusion with
latent alignment grounded in a dynamical systems perspective, and the first to showcase it in a
biomechanical time series context. Our key contributions are: (1) We introduce a mutually aligned
diffusion framework for cross-modal biomechanics synthesis through latent representation alignment.
(2) We propose LaMbDA (Local latent eMBedDing Alignment), a lightweight, architecture-agnostic
objective grounded in dynamical systems principles for aligning the latent representations of the
modalities. (3) We demonstrate through experiments on real-world datasets and canonical dynamical
systems that this simple latent alignment objective not only enhances generative quality but also
maintains robust representations for downstream discriminative tasks.

2 RELATED WORK

Diffusion models. Denoising diffusion probabilistic models (DDPMs) have emerged as a powerful
paradigm for generative modelling in high-dimensional settings. The seminal formulation introduced
by Sohl-Dickstein et al. (2015) was refined by Ho et al. (2020), culminating in the state-of-the-art
image synthesis performance Dhariwal & Nichol (2021). Beyond vision, subsequent adaptations
to sequential data Yuan & Qiao (2024); Shen & Kwok (2023) have achieved competitive results in
speech generation Kong et al. (2020); Chen et al. (2020a), time-series forecasting Kollovieh et al.
(2024), and anomaly detection Xiao et al. (2023). Nevertheless, applications that employ diffusion
models for cross-modal generation of time-series observations remain scarce.
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Cross-modal learning. Cross-modal learning enables synthesis or interpretation in one modality
using another, leveraging the complementarity of heterogeneous data (e.g., text, images, audio,
video). Landmark systems like DALL·E Ramesh et al. (2021; 2022) and CLIP Radford et al. (2021)
highlight the power of large-scale multimodal pretraining for generating coherent visuals from
text. This paradigm now extends to music-to-dance Tseng et al. (2023); Zhuang et al. (2022),
text-to-video Blattmann et al. (2023), text-to-motion Tevet et al. (2023), and audio-visual scene
understanding Alamri et al. (2019). However, most approaches focus on unidirectional mappings
(e.g., text→ image), neglecting the inherently bidirectional nature of many real-world relationships.
Moreover, cross-modal methods for physiological time-series, such as biomechanical signals, remain
underexplored. These domains require models that capture continuous temporal signals and preserve
cross-modal dynamics, highlighting the need for bidirectional cross-modal approaches tailored to
time-series data.

Representation alignment. Representation alignment embeds heterogeneous inputs into a shared
latent space that preserves structural and semantic content. Self-supervised methods like SimCLR
Chen et al. (2020b), Barlow Twins Zbontar et al. (2021), and VICReg Bardes et al. (2021) have ad-
vanced unimodal pretraining for downstream tasks. However, these techniques are typically employed
as auxiliary objectives rather than being integrated into diffusion-based generative frameworks, nor
are they tailored for capturing temporal dependencies and inter-modal correlations in time-series data.
In contrast, our approach employs latent alignment from a dynamical-systems perspective to enable
bidirectional cross-modal generation of biomechanical time series.

Biomechanical motion analysis and synthesis. Biomechanical motion analysis combines kine-
matic data (e.g., joint angles) with kinetic data (e.g., ground reaction forces or GRFs). Foundational
work by Winter emphasizes the interplay between these modalities in locomotion Winter (2009).
Recent learning-based models have improved motion estimation Halilaj et al. (2018); Gurchiek
et al. (2019); Horst et al. (2023), though they often rely on handcrafted features and unimodal
inputs, limiting generalization. Multimodal fusion, such as combining motion capture with EMG,
enhances muscle force and joint dynamics estimation Sartori et al. (2012); Young et al. (2014). Yet,
cross-modal synthesis of biomechanical patterns remains largely unexplored, restricting adaptability
across scenarios. We address this gap with a cross-modal generation method for biomechanical time
series, grounded in latent representation alignment and dynamical systems principles. While broadly
applicable, we focus on biomechanics, where modalities like joint angles, moments, and GRFs share
an underlying dynamical structure that our approach exploits for robust generation.

3 CROSS-MODAL DENOISING DIFFUSION WITH LATENT ALIGNMENT

3.1 PROBLEM FORMULATION

Let {(Xi,Yi)}Ni=1 denote a paired dataset of time series trajectories of two modalities: joint kine-
matics and joint kinetics or variations thereof. Each trajectory Xi ∈ RL×dX and Yi ∈ RL×dY is a
sequence of length L, with dimensions dX and dY respectively. Our goal is to learn two generative
models pθ(X | Y) and pϕ(Y | X) (θ and ϕ are model parameters) such that one modality can be
generated or reconstructed at full temporal resolution conditioned on the other.

3.2 DENOISING DIFFUSION

We adopt a denoising diffusion framework to learn these cross-modal distributions. Let βt for
t = 1, . . . , T define a noise schedule that controls the noise variance at each step t of the diffusion
process. We define the following forward-noising processes for each modality:

Xt =
√
βt Xt−1 +

√
1− βt ϵ, Yt =

√
βt Yt−1 +

√
1− βt ϵ, (1)

where ϵ ∼ N (0, I) is standard Gaussian noise.

We model the reverse process using conditional denoising diffusion processes, which predict the
clean signal based on the noisy sample at each time step, t, and a condition derived from the other
modality:

pθ(X0 | Xt, gY (Y), t), pϕ(Y0 | Yt, gX(X), t), (2)
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where θ and ϕ are parameters of the diffusion models, and gX(·), gY (·) denote condition embedding
functions for the modalities X and Y, respectively.

We incorporate a mutual conditioning mechanism such that the generation of one modality is guided
by the latent or encoded features from the other modality. Concretely, this means each decoder attends
to both the noisy embedding of its own modality at time t and a learned condition embedding derived
from the other modality. For learning robust cross-modal representations, we enforce an alignment of
the latent representations of the two modalities at each diffusion step. Since our modalities represent
time-series data, we propose a modified alignment to ensure the temporal correlation of the local
dynamics of the two modalities.

