

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LAMBDA: LOCAL LATENT EMBEDDING ALIGNMENT FOR CROSS-MODAL TIME-SERIES DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a mutually aligned diffusion framework for cross-modal time-series generation that treats paired modalities X and Y as complementary observations of a shared latent dynamical process and couples their denoising trajectories through stepwise alignment of local latent embeddings. We instantiate this as LaMbDA (Local latent eMbedDing Alignment), a lightweight objective that enforces phase consistency by encouraging local latent neighborhoods of X and Y to inhabit a shared local manifold. LaMbDA augments the diffusion loss by incorporating first-order sequence-contrastive and second-order covariance alignment terms across modalities at matched timesteps. Aligning their local embeddings allows each modality to help denoise the other and resolve ambiguities throughout the reverse process. Human biomechanics provides a strong testbed for this approach: paired, synchronized measurements (e.g., joint kinematics and ground-reaction forces) capture the same movement state while reflecting practical constraints such as sensor dropout and cost. We evaluate LaMbDA extensively on biomechanical data and complement this with controlled studies on canonical synthetic dynamical systems (Lorenz attractor; double pendulum in non-chaotic and chaotic regimes) to probe generality under varying dynamical complexity. Across all these settings, aligning local latent statistics consistently improves generation fidelity, phase coherence, and representation quality for downstream probes, without architectural changes or inference overhead.

1 INTRODUCTION

Many real-world systems produce multiple data streams that are different views of the same evolving process Ren et al. (2022); Ashe & Briscoe (2006). These paired observations, measured by distinct sensors at different rates and with varying noise characteristics, often offer complementary perspectives of a shared underlying state Ren et al. (2022); Ashe & Briscoe (2006). Yet, they are rarely modeled jointly in a way that allows one stream to systematically disambiguate the other during generation and inference. Human movement is a representative example: joint kinematics, joint moments, and ground-reaction forces are synchronized, physically coupled measurements of a common locomotor state Winter (2009), but practical considerations (cost, setup complexity, occlusions, dropouts) often prevent observing all of them together or cleanly. A method that leverages complementarities between paired streams while remaining robust to partial, noisy observations would be broadly useful across such settings.

We introduce a mutually aligned cross-modal diffusion framework (Fig. 1) that treats two temporal modalities X and Y as complementary observations of a shared latent dynamical process. The core idea is to couple their reverse-diffusion trajectories by aligning local latent statistics at every diffusion step. Intuitively, local neighborhoods that correspond to the same phase should lie in nearby regions with similar variability. Enforcing this coherence allows each modality to help denoise and disambiguate the other throughout sampling. We instantiate this as LaMbDA (Local Latent Embedding Alignment), a lightweight objective that augments standard conditional diffusion without architectural changes or inference-time overhead. Two conditional models, $p_\theta(X \mid Y)$ and $p_\phi(Y \mid X)$, are trained in parallel, and at each diffusion step, they produce local embeddings from their noisy inputs. LaMbDA then encourages temporally matched windows to agree in their local statistics, while standard denoising losses train each model to reconstruct its target sequence. LaMbDA includes a first-order sequence-contrastive loss and a second-order covariance alignment

Figure 1: (Left) Mutually aligned cross-modal diffusion with latent embedding alignment. Diffusion processes, $p_\theta(\mathbf{X}|\mathbf{Y})$ and $p_\phi(\mathbf{Y}|\mathbf{X})$, generate data for modalities, \mathbf{X} and \mathbf{Y} , respectively, guided by a condition derived from the other modality. During training, the latent representations, $h_X(\mathbf{X}_t, t)$ and $h_Y(\mathbf{Y}_t, t)$, of the two models are aligned using a local latent embedding alignment (LaMbDA) objective. Additionally, denoising and energy conservation objectives are applied to each modality’s generated samples, $\hat{\mathbf{X}}$ and $\hat{\mathbf{Y}}$. During sampling, the model for each modality diffuses a noise signal across T timesteps, guided by a condition from the other modality to generate samples of a given modality that temporally corresponds to the guiding signal.

loss between the modalities’ latent spaces, ensuring that local neighborhoods not only match in their immediate representations but also preserve consistent internal correlation structure. The procedure is motivated by a dynamical-systems view: if both modalities are generated by the same latent state, then temporally matched windows from the two observation streams are related by a smooth change of coordinates Sauer et al. (1991).

We used human biomechanics as the primary testbed to evaluate this approach: paired, synchronized signals with clear physical coupling (angles, moments, forces) make it straightforward to verify whether cross-modal generation respects known relationships. The setting also reflects realistic sensing constraints—forces and moments are informative but expensive to measure, while kinematics are more accessible yet ambiguous—making biomechanics a stringent, informative setting for evaluating cross-modal diffusion under practical conditions. To probe generality to other dynamical systems and to study behavior under controlled dynamical complexity, we complement the real-world experiments with three canonical synthetic systems: the Lorenz attractor and the double pendulum in non-chaotic and chaotic regimes.

To the best of our knowledge, this is the first study to demonstrate cross-modal diffusion with latent alignment grounded in a dynamical systems perspective, and the first to showcase it in a biomechanical time series context. Our key contributions are: (1) We introduce a mutually aligned diffusion framework for cross-modal biomechanics synthesis through latent representation alignment. (2) We propose LaMbDA (Local latent eMBedDing Alignment), a lightweight, architecture-agnostic objective grounded in dynamical systems principles for aligning the latent representations of the modalities. (3) We demonstrate through experiments on real-world datasets and canonical dynamical systems that this simple latent alignment objective not only enhances generative quality but also maintains robust representations for downstream discriminative tasks.

2 RELATED WORK

Diffusion models. Denoising diffusion probabilistic models (DDPMs) have emerged as a powerful paradigm for generative modelling in high-dimensional settings. The seminal formulation introduced by Sohl-Dickstein et al. (2015) was refined by Ho et al. (2020), culminating in the state-of-the-art image synthesis performance Dhariwal & Nichol (2021). Beyond vision, subsequent adaptations to sequential data Yuan & Qiao (2024); Shen & Kwok (2023) have achieved competitive results in speech generation Kong et al. (2020); Chen et al. (2020a), time-series forecasting Kollovlieh et al. (2024), and anomaly detection Xiao et al. (2023). Nevertheless, applications that employ diffusion models for *cross-modal* generation of time-series observations remain scarce.

108 **Cross-modal learning.** Cross-modal learning enables synthesis or interpretation in one modality
 109 using another, leveraging the complementarity of heterogeneous data (e.g., text, images, audio,
 110 video). Landmark systems like DALL·E Ramesh et al. (2021; 2022) and CLIP Radford et al. (2021)
 111 highlight the power of large-scale multimodal pretraining for generating coherent visuals from
 112 text. This paradigm now extends to music-to-dance Tseng et al. (2023); Zhuang et al. (2022),
 113 text-to-video Blattmann et al. (2023), text-to-motion Tevet et al. (2023), and audio-visual scene
 114 understanding Alamri et al. (2019). However, most approaches focus on *unidirectional* mappings
 115 (e.g., text → image), neglecting the inherently bidirectional nature of many real-world relationships.
 116 Moreover, cross-modal methods for physiological time-series, such as biomechanical signals, remain
 117 underexplored. These domains require models that capture continuous temporal signals and preserve
 118 cross-modal dynamics, highlighting the need for bidirectional cross-modal approaches tailored to
 119 time-series data.

120 **Representation alignment.** Representation alignment embeds heterogeneous inputs into a shared
 121 latent space that preserves structural and semantic content. Self-supervised methods like SimCLR
 122 Chen et al. (2020b), Barlow Twins Zbontar et al. (2021), and VICReg Bardes et al. (2021) have ad-
 123 vanced unimodal pretraining for downstream tasks. However, these techniques are typically employed
 124 as auxiliary objectives rather than being integrated into diffusion-based generative frameworks, nor
 125 are they tailored for capturing temporal dependencies and inter-modal correlations in time-series data.
 126 In contrast, our approach employs latent alignment from a dynamical-systems perspective to enable
 127 bidirectional cross-modal generation of biomechanical time series.

128 **Biomechanical motion analysis and synthesis.** Biomechanical motion analysis combines kine-
 129 matic data (e.g., joint angles) with kinetic data (e.g., ground reaction forces or GRFs). Foundational
 130 work by Winter emphasizes the interplay between these modalities in locomotion Winter (2009).
 131 Recent learning-based models have improved motion estimation Halilaj et al. (2018); Gurchiek
 132 et al. (2019); Horst et al. (2023), though they often rely on handcrafted features and unimodal
 133 inputs, limiting generalization. Multimodal fusion, such as combining motion capture with EMG,
 134 enhances muscle force and joint dynamics estimation Sartori et al. (2012); Young et al. (2014). Yet,
 135 cross-modal synthesis of biomechanical patterns remains largely unexplored, restricting adaptability
 136 across scenarios. We address this gap with a cross-modal generation method for biomechanical time
 137 series, grounded in latent representation alignment and dynamical systems principles. While broadly
 138 applicable, we focus on biomechanics, where modalities like joint angles, moments, and GRFs share
 139 an underlying dynamical structure that our approach exploits for robust generation.

