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Abstract
In this work, we take the first exploration of the
recently popular foundation model, i.e., State
Space Model/Mamba, in image quality assess-
ment (IQA), aiming at observing and excavating
the perception potential in vision Mamba. A se-
ries of works on Mamba has shown its significant
potential in various fields, e.g., segmentation and
classification. However, the perception capability
of Mamba remains under-explored. Consequently,
we propose QMamba by revisiting and adapting
the Mamba model for three crucial IQA tasks,
i.e., task-specific, universal, and transferable IQA,
which reveals its clear advantages over existing
foundational models, e.g., Swin Transformer, ViT,
and CNNs, in terms of perception and compu-
tational cost. To improve the transferability of
QMamba, we propose the StylePrompt tuning
paradigm, where lightweight mean and variance
prompts are injected to assist task-adaptive trans-
fer learning of pre-trained QMamba for different
downstream IQA tasks. Compared with existing
prompt tuning strategies, our StylePrompt enables
better perceptual transfer with lower computa-
tional cost. Extensive experiments on multiple
synthetic, authentic IQA datasets, and cross IQA
datasets demonstrate the effectiveness of our pro-
posed QMamba. The code will be available at:
https://github.com/bingo-G/QMamba.git

1. Introduction
Image Quality Assessment (IQA) aims to measure the sub-
jective quality of images aligned with human perception,
which has been applied in various visual fields, including
visual acquisition, transmission, AIGC (Li et al., 2023a;
Wang et al., 2023a), and UGC creation (Tu et al., 2021; Lu
et al., 2024), etc. Establishing a great IQA metric is nec-
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Figure 1. Scanning Methodology Illustration. (a) VMamba’s scan-
ning method(Liu et al., 2024c) flattens 2D data into 1D, impairing
connectivity by distancing adjacent tokens. (b) Local scanning
method scans within and across windows, placing semantically
similar and distortion-related tokens closer, as shown in the blue
boxes.

essary to provide the right optimization direction tailored
for image processing techniques, i.e., compression (Li et al.,
2021; Wu et al., 2021; Yu et al., 2024b), enhancement (Li
et al., 2023b; Fei et al., 2023), and ensure the perceptual
quality of images. Early works on IQA have been achieved
by leveraging the natural scene statistics in a hand-crafted
manner (Mittal et al., 2012a;b). With the advancements
of deep neural networks (DNNs), learning-based IQA met-
rics (Li et al., 2023c; Liu et al., 2022) have demonstrated
significant potential for low-level perception, which can be
roughly categorized into two types based on the pre-trained
backbones: CNN-based and Transformer-based methods.

Although the impressive progress, learning-based IQA is
susceptible to inherent limitations of existing pre-trained
backbones: (i) the CNNs are skilled at learning local
translation-invariant features from images while lacking
enough long-range dependency modeling capability, hin-
dering the global quality perception. (ii) The emergence of
Vision Transformers presents a great solution to model long-
range dependency effectively by leveraging attention mech-
anisms. However, the quadratic complexity of self-attention
operations poses unaffordable computational costs, espe-
cially for large-scale image quality assessment. Recently,
an innovative foundation model, the State Space Model,
particularly its implementation, i.e., Mamba (Gu & Dao,
2023) has shown considerable potential in various fields
for balancing the computational costs and performances,
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e.g., segmentation(Xing et al., 2024; Ma et al., 2024) and
classification(Liu et al., 2024c; Zhu et al., 2024). This raises
one interesting question, i.e., “whether Mamba can surpass
existing backbones on low-level visual perception”, which
is still under-explored.

To answer this question, in this work, we initiate a new ex-
ploration of the Mamba model within the field of IQA and
introduce the QMamba, a newly developed IQA framework
designed to address three key facets of IQA: task-specific,
universal, and transferable image quality assessment. No-
tably, since the lack of enough IQA dataset, learning-based
IQA metrics entail the pre-trained backbone for percep-
tion knowledge extraction. Meanwhile, VMamba(Liu et al.,
2024c), as the most representative framework, has achieved
excellent performance on high-level tasks by employing hor-
izontal and vertical scanning strategies. However, merely
excavating the global perception knowledge is not optimal
for IQA, since most artifacts affecting the image quality are
related to local textures. Consequently, inspired by Local-
Mamba(Huang et al., 2024), we have adopted a local win-
dow scanning method, which significantly enhances ability
of Mamba to perceive local distortions, thereby demonstrat-
ing superior performance. We detail the architecture of
QMamba and examine different scanning methods to clarify
how the model interacts with and processes image data. Our
extensive analysis confirms that QMamba surpasses tradi-
tional foundational models, showing superior perceptual
accuracy and greater computational efficiency.

