
TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

1

Building Better Container Images

Jul 24th, 2023

Venkata Santosh Sajjan Alla Amit Khanal
 Sr. Solutions Architect, Sr. Solutions Architect,
 AWS Financial Services AWS Financial Services

Abstract

In this article, we delve into the best practices for building secure, lightweight, and reliable container images for use
on Amazon Elastic Container Service (Amazon ECS), Amazon Elastic Kubernetes Service (Amazon EKS), and other
services. We highlight the benefits of using microservices and containerization, and emphasize the importance of
optimizing, securing, and managing container images. The article covers various approaches to building better
images, including using trusted base images, keeping images up-to-date, signing container images, limiting the
number of layers, utilizing multi-stage builds, securing secrets, reducing the attack surface, and configuring images
securely. We also introduce Amazon Elastic Container Registry (Amazon ECR) as a secure and fully managed solution
for storing and managing container images. By adopting these best practices, users can ensure that their container
images are built from trusted sources, are secure, and are optimized for performance.

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

2

Introduction

Many applications built today or modernized from monoliths [1] are done so using microservice architectures [2]. The
microservice architecture makes applications easier to scale and faster to develop, which enables innovation and
accelerating time-to-market for new features. In addition, microservices also provide lifecycle autonomy enabling
applications to have independent build and deploy processes, which provides technological freedom such that they
can be implemented in different programming languages and provide scaling flexibility to scale up or scale down
independently based on workload utilization.

While microservices provide a lot of flexibility, the process of building and deploying them, ensuring the right
application versions, and required dependencies are used is a tedious process. This is where containers come in.
Microservices can be packaged into a single lightweight and standalone executable artifact called container image
that includes everything to run an application. This process of packaging a microservice into container image is
called containerization. Containerization offers a lot of benefits, such as portability, which allow containers to be
deployed to different infrastructures. It also offers fault isolation, which ensures that different containers are
running as isolated process within their own user space in the host OS so that one container’s crash or failure
wouldn’t impact the other and provide ease-of-management for deployment and version management.

With the benefits that are offered via microservices and subsequent containerization, creation of container images
have increased at a rapid scale. As the use of containerized applications continue to grow, it is important to ensure
that your container images are optimized, secure, and reliable. Taking these tenets into account in this post, we
discuss best practices for building better container images for use on Amazon Elastic Container Service (Amazon
ECS) [3], Amazon Elastic Kubernetes Service (Amazon EKS) [4], and other services. For the container image
repositories, we focus on Amazon Elastic Container Registry (Amazon ECR) [5].

Overview

This article provides a structured overview of the best practices for building secure, lightweight, and reliable
container images. It explores the fundamental advantages of adopting microservices architecture and
containerization in modern application development, focusing on how these technologies facilitate scalability,
faster development cycles, and technological autonomy. The article delves into critical aspects of container image
management, including the selection of trusted base images, the importance of regular updates, and the
implementation of container image signing for enhanced security. It also addresses strategies for optimizing image
size and performance, such as limiting the number of layers, employing multi-stage builds, and utilizing minimal
base images. Furthermore, the article underscores the significance of secure secrets management and reducing the
attack surface of container images. It introduces Amazon Elastic Container Registry (Amazon ECR) as a robust,
secure, and fully managed solution for storing and managing container images, highlighting its features for image
lifecycle management, replication, and vulnerability scanning. Through this comprehensive guide, readers will gain
insights into constructing container images that not only meet the demands of modern application deployment but
also adhere to the highest standards of security and efficiency.

We’ll look at the following approaches to build better images. While this isn’t an exhaustive list, these topics provide
a good base for your image builds, and you can adopt them as you wish.

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

3

Use Trusted Images and Sources
Using a base image from a trusted source can improve the security and reliability of your container. This is because
you can be confident that the base image has been thoroughly tested and vetted. It can also reduce the burden of
establishing provenance, because you only need to consider the packages and libraries that you include in your
image, rather than the entire base image. Here is an example creating a Dockerfile using the official Python base
image from the Amazon ECR repository. In fact, all of the Docker official images are available[7] on Amazon ECR
public gallery[8].