141 3 CROSS-MODAL DENOISING DIFFUSION WITH LATENT ALIGNMENT

143 3.1 PROBLEM FORMULATION

145 Let $\{(\mathbf{X}_i, \mathbf{Y}_i)\}_{i=1}^N$ denote a paired dataset of time series trajectories of two modalities: joint kine-
 146 matics and joint kinetics or variations thereof. Each trajectory $\mathbf{X}_i \in \mathbb{R}^{L \times d_X}$ and $\mathbf{Y}_i \in \mathbb{R}^{L \times d_Y}$ is a
 147 sequence of length L , with dimensions d_X and d_Y respectively. Our goal is to learn two generative
 148 models $p_\theta(\mathbf{X} \mid \mathbf{Y})$ and $p_\phi(\mathbf{Y} \mid \mathbf{X})$ (θ and ϕ are model parameters) such that one modality can be
 149 generated or reconstructed at full temporal resolution conditioned on the other.

151 3.2 DENOISING DIFFUSION

152 We adopt a denoising diffusion framework to learn these cross-modal distributions. Let β_t for
 153 $t = 1, \dots, T$ define a noise schedule that controls the noise variance at each step t of the diffusion
 154 process. We define the following forward-noising processes for each modality:

$$156 \quad \mathbf{X}_t = \sqrt{\beta_t} \mathbf{X}_{t-1} + \sqrt{1 - \beta_t} \epsilon, \quad \mathbf{Y}_t = \sqrt{\beta_t} \mathbf{Y}_{t-1} + \sqrt{1 - \beta_t} \epsilon, \quad (1)$$

157 where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ is standard Gaussian noise.

159 We model the reverse process using conditional denoising diffusion processes, which predict the
 160 clean signal based on the noisy sample at each time step, t , and a condition derived from the other
 161 modality:

$$162 \quad p_\theta(\mathbf{X}_0 \mid \mathbf{X}_t, g_Y(\mathbf{Y}), t), \quad p_\phi(\mathbf{Y}_0 \mid \mathbf{Y}_t, g_X(\mathbf{X}), t), \quad (2)$$

162 where θ and ϕ are parameters of the diffusion models, and $g_X(\cdot)$, $g_Y(\cdot)$ denote condition embedding
163 functions for the modalities \mathbf{X} and \mathbf{Y} , respectively.

164 We incorporate a mutual conditioning mechanism such that the generation of one modality is guided
165 by the latent or encoded features from the other modality. Concretely, this means each decoder attends
166 to both the noisy embedding of its own modality at time t and a learned condition embedding derived
167 from the other modality. For learning robust cross-modal representations, we enforce an alignment of
168 the latent representations of the two modalities at each diffusion step. Since our modalities represent
169 time-series data, we propose a modified alignment to ensure the temporal correlation of the local
170 dynamics of the two modalities.

172 3.3 LATENT ALIGNMENT WITH DIFFUSION

173 **Dynamical systems background.** In biomechanics, two modalities: joint kinematics and joint
174 kinetics can be seen as *observational streams* of the *same underlying dynamical system* since they
175 stem from the same musculoskeletal control process. Formally, consider a (possibly high-dimensional)
176 hidden state, $\mathbf{Z} \in \mathbb{R}^{L \times dz}$ evolving according to an unknown dynamics:

$$179 \quad \mathbf{Z}_{k+1} = f(\mathbf{Z}_k) + \boldsymbol{\eta}_k,$$

180 where $\boldsymbol{\eta}_k$ is a noise term. The observation functions, $o_{\mathbf{X}}$ and $o_{\mathbf{Y}}$, map the latent state into each
181 modality's domain:

$$182 \quad \mathbf{X}_k = o_{\mathbf{X}}(\mathbf{Z}_k), \quad \mathbf{Y}_k = o_{\mathbf{Y}}(\mathbf{Z}_k).$$

183 Under this perspective, \mathbf{X}_k and \mathbf{Y}_k arise from the same \mathbf{Z}_k and thus should lie on correlated sub-
184 manifolds of the global dynamical system. From Takens' embedding theorem Takens (2006) and
185 related results in nonlinear time-series analysis Sauer et al. (1991), such partial views can still
186 reconstruct consistent attractors or trajectories in phase space if appropriately embedded. This
187 perspective underlies the motivation for aligning \mathbf{X} -space and \mathbf{Y} -space: if they come from the same
188 dynamical manifold, then local segments of the latent dynamics should describe *the same underlying*
189 *phase and the same local trajectories* (up to a smooth invertible transform).

190 **Local latent embedding alignment (LaMbDA).** In our *mutually-aligned diffusion* approach,
191 we train the diffusion models $p_{\theta}(\mathbf{X} \mid \mathbf{Y})$ and $p_{\phi}(\mathbf{Y} \mid \mathbf{X})$ simultaneously to reconstruct the two
192 modalities, \mathbf{X} and \mathbf{Y} , conditioned on each other. At each timestep t , the diffusion models produce
193 latent embeddings, $\mathbf{Z}_{\mathbf{X},t} \in \mathbb{R}^{L \times dz}$ and $\mathbf{Z}_{\mathbf{Y},t} \in \mathbb{R}^{L \times dz}$. From a dynamical systems perspective, we
194 may consider these latent embeddings as a reconstruction of the local phase space of the underlying
195 dynamical system from each sensor's noisy observations. Since $\mathbf{Z}_{\mathbf{X},t}$ and $\mathbf{Z}_{\mathbf{Y},t}$ are reconstructions of
196 the same underlying trajectory \mathbf{Z} , they should be aligned to each other.

197 We partition the latent sequences from the two models, $\mathbf{Z}_{\mathbf{X}}$ and $\mathbf{Z}_{\mathbf{Y}}$ into P subsequences of length S ,

$$201 \quad \mathbf{Z}_{\mathbf{X}} = h_{\mathbf{X}}(\mathbf{X}) = [\mathbf{Z}_{\mathbf{X}}^{(1)}, \mathbf{Z}_{\mathbf{X}}^{(2)}, \dots, \mathbf{Z}_{\mathbf{X}}^{(P)}], \quad \mathbf{Z}_{\mathbf{Y}} = h_{\mathbf{Y}}(\mathbf{Y}) = [\mathbf{Z}_{\mathbf{Y}}^{(1)}, \mathbf{Z}_{\mathbf{Y}}^{(2)}, \dots, \mathbf{Z}_{\mathbf{Y}}^{(P)}], \quad (3)$$

202 where $P \approx L/S$. For each index $p = 1, \dots, P$, $\mathbf{Z}_{\mathbf{X}}^{(p)}$ and $\mathbf{Z}_{\mathbf{Y}}^{(p)}$ represent short *temporally coherent*
203 windows presumed to correspond to the *same* local dynamics. To encourage local manifold consistency,
204 we propose a unified *local latent embedding alignment* (LaMbDA) objective that enforces both
205 *first-order* and *second-order* consistency in the latent space.

206 **First-order (sequence-contrastive) alignment.** To align the latent representations of corresponding
207 time windows, we adopt a contrastive loss Oord et al. (2018) adapted to the temporal structure of the
208 latent space by *pulling* together time-matched local latent subsequences, $(\mathbf{Z}_{\mathbf{X}}^{(p)}, \mathbf{Z}_{\mathbf{Y}}^{(p)})$, from the two
209 modalities and *pushing* apart time-mismatched pairs from the same sequence, $(\mathbf{Z}_{\mathbf{X}}^{(p)}, \mathbf{Z}_{\mathbf{Y}}^{(q)}) \forall q \neq p$, as
210 well as pairs from different sequences in a batch. Formally, for P windows, we define:

$$214 \quad \mathcal{L}_{\text{contrast}} = -\frac{1}{P} \sum_{p=1}^P \log \frac{\exp(\text{sim}(\mathbf{Z}_{\mathbf{X}}^{(p)}, \mathbf{Z}_{\mathbf{Y}}^{(p)})/\tau)}{\sum_q \exp(\text{sim}(\mathbf{Z}_{\mathbf{X}}^{(p)}, \mathbf{Z}_{\mathbf{Y}}^{(q)})/\tau) + \sum_{\text{other seq}}(\cdot)}, \quad (4)$$

216 where $\text{sim}(\cdot)$ represents a similarity function such as dot product or cosine similarity and τ is a
 217 temperature parameter. By locally aligning short-term dynamics, the model ensures that the local
 218 neighborhoods in the latent spaces derived from the two modalities reflect the same underlying state
 219 in each window.

220
 221 **Second-order (covariance) alignment.** Beyond the pairwise similarity of the local latent manifold,
 222 we also align their internal structure using a covariance alignment term that enforces that the
 223 observation streams exhibit similar second-order statistics in their latent space. For each time
 224 step l , let $\mathbf{Z}_\mathbf{X}^{(l)}$ and $\mathbf{Z}_\mathbf{Y}^{(l)}$ denote the corresponding latent vectors for the two modalities. We compute
 225 the covariance matrices of these vectors (in a local neighborhood or across the entire sequence) and
 226 match them via:

$$227 \quad \mathcal{L}_{\text{cov}} = \frac{1}{L} \sum_{l=1}^L \text{MSE}\left(\text{cov}(\mathbf{Z}_\mathbf{X}^{(l)}), \text{cov}(\mathbf{Z}_\mathbf{Y}^{(l)})\right). \quad (5)$$

230 By matching the covariance matrices of $\mathbf{Z}_\mathbf{X}$ and $\mathbf{Z}_\mathbf{Y}$, we encourage both views to represent the same
 231 local manifold shape and correlation structure among latent dimensions, preserving the system's
 232 fundamental coupling and synergy patterns.