3.3 LATENT ALIGNMENT WITH DIFFUSION

Dynamical systems background. In biomechanics, two modalities: joint kinematics and joint
kinetics can be seen as observational streams of the same underlying dynamical system since they
stem from the same musculoskeletal control process. Formally, consider a (possibly high-dimensional)
hidden state, Z ∈ RL×dZ evolving according to an unknown dynamics:

Zk+1 = f(Zk) + ηk,

where ηk is a noise term. The observation functions, oX and oY, map the latent state into each
modality’s domain:

Xk = oX(Zk), Yk = oY(Zk).

Under this perspective, Xk and Yk arise from the same Zk and thus should lie on correlated sub-
manifolds of the global dynamical system. From Takens’ embedding theorem Takens (2006) and
related results in nonlinear time-series analysis Sauer et al. (1991), such partial views can still
reconstruct consistent attractors or trajectories in phase space if appropriately embedded. This
perspective underlies the motivation for aligning X-space and Y-space: if they come from the same
dynamical manifold, then local segments of the latent dynamics should describe the same underlying
phase and the same local trajectories (up to a smooth invertible transform).

Local latent embedding alignment (LaMbDA). In our mutually-aligned diffusion approach,
we train the diffusion models pθ(X | Y) and pϕ(Y | X) simultaneously to reconstruct the two
modalities, X and Y, conditioned on each other. At each timestep t, the diffusion models produce
latent embeddings, ZX,t ∈ RL×dZ and ZY,t ∈ RL×dZ . From a dynamical systems perspective, we
may consider these latent embeddings as a reconstruction of the local phase space of the underlying
dynamical system from each sensor‘s noisy observations. Since ZX,t and ZY,t are reconstructions of
the same underlying trajectory Z, they should be aligned to each other.

We partition the latent sequences from the two models, ZX and ZY into P subsequences of length S,

ZX = hX(X) = [Z(1)
X ,Z(2)

X , ..,Z(P )
X ], ZY = hY(Y) = [Z(1)

Y ,Z(2)
Y , ..,Z(P )

Y ], (3)

where P ≈ L/S. For each index p = 1, . . . , P , Z(p)
X and Z

(p)
Y represent short temporally coherent

windows presumed to correspond to the same local dynamics. To encourage local manifold consis-
tency, we propose a unified local latent embedding alignment (LaMbDA) objective that enforces both
first-order and second-order consistency in the latent space.

First-order (sequence-contrastive) alignment. To align the latent representations of corresponding
time windows, we adopt a contrastive loss Oord et al. (2018) adapted to the temporal structure of the
latent space by pulling together time-matched local latent subsequences, (Z(p)

X ,Z
(p)
Y ), from the two

modalities and pushing apart time-mismatched pairs from the same sequence, (Z(p)
X ,Z

(q)
Y )∀q ̸= p, as

well as pairs from different sequences in a batch. Formally, for P windows, we define:

Lcontrast = −
1

P

P∑
p=1

log
exp

(
sim(Z

(p)
X ,Z

(p)
Y )/τ

)∑
q exp

(
sim(Z

(p)
X ,Z

(q)
Y )/τ

)
+
∑

other seq(·)
, (4)
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where sim(.) represents a similarity function such as dot product or cosine similarity and τ is a
temperature parameter. By locally aligning short-term dynamics, the model ensures that the local
neighborhoods in the latent spaces derived from the two modalities reflect the same underlying state
in each window.

Second-order (covariance) alignment. Beyond the pairwise similarity of the local latent manifold,
we also align their internal structure using a covariance alignment term that enforces that the
observation streams exhibit similar second-order statistics in their latent space. For each time
step l, let Z(l)

X and Z
(l)
Y denote the corresponding latent vectors for the two modalities. We compute

the covariance matrices of these vectors (in a local neighborhood or across the entire sequence) and
match them via:

Lcov =
1

L

L∑
l=1

MSE
(
cov

(
Z

(l)
X

)
, cov

(
Z

(l)
Y

))
. (5)

By matching the covariance matrices of ZX and ZY, we encourage both views to represent the same
local manifold shape and correlation structure among latent dimensions, preserving the system’s
fundamental coupling and synergy patterns.

Finally, we form a single local latent embedding alignment (LaMbDA) loss by combining these two
alignment components:

LLaMbDA = Lcontrast + Lcov. (6)

A theoretical justification of our latent alignment approach grounded in Taken’s embedding theorem
is provided in Appendix A.1 (Theorem A.1).

Energy conservation loss. To maintain the biomechanical plausibility of generated trajectories,
we add an energy conservation term to the loss, which encourages consistency between the energy
of the reconstructed signal, X̂, and the ground truth signal, X, of the two modalities. The energy
conservation loss is computed as Gao et al. (2023):

LX
energy = ∥E(X̂)− E(X)∥2, E(X) = 1

2∇lX
2, (7)

where E(.) represents an energy function.

Overall learning objective. In addition to the local latent alignment, we use standard denoising
objectives for each modality. Let LX

denoise(θ) and LY
denoise(ϕ) be the respective MSE losses for

generating X0 and Y0 from their noisy versions.

The joint objective is:

L(θ, ϕ, α) = LX
denoise(θ) + LY

denoise(ϕ) + αLLaMbDA(θ, ϕ) + LX
energy(θ) + LY

energy(ϕ), (8)

where α is a learned weighting coefficient for the local latent embedding alignment. This learning
objective poses conditional synthesis and cross-modal alignment as a single end-to-end optimization
problem. We outline the training procedure in Algorithm 1.

4 EXPERIMENTS

Datasets. The evaluation is conducted on different biomechanical modalities that capture comple-
mentary signals of the locomotor process Embry et al. (2018). The dataset spans a broad range of
locomotor conditions across a continuum of gait tasks, comprising approximately 1,540,000 samples
collected from ten subjects over 27 distinct locomotion profiles, with walking speeds from 0.8 to
1.2 m/s and inclines from -10° to +10° in 2.5° increments. It includes both steady-state locomotion
and transitions between conditions. The dataset provides precise time-varying joint kinematics, joint
kinetics, and ground-reaction forces, offering a diverse and realistic foundation for evaluating the
proposed method and ensuring relevance and robustness within biomechanics. In addition to the
real-world biomechanical data, we evaluate on synthetic datasets derived from canonical dynamical
systems (Fig. 5 in Appendix A.2): the Lorenz attractor Lorenz (2017) and the double pendulum in
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Algorithm 1: Training Mutually-Aligned Diffusion with Local Latent Embedding Alignment