Note: The code samples in the blog are for Docker. If you don’t have Docker, then please refer to Docker installation
guide[9] for information about how to install Docker on your particular operating system. Alternatively, you can also
consider using Finch an open source client for container development.

FROM public.ecr.aws/docker/library/python:slim

Install necessary packages
RUN pip install flask

COPY app.py /app/

ENTRYPOINT ["python", "/app/app.py"]

Here’s another example of using latest version (as of the data of this post) of Amazon Linux image, which is a secure
and lightweight Linux distribution provided by AWS.

FROM public.ecr.aws/amazonlinux/amazonlinux:2023

It is important to keep images up-to-date by regularly updating to latest secure versions of the software and libraries
included in the image. As new versions of the images get created, they should be explicitly tagged with versions
such as v1, v2, rc_03122023, etc instead of tagging as latest. Using explicit tags instead of latest tag could prevent
situations where the image with latest tag isn’t actually updated and instead gives a false appearance that the image
contains the latest version of the application. If you’re confident in your automation, then vanity tags such as latest
or prod might be acceptable to use, but avoiding them also reduces ambiguity. This can avoid confusion about which
application version may actually being used.

Once images are created, they can be pushed into the Amazon ECR repository for secure storage and highly available
distribution. Amazon ECR encrypts data at rest and offers lifecycle management, replication, and caching features.
Amazon ECR can also scan the images to help in identifying software vulnerabilities through Basic and Enhanced
Scanning[10]. Stored images from Amazon ECR can then be pulled and run by services such Amazon ECS, Amazon
EKS, or other services and tools.

Here is an example of using AWS Command Line Interface (AWS CLI) [11] and Docker CLI[12] to pull a versioned image
from Amazon ECR.

Step 1 – Authenticate your Docker client to the Amazon Linux Public registry. Authentication tokens are valid for 12

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

4

hours. For more information, see Private registry authentication. Alternatively, you can also use Amazon ECR Docker
Credential Helper, which is a credential helper for the Docker daemon that makes it easier to use Amazon Elastic
Container Registry. Amazon ECR Docker credential helper automatically gets credentials for Amazon ECR on docker
push and docker pull. Note that this would only be required for Amazon ECR, but ECR Public doesn’t need
authentication.

$ aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --
password-stdin public.ecr.aws

Step 2 – Pull the Amazon Linux container image using the docker pull command. To view the Amazon Linux
container image on the Amazon ECR Public Gallery, see Amazon ECR Public Gallery – amazonlinux[1].

docker pull pu\blic.ecr.aws/amazonlinux/amazonlinux:2023

Step 3 – Run the container locally.

docker run -it public.ecr.aws/amazonlinux/amazonlinux /bin/bash

Bonus

While Amazon Linux is a secure, trusted, and lightweight container image, AWS also offers Bottlerocket[13] which
is a Linux-based open-source operating system that is purpose-built for running containers. Bottlerocket includes
only the essential software required to run containers, and ensures that the underlying software is always secure.
Additionally, Bottlerocket is available at no cost as an Amazon Machine Image (AMI) for Amazon Elastic Compute
Cloud (Amazon EC2) [14] and can be used on Amazon EKS and Amazon ECS setups.

Sign container images

Container image signing can help verify that the trusted images you have selected and vetted are in use
throughout your build pipelines and deployments. This process involves trusted parties cryptographically signing
images so that they can be verified when used. This can be used to also sign and verify images throughout your
organization.

Container image signing is fairly lightweight. Because container images and runtimes have built-in integrity checks
and all image content is immutable, signing solutions can simply sign image manifests. Signatures are stored
alongside images in the registry, and at any point in time a consumer of the image can retrieve its signature and
verify against a trusted publisher’s identity or public key.

It is a good practice to sign and verify container images as part of overall security practices, and verifying public
content establishes trust in content authenticity. With signed images, you can implement a solution that blocks
images from running in your container environment unless they can be verified as trusted. This not only
guarantees the authenticity of container images but also reduces the need for additional work to validate the
container images in other ways prior to their use.

https://aws.amazon.com/bottlerocket/
https://docs.aws.amazon.com/ec2/?icmpid=docs_homepage_compute
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-EKS.md
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-ECS.md

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

5

For a full walkthrough of such a solution, see the recent launch of Container Image Signing with AWS Signer and
Amazon EKS.