233 Finally, we form a single local latent embedding alignment (LaMbDA) loss by combining these two
 234 alignment components:

$$235 \quad \mathcal{L}_{\text{LaMbDA}} = \mathcal{L}_{\text{contrast}} + \mathcal{L}_{\text{cov}}. \quad (6)$$

237 A theoretical justification of our latent alignment approach grounded in Taken's embedding theorem
 238 is provided in Appendix A.1 (Theorem A.1).

239
 240 **Energy conservation loss.** To maintain the biomechanical plausibility of generated trajectories,
 241 we add an energy conservation term to the loss, which encourages consistency between the energy
 242 of the reconstructed signal, $\hat{\mathbf{X}}$, and the ground truth signal, \mathbf{X} , of the two modalities. The energy
 243 conservation loss is computed as Gao et al. (2023):

$$245 \quad \mathcal{L}_{\text{energy}}^{\mathbf{X}} = \|E(\hat{\mathbf{X}}) - E(\mathbf{X})\|_2, \quad E(\mathbf{X}) = \frac{1}{2} \nabla_l \mathbf{X}^2, \quad (7)$$

246 where $E(\cdot)$ represents an energy function.

248
 249 **Overall learning objective.** In addition to the local latent alignment, we use standard denoising
 250 objectives for each modality. Let $\mathcal{L}_{\text{denoise}}^{\mathbf{X}}(\theta)$ and $\mathcal{L}_{\text{denoise}}^{\mathbf{Y}}(\phi)$ be the respective MSE losses for
 251 generating \mathbf{X}_0 and \mathbf{Y}_0 from their noisy versions.

252 The *joint* objective is:

$$253 \quad \mathcal{L}(\theta, \phi, \alpha) = \mathcal{L}_{\text{denoise}}^{\mathbf{X}}(\theta) + \mathcal{L}_{\text{denoise}}^{\mathbf{Y}}(\phi) + \alpha \mathcal{L}_{\text{LaMbDA}}(\theta, \phi) + \mathcal{L}_{\text{energy}}^{\mathbf{X}}(\theta) + \mathcal{L}_{\text{energy}}^{\mathbf{Y}}(\phi), \quad (8)$$

255 where α is a learned weighting coefficient for the local latent embedding alignment. This learning
 256 objective poses conditional synthesis and cross-modal alignment as a single end-to-end optimization
 257 problem. We outline the training procedure in Algorithm 1.

259 4 EXPERIMENTS

261
 262 **Datasets.** The evaluation is conducted on different biomechanical modalities that capture comple-
 263 mentary signals of the locomotor process Embry et al. (2018). The dataset spans a broad range of
 264 locomotor conditions across a continuum of gait tasks, comprising approximately 1,540,000 samples
 265 collected from ten subjects over 27 distinct locomotion profiles, with walking speeds from 0.8 to
 266 1.2 m/s and inclines from -10° to $+10^\circ$ in 2.5° increments. It includes both steady-state locomotion
 267 and transitions between conditions. The dataset provides precise time-varying joint kinematics, joint
 268 kinetics, and ground-reaction forces, offering a diverse and realistic foundation for evaluating the
 269 proposed method and ensuring relevance and robustness within biomechanics. In addition to the
 real-world biomechanical data, we evaluate on synthetic datasets derived from canonical dynamical
 systems (Fig. 5 in Appendix A.2): the Lorenz attractor Lorenz (2017) and the double pendulum in

270 **Algorithm 1:** Training Mutually-Aligned Diffusion with Local Latent Embedding Alignment

271 **Input:** Paired datasets (\mathbf{X}, \mathbf{Y}) , noise schedule $(\beta_t)_{t=1}^T$, alignment weight α , batch size B ,
 272 sequence length L , subsequence length S , learning rate schedulers $\lambda_\phi, \lambda_\theta, \lambda_\alpha$.
 273 **Output:** Learned parameters θ, ϕ for $p(\mathbf{X}|\mathbf{Y})$ and $p(\mathbf{Y}|\mathbf{X})$
 274 **Initialize** θ, ϕ , alignment weight, α , and optimizers (e.g., AdamW).
 275 **for** $epoch = 1 \dots N_{epochs}$ **do**
 276 **foreach** batch $(\mathbf{X}_0, \mathbf{Y}_0)$ of size B **do**
 277 1. Sample Noisy Inputs:
 278 Sample $t \sim \text{Uniform}\{1, \dots, T\}$; $\epsilon_X, \epsilon_Y \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$;
 279 $\mathbf{X}_t \leftarrow \sqrt{\beta_t} \mathbf{X}_0 + \sqrt{1 - \beta_t} \epsilon_X$, $\mathbf{Y}_t \leftarrow \sqrt{\beta_t} \mathbf{Y}_0 + \sqrt{1 - \beta_t} \epsilon_Y$;
 280 2. Predict Denoised Inputs: $\hat{\mathbf{X}}_0 \leftarrow p_\theta(\mathbf{X}_t, \mathbf{Y}, t)$, $\hat{\mathbf{Y}}_0 \leftarrow p_\phi(\mathbf{Y}_t, \mathbf{X}, t)$.
 281 3. Compute Denoising Objective:
 282 $\mathcal{L}_{\text{denoise}, X} = \|\mathbf{X}_0 - \hat{\mathbf{X}}_0\|^2$, $\mathcal{L}_{\text{denoise}, Y} = \|\mathbf{Y}_0 - \hat{\mathbf{Y}}_0\|^2$.
 283 4. Compute Energy Conservation Objective:
 284 $\mathcal{L}_{\text{energy}, X} = \|E(\mathbf{X}_0) - E(\hat{\mathbf{X}}_0)\|^2$, $\mathcal{L}_{\text{energy}, Y} = \|E(\mathbf{Y}_0) - E(\hat{\mathbf{Y}}_0)\|^2$.
 285 5. Extract Latents & Compute Alignment Loss: $\mathbf{Z}_X \leftarrow h_X(\mathbf{X}_t, t)$, $\mathbf{Z}_Y \leftarrow h_Y(\mathbf{Y}_t, t)$.
 286 (Subdivide $\mathbf{Z}_X, \mathbf{Z}_Y$ into local subsequences, each of length S .)
 287 $\mathcal{L}_{\text{LaMbDA}} = \mathcal{L}_{\text{contrast}}(\mathbf{Z}_X, \mathbf{Z}_Y) + \mathcal{L}_{\text{cov}}(\mathbf{Z}_X, \mathbf{Z}_Y)$.
 288 6. Combine Objectives:
 289 $\mathcal{L}_{\text{total}}(\theta, \phi, \alpha) = \mathcal{L}_{\text{denoise}, X} + \mathcal{L}_{\text{denoise}, Y} + \alpha \mathcal{L}_{\text{LaMbDA}} + \mathcal{L}_{\text{energy}, X} + \mathcal{L}_{\text{energy}, Y}$.
 290 7. Update Parameters:
 291 $\theta \leftarrow \theta - \lambda_\theta \nabla_\theta \mathcal{L}_{\text{total}}$, $\phi \leftarrow \phi - \lambda_\phi \nabla_\phi \mathcal{L}_{\text{total}}$, $\alpha \leftarrow \alpha - \lambda_\alpha \nabla_\alpha \mathcal{L}_{\text{total}}$.
 292 **end**
 293 **return** θ, ϕ

295
 296 non-chaotic and chaotic regimes. These synthetic benchmarks explicitly test the generality of the
 297 method in recovering meaningful temporal correspondence between observation channels derived
 298 from a shared underlying dynamical system.

300 **Evaluation.** We evaluate our model on cross-modal biomechanical observations: joint angles–joint
 301 moments, joint moments–ground reaction forces (GRFs), and joint angles–GRFs, using time-varying
 302 joint and body kinematics, joint kinetics, and force-plate data (see Fig. 2 for an example, and see Ap-
 303 pendix A.2 for synthetic modality definitions). The three biomechanical modalities differ substantially
 304 in dimensionality: joint angles are 15-dimensional ($\theta_{\text{hip}}^{x,y,z}, \theta_{\text{knee}}^{x,y,z}, \theta_{\text{ankle}}^{x,y,z}, \theta_{\text{foot}}^{x,y,z}, \theta_{\text{pelvis}}^{x,y,z}$), joint
 305 moments 9-dimensional ($\tau_{\text{hip}}^{x,y,z}, \tau_{\text{knee}}^{x,y,z}, \tau_{\text{ankle}}^{x,y,z}$), and ground-reaction forces 3-dimensional ($\text{GRF}^{x,y,z}$).
 306 LaMbDA naturally supports alignment across such heterogeneous observation spaces because the
 307 alignment is performed in the latent space of the diffusion encoders rather than on the raw inputs.
 308 This design allows the method to align modalities with widely varying dimensionalities. In our
 309 experiments, we used a latent dimension of 128 based on a hyperparameter sensitivity analysis
 310 (see Appendix A.7). We use temporal segments of length $L = 300$ with 50% overlap (96.67% for
 311 synthetic data). This window length was selected based on a hyperparameter sensitivity analysis
 312 (see Appendix A.7, tab. 7) corresponds to two continuous gait cycles, enabling the model to learn
 313 transitions between cycles. Each model variant is trained and tested under multiple train–test splits,
 314 leaving out different participants and task profiles at each iteration rather than using a predefined test
 315 set. The test subsets include approximately 32k observations from 27 task profiles, reflecting varied
 316 speeds and conditions from a new user not seen during training. To stabilize training, we apply an
 317 exponential moving average (EMA) of parameters across batches and report aggregate results across
 318 all splits.