Input: Paired datasets (X,Y), noise schedule (βt)
T
t=1, alignment weight α, batch size B,

sequence length L, subsequence length S, learning rate schedulers λϕ, λθ, λα.
Output: Learned parameters θ, ϕ for p(X|Y) and p(Y|X)
Initialize θ, ϕ, alignment weight, α, and optimizers (e.g., AdamW).
for epoch = 1 . . . Nepochs do

foreach batch (X0,Y0) of size B do
1. Sample Noisy Inputs:
Sample t ∼ Uniform{1, . . . , T}; ϵX , ϵY ∼ N (0, I);
Xt ←

√
βt X0 +

√
1− βt ϵX , Yt ←

√
βt Y0 +

√
1− βt ϵY ;

2. Predict Denoised Inputs: X̂0 ← pθ(Xt,Y, t), Ŷ0 ← pϕ(Yt,X, t).
3. Compute Denoising Objective:
Ldenoise,X = ∥X0 − X̂0∥2, Ldenoise,Y = ∥Y0 − Ŷ0∥2.
4. Compute Energy Conservation Objective:
Lenergy,X = ∥E(X0)− E(X̂0)∥2, Lenergy,Y = ∥E(Y0)− E(Ŷ0)∥2.
5. Extract Latents & Compute Alignment Loss: ZX ← hX(Xt, t), ZY ← hY (Yt, t).
(Subdivide ZX ,ZY into local subsequences, each of length S.)
LLaMbDA = Lcontrast(ZX ,ZY ) + Lcov(ZX ,ZY ).
6. Combine Objectives:
Ltotal(θ, ϕ, α) = Ldenoise,X + Ldenoise,Y + αLLaMbDA + Lenergy,X + Lenergy,Y .
7. Update Parameters:
θ ← θ − λθ∇θLtotal, ϕ← ϕ− λϕ∇ϕLtotal, α← α− λα∇αLtotal.

end
end
return θ, ϕ

non-chaotic and chaotic regimes. These synthetic benchmarks explicitly test the generality of the
method in recovering meaningful temporal correspondence between observation channels derived
from a shared underlying dynamical system.

Evaluation. We evaluate our model on cross-modal biomechanical observations: joint angles–joint
moments, joint moments–ground reaction forces (GRFs), and joint angles–GRFs, using time-varying
joint and body kinematics, joint kinetics, and force-plate data (see Fig. 2 for an example, and see Ap-
pendix A.2 for synthetic modality definitions). The three biomechanical modalities differ substantially
in dimensionality: joint angles are 15-dimensional (θx,y,zhip , θx,y,zknee , θ

x,y,z
ankle, θ

x,y,z
foot , θ

x,y,z
pelvis), joint mo-

ments 9-dimensional (τx,y,zhip , τx,y,zknee , τ
x,y,z
ankle), and ground-reaction forces 3-dimensional (GRFx,y,z).

LaMbDA naturally supports alignment across such heterogeneous observation spaces because the
alignment is performed in the latent space of the diffusion encoders rather than on the raw inputs.
This design allows the method to align modalities with widely varying dimensionalities. In our
experiments, we used a latent dimension of 128 based on a hyperparameter sensitivity analysis
(see Appendix A.7). We use temporal segments of length L = 300 with 50% overlap (96.67% for
synthetic data). This window length was selected based on a hyperparameter sensitivity analysis
(see Appendix A.7, tab. 7) corresponds to two continuous gait cycles, enabling the model to learn
transitions between cycles. Each model variant is trained and tested under multiple train–test splits,
leaving out different participants and task profiles at each iteration rather than using a predefined test
set. The test subsets include approximately 32k observations from 27 task profiles, reflecting varied
speeds and conditions from a new user not seen during training. To stabilize training, we apply an
exponential moving average (EMA) of parameters across batches and report aggregate results across
all splits.

Metrics. The cross-modal generation performance was quantified using metrics that assess
point-wise fidelity, distribution-level realism, temporal structure, and representational richness.
Point-wise fidelity is measured using mean-squared error (MSE) between generated data and
ground-truth physical observations; for reconstructions, the ground-truth signal is the temporal
counterpart of the conditioning data. Distribution-level realism is measured using Fréchet Inception
Distance (FID) to quantify differences between distributions of generated and real trajectories (lower
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Figure 2: Raw trajectories showing the relationship between biomechanical modalities: joint angles–
joint moments, joint moments–GRFs, and joint angles–GRFs, for an example locomotion task. The
inherent periodicity in the relation shows that these modalities arise from a shared dynamical process
and motivates our approach of latent alignment to discover the underlying dynamical system, which
can then be used to generate trajectories for one modality conditioned on the other.

is better) Yu et al. (2021); Soloveitchik et al. (2021). Temporal structure is evaluated via the predictive
score, computed as the forecasting error of a sequence prediction model when predicting future
values of the ground truth sequences after training on generated data Yoon et al. (2019).

4.1 EFFECT OF LATENT ALIGNMENT ON CROSS-MODAL DIFFUSION
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Figure 3: (A) Comparison of real and generated trajectories of (A) joint angles, moments, and GRF
using models trained with and without latent alignment of diffusion models. The shaded region
represents the standard deviation. Further visualizations are provided in Fig. 7 in Appendix A.4

. (B) Reconstruction of a window of 300 samples from the Lorenz attractor using models trained
without and with alignment. Latent alignment improves the quality of generated samples in both

cases.

We first tested our proposition that simply aligning the latent space of two independent conditioned
diffusion models can improve cross-modal generation performance. For this, we analyzed whether the
alignment of latent embeddings of the separate models pθ(X|Y) and pϕ(Y|X) that learn to generate
each modality can improve the quality of their generated gait trajectories using different metrics such
as MSE, FID, and predictive score. We found that latent alignment through local latent embedding
alignment (LaMbDA) improves the cross-modal generation accuracy for all the different modalities
tested (Tab. 1). This was further illustrated by a better agreement of the trajectories generated by the
aligned models with the ground truth trajectories (Fig. 3A).