Limit the number of layers

It is a good practice to limit the number of layers in your container images. Having a large number of layers can
increase the size and complexity of the image, which can make it more difficult to manage and maintain.

For example, consider the following Dockerfile:

FROM public.ecr.aws/docker/library/alpine:3.17.2

Install all necessary dependencies in a single layer
RUN apk add --no-cache \
 curl \
 nginx \
 && rm -rf /var/cache/apk/*

Set nginx as the entrypoint
ENTRYPOINT ["nginx"]

In this example, we install all necessary dependencies in a single layer, and then remove the cache to reduce the
number of layers in the final image. This results in a smaller and more efficient image that is easier to manage and
maintain.

Make use of multi-stage builds
A multi-stage build is a technique that allows you to separate the build tools and dependencies from the final image
content. This can be beneficial for several reasons:

• Reducing image size: By separating the build stage from the runtime stage, you can include only the

necessary dependencies in the final image, rather than including all of the build tools and libraries. This can
significantly reduce the size of your final image as and reduce the total number of image layers.

• Improved security: By including only the necessary dependencies in the final image, you can reduce the
attack surface of the image. This is because there are fewer packages and libraries that could potentially
have vulnerabilities.

Here is an example of a multi-stage build in a Dockerfile:

Build stage
FROM public.ecr.aws/bitnami/golang:1.18.10 as builder
WORKDIR /app
COPY . .
RUN go build -o app .

Runtime stage

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

6

FROM public.ecr.aws/amazonlinux/amazonlinux:2023
RUN yum install -y go
WORKDIR /app
COPY --from=builder/app ./
ENTRYPOINT ["./app"]

In this example, we first use the golang:1.18.10 image as the build stage, in which we copy the source code and
build the binary. Then, in the runtime stage, we use the amazonlinux:2023 container image, which is a minimal base
image, and copy the built binary from build stage. This results in a smaller and more secure final image that only
includes the necessary dependencies.

Secure your secrets
Secrets management is a technique for securely storing and managing sensitive information such as passwords and
encryption keys and also externalizing environment specific application configuration. Secrets should not be stored
in an image but instead stored and managed externally in service such as AWS Secrets Manager[15]. For secrets that
are required for your application during runtime, you can retrieve them from AWS Secrets Manager in real-time or
use container orchestrator service such as Amazon ECS or Amazon EKS to mount secrets as volumes on the
container such that the application can read from the mounted volume. Details on how secrets can be used on
Amazon EKS can be found here and how secrets can be used on Amazon ECS can be found here.

If secrets are required during build time, then you can inject ephemeral secrets using Docker’s secret mount-type.

For example, the following Dockerfile uses a multi-stage build process where the first stage called
builder_image_stage uses mount=type=secret to load the AWS credentials. The second stage then uses the build
artifacts from first builder_image_stage. The resulting final image from second stage won’t contain any build tools
or secrets from the builder_image_stage thereby not maintaining secrets on it.

FROM public.ecr.aws/amazonlinux/amazonlinux:2023 AS builder_image_stage

WORKDIR /tmp

RUN yum install -y unzip && \
 curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" &&
\
 unzip /tmp/awscliv2.zip && \
 /tmp/aws/install

RUN --mount=type=secret,id=aws,target=/root/.aws/credentials \
 aws s3 cp s3://... /app/...

cd /app
make

FROM public.ecr.aws/amazonlinux/amazonlinux:2023

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

7

COPY --from=builder_image_stage /app/files_from_builder_image /app

Reduce the attack surface
Images, by default, are not secure and can potentially be vulnerable for attacks. Following approaches can help
mitigate the attack surface.

Build from scratch

Most images are based on an existing base image such as Amazon Linux, ubuntu, alpine, etc. However, if you need
to create a completely new base image with your own distribution, or if your application or service can be deployed
as a single statically linked binary, you can use the special scratch[16] image as a starting point. The scratch base
image is empty and doesn’t contain any files. All of the official base images are actually built on top of scratch, and
you can place any content on subsequent image layers. Using FROM scratch is basically a signal to the image build
process that the layer built by the next command in the Dockerfile should be the first layer of the image.