319 **Metrics.** The cross-modal generation performance was quantified using metrics that assess
 320 point-wise fidelity, distribution-level realism, temporal structure, and representational richness.
 321 Point-wise fidelity is measured using *mean-squared error (MSE)* between generated data and
 322 ground-truth physical observations; for reconstructions, the ground-truth signal is the temporal
 323 counterpart of the conditioning data. Distribution-level realism is measured using *Fréchet Inception
 324 Distance (FID)* to quantify differences between distributions of generated and real trajectories (lower

334 Figure 2: Raw trajectories showing the relationship between biomechanical modalities: joint angles–
335 joint moments, joint moments–GRFs, and joint angles–GRFs, for an example locomotion task. The
336 inherent periodicity in the relation shows that these modalities arise from a shared dynamical process
337 and motivates our approach of latent alignment to discover the underlying dynamical system, which
338 can then be used to generate trajectories for one modality conditioned on the other.

340 is better) Yu et al. (2021); Soloveitchik et al. (2021). Temporal structure is evaluated via the *predictive*
341 *score*, computed as the forecasting error of a sequence prediction model when predicting future
342 values of the ground truth sequences after training on generated data Yoon et al. (2019).

344 4.1 EFFECT OF LATENT ALIGNMENT ON CROSS-MODAL DIFFUSION

361 Figure 3: (A) Comparison of real and generated trajectories of (A) joint angles, moments, and GRF
362 using models trained with and without latent alignment of diffusion models. The shaded region
363 represents the standard deviation. Further visualizations are provided in Fig. 7 in Appendix A.4
364 . (B) Reconstruction of a window of 300 samples from the Lorenz attractor using models trained
365 without and with alignment. Latent alignment improves the quality of generated samples in both
366 cases.

367 We first tested our proposition that simply aligning the latent space of two independent conditioned
368 diffusion models can improve cross-modal generation performance. For this, we analyzed whether the
369 alignment of latent embeddings of the separate models $p_\theta(\mathbf{X}|\mathbf{Y})$ and $p_\phi(\mathbf{Y}|\mathbf{X})$ that learn to generate
370 each modality can improve the quality of their generated gait trajectories using different metrics such
371 as MSE, FID, and predictive score. We found that latent alignment through local latent embedding
372 alignment (LaMbDA) improves the cross-modal generation accuracy for all the different modalities
373 tested (Tab. 1). This was further illustrated by a better agreement of the trajectories generated by the
374 aligned models with the ground truth trajectories (Fig. 3A).

375 It should be noted that the difference in the metrics for $\mathbf{X}|\mathbf{Y}$ and $\mathbf{X}|\mathbf{Y}$ arises from the inherent
376 information asymmetry in the underlying biomechanical modalities. Joint angles describe the config-
377 uration and motion of the limb segments, which provides a richer representation of the movement
378 state than the downstream kinetic signals. Joint moments depend on these kinematics through inverse

Modality pair	Direction	MSE ↓		FID ↓		Pred ↓	
		w/o align	w/ align	w/o align	w/ align	w/o align	w/ align
angles–moments	$X Y$	0.18±0.03	0.14±0.02	37.8±9.6	32.4±7.2	0.18±0.06	0.16±0.03
	$Y X$	0.08±0.02	0.07±0.01	20.4±12.1	14.2±2.8	0.08±0.01	0.07±0.01
angles–GRF	$X Y$	0.22±0.03	0.19±0.03	66.7±51.5	40.4±8.3	0.30±0.23	0.16±0.02
	$Y X$	0.07±0.03	0.06±0.03	24.8±34.2	5.8±3.6	0.12±0.12	0.08±0.07
moments–GRF	$X Y$	0.08±0.02	0.07±0.02	16.5±4.0	13.7±3.2	0.08±0.01	0.07±0.01
	$Y X$	0.03±0.02	0.03±0.02	6.6±2.5	4.3±2.5	0.07±0.04	0.05±0.04

Table 1: Comparison of cross-modal generation performance (mean \pm std) of the conditional diffusion models for each modality pair, trained with and without latent alignment. The performance is evaluated using the discrepancy (MSE) between generated and ground truth trajectories, Fréchet Inception Distance (FID), and predictive score (predictive error), all of whose lower values indicate better performance. Training with latent alignment improves cross-modal generation quality across all modalities tested under all the different metrics evaluated here.

dynamics, and GRFs depend on the global body motion and foot–ground interaction, which are also strongly constrained by the kinematic trajectory. As a result, the angle modality typically contains more upstream information about the ongoing movement than moments or GRFs. This makes reconstructing moments or GRFs conditioned on angles easier than reconstructing the full kinematic trajectory from the kinetic measurements. This observation is supported by our entropy analysis (Appendix A.8), which shows conditional entropy $H(\mathbf{X} | \mathbf{Y})$ to be consistently higher than $H(\mathbf{X} | \mathbf{Y})$ when X is the joint angles (Tab. 8).

Dynamical system	model	w/o alignment	with alignment
Lorenz attractor	$X Y$	0.678	0.425
	$Y X$	0.135	0.004
Double pendulum (non-chaotic)	$X Y$	2.5e-3	2.5e-3
	$Y X$	6.6e-3	6.4e-3
Double pendulum (chaotic)	$X Y$	0.042	0.028
	$Y X$	0.031	0.021

Table 2: Comparison of cross-modal generation performance (quantified by MSE) of the conditional diffusion models trained with and without latent alignment on canonical dynamical systems.

Additional experiments on synthetic data. We found that the latent alignment strategy also improves model performance in trajectory reconstruction from different canonical dynamical systems (Tab. 2 and Fig. 3B). Performance improvement was more pronounced in the chaotic regime than in a non-chaotic regime (Tab. 2), underlying the ability of our approach to model complex dynamical relationships between modalities. These additional experiments on synthetic benchmarks establish LaMbDA as a powerful method for cross-modal synthesis when the two modalities originate from a shared underlying dynamical system.

4.2 COMPARISON WITH BENCHMARKS

We evaluated the quality of the latent representations learned by LaMbDA against state-of-the-art self-supervised alignment methods, such as SimCLR Chen et al. (2020b), Barlow Twins Zbontar et al. (2021), and VICReg Bardes et al. (2021), and a simple baseline that minimizes mean-squared error between the latents of the two models. The comparison used a downstream task: classification of the locomotion task label. Each input sample from either modality X or Y belongs to one of 27 locomotion tasks defined by walking speed and ground incline. A linear or non-linear classifier was trained on diffusion-encoder outputs to predict the task label. Higher linear/non-linear probing scores indicate better discrimination of locomotion tasks in latent space, hence higher representation quality. LaMbDA outperformed the state-of-the-art alignment methods on four of the six models and ranked second on the remaining two (Tab. 3).

To strengthen our empirical evaluation, we further benchmark LaMbDA against powerful cross-modal generative baselines. We evaluate two state-of-the-art cross-modal diffusion frameworks, CDCD Zhu et al. (2023) and CMMD Yang et al. (2024), as well as conditional generative models, including

Modality pair	Linear probing ↑					
	Angles – Moments		Angles – GRF		Moments – GRF	
Alignment	$X Y$	$Y X$	$X Y$	$Y X$	$X Y$	$Y X$
Barlow	0.70±0.08	0.71±0.08	0.64±0.06	0.63±0.06	0.53±0.08	0.51±0.10
SimCLR	<u>0.82±0.04</u>	0.79±0.06	<u>0.68±0.06</u>	0.78±0.04	0.78±0.04	0.80±0.08
MSE	0.72±0.04	0.72±0.06	0.62±0.10	0.74±0.03	0.82±0.04	0.83±0.05
VICReg	0.65±0.09	0.64±0.06	0.66±0.07	0.62±0.07	0.54±0.07	0.59±0.09
LaMbDA	0.86±0.05	<u>0.78±0.05</u>	0.80±0.06	<u>0.75±0.04</u>	0.82±0.04	0.83±0.07

	Nonlinear probing ↑					
	Barlow		SimCLR		MSE	
Barlow	0.72±0.06	0.73±0.07	0.66±0.08	0.68±0.05	0.63±0.07	0.57±0.10
SimCLR	<u>0.83±0.05</u>	0.80±0.06	<u>0.74±0.07</u>	0.81±0.05	0.64±0.07	0.68±0.09
MSE	<u>0.74±0.05</u>	0.75±0.06	<u>0.65±0.10</u>	0.76±0.05	0.85±0.05	0.85±0.05
VICReg	0.64±0.09	0.64±0.07	0.72±0.07	0.66±0.06	0.64±0.07	0.68±0.09
LaMbDA	0.86±0.05	0.80±0.05	0.83±0.06	<u>0.78±0.05</u>	0.85±0.05	<u>0.84±0.05</u>

Table 3: Quality of learned representations of different latent alignment methods quantified as the performance on locomotion profile classification using linear and nonlinear probes (mean and standard deviation across test sets, bold indicates best performing and underline indicates second best performing). Local latent embedding alignment (LaMbDA) outperforms state-of-the-art self-supervised methods across four out of six modalities tested, and performed second best in the remaining two modalities.

a CVAE (with and without latent alignment) and a transformer-based time-series regressor (Tab. 4). Across these additional baselines, LaMbDA consistently achieves the strongest performance. While adding latent alignment improves CVAE performance, it still trails behind the diffusion-based alignment achieved by LaMbDA.