Moreover, we have explored the perceptual transferabil-
ity of Mamba across different datasets, i.e., different con-
tents, and degradations. We can find that the Mamba-based
IQA metric still suffers from severe performance drop when
they encounter large domain shifts between synthetic dis-
tortions(Sheikh et al., 2006; Lin et al., 2019), authentic
distortions(Ghadiyaram & Bovik, 2015; Hosu et al., 2020),
and Artificial Intelligence-Generated Content (AIGC)(Li
et al., 2023a; Wang et al., 2023a) distortions, etc. To further
amplify the transferability of QMamba across a range of
IQA applications, we introduce a simple but effective tuning
strategy called StylePrompt. This is based on the finding that
the domain shifts in IQA tend to correlate with their feature
statistics/style (Lu et al., 2022), such as mean and variance.
Concretely, our StylePrompt aims to adaptively adjust the
mean and variance of pre-trained QMamba towards the tar-
get IQA tasks by setting a group of light-weight learnable
1× 1× C parameters. Extensive experiments have shown
that our StylePrompt greatly facilitates the task-adaptive
learning of QMamba, enabling efficient knowledge transfer
across diverse IQA tasks with fewer parameter costs.

The main contributions of this paper are summarized as
follows:

• We embark on a novel exploration of the Mamba

model within image quality assessment, and propose
the QMamba, a powerful IQA metric for three critical
tasks of IQA: task-specific, universal, and transferable
image quality assessment. This exploration has demon-
strated the superior potential of Mamba for subjective
perception, advancing the development of IQA.

• To improve the perception transferability of the
QMamba, we introduce a simple but effective tuning
strategy, i.e., StylePrompt. This strategy enables the ef-
ficient knowledge transfer of pre-trained QMamba for
downstream IQA tasks, while only tuning fewer learn-
able parameters to adjust the statistics of perception
features.

• Extensive experiments have shown that our QMamba
has consistently achieved state-of-the-art results on var-
ious prominent IQA datasets compared with existing
IQA methods, thereby validating the efficacy of the
Mamba model in quality assessment. Moreover, our
StylePrompt achieves nearly equivalent performance
to full model tuning while utilizing only 4% of the
whole parameters, demonstrating its effectiveness in
perception knowledge transfer scenarios.

2. Related Work
2.1. Blind Image Quality Assessment (BIQA)

Early BIQA methods relied heavily on manually designed
features for quality score regression (Mittal et al., 2012a;b;
Venkatanath et al., 2015; Saad et al., 2012; Min et al., 2018).
However, these handcrafted features were insufficient for
addressing the complexity of BIQA tasks. With the advent
of deep learning, network architectures capable of powerful
feature extraction significantly improved quality assessment
tasks, with Convolutional Neural Networks (CNNs) and
Vision Transformers being the most prevalent.

CNN-based BIQA. CNNs have demonstrated robust feature
extraction capabilities, leading to their widespread adoption
in BIQA tasks. Early works like CNNIQA (Kang et al.,
2014) used convolutional models for feature learning and
quality regression, substantially outperforming handcrafted
features. DBCNN (Zhang et al., 2020) introduced a dual-
stream network to address synthetic and authentic distor-
tions separately, integrating these insights for better quality
prediction. NIMA (Talebi & Milanfar, 2018) and PQR
(Zeng et al., 2017) leveraged pre-trained models on Im-
ageNet for quality score prediction, enhancing accuracy
through well-established neural architectures. MetaIQA
(Zhu et al., 2020) employed meta-learning to adapt to un-
known distortions by learning shared priors for various dis-
tortion types, while HyperIQA (Su et al., 2020) used a
hypernetwork to adaptively establish perceptual rules, im-
proving generalization. Despite these advancements(Saha
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et al., 2023; Zhao et al., 2023; Chen et al., 2024a), CNNs’
local bias limits their ability to fully exploit both global and
local information in BIQA tasks.