It should be noted that the difference in the metrics for X | Y and X | Y arises from the inherent
information assymetry in the underlying biomechanical modalities. Joint angles describe the config-
uration and motion of the limb segments, which provides a richer representation of the movement
state than the downstream kinetic signals. Joint moments depend on these kinematics through inverse
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MSE ↓ FID ↓ Pred ↓
Modality pair Direction w/o align w/ align w/o align w/ align w/o align w/ align

X|Y 0.18±0.03 0.14±0.02 37.8±9.6 32.4±7.2 0.18±0.06 0.16±0.03angles–moments
Y |X 0.08±0.02 0.07±0.01 20.4±12.1 14.2±2.8 0.08±0.01 0.07±0.01
X|Y 0.22±0.03 0.19±0.03 66.7±51.5 40.4±8.3 0.30±0.23 0.16±0.02angles–GRF
Y |X 0.07±0.03 0.06±0.03 24.8±34.2 5.8±3.6 0.12±0.12 0.08±0.07
X|Y 0.08±0.02 0.07±0.02 16.5±4.0 13.7±3.2 0.08±0.01 0.07±0.01moments–GRF
Y |X 0.03±0.02 0.03±0.02 6.6±2.5 4.3±2.5 0.07±0.04 0.05±0.04

Table 1: Comparison of cross-modal generation performance (mean ± std) of the conditional
diffusion models for each modality pair, trained with and without latent alignment. The performance
is evaluated using the discrepancy (MSE) between generated and ground truth trajectories, Fréchet
Inception Distance (FID), and predictive score (predictive error), all of whose lower values indicate
better performance. Training with latent alignment improves cross-modal generation quality across
all modalities tested under all the different metrics evaluated here.

dynamics, and GRFs depend on the global body motion and foot–ground interaction, which are also
strongly constrained by the kinematic trajectory. As a result, the angle modality typically contains
more upstream information about the ongoing movement than moments or GRFs. This makes
reconstructing moments or GRFs conditioned on angles easier than reconstructing the full kinematic
trajectory from the kinetic measurements. This observation is supported by our entropy analysis
(Appendix A.8), which shows conditional entropy H(X | Y) to be consistently higher than H(X | Y)
when X is the joint angles (Tab. 8).

Dynamical system model w/o alignment with alignment
X|Y 0.678 0.425Lorenz attractor
Y |X 0.135 0.004
X|Y 2.5e-3 2.5e-3Double pendulum

(non-chaotic) Y |X 6.6e-3 6.4e-3
X|Y 0.042 0.028Double pendulum

(chaotic) Y |X 0.031 0.021

Table 2: Comparison of cross-modal generation performance (quantified by MSE) of the conditional
diffusion models trained with and without latent alignment on canonical dynamical systems.

Additional experiments on synthetic data. We found that the latent alignment strategy also
improves model performance in trajectory reconstruction from different canonical dynamical systems
(Tab. 2 and Fig. 3B). Performance improvement was more pronounced in the chaotic regime than in
a non-chaotic regime (Tab. 2), underlying the ability of our approach to model complex dynamical
relationships between modalities. These additional experiments on synthetic benchmarks establish
LaMbDA as a powerful method for cross-modal synthesis when the two modalities originate from a
shared underlying dynamical system.

4.2 COMPARISON WITH BENCHMARKS

We evaluated the quality of the latent representations learned by LaMbDA against state-of-the-art
self-supervised alignment methods, such as SimCLR Chen et al. (2020b), Barlow Twins Zbontar
et al. (2021), and VICReg Bardes et al. (2021), and a simple baseline that minimizes mean-squared
error between the latents of the two models. The comparison used a downstream task: classification
of the locomotion task label. Each input sample from either modality X or Y belongs to one of 27
locomotion tasks defined by walking speed and ground incline. A linear or non-linear classifier was
trained on diffusion-encoder outputs to predict the task label. Higher linear/non-linear probing scores
indicate better discrimination of locomotion tasks in latent space, hence higher representation quality.
LaMbDA outperformed the state-of-the-art alignment methods on four of the six models and ranked
second on the remaining two (Tab. 3).

To strengthen our empirical evaluation, we further benchmark LaMbDA against powerful cross-modal
generative baselines. We evaluate two state-of-the-art cross-modal diffusion frameworks, CDCD
Zhu et al. (2023) and CMMD Yang et al. (2024), as well as conditional generative models, including
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Linear probing ↑
Modality pair Angles – Moments Angles – GRF Moments – GRF
Alignment X | Y Y | X X | Y Y | X X | Y Y | X

Barlow 0.70±0.08 0.71±0.08 0.64±0.06 0.63±0.06 0.53±0.08 0.51±0.10
SimCLR 0.82±0.04 0.79±0.06 0.68±0.06 0.78±0.04 0.78±0.04 0.80±0.08
MSE 0.72±0.04 0.72±0.06 0.62±0.10 0.74±0.03 0.82±0.04 0.83±0.05
VICReg 0.65±0.09 0.64±0.06 0.66±0.07 0.62±0.07 0.54±0.07 0.59±0.09
LaMbDA 0.86±0.05 0.78±0.05 0.80±0.06 0.75±0.04 0.82±0.04 0.83±0.07

Nonlinear probing ↑
Barlow 0.72±0.06 0.73±0.07 0.66±0.08 0.68±0.05 0.63±0.07 0.57±0.10
SimCLR 0.83±0.05 0.80±0.06 0.74±0.07 0.81±0.05 0.64±0.07 0.68±0.09
MSE 0.74±0.05 0.75±0.06 0.65±0.10 0.76±0.05 0.85±0.05 0.85±0.05
VICReg 0.64±0.09 0.64±0.07 0.72±0.07 0.66±0.06 0.64±0.07 0.68±0.09
LaMbDA 0.86±0.05 0.80±0.05 0.83±0.06 0.78±0.05 0.85±0.05 0.84±0.05

Table 3: Quality of learned representations of different latent alignment methods quantified as
the performance on locomotion profile classification using linear and nonlinear probes (mean and
standard deviation across test sets, bold indicates best performing and underline indicates second
best performing). Local latent embedding alignment (LaMbDA) outperforms state-of-the-art self-
supervised methods across four out of six modalities tested, and performed second best in the
remaining two modalities.

a CVAE (with and without latent alignment) and a transformer-based time-series regressor (Tab.
4). Across these additional baselines, LaMbDA consistently achieves the strongest performance.
While adding latent alignment improves CVAE performance, it still trails behind the diffusion-based
alignment achieved by LaMbDA.