$X = \text{Angles}, Y = \text{Moments}$	Linear probing		Nonlinear probing	
	$X Y$	$Y X$	$X Y$	$Y X$
Transformer Regressor	0.05	0.05	0.05	0.05
CVAE w/o align	0.48	0.35	0.65	0.4
CVAE w/align	0.54	0.53	0.69	0.67
CDCC	0.06	0.47	0.04	0.5
CMMMD	0.65	0.78	0.76	0.89
LaMbDA (ours)	0.89	0.88	0.89	0.88

Table 4: Comparison of downstream task performance against a transformer regressor baseline, conditional generative baseline, CVAE with and without latent alignment, and cross-modal diffusion benchmarks such as CDCC, CMMMD for one cross-validation iteration.

4.3 EFFECT OF ALIGNMENT ON THE LEARNED REPRESENTATIONS

Next, we evaluated how latent alignment influences representation quality. We first visualized the latent spaces of models trained without and with alignment using UMAP McInnes et al. (2018). With alignment, the two spaces were highly correlated, and same-task samples occupied overlapping subspaces (Fig. 4). This was further corroborated by superior downstream linear classification of locomotion task profiles. Thus, aligning the two latent spaces enhances the representational quality of individual modalities, likely by capturing shared or complementary information from the two views. This effect is not due to mutual conditioning at the decoder or the energy-conservation objective, since non-aligned models were also trained with these components.

4.4 ABLATIONS

Finally, we conducted an ablation study to assess the contribution of each component to our overall loss term (Eq. 8). Specifically, we removed the energy conservation objectives ($\mathcal{L}_{energy, X}$ and $\mathcal{L}_{energy, Y}$), the covariance alignment objective (\mathcal{L}_{cov}), and the contrastive alignment objective

Figure 4: (Left) Latent embeddings of $p(X | Y)$ and $p(Y | X)$ on a held-out subject, trained with and without latent alignment (color-coded by locomotion task). Without alignment, representations show strong modality-specific separation, whereas with alignment, the two latent spaces merge, and same-task samples occupy overlapping subspaces. Also see Fig. 9 in Appendix A.4. (Right top) Correlation between the two modality-specific latent spaces on held-out test data (shaded area = standard deviation). Models trained with alignment exhibit high cross-modal correlation. (Right bottom) Linear-classifier performance for discriminating locomotion tasks from each modality-specific latent space (error bars = standard deviation). Alignment improves accuracy, indicating clearer task separation in the latent space.

	$\mathcal{L}_{\text{energy}}$	$\mathcal{L}_{\text{contrast}}$	\mathcal{L}_{cov}	$X Y$	$Y X$
LaMbDA w/o $\mathcal{L}_{\text{contrast}}$	✓		✓	0.18±0.03	0.08±0.03
LaMbDA w/o \mathcal{L}_{cov}	✓	✓		0.17±0.03	0.07±0.02
LaMbDA w/o $\mathcal{L}_{\text{energy}}$		✓	✓	0.17±0.02	0.07±0.02
LaMbDA	✓	✓	✓	0.14±0.02	0.07±0.01

Table 5: Effect of ablation of individual components of the objective on the model performance measured using MSE (Mean and standard deviation across test sets; lower the better). Removing each component worsens the model’s cross-modal generation capability, whereas all the components together are required to achieve the best performance.

($\mathcal{L}_{\text{contrast}}$), individually, and compared these variants against the full objective. Our results show that each component is necessary for achieving the best performance (Tab. 5).

5 CONCLUSIONS

We presented a novel mutually-aligned diffusion framework for cross-modal biomechanical time-series generation, grounded in a dynamical systems perspective. By applying a local latent embedding alignment, comprising, first-order (sequence-contrastive) and second-order (covariance) alignment at each diffusion time step, our approach synthesizes realistic kinematic and kinetic trajectories, preserving biomechanically consistent relationships across the two modalities. Experiments show that this simple alignment strategy produces more accurate signal generation compared to baselines, and also enhances performance in downstream tasks, demonstrating its utility in both generative and discriminative contexts.

Limitations. LaMbDA assumes that the paired modalities arise from a shared latent dynamical process. Extending the method to settings where this assumption is violated is an important direction for future work. Furthermore, scaling the method beyond two modalities may require additional strategies such as centroid-based alignment or coordinated pairwise alignment.

540 REFERENCES
541

542 Huda Alamri, Vincent Cartillier, Abhishek Das, Jue Wang, Anoop Cherian, Irfan Essa, Dhruv Batra,
543 Tim K Marks, Chiori Hori, Peter Anderson, et al. Audio visual scene-aware dialog. In *Proceedings*
544 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7558–7567, 2019.

545 Hilary L Ashe and James Briscoe. The interpretation of morphogen gradients. 2006.

546 Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
547 for self-supervised learning. *arXiv preprint arXiv:2105.04906*, 2021.

548 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
549 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
550 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
551 22563–22575, 2023.

552 Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
553 Estimating gradients for waveform generation. *arXiv preprint arXiv:2009.00713*, 2020a.

554 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
555 contrastive learning of visual representations. In *International conference on machine learning*, pp.
556 1597–1607. PMLR, 2020b.

557 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
558 *in neural information processing systems*, 34:8780–8794, 2021.

559 K. R. Embry, D. J. Villarreal, R. L. Macaluso, and R. D. Gregg. The effect of walking incline and
560 speed on human leg kinematics, kinetics, and emg, 2018. URL <https://dx.doi.org/10.21227/gk32-e868>.

561 Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle Maddix, Yi Zhu, Mu Li,
562 and Yuyang Bernie Wang. Prediff: Precipitation nowcasting with latent diffusion models. *Advances*
563 *in Neural Information Processing Systems*, 36:78621–78656, 2023.

564 Reed D Gurchiek, Nick Cheney, and Ryan S McGinnis. Estimating biomechanical time-series with
565 wearable sensors: A systematic review of machine learning techniques. *Sensors*, 19(23):5227,
566 2019.

567 Eni Halilaj, Apoorva Rajagopal, Madalina Fiterau, Jennifer L Hicks, Trevor J Hastie, and Scott L
568 Delp. Machine learning in human movement biomechanics: Best practices, common pitfalls, and
569 new opportunities. *Journal of biomechanics*, 81:1–11, 2018.

570 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
571 *neural information processing systems*, 33:6840–6851, 2020.

572 Fabian Horst, Djordje Slijepcevic, Marvin Simak, Brian Horsak, Wolfgang Immanuel Schöllhorn,
573 and Matthias Zeppelzauer. Modeling biological individuality using machine learning: A study on
574 human gait. *Computational and structural biotechnology journal*, 21:3414–3423, 2023.

575 Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
576 Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
577 time series forecasting. *Advances in Neural Information Processing Systems*, 36, 2024.

578 Zifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
579 diffusion model for audio synthesis. *arXiv preprint arXiv:2009.09761*, 2020.

580 Edward N Lorenz. Deterministic nonperiodic flow 1. In *Universality in Chaos, 2nd edition*, pp.
581 367–378. Routledge, 2017.

582 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
583 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

584 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
585 coding. *arXiv preprint arXiv:1807.03748*, 2018.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 595 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 596 models from natural language supervision. In *International conference on machine learning*, pp.
 597 8748–8763. PMLR, 2021.

598 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 599 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 600 learning*, pp. 8821–8831. Pmlr, 2021.

602 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 603 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

605 Naixin Ren, Ganchao Wei, Abed Ghanbari, and Ian H Stevenson. Predictable fluctuations in excitatory
 606 synaptic strength due to natural variation in presynaptic firing rate. *Journal of Neuroscience*, 42
 607 (46):8608–8620, 2022.

608 Massimo Sartori, Monica Reggiani, Antonie J van den Bogert, and David G Lloyd. Estimation
 609 of musculotendon kinematics in large musculoskeletal models using multidimensional b-splines.
 610 *Journal of biomechanics*, 45(3):595–601, 2012.

611 Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. *Journal of statistical Physics*, 65:
 612 579–616, 1991.

614 Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
 615 prediction. In *International Conference on Machine Learning*, pp. 31016–31029. PMLR, 2023.

617 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 618 learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), *Proceedings
 619 of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine
 620 Learning Research*, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/sohl-dickstein15.html>.

622 Michael Soloveitchik, Tzvi Diskin, Efrat Morin, and Ami Wiesel. Conditional frechet inception
 623 distance. *arXiv preprint arXiv:2103.11521*, 2021.

624 Floris Takens. Detecting strange attractors in turbulence. In *Dynamical Systems and Turbulence,
 625 Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80*, pp.
 626 366–381. Springer, 2006.

628 Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
 629 Human motion diffusion model. In *The Eleventh International Conference on Learning Represen-
 630 tations*, 2023. URL <https://openreview.net/forum?id=SJ1kSyO2jwu>.

631 Jonathan Tseng, Rodrigo Castellon, and Karen Liu. Edge: Editable dance generation from music.
 632 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 633 448–458, 2023.