Transformer-based BIQA. Transformers offer superior
global modeling capabilities compared to CNNs. TReS
(Golestaneh et al., 2022) addressed CNNs’ local bias by cap-
turing local structural information with CNNs and then us-
ing Transformers for sequential feature extraction. MUSIQ
(Ke et al., 2021) designed a multi-scale image Transformer
architecture capable of handling images with varying sizes
and aspect ratios. DEIQT (Qin et al., 2023) leveraged a
Transformer-based BIQA architecture with attention mech-
anisms to align with human perception, enhancing model
performance and reducing prediction uncertainty. However,
the quadratic complexity of Transformers presents a chal-
lenge, highlighting the need for architectures with linear
complexity capable of global modeling for BIQA tasks. In
addition to the above methods, many recent works (Zhang
et al., 2023; Shin et al., 2024; Yu et al., 2024a) have also
adopted Transformer-based designs and achieved competi-
tive performance, yet they still face limitations due to high
computational complexity.

2.2. State Space Models (SSMs)

State space models, known for their linear complexity in
capturing long-range dependencies, have been integrated
into deep learning architectures. The Structured State Space
model (S4) (Gu et al., 2021) was a pioneer in deep state
space modeling for remote dependency modeling. Subse-
quent advancements (Gu et al., 2020; Smith et al., 2022;
Fu et al., 2022) further propelled the development of state
space models. Mamba (Gu & Dao, 2023), by integrating
selection mechanisms and hardware-aware algorithms, has
shown effective long-range modeling capabilities with linear
complexity growth.

Initially focused on NLP tasks, Mamba has rapidly ex-
panded into other domains. Vim (Zhu et al., 2024) intro-
duced a bidirectional SSM block for visual representation
learning, achieving performance comparable to ViT (Doso-
vitskiy et al., 2020). VMamba (Liu et al., 2024c) introduced
a cross-scan module to traverse spatial domains and con-
vert non-causal visual images into ordered block sequences,
maintaining linear complexity while retaining global recep-
tive fields. LocalMamba (Huang et al., 2024) employed
a window-based scanning approach to integrate local in-
ductive biases, enhancing the visual Mamba model. These
advancements validate the efficacy of Mamba in visual tasks,
leading to its application in image classification (Liu et al.,
2024c; Zhu et al., 2024; Patro & Agneeswaran, 2024), video
understanding (Wang et al., 2023b; Chen et al., 2024b; Li
et al., 2024), image restoration (Guo et al., 2024; Shi et al.,
2024; Zhen et al., 2024), point cloud analysis (Liang et al.,

2024; Zhang et al., 2024; Liu et al., 2024b), and biomedical
image segmentation (Ma et al., 2024; Xing et al., 2024; Liu
et al., 2024a). These studies have demonstrated the effec-
tiveness of state space models in visual tasks, providing a
solid foundation for further exploration of their potential in
visual perception.

3. Method
3.1. Exploring Mamba for Perception

3.1.1. OVERALL FRAMEWORK

The overall architecture of our proposed QMamba model is
depicted in Figure 2. To address the unique challenges of
visual perception tasks, we developed a novel architecture
that rethinks the design principles of state space models
for visual data. The network incorporates a hierarchical
residual structure, where convolutional layers enable effec-
tive feature extraction while specialized activation layers
compute adaptive gating signals. Our architecture orga-
nizes the processing into multiple network stages, each com-
bining a strategic downsampling layer with our enhanced
Mamba-based processing block. This design enables the
construction of multi-level representations at varying resolu-
tions, facilitating the extraction of richer perceptual features
through progressive abstraction.

To systematically investigate the relationship between model
capacity and quality perception performance, we developed
three distinct variants of our architecture: QMamba-Tiny,
QMamba-Small, and QMamba-Base. Each variant main-
tains the core architectural principles while scaling in com-
plexity, allowing us to explore the trade-offs between compu-
tational efficiency and perceptual accuracy across different
application scenarios.

3.1.2. PERCEPTION WITH LOCAL SCANNING

While the original Mamba model excels in natural language
processing tasks with inherently causal inputs, it faces chal-
lenges when applied to visual tasks due to the absence of spa-
tial causality. In particular, it struggles to capture complex
spatial dependencies among image pixels, which hinders its
ability to model local distortions effectively.

To address this, VMamba (Liu et al., 2024c) introduces a
bidirectional horizontal and vertical scanning strategy to
convert 2D images into 1D sequences suitable for sequential
modeling. Although this enables global pixel-level mod-
eling, it disrupts the continuity of locally adjacent tokens,
weakening the model’s ability to perceive fine-grained dis-
tortions—an essential factor for image quality assessment
(IQA).

Inspired by LocalMamba (Huang et al., 2024), we adopt
a window-based scanning approach that performs horizon-
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Figure 2. Architectural Overview of QMamba Framework and the Detailed of StylePrompt Tuning Mechanism.

tal scans within local windows, followed by window-level
scans, and applies the same strategy vertically. This method
enhances local distortion perception while retaining global
awareness through hierarchical composition. Despite down-
sampling and aggregation in the input, this scanning scheme
maintains a balance between local detail and broader con-
text.