Linear probing Nonlinear probing
X = Angles, Y = Moments X | Y Y | X X | Y Y | X
Transformer Regressor 0.05 0.05 0.05 0.05
CVAE w/o align 0.48 0.35 0.65 0.4
CVAE w/align 0.54 0.53 0.69 0.67
CDCD 0.06 0.47 0.04 0.5
CMMD 0.65 0.78 0.76 0.89
LaMbDA (ours) 0.89 0.88 0.89 0.88

Table 4: Comparison of downstream task performance against a transformer regressor baseline,
conditional generative baseline, CVAE with and without latent alignment, and cross-modal diffusion
benchmarks such as CDCD, CMMD for one cross-validation iteration.

4.3 EFFECT OF ALIGNMENT ON THE LEARNED REPRESENTATIONS

Next, we evaluated how latent alignment influences representation quality. We first visualized the
latent spaces of models trained without and with alignment using UMAP McInnes et al. (2018).
With alignment, the two spaces were highly correlated, and same-task samples occupied overlapping
subspaces (Fig. 4). This was further corroborated by superior downstream linear classification of
locomotion task profiles. Thus, aligning the two latent spaces enhances the representational quality of
individual modalities, likely by capturing shared or complementary information from the two views.
This effect is not due to mutual conditioning at the decoder or the energy-conservation objective,
since non-aligned models were also trained with these components.

4.4 ABLATIONS

Finally, we conducted an ablation study to assess the contribution of each component to our overall
loss term (Eq. 8). Specifically, we removed the energy conservation objectives (Lenergy,X and
Lenergy,Y), the covariance alignment objective (Lcov), and the contrastive alignment objective

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 4: (Left) Latent embeddings of p(X | Y ) and p(Y | X) on a held-out subject, trained with
and without latent alignment (color-coded by locomotion task). Without alignment, representations
show strong modality-specific separation, whereas with alignment, the two latent spaces merge, and
same-task samples occupy overlapping subspaces. Also see Fig. 9 in Appendix A.4. (Right top)
Correlation between the two modality-specific latent spaces on held-out test data (shaded area =
standard deviation). Models trained with alignment exhibit high cross-modal correlation. (Right bot-
tom) Linear-classifier performance for discriminating locomotion tasks from each modality-specific
latent space (error bars = standard deviation). Alignment improves accuracy, indicating clearer task
separation in the latent space.

Lenergy Lcontrast Lcov X|Y Y |X
LaMbDA w/o Lcontrast ✓ ✓ 0.18±0.03 0.08±0.03
LaMbDA w/o Lcov ✓ ✓ 0.17±0.03 0.07±0.02
LaMbDA w/o Lenergy ✓ ✓ 0.17±0.02 0.07±0.02
LaMbDA ✓ ✓ ✓ 0.14±0.02 0.07±0.01

Table 5: Effect of ablation of individual components of the objective on the model performance
measured using MSE (Mean and standard deviation across test sets; lower the better). Removing
each component worsens the model’s cross-modal generation capability, whereas all the components
together are required to achieve the best performance.

(Lconstrast), individually, and compared these variants against the full objective. Our results show
that each component is necessary for achieving the best performance from our method (Tab. 5).

5 CONCLUSIONS

We presented a novel mutually-aligned diffusion framework for cross-modal biomechanical time-
series generation, grounded in a dynamical systems perspective. By applying a local latent embedding
alignment, comprising, first-order (sequence-contrastive) and second-order (covariance) alignment
at each diffusion time step, our approach synthesizes realistic kinematic and kinetic trajectories,
preserving biomechanically consistent relationships across the two modalities. Experiments show
that this simple alignment strategy produces more accurate signal generation compared to baselines,
and also enhances performance in downstream tasks, demonstrating its utility in both generative and
discriminative contexts.

Limitations. LaMbDA assumes that the paired modalities arise from a shared latent dynamical
process. Extending the method to settings where this assumption is violated is an important direction
for future work. Furthermore, scaling the method beyond two modalities may require additional
strategies such as centroid-based alignment or coordinated pairwise alignment.

10
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A APPENDIX

A.1 THEORETICAL JUSTIFICATION OF LATENT ALIGNMENT

Theorem A.1. Let (M,ϕt) be a compact C2 dynamical system on a smooth manifold M of dimension
dZ . Let oX : M → RdX and oY : M → RdY be smooth generic observation functions representing
two different measurement modalities (e.g., kinematics and kinetics). Define the delay embedding
operators:

EX(Z) =
[
oX(Z), oX(ϕτ (Z)), . . . , oX(ϕ(κ−1)τ (Z))

]
∈ Rκ×dX ,

EY (Z) =
[
oY (Z), oY (ϕτ (Z)), . . . , oY (ϕ(κ−1)τ (Z))

]
∈ Rκ×dY ,

for some fixed delay τ > 0 and embedding dimension κ ∈ N.

If κdX > 2dZ and κdY > 2dZ , then for generic oX and oY , both EX and EY are C1 embeddings of
M .

Consequently, their imagesMX := EX(M) andMY := EY (M) are diffeomorphic to M and thus
to each other. In particular, the map

Ψ := EY ◦ E−1
X :MX →MY

is a diffeomorphism.

Proof. This follows directly from the generalized Takens’ embedding theorem for vector-valued
observations Sauer et al. (1991). Since M is compact and the flows ϕt are smooth, the compositions
oX ◦ ϕt and oY ◦ ϕt remain C2 functions. Under the assumption that κdX > 2dA and that oX is
a generic smooth map, the embedding EX : M → Rκ×dX is an injective immersion and hence an
embedding. The same holds for EY .

Because both embeddings are diffeomorphisms from M to their respective imagesMX andMY ,
their composition Ψ := EY ◦E−1

X is a smooth bijection with a smooth inverse—i.e., a diffeomorphism
betweenMX andMY .