635 Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Additive margin softmax for face verification.
 636 *IEEE Signal Processing Letters*, 25(7):926–930, 2018.

637 David A Winter. *Biomechanics and motor control of human movement*. John wiley & sons, 2009.

639 Chunjing Xiao, Zehua Gou, Wenxin Tai, Kunpeng Zhang, and Fan Zhou. Imputation-based time-
 640 series anomaly detection with conditional weight-incremental diffusion models. In *Proceedings of
 641 the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2742–2751,
 642 2023.

643 Ruihan Yang, Hannes Gamper, and Sebastian Braun. Cmmd: Contrastive multi-modal diffusion for
 644 video-audio conditional modeling. In *European Conference on Computer Vision*, pp. 214–226.
 645 Springer, 2024.

647 Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
 648 networks. *Advances in neural information processing systems*, 32, 2019.

648 AJ Young, TA Kuiken, and LJ Hargrove. Analysis of using emg and mechanical sensors to enhance
649 intent recognition in powered lower limb prostheses. *Journal of neural engineering*, 11(5):056021,
650 2014.

651

652 Yu Yu, Weibin Zhang, and Yun Deng. Frechet inception distance (fid) for evaluating gans. *China
653 University of Mining Technology Beijing Graduate School*, 3, 2021.

654 Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
655 *arXiv preprint arXiv:2403.01742*, 2024.

656

657 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
658 learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–
659 12320. PMLR, 2021.

660

661 Ye Zhu, Yu Wu, Kyle Olszewski, Jian Ren, Sergey Tulyakov, and Yan Yan. Discrete contrastive
662 diffusion for cross-modal music and image generation. In *International Conference on Learning
663 Representations (ICLR)*, 2023.

664 Wenlin Zhuang, Congyi Wang, Jinxiang Chai, Yangang Wang, Ming Shao, and Siyu Xia. Mu-
665 sic2dance: Dancenet for music-driven dance generation. *ACM Transactions on Multimedia
666 Computing, Communications, and Applications (TOMM)*, 18(2):1–21, 2022.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 THEORETICAL JUSTIFICATION OF LATENT ALIGNMENT**
705706 **Theorem A.1.** *Let (M, ϕ_t) be a compact C^2 dynamical system on a smooth manifold M of dimension*
707 *d_Z . Let $o_X : M \rightarrow \mathbb{R}^{d_X}$ and $o_Y : M \rightarrow \mathbb{R}^{d_Y}$ be smooth generic observation functions representing*
708 *two different measurement modalities (e.g., kinematics and kinetics). Define the delay embedding*
709 *operators:*

710
$$\mathcal{E}_X(Z) = [o_X(Z), o_X(\phi_\tau(Z)), \dots, o_X(\phi_{(\kappa-1)\tau}(Z))] \in \mathbb{R}^{\kappa \times d_X},$$

711
$$\mathcal{E}_Y(Z) = [o_Y(Z), o_Y(\phi_\tau(Z)), \dots, o_Y(\phi_{(\kappa-1)\tau}(Z))] \in \mathbb{R}^{\kappa \times d_Y},$$

712 *for some fixed delay $\tau > 0$ and embedding dimension $\kappa \in \mathbb{N}$.*713 *If $\kappa d_X > 2d_Z$ and $\kappa d_Y > 2d_Z$, then for generic o_X and o_Y , both \mathcal{E}_X and \mathcal{E}_Y are C^1 embeddings of*
714 *M .*715 *Consequently, their images $\mathcal{M}_X := \mathcal{E}_X(M)$ and $\mathcal{M}_Y := \mathcal{E}_Y(M)$ are diffeomorphic to M and thus*
716 *to each other. In particular, the map*

717
$$\Psi := \mathcal{E}_Y \circ \mathcal{E}_X^{-1} : \mathcal{M}_X \rightarrow \mathcal{M}_Y$$

718 *is a diffeomorphism.*719 *Proof.* This follows directly from the generalized Takens' embedding theorem for vector-valued
720 observations Sauer et al. (1991). Since M is compact and the flows ϕ_t are smooth, the compositions
721 $o_X \circ \phi_t$ and $o_Y \circ \phi_t$ remain C^2 functions. Under the assumption that $\kappa d_X > 2d_A$ and that o_X is
722 a generic smooth map, the embedding $\mathcal{E}_X : M \rightarrow \mathbb{R}^{\kappa \times d_X}$ is an injective immersion and hence an
723 embedding. The same holds for \mathcal{E}_Y .724 Because both embeddings are diffeomorphisms from M to their respective images \mathcal{M}_X and \mathcal{M}_Y ,
725 their composition $\Psi := \mathcal{E}_Y \circ \mathcal{E}_X^{-1}$ is a smooth bijection with a smooth inverse—i.e., a diffeomorphism
726 between \mathcal{M}_X and \mathcal{M}_Y . \square 727 **Implication for Local Alignment.** In practice, we assume that the diffusion model encoders learn
728 latent representations $Z_X^{(i)} \approx \mathcal{E}_X(Z_i)$ and $Z_Y^{(i)} \approx \mathcal{E}_Y(Z_i)$ from local trajectory windows. The
729 diffeomorphism Ψ implies that

730
$$Z_Y^{(i)} = \Psi(Z_X^{(i)}),$$

731 and under smoothness of Ψ , we can locally approximate it by a first-order Taylor expansion:

732
$$Z_Y^{(i)} \approx A_i Z_X^{(i)} + b_i,$$

733 where $A_i = J_\Psi(Z_X^{(i)})$ is the Jacobian. Thus, minimizing both $\|Z_X^{(i)} - Z_Y^{(i)}\|^2$ (first-order alignment)
734 and $\left\| \text{Cov}(Z_X^{(i)}) - \text{Cov}(Z_Y^{(i)}) \right\|_F^2$ (second-order alignment) encourages local linear agreement of Ψ ,
735 which our Local Latent Embedding Alignment (LaMbDA) loss is designed to enforce.736 **A.2 SYNTHETIC BENCHMARKS**
737738 **A.2.1 LORENZ ATTRACTOR**

739 The Lorenz system is a three-dimensional continuous-time dynamical system defined by:

740
$$\begin{aligned} \dot{x} &= \sigma(y - x), \\ \dot{y} &= x(\rho - z) - y, \\ \dot{z} &= xy - \beta z, \end{aligned} \tag{9}$$

741 where $x, y, z \in \mathbb{R}$ represent the state variables and we use the canonical chaotic parameters $\sigma = 10$,
742 $\rho = 28$, and $\beta = 8/3$. This system is known for its sensitive dependence on initial conditions and its
743 characteristic "butterfly"-shaped strange attractor (Fig. 5A).744 We integrate the system using the Runge–Kutta 4th order method (RK4) with a timestep $\Delta t = 0.01$,
745 starting from the initial condition $\mathbf{x}_0 = [5.0, 5.0, 5.0]$ for 10000 steps. To construct a multimodal

Figure 5: Phase-space visualizations of attractors from the synthetic dynamical systems used in our evaluation. (A) Lorenz attractor ($x - z$ projection), exhibiting classical chaotic structure. (B) Double pendulum in a non-chaotic regime, forming a smooth toroidal attractor. (C) Double pendulum in a mildly chaotic regime, producing a distorted, non-periodic attractor. These attractors illustrate the diversity of dynamical complexity used to test cross-modal alignment.

setting, we define the scalar time series $x(t)$ as **modality 1** and $z(t)$ as **modality 2**. The models trained with local latent embedding alignment (LaMbDA) reconstructed the dynamical systems trajectories more precisely than those trained without alignment (Fig. 6).

Figure 6: UMAP visualization of latent spaces of the cross-modal diffusion models trained on Lorenz attractor data without (top) and with (bottom) latent alignment. The latent embedding of the models trained with alignment shows a higher correlation.

A.2.2 DOUBLE PENDULUM

The double pendulum consists of two rigid links swinging in a vertical plane, with angular displacements $\theta_1(t)$ and $\theta_2(t)$, and corresponding angular velocities $\omega_1(t) = \dot{\theta}_1$ and $\omega_2(t) = \dot{\theta}_2$. The system evolves according to a set of coupled second-order nonlinear differential equations derived from a Lagrangian formulation. We consider a simplified configuration with unit-length rods, equal masses

810 $m_1 = m_2 = 1$, and gravitational acceleration $g = 9.81 \text{ m/s}^2$. Integration is performed using a
 811 fourth-order Runge–Kutta (RK4) method with timestep $\Delta t = 0.01$ for 10000 steps.
 812

813 To evaluate alignment under varying dynamical conditions, we simulate the double pendulum under
 814 two distinct regimes:

- 815 • **Non-chaotic regime:** We initialize the system with small angular displacements and zero
 816 initial velocities: $\theta_1 = 0.2$, $\theta_2 = 0.18$, $\omega_1 = \omega_2 = 0$. This results in quasi-periodic
 817 motion with smooth, stable trajectories, ideal for baseline alignment under low dynamical
 818 complexity (Fig. 5B).
- 819 • **Chaotic regime:** We use higher initial energy by setting $\theta_1 = 2.1$, $\theta_2 = -0.1$, $\omega_1 = \omega_2 = 0$.
 820 This produces irregular, aperiodic motion characteristic of weakly chaotic behavior, while
 821 remaining numerically stable over long simulation horizons (Fig. 5C).