Scratch gives you the ability to completely control the contents of your image starting from the beginning. It is
important to note that using scratch, you’ll be responsible for the entire toolchain and all content in the resulting
container image. Also, container scanning solutions, such as Amazon ECR Enhanced Scanning, do not support
vulnerability scanning of images without an OS packaging system in place. If your container images have many
environmental dependencies or use interpreted languages or need vulnerability scanning, then using a minimal
base image instead of scratch may be better.

Here are a few examples of using scratch.

The example below adds hello-world executable to the image as a first layer.

FROM scratch
ADD hello-world /
CMD ["/hello-wold"]

The second example copies the root filesystem to the root of the image as a first layer. The container uses this
root filesystem to spin off processes from binaries and libraries in that directory.

FROM scratch
ADD root-filesystem.tar.gz /
CMD ["bash"]

Remove unwanted packages

It is a good practice to remove any unwanted or unnecessary packages from your container image to reduce the
attack surface and size of the image. For example, if your application does not require certain libraries or utilities,
you should remove them from the image.

Here is an example on how to remove package manager that may be unnecessary on a final image.

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

8

FROM public.ecr.aws/ubuntu/ubuntu:20.04_stable

Remove package manager
RUN apt-get -y --allow-remove-essential remove apt

Use a Minimal Base Image

Choosing a minimal base image, such as a Distroless[17] image, can help to restrict what is included in your runtime
container. Distroless images only include your application and its runtime dependencies that is necessary for the
application to run. As such they don’t contain package managers or shells. This can improve the security and
performance of your container by reducing the attack surface, as there are fewer packages and libraries that
could potentially have vulnerabilities or add unnecessary overhead.

Here is an example of using the Distroless base image for a Go application. This base image contains a minimal
Linux, glibc-based system and is intended for use directly by mostly-statically compiled languages like Go, Rust or
D. For more information, see the GitHub documentation on base distroless image.

FROM gcr.io/distroless/base

COPY app /app

ENTRYPOINT ["/app"]

Secure image configuration
Images by default may not be secure and can allow privileged access. It is best to ensure that they are setup with
least privileged access and remove configurations that are unnecessary for your application. One such approach is
to run containers as a non-root user.

Processes within Docker containers have root privileges by default to both the container and the underlying host.
This opens up the container and host to security vulnerabilities that can be exploited.

To prevent these vulnerabilities, it is a good practice to minimize the privileges granted to your container images,
only giving the necessary permissions to perform required tasks. This helps to reduce the attack surface and
potential for privilege escalation. On Dockerfile, you can use USER directive to specify a non-root user to run the
container, or use the securityContext field in the Kubernetes pod specification to specify a non-root user and set
group ownership and file permissions. Furthermore, on Kubernetes with Amazon EKS, you can also limit the default
capabilities assigned to a POD as explained on EKS best practices Guides.

For example, consider the following Dockerfile:

FROM public.ecr.aws/amazonlinux/amazonlinux:2023

1) install package for adduser
2) create new non-root user named myuser
3) create app folder
4) remove package for adduser

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

9

RUN yum install -y shadow-utils && \
 adduser myuser && \
 mkdir /app && \
 yum install -y remove shadow-utils

COPY . /app

Set group ownership and file permissions
RUN chown -R myuser:myuser /app

Run as non-root user
USER myuser

Set entrypoint
ENTRYPOINT ["/app/myapp"]

In this example, we create a non-root user named myuser and set the group ownership and file permissions of the
application files to this user. We then set the entry point to run as the myuser user, rather than as root. This helps
to reduce the potential for privilege escalation and increase the security of the container.

Tag Images
When building container images, it is recommended to use tags to identify them. If the image is built without any
tags, then Docker will assign latest as the default tag. For instance, when building an image, you may use the
following command:

docker build -t my-pricing-app .