Implication for Local Alignment. In practice, we assume that the diffusion model encoders learn
latent representations Z

(i)
X ≈ EX(Zi) and Z

(i)
Y ≈ EY (Zi) from local trajectory windows. The

diffeomorphism Ψ implies that
Z

(i)
Y = Ψ(Z

(i)
X ),

and under smoothness of Ψ, we can locally approximate it by a first-order Taylor expansion:

Z
(i)
Y ≈ AiZ

(i)
X + bi,

where Ai = JΨ(Z
(i)
X ) is the Jacobian. Thus, minimizing both ∥Z(i)

X − Z
(i)
Y ∥2 (first-order alignment)

and
∥∥∥Cov(Z(i)

X )− Cov(Z
(i)
Y )

∥∥∥2
F

(second-order alignment) encourages local linear agreement of Ψ,
which our Local Latent Embedding Alignment (LaMbDA) loss is designed to enforce.

A.2 SYNTHETIC BENCHMARKS

A.2.1 LORENZ ATTRACTOR

The Lorenz system is a three-dimensional continuous-time dynamical system defined by:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

(9)

where x, y, z ∈ R represent the state variables and we use the canonical chaotic parameters σ = 10,
ρ = 28, and β = 8/3. This system is known for its sensitive dependence on initial conditions and its
characteristic ”butterfly”-shaped strange attractor (Fig. 5A).

We integrate the system using the Runge–Kutta 4th order method (RK4) with a timestep ∆t = 0.01,
starting from the initial condition x0 = [5.0, 5.0, 5.0] for 10000 steps. To construct a multimodal
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Figure 5: Phase-space visualizations of attractors from the synthetic dynamical systems used in our
evaluation. (A) Lorenz attractor (x− z projection), exhibiting classical chaotic structure. (B) Double
pendulum in a non-chaotic regime, forming a smooth toroidal attractor. (C) Double pendulum in a
mildly chaotic regime, producing a distorted, non-periodic attractor. These attractors illustrate the
diversity of dynamical complexity used to test cross-modal alignment.

setting, we define the scalar time series x(t) as modality 1 and z(t) as modality 2. The models
trained with local latent embedding alignment (LaMbDA) reconstructed the dynamical systems
trajectories more precisely than those trained without alignment (Fig. 6).

Figure 6: UMAP visualization of latent spaces of the cross-modal diffusion models trained on Lorenz
attractor data without (top) and with (bottom) latent alignment. The latent embedding of the models
trained with alignment shows a higher correlation.

A.2.2 DOUBLE PENDULUM

The double pendulum consists of two rigid links swinging in a vertical plane, with angular displace-
ments θ1(t) and θ2(t), and corresponding angular velocities ω1(t) = θ̇1 and ω2(t) = θ̇2. The system
evolves according to a set of coupled second-order nonlinear differential equations derived from a
Lagrangian formulation. We consider a simplified configuration with unit-length rods, equal masses
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m1 = m2 = 1, and gravitational acceleration g = 9.81 m/s2. Integration is performed using a
fourth-order Runge–Kutta (RK4) method with timestep ∆t = 0.01 for 10000 steps.

To evaluate alignment under varying dynamical conditions, we simulate the double pendulum under
two distinct regimes:

• Non-chaotic regime: We initialize the system with small angular displacements and zero
initial velocities: θ1 = 0.2, θ2 = 0.18, ω1 = ω2 = 0. This results in quasi-periodic
motion with smooth, stable trajectories, ideal for baseline alignment under low dynamical
complexity (Fig. 5B).

• Chaotic regime: We use higher initial energy by setting θ1 = 2.1, θ2 = −0.1, ω1 = ω2 = 0.
This produces irregular, aperiodic motion characteristic of weakly chaotic behavior, while
remaining numerically stable over long simulation horizons (Fig. 5C).

In both settings, we construct a multimodal observation setup where modality 1 is the scalar angular
velocity ω1(t) of the first link, and modality 2 is ω2(t), the angular velocity of the second link.

A.3 BROADER IMPACTS

The proposed framework for mutually aligned cross-modal diffusion opens a wide range of pos-
sibilities in scenarios where one or more data streams are missing, noisy, or difficult to measure
directly. In wearable assistive devices and robotics, it can infer absent or corrupted sensor inputs,
such as force or torque data from more accessible modalities, thereby enhancing real-time control
and reliability despite equipment constraints or sensor failure. Within the biomechanical domain, the
ability to simulate perturbations in one modality and observe their repercussions in another offers
powerful insights into how different aspects of locomotion co-evolve, informing the design of targeted
rehabilitation protocols and sophisticated training regimens. By allowing for more efficient sensor
setups, the framework supports clinicians and researchers in long-term monitoring without requiring
extensive instrumentation, broadening the potential for in-home rehabilitation and remote athlete
performance tracking. Beyond biomechanics, the fundamental principles behind our cross-modal
diffusion paradigm can be extended to other domains where interacting data streams arise from a
shared dynamical process. For instance, in climate modeling, it could align or impute different types
of geospatial and atmospheric measurements to refine weather or environmental forecasts. Even
financial modeling could benefit from aligning time-series of economic indicators or market signals
to better predict systemic interactions. Importantly, our experiments on synthetic dynamical systems
(e.g., Lorenz attractor and double pendulum) demonstrate that the proposed LaMbDA framework
yields similar improvements in reconstruction accuracy and latent structure alignment, highlighting
the generality and applicability of our method across domains governed by shared latent dynamics.

Ethical Considerations. The ability to reconstruct missing data from alternative sources raises
important questions about privacy, consent, and fairness, particularly when dealing with sensitive
physiological information. These concerns underscore the need for robust regulatory frameworks and
ethical practices to ensure responsible research and real-world implementations.

A.4 FURTHER VISUALIZATIONS

We provide further visualizations of reconstructed trajectories, failure cases and latent space visual-
izations in Fig. 7–9.

A.5 SHARED ENCODER ARCHITECTURE

Another method to derive a shared latent space for the two modalities (kinematics and kinetics) is to
use a single encoder which takes both the modalities together as inputs. For cross-modal generation,
one can use modality-specific decoder heads which takes the other modality as conditioning input.
Although this method eliminates the need for explicit alignment in the latent space (and uses only the
denoising objective), we found that the generation quality is inferior compared to the modality-specific
encoder-decoder architecture that we propose.
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Figure 7: Real (black) and sampled (red) trajectories of joint angles (top) and joint moments (bottom)
generated by latent aligned cross-modal diffusion models. All the generated trajectories follow the
ground truth trajectories closely. Shaded region represents standard deviation.