823 In both settings, we construct a multimodal observation setup where **modality 1** is the scalar angular
 824 velocity $\omega_1(t)$ of the first link, and **modality 2** is $\omega_2(t)$, the angular velocity of the second link.
 825

826 A.3 BROADER IMPACTS

827 The proposed framework for mutually aligned cross-modal diffusion opens a wide range of possi-
 828 bilities in scenarios where one or more data streams are missing, noisy, or difficult to measure
 829 directly. In wearable assistive devices and robotics, it can infer absent or corrupted sensor inputs,
 830 such as force or torque data from more accessible modalities, thereby enhancing real-time control
 831 and reliability despite equipment constraints or sensor failure. Within the biomechanical domain, the
 832 ability to simulate perturbations in one modality and observe their repercussions in another offers
 833 powerful insights into how different aspects of locomotion co-evolve, informing the design of targeted
 834 rehabilitation protocols and sophisticated training regimens. By allowing for more efficient sensor
 835 setups, the framework supports clinicians and researchers in long-term monitoring without requiring
 836 extensive instrumentation, broadening the potential for in-home rehabilitation and remote athlete
 837 performance tracking. Beyond biomechanics, the fundamental principles behind our cross-modal
 838 diffusion paradigm can be extended to other domains where interacting data streams arise from a
 839 shared dynamical process. For instance, in climate modeling, it could align or impute different types
 840 of geospatial and atmospheric measurements to refine weather or environmental forecasts. Even
 841 financial modeling could benefit from aligning time-series of economic indicators or market signals
 842 to better predict systemic interactions. Importantly, our experiments on synthetic dynamical systems
 843 (e.g., Lorenz attractor and double pendulum) demonstrate that the proposed LaMbDA framework
 844 yields similar improvements in reconstruction accuracy and latent structure alignment, highlighting
 845 the generality and applicability of our method across domains governed by shared latent dynamics.
 846

847 **Ethical Considerations.** The ability to reconstruct missing data from alternative sources raises
 848 important questions about privacy, consent, and fairness, particularly when dealing with sensitive
 849 physiological information. These concerns underscore the need for robust regulatory frameworks and
 850 ethical practices to ensure responsible research and real-world implementations.

852 A.4 FURTHER VISUALIZATIONS

854 We provide further visualizations of reconstructed trajectories, failure cases and latent space visual-
 855 izations in Fig. 7–9.

857 A.5 SHARED ENCODER ARCHITECTURE

859 Another method to derive a shared latent space for the two modalities (kinematics and kinetics) is to
 860 use a single encoder which takes both the modalities together as inputs. For cross-modal generation,
 861 one can use modality-specific decoder heads which takes the other modality as conditioning input.
 862 Although this method eliminates the need for explicit alignment in the latent space (and uses only the
 863 denoising objective), we found that the generation quality is inferior compared to the modality-specific
 encoder-decoder architecture that we propose.

Figure 7: Real (black) and sampled (red) trajectories of joint angles (top) and joint moments (bottom) generated by latent aligned cross-modal diffusion models. All the generated trajectories follow the ground truth trajectories closely. Shaded region represents standard deviation.

Figure 8: Example failure cases of the model for the prediction of the three modalities. Failure cases mostly occur when the underlying true signal shows high variability, or due to sign changes in the sampled signals.

Figure 9: UMAP visualizations of latent spaces of cross-modal diffusion models for joint angles and GRF (left) and joint moments and GRF (right) for diffusion models trained independently (w/o alignment) and with latent alignment. The latent space of the latent aligned models shows a correlation in the structure and arrangement of locomotion tasks (color codes), whereas the latent space of the independently trained models shows a modality-specific structure without observable correlations.

918
 919 Table 6: Comparison of cross-modal generation performance (quantified by MSE, mean \pm std)
 920 of a diffusion model with shared encoder and modality-specific decoders with modality-specific
 921 encoder-decoder architecture trained with latent alignment.

	Angles-moments		Moments-GRF		Angles-GRF	
	$X Y$	$Y X$	$X Y$	$Y X$	$X Y$	$Y X$
Shared encoder	0.98 \pm 0.02	1.02 \pm 0.03	1.00 \pm 0.02	1.13 \pm 0.04	0.95 \pm 0.01	1.14 \pm 0.03
LaMbDA (ours)	0.14 \pm 0.02	0.07 \pm 0.01	0.07 \pm 0.02	0.03 \pm 0.02	0.19 \pm 0.03	0.06 \pm 0.03

926 927 A.6 FURTHER EXPERIMENTAL DETAILS

928 929 A.6.1 DATASET

930 We used open-source biomechanical motion datasets Embry et al. (2018) consisting of locomotion data
 931 collected as multiple subjects walked on an instrumented treadmill at varying speeds (0.8 m/s, 1.0 m/s,
 932 and 1.2 m/s) and inclines (-10 ° to 10 ° at 2.5 ° increments). The locomotion data was recorded using a
 933 10-camera Vicon motion capture system, while the force plates in the treadmill recorded ground reac-
 934 tion forces (GRF). The processed data consists of three modalities 1) Kinematics that consists of 3D
 935 joint angles of hip, knee, and ankle, and 3D pelvis and foot angles, 2) joint kinetics that consists of 3D
 936 moments of hip, knee, and ankle, and 3) 3D ground reaction forces. The feature sets are represented
 937 as $(\theta_{\text{hip},x}, \theta_{\text{hip},y}, \theta_{\text{hip},z}, \theta_{\text{knee},x}, \theta_{\text{knee},y}, \theta_{\text{knee},z}, \theta_{\text{ankle},x}, \theta_{\text{ankle},y}, \theta_{\text{ankle},z}, \theta_{\text{foot},x}, \theta_{\text{foot},y}, \theta_{\text{foot},z},$
 938 $\theta_{\text{pelvis},x}, \theta_{\text{pelvis},y}, \theta_{\text{pelvis},z}), (\tau_{\text{hip},x}, \tau_{\text{hip},y}, \tau_{\text{hip},z}, \tau_{\text{knee},x}, \tau_{\text{knee},y}, \tau_{\text{knee},z}, \tau_{\text{ankle},x}, \tau_{\text{ankle},y}, \tau_{\text{ankle},z}), (\text{GRF}_x, \text{GRF}_y, \text{GRF}_z)$. The features were normalized prior to model training.

941 942 A.6.2 MODEL ARCHITECTURE

943 We trained parallel diffusion models (DDPM), $p_\theta(\mathbf{X}|\mathbf{Y})$ and $p_\phi(\mathbf{Y}|\mathbf{X})$ for generating the two
 944 modalities \mathbf{X} and \mathbf{Y} conditioned on the other with latent alignment. Each model has the same
 945 architecture and consists of four modules: 1) an input encoder, that encodes the noise input, designed
 946 as a transformer-based encoder with four layers and a model dimension of 128, 2) a condition
 947 embedder, which encodes the guiding signal, 3) a timestep embedder, that encodes the diffusion
 948 timestep t , designed as a multilayer perceptron (MLP) with SiLU Wang et al. (2018) activation, and
 949 4) an output decoder, that generates the output at each diffusion timestep, designed as a transformer
 950 decoder with four layers. At each diffusion timestep, the noise input is linearly projected from the
 951 input space to the model space and combined with a positional and time embedding, before it passes
 952 through the encoder. At the decoder, cross-attention is computed between the condition embedding
 953 combined with positional and time embedding and the encoded noise input. The generated output is
 954 linearly projected onto the output space. Each model has $\sim 25M$ tunable parameters.

955 956 A.6.3 IMPLEMENTATION DETAILS

957 We trained parallel diffusion models (DDPM), $p_\theta(\mathbf{X}|\mathbf{Y})$ and $p_\phi(\mathbf{Y}|\mathbf{X})$ for generating the two
 958 modalities \mathbf{X} and \mathbf{Y} conditioned on the other with latent alignment. Each model has the same
 959 architecture and consists of a transformer encoder and decoder, each with four layers. Inputs to both
 960 encoder and decoder were combined with sinusoidal position encoding and time embedding. The
 961 decoder additionally takes a conditional embedding derived from the other modality through a linear
 962 layer. Each model has $\sim 25M$ tunable parameters. In contrast to having a single test set, we performed
 963 a K-fold cross-validation of the models by creating multiple versions of train and test datasets. The
 964 model training was done for ~ 50 epochs on an RTX4090 GPU computer which consumed $\sim 10GB$ of
 965 GPU space and ~ 10 hours for 10 cross-validation iterations.