With this command, Docker automatically assigns the latest tag to the image, since no specific tag was provided.
However, building an updated image using the same command assigns the latest tag to the new image. This can
cause ambiguity and potential deployment of outdated or unverified versions. To avoid this, consider tagging the
image descriptively as below:

docker build -t my-pricing-app:<git-commit-hash>-1.0-prod .

This command builds the my-pricing-app image tagged as <git-commit-hash>-1.0-prod. This allows specific version
of the image to be deployed unlike latest tag. Additionally, you can also use the tag command to tag existing images.

It is important to note that Docker tags are mutable by design, which allows you to build a new image with an
existing tag. If you need to have immutable tags, then you can consider using Amazon Elastic Container Registry
(Amazon ECR) to store your images. Amazon ECR supports immutable tags, which is a capability that prevents image
tags from being overwritten. This enables users to rely on the descriptive tags of an image as a reliable mechanism
to track and uniquely identify images and also trust that they have not been tampered with. More details can be
found at Image tag mutability – Amazon ECR.

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

10

Conclusion
In this post, we showed you how to build better container images using best practices. As adoption of containers
increase, it becomes important to ensure the container images are secure, lightweight, and are built from trusted
sources. The options described in this post can act as a starting point to building such images. Additionally, this post
also shows how users can use a secure and fully managed Amazon ECR to manage container images.

TCX-715-Containers

Amazon Containers
https://aws.amazon.com/blogs/containers/building-better-container-images/

11

References

[1] Migrating Application from Monolith to Microservices. https://ieeexplore.ieee.org/document/9211252

[2] Start building on AWS today - Whether you're looking for generative AI, compute power, database storage, content

delivery, or other functionality, AWS has the services to help you build sophisticated applications with increased flexibility,
scalability, and reliability. https://aws.amazon.com/

[3] Microservices: architecture, container, and challenges. https://ieeexplore.ieee.org/document/9282637

[4] Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service that helps you easily
deploy, manage, and scale containerized applications.
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html

[5] Amazon Elastic Kubernetes Service (EKS) provides a fully managed Kubernetes service that eliminates the complexity of
operating Kubernetes clusters. https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html

[6] Amazon Elastic Container Registry (Amazon ECR) is an AWS managed container image registry service that is secure,
scalable, and reliable. https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

[7] Developers building container-based applications can now discover and download Docker Official Images directly from
Amazon Elastic Container Registry (Amazon ECR) Public. https://aws.amazon.com/blogs/containers/docker-official-
images-now-available-on-amazon-elastic-container-registry-public/

[8] Amazon ECR (Elastic Container Registry) Public Gallery, displaying a list of official Docker container images with their
download counts, descriptions, and supported operating systems/architectures. https://gallery.ecr.aws/docker

[9] Docker Engine installation documentation that provides instructions for installing Docker Engine on various Linux
platforms, along with information about release channels, support, licensing, and security reporting.
https://docs.docker.com/engine/install/#installation/

[10] Amazon ECR's image scanning capabilities for detecting software vulnerabilities in container images, offering two main
types: Enhanced scanning (using Amazon Inspector) and Basic scanning (using AWS native technology or Clair).
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html

[11] AWS Command Line Interface (AWS CLI) is a unified tool to manage your AWS services. With just one tool to download
and configure, you can control multiple AWS services from the command line and automate them through scripts.
https://aws.amazon.com/cli/

[12] Base command for Docker CLI, including its configuration options, environment variables, and various subcommands.
https://docs.docker.com/reference/cli/docker/

[13] Bottlerocket Linux-based operating system purpose-built to run containers https://aws.amazon.com/bottlerocket/

[14] Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizable computing capacity—literally,
servers in Amazon's data centers—that you use to build and host your software systems.
https://docs.aws.amazon.com/ec2/?icmpid=docs_homepage_compute

[15] AWS Secrets Manager - Centrally manage the lifecycle of secrets. https://aws.amazon.com/secrets-manager/

[16] scratch Docker Official Image – An explicitly empty image, especially for building images "FROM scratch.
https://hub.docker.com/_/scratch/

[17] "Distroless" images contain only your application and its runtime dependencies. They do not contain package managers,
shells or any other programs you would expect to find in a standard Linux distribution.
https://github.com/GoogleContainerTools/distroless