τhip,x

0 300
-1.0

0.0

1.0
θankle,y

0 300

GRFy

0 300

Figure 8: Example failure cases of the model for the prediction of the three modalities. Failure cases
mostly occur when the underlying true signal shows high variability, or due to sign changes in the
sampled signals.

Figure 9: UMAP visualizations of latent spaces of cross-modal diffusion models for joint angles
and GRF (left) and joint moments and GRF (right) for diffusion models trained independently
(w/o alignment) and with latent alignment. The latent space of the latent aligned models shows a
correlation in the structure and arrangement of locomotion tasks (color codes), whereas the latent
space of the independently trained models shows a modality-specific structure without observable
correlations.
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Table 6: Comparison of cross-modal generation performance (quantified by MSE, mean ± std)
of a diffusion model with shared encoder and modality-specific decoders with modality-specific
encoder-decoder architecture trained with latent alignment.

Angles-moments Moments-GRF Angles-GRF
X|Y Y |X X|Y Y |X X|Y Y |X

Shared encoder 0.98±0.02 1.02±0.03 1.00±0.02 1.13±0.04 0.95±0.01 1.14±0.03
LaMbDA (ours) 0.14±0.02 0.07±0.01 0.07±0.02 0.03±0.02 0.19±0.03 0.06±0.03

A.6 FURTHER EXPERIMENTAL DETAILS

A.6.1 DATASET

We used open-source biomechanical motion datasets Embry et al. (2018) consisting of locomotion data
collected as multiple subjects walked on an instrumented treadmill at varying speeds (0.8 m/s, 1.0 m/s,
and 1.2 m/s) and inclines (-10 °to 10 °at 2.5 °increments). The locomotion data was recorded using a
10-camera Vicon motion capture system, while the force plates in the treadmill recorded ground reac-
tion forces (GRF). The processed data consists of three modalities 1) Kinematics that consists of 3D
joint angles of hip, knee, and ankle, and 3D pelvis and foot angles, 2) joint kinetics that consists of 3D
moments of hip, knee, and ankle, and 3) 3D ground reaction forces. The feature sets are represented
as (θhip,x, θhip,y, θhip,z, θknee,x, θknee,y, θknee,z, θankle,x, θankle,y, θankle,z, θfoot,x, θfoot,y, θfoot,z,
θpelvis,x, θpelvis,y, θpelvis,z), (τhip,x, τhip,y, τhip,z, τknee,x, knee, y, τknee,z, τankle,x, τankle,x, τankle,x),
(GRFx,GRFy,GRFz). The features were normalized prior to model training.

A.6.2 MODEL ARCHITECTURE

We trained parallel diffusion models (DDPM), pθ(X|Y) and pϕ(Y|X) for generating the two
modalities X and Y conditioned on the other with latent alignment. Each model has the same
architecture and consists of four modules: 1) an input encoder, that encodes the noise input, designed
as a transformer-based encoder with four layers and a model dimension of 128, 2) a condition
embedder, which encodes the guiding signal, 3) a timestep embedder, that encodes the diffusion
timestep t, designed as a multilayer perceptron (MLP) with SiLU Wang et al. (2018) activation, and
4) an output decoder, that generates the output at each diffusion timestep, designed as a transformer
decoder with four layers. At each diffusion timestep, the noise input is linearly projected from the
input space to the model space and combined with a positional and time embedding, before it passes
through the encoder. At the decoder, cross-attention is computed between the condition embedding
combined with positional and time embedding and the encoded noise input. The generated output is
linearly projected onto the output space. Each model has ˜ 25M tunable parameters.

A.6.3 IMPLEMENTATION DETAILS

We trained parallel diffusion models (DDPM), pθ(X|Y) and pϕ(Y|X) for generating the two
modalities X and Y conditioned on the other with latent alignment. Each model has the same
architecture and consists of a transformer encoder and decoder, each with four layers. Inputs to both
encoder and decoder were combined with sinusoidal position encoding and time embedding. The
decoder additionally takes a conditional embedding derived from the other modality through a linear
layer. Each model has ˜ 25M tunable parameters. In contrast to having a single test set, we performed
a K-fold cross-validation of the models by creating multiple versions of train and test datasets. The
model training was done for ˜ 50 epochs on an RTX4090 GPU computer which consumed ˜ 10GB of
GPU space and ˜ 10 hours for 10 cross-validation iterations.

A.6.4 METRICS

Mean-Squared Error (MSE) Each diffusion model, p(X|Y) or p(Y|X), generates data for one
modality, X̂ or Ŷ, conditioned on the other. Since the modalities are time-series data that correspond
to each other, this conditioned generation can be viewed as a cross-modal reconstruction task. The
ground truth signal for the reconstructed data is defined as the temporal counterpart of the conditioning
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data. We then calculate the mean squared error (MSE) between the generated data, X̂ or Ŷ and the
ground truth data for the respective modality.

Fréchet Inception Distance (FID) evaluates the quality of generated data by measuring the Fréchet
distance (Wasserstein-2 distance) between the distributions of real and generated features Yu et al.
(2021). Originally designed for images, we adapt this metric for generated time series data by
computing the distance in the temporal space. Given two Gaussian distributions, N (µ,Σ) and
N (µ′,Σ′), respectively fitted to the real and generated feature representations, the FID is computed
as:

FID = ∥µ− µ′∥22 + tr(Σ + Σ′ − 2(ΣΣ′)
1
2 ) (10)

Predictive score This metric evaluates generation quality by assessing how well a model trained
on generated data predicts future values in real data Yoon et al. (2019). A sequence-to-sequence
model (e.g., LSTM) is trained to predict the latter part of a time series from its initial part, and its
performance on real data reflects the quality of the generated data, with lower errors indicating higher
quality.