966 967 A.6.4 METRICS

968 **Mean-Squared Error (MSE)** Each diffusion model, $p(\mathbf{X}|\mathbf{Y})$ or $p(\mathbf{Y}|\mathbf{X})$, generates data for one
 969 modality, $\hat{\mathbf{X}}$ or $\hat{\mathbf{Y}}$, conditioned on the other. Since the modalities are time-series data that correspond
 970 to each other, this conditioned generation can be viewed as a cross-modal reconstruction task. The
 971 ground truth signal for the reconstructed data is defined as the temporal counterpart of the conditioning

972 data. We then calculate the mean squared error (MSE) between the generated data, $\hat{\mathbf{X}}$ or $\hat{\mathbf{Y}}$ and the
973 ground truth data for the respective modality.
974

975 **Fréchet Inception Distance (FID)** evaluates the quality of generated data by measuring the Fréchet
976 distance (Wasserstein-2 distance) between the distributions of real and generated features Yu et al.
977 (2021). Originally designed for images, we adapt this metric for generated time series data by
978 computing the distance in the temporal space. Given two Gaussian distributions, $\mathcal{N}(\mu, \Sigma)$ and
979 $\mathcal{N}(\mu', \Sigma')$, respectively fitted to the real and generated feature representations, the FID is computed
980 as:
981

$$982 \text{FID} = \|\mu - \mu'\|_2^2 + \text{tr}(\Sigma + \Sigma' - 2(\Sigma\Sigma')^{\frac{1}{2}}) \quad (10) \\ 983$$

984 **Predictive score** This metric evaluates generation quality by assessing how well a model trained
985 on generated data predicts future values in real data Yoon et al. (2019). A sequence-to-sequence
986 model (e.g., LSTM) is trained to predict the latter part of a time series from its initial part, and its
987 performance on real data reflects the quality of the generated data, with lower errors indicating higher
988 quality.
989

990 A.6.5 REPRESENTATION ALIGNMENT METHODS

991 **SimCLR** Chen et al. (2020b) is a contrastive learning approach that learns representations by
992 bringing similar samples (positive pairs) closer in the latent space while pushing dissimilar ones
993 (negative pairs) apart. It relies on a contrastive loss function, the Normalized Temperature-scaled
994 Cross-Entropy Loss (NT-Xent loss), which is defined as:
995

$$996 \ell_{i,j} = -\log \frac{\exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2N} 1_{[k \neq i]} \exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)} \quad (11) \\ 997$$

1000 where $\mathbf{z}_i, \mathbf{z}_j$ are the embeddings of two samples, $\text{sim}(\mathbf{z}_i, \mathbf{z}_j) = \frac{\mathbf{z}_i \cdot \mathbf{z}_j}{\|\mathbf{z}_i\| \|\mathbf{z}_j\|}$ is the cosine similarity
1001 measure, τ is the temperature scaling parameter, and N is the batch size. The total loss across a batch
1002 of size N is computed as:
1003

$$1004 \mathcal{L}_{\text{SimCLR}} = \frac{1}{2N} \sum_{i=1}^N (\ell_{2i-1, 2i} + \ell_{2i, 2i-1}). \quad (12) \\ 1005$$

1006 We consider the latent embeddings of the corresponding samples of both modalities in a batch as
1007 positive pairs, and non-corresponding samples as negative pairs.
1008

1009 **Barlow Twins** Zbontar et al. (2021) addresses the limitations of contrastive methods by eliminating
1010 the need for negative samples. It introduces a loss function that aligns the cross-correlation matrix
1011 of embeddings from two identical networks processing different augmentations of the same image
1012 (in our case two modalities). The objective is twofold: (1) to make the diagonal elements of this
1013 matrix approach one, ensuring invariance, and (2) to drive the off-diagonal elements towards zero,
1014 promoting redundancy reduction. This strategy effectively prevents collapse by decorrelating different
1015 dimensions of the representation space.
1016

1017 Given two embeddings \mathbf{z}^A and \mathbf{z}^B (where A and B are two modalities), it computes the cross-
1018 correlation matrix:
1019

$$1020 \mathcal{C}_{ij} = \frac{1}{B} \sum_{n=1}^N z_n^A(i) z_n^B(j) \quad (13) \\ 1021$$

1022 where N is the batch size and $z^{(\cdot)}(i)$ represents the i -th feature dimension. The Barlow Twins loss
1023 consists of two key terms:
1024

- **Invariance term:** Ensures that representations of the same input under different augmentations are similar: $\sum_i (1 - C_{ii})^2$.
- **Redundancy reduction term:** Enforces decorrelation across different dimensions to prevent representational collapse: $\sum_{i \neq j} C_{ij}^2$.

The final loss function is formulated as:

$$\mathcal{L}_{\text{Barlow}} = \sum_i (1 - C_{ii})^2 + \lambda \sum_{i \neq j} C_{ij}^2, \quad (14)$$

where λ is a balancing hyperparameter.

VICReg (Variance-Invariance-Covariance Regularization) Bardes et al. (2021) extends Barlow Twins by adding an explicit variance regularization term, preventing representational collapse through three objectives:

- **Invariance:** Ensures consistency between augmented views, similar to SimCLR and Barlow Twins: $\mathcal{L}_{\text{inv}} = \sum_{i=1}^d \|\mathbf{z}^A(i) - \mathbf{z}^B(i)\|^2$ where A and B are two modalities, and $z^{(\cdot)}(i)$ represents the i -th feature dimension.
- **Variance regularization:** Ensures that the standard deviation of each embedding dimension i remains above a threshold γ , preventing collapse to trivial solutions: $\mathcal{L}_{\text{var}} = \sum_{i=1}^d \max(0, \gamma - \sigma(\mathbf{z}(i)))^2$.
- **Covariance regularization:** Reduces redundancy between different dimensions by minimizing off-diagonal terms of the covariance matrix: $\mathcal{L}_{\text{cov}} = \sum_{i \neq j} C_{ij}^2$, $C = \frac{\mathbf{Z}^\top \mathbf{Z}}{N}$, where N is the batch size.

The total VICReg loss function is:

$$\mathcal{L}_{\text{VICReg}} = \lambda_{\text{inv}} \mathcal{L}_{\text{inv}} + \lambda_{\text{var}} \mathcal{L}_{\text{var}} + \lambda_{\text{cov}} \mathcal{L}_{\text{cov}}. \quad (15)$$

This approach provides a balance between alignment and diversity constraints, ensuring that representations are meaningful, discriminative, and well-distributed.

A.7 HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the robustness of LaMbDA with respect to key modeling choices, we conducted sensitivity analyses on two primary hyperparameters: the latent dimensionality D of the diffusion encoders and the sequence length L used for training.

Latent dimensionality. We evaluated LaMbDA using latent dimensions $D \in \{32, 64, 128, 256\}$, keeping sequence length $L = 300$. As shown below for the Moments–GRF pair (Tab. 7, performance remains stable across a wide range of latent sizes, with improvements with model dimension D until our choice of $D = 128$.

Sequence length. We further assessed sensitivity to sequence length using $L \in \{150, 300, 450\}$ keeping the model dimension $D = 128$. Since a single gait cycle consists of approximately 150 samples, this range spans single-cycle and multi-cycle contexts. We found that performance improves with sequence length until $L = 300$, after which it saturates.

A.8 ENTROPY ANALYSIS

In table 1 of the paper, we observed asymmetries in the reconstruction metrics for $X \mid Y$ and $Y \mid X$. We hypothesized that this arises from the asymmetry in the information content in X and Y modalities about each other. Joint angles provide a richer and more complete description of the underlying movement state than the downstream kinetic measurements. Consequently, reconstructing

1080 1081 1082 1083 1084	$X = \text{Moments}, Y = \text{GRF}$	Model dimension, D ($L = 300$)				Sequence length, L ($D = 128$)		
		$D = 32$	$D = 64$	$D = 128$	$D = 256$	$L = 150$	$L = 300$	$L = 450$
	$X \mid Y$	0.045	0.039	0.037	0.038	0.044	0.037	0.037
	$Y \mid X$	0.020	0.021	0.014	0.013	0.017	0.014	0.014

1085
1086 Table 7: Results of hyperparameter sensitivity analysis. We analyzed the effect of model dimension,
1087 D , and sequence length, L , on the reconstruction accuracy.

	$H(X \mid Y)$	$H(Y \mid X)$
$X = \text{Angles}, Y = \text{Moments}$	2.12 ± 0.56	-3.55 ± 0.40
$X = \text{Angles}, Y = \text{GRF}$	2.38 ± 0.54	-6.74 ± 0.44
$X = \text{Moments}, Y = \text{GRF}$	-3.52 ± 0.45	-6.96 ± 0.45

1093
1094 Table 8: Conditional entropies $H(X \mid Y)$ and $H(Y \mid X)$ for angles-moments, angles-GRF, and
1095 moments-GRF pairs.

1096
1097 Y from X is an inherently easier task with lower uncertainty. In contrast, reconstructing angles (X)
1098 from moments (Y) is a harder problem: the kinetic signals contain less information about the full
1099 kinematic trajectory.

1100
1101 To quantify this effect, we computed conditional entropies $H(X \mid Y)$ and $H(Y \mid X)$ for the
1102 biomechanical modality pairs. We used k-nearest neighbor (kNN) estimators with $k=20$ to estimate the
1103 mutual information $I(X; Y)$ using Kraskov–Stögbauer–Grassberger, KSG estimator, and differential
1104 entropy $H(X)$ using Kozachenko–Leonenko estimator for continuous variables X and Y (and
1105 hence the negative values of entropy). The conditional entropy is computed as $H(X \mid Y) =$
1106 $H(X) - I(X; Y)$ and $H(Y \mid X) = H(Y) - I(X; Y)$. As expected, we find that the uncertainty of
1107 angles given moments is substantially higher than the uncertainty of moments given angles.

1108
1109 These results also explain why, in the ablation experiments (Tab. 5), only modest improvements
1110 were obtained for $Y \mid X$ with the addition of more LaMbDA loss components. Since moments given
1111 angles ($X \mid Y$) are the easier direction, it is less sensitive to ablations, while angles given moments
1112 ($Y \mid X$) are a harder task and benefit more strongly from the full LaMbDA objective.