A.6.5 REPRESENTATION ALIGNMENT METHODS

SimCLR Chen et al. (2020b) is a contrastive learning approach that learns representations by
bringing similar samples (positive pairs) closer in the latent space while pushing dissimilar ones
(negative pairs) apart. It relies on a contrastive loss function, the Normalized Temperature-scaled
Cross-Entropy Loss (NT-Xent loss), which is defined as:

ℓi,j = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp (sim(zi, zk)/τ)
(11)

where zi, zj are the embeddings of two samples, sim(zi, zj) =
zi·zj

∥zi∥∥zj∥ is the cosine similarity
measure, τ is the temperature scaling parameter, and N is the batch size. The total loss across a batch
of size N is computed as:

LSimCLR =
1

2N

N∑
i=1

(ℓ2i−1,2i + ℓ2i,2i−1) . (12)

We consider the latent embeddings of the corresponding samples of both modalities in a batch as
positive pairs, and non-corresponding samples as negative pairs.

Barlow Twins Zbontar et al. (2021) addresses the limitations of contrastive methods by eliminating
the need for negative samples. It introduces a loss function that aligns the cross-correlation matrix
of embeddings from two identical networks processing different augmentations of the same image
(in our case two modalities). The objective is twofold: (1) to make the diagonal elements of this
matrix approach one, ensuring invariance, and (2) to drive the off-diagonal elements towards zero,
promoting redundancy reduction. This strategy effectively prevents collapse by decorrelating different
dimensions of the representation space.

Given two embeddings zA and zB (where A and B are two modalities), it computes the cross-
correlation matrix:

Cij =
1

B

N∑
n=1

zAn (i)z
B
n (j) (13)

where N is the batch size and z(·)(i) represents the i-th feature dimension. The Barlow Twins loss
consists of two key terms:
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• Invariance term: Ensures that representations of the same input under different augmenta-
tions are similar:

∑
i(1− Cii)

2.

• Redundancy reduction term: Enforces decorrelation across different dimensions to prevent
representational collapse:

∑
i̸=j C

2
ij .

The final loss function is formulated as:

LBarlow =
∑
i

(1− Cii)
2 + λ

∑
i̸=j

C2
ij , (14)

where λ is a balancing hyperparameter.

VICReg (Variance-Invariance-Covariance Regularization) Bardes et al. (2021) extends Barlow
Twins by adding an explicit variance regularization term, preventing representational collapse through
three objectives:

• Invariance: Ensures consistency between augmented views, similar to SimCLR and Barlow
Twins: Linv =

∑d
i=1 ∥zA(i) − zB(i)∥2 where A and B are two modalities, and z(·)(i)

represents the i-th feature dimension.
• Variance regularization: Ensures that the standard deviation of each embedding di-

mension i remains above a threshold γ, preventing collapse to trivial solutions: Lvar =∑d
i=1 max(0, γ − σ(z(i)))2.

• Covariance regularization: Reduces redundancy between different dimensions by mini-
mizing off-diagonal terms of the covariance matrix: Lcov =

∑
i̸=j C

2
ij , C = Z⊤Z

N , where
N is the batch size.

The total VICReg loss function is:

LVICReg = λinvLinv + λvarLvar + λcovLcov. (15)

This approach provides a balance between alignment and diversity constraints, ensuring that repre-
sentations are meaningful, discriminative, and well-distributed.

A.7 HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the robustness of LaMbDA with respect to key modeling choices, we conducted sensitivity
analyses on two primary hyperparameters: the latent dimensionality D of the diffusion encoders and
the sequence length L used for training.

Latent dimensionality. We evaluated LaMbDA using latent dimensions D ∈ {32, 64, 128, 256},
keeping sequence length L = 300. As shown below for the Moments–GRF pair (Tab. 7, performance
remains stable across a wide range of latent sizes, with improvements with model dimension D until
our choice of D = 128.

Sequence length. We further assessed sensitivity to sequence length using L ∈ {150, 300, 450}
keeping the model dimension D = 128. Since a single gait cycle consists of approximately 150
samples, this range spans single-cycle and multi-cycle contexts. We found that performance improves
with sequence length until L = 300, after which it saturates.

A.8 ENTROPY ANALYSIS

In table 1 of the paper, we observed asymmetries in the reconstruction metrics for X | Y and
Y | X . We hypothesized that this arises from the asymmetry in the information content in X and
Y modalities about each other. Joint angles provide a richer and more complete description of the
underlying movement state than the downstream kinetic measurements. Consequently, reconstructing
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X = Moments, Y = GRF Model dimension, D (L = 300) Sequence length, L (D = 128)
D = 32 D = 64 D = 128 D = 256 L = 150 L = 300 L = 450

X | Y 0.045 0.039 0.037 0.038 0.044 0.037 0.037
Y | X 0.020 0.021 0.014 0.013 0.017 0.014 0.014

Table 7: Results of hyperparameter sensitivity analysis. We analyzed the effect of model dimension,
D, and sequence length, L, on the reconstruction accuracy.

H(X | Y ) H(Y | X)

X = Angles, Y = Moments 2.12 ± 0.56 -3.55 ± 0.40
X = Angles, Y = GRF 2.38 ± 0.54 -6.74 ± 0.44
X = Moments, Y = GRF -3.52 ± 0.45 -6.96 ± 0.45

Table 8: Conditional entropies H(X | Y ) and H(Y | X) for angles-moments, angles-GRF, and
moments-GRF pairs.

Y from X is an inherently easier task with lower uncertainty. In contrast, reconstructing angles (X)
from moments (Y ) is a harder problem: the kinetic signals contain less information about the full
kinematic trajectory.

To quantify this effect, we computed conditional entropies H(X | Y ) and H(Y | X) for the
biomechanical modality pairs. We used k-nearest neighbor (kNN) estimators with k=20 to estimate the
mutual information I(X; Y) using Kraskov–Stögbauer–Grassberger, KSG estimator, and differential
entropy H(X) using Kozachenko–Leonenko estimator for continuous variables X and Y (and
hence the negative values of entropy). The conditional entropy is computed as H(X | Y ) =
H(X)− I(X;Y ) and H(Y | X) = H(Y )− I(X;Y ). As expected, we find that the uncertainty of
angles given moments is substantially higher than the uncertainty of moments given angles.

These results also explain why, in the ablation experiments (Tab. 5), only modest improvements
were obtained for Y | X with the addition of more LaMbDA loss components. Since moments given
angles (X | Y ) are the easier direction, it is less sensitive to ablations, while angles given moments
(Y | X) are a harder task and benefit more strongly from the full LaMbDA objective.
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