Unlike LocalMamba, which relies on attention-based dy-
namic routing and suffers from unstable inference and high
computational cost, LQMamba adopts a hierarchical archi-
tecture with fixed-size windows that change with network
depth. As illustrated in Figure 1 (b), this structure enables
the model to capture multi-scale perceptual cues, from fine-
grained distortions to broader contextual patterns, while
maintaining stable and efficient inference. It achieves a
good balance between accuracy and efficiency, making it
well-suited for IQA tasks that demand consistent perception
across various distortion types and spatial scales.

3.1.3. ANALYSIS OF PERCEPTUAL CAPABILITY IN
STATE SPACE MODELS

To investigate the feature selection mechanism of State
Space Models (i.e.,Mamba) in visual quality assessment
tasks, we employ t-SNE visualization for deep-layer feature
analysis, as illustrated in Figure 3. Visualization results re-
veal that Mamba exhibits distinctive characteristic evolution
patterns through dynamic state updating mechanisms, pro-
gressively enhancing distortion semantic perception across
network hierarchies. Specifically, shallow layers preserve di-
verse features of original visual signals, while deeper layers
adaptively filter redundant background information through
gated state selection, intensifying distortion-type-specific
feature focusing. This drives distortion-homogeneous sam-

ples to form cluster structures in feature space while ampli-
fying inter-class discriminability. Such feature refinement
strategy not only retains critical discriminative information
for quality assessment but also significantly improves model
sensitivity to quality degradation cues, thereby strengthen-
ing prediction robustness.

3.2. Tuning the Mamba with StylePrompt

Although the Mamba architecture reduces computational
complexity compared to other models, achieving higher per-
formance still requires a substantial number of parameters,
which poses a challenge for efficient transferable learning,
crucial for IQA tasks. We observe that domain shifts in
IQA tasks tend to correlate with their feature statistics or
style (Lu et al., 2022), such as mean and variance. Building
on this insight, we propose a lightweight tuning strategy,
StylePrompt, designed to adjust the mean and variance of
the pre-trained QMamba features, thereby aligning them
with the distortions and content types of the target domain.
This approach enables us to achieve results comparable to
full-parameter fine-tuning while using a minimal number
of parameters, significantly enhancing both the efficiency
and performance of QMamba in transferable IQA tasks.
Figure 2 illustrates the StylePrompt, which consists of two
components that will be described in detail below:

3.2.1. STYLEPROMPT GENERATION (SPG)

We designed the StylePrompt Generation phase to facili-
tate the creation of prompts and their interaction with the
original features. In a multi-stage network architecture, as
images progress through each stage of the network, we learn
a set of prompts Ps ∈ RN×1×1×C , containing N prompt com-
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Figure 3. t-SNE Visualization of Distortion-Specific Feature Separation: QMamba vs. Conventional Backbones

ponents designed to generate affine parameters for style
adaptation. These prompts are specifically utilized to in-
ject the distortion information of the current data into the
features Fi ∈ RĤ×Ŵ×Ĉ , facilitating learning of the style
pertinent to the target domain.

To enable the prompt components to extract specific style
information from the input stream dynamically, we pre-
dict the weights for different prompt components based
on the input features. This process involves performing
a global pooling on the current layer’s features followed
by applying a softmax function to obtain the weights for
the prompt group. These weights are then applied to the
multiple prompt components to amalgamate them into a
new prompt Pf , effectively encapsulating the current style
information. The operation can be briefly summarized by
the following formula:

Pf =

N∑
c=1

wsPs, ws = Softmax(Conv1x1(GAP(Fi)))

(1)

3.2.2. STYLEPROMPT INJECTION (SPI)

In the SPG phase, the fused prompt Pf is created, con-
taining the distortion style information of the target do-
main. During the subsequent StylePrompt Injection process,

this style information is injected into the original features
Fi ∈ RĤ×Ŵ×Ĉ produced by the current layer. To achieve
this, Pf is matched to the channel dimensions of the cur-
rent features using linear layers designed for dimensional
alignment. The processed prompt then generates affine pa-
rameters γv ∈ R1×1×Ĉ and βv ∈ R1×1×Ĉ , which modulate
the mean and variance of the original feature distribution
solely along the channel dimension. This adaptive adjust-
ment ensures that the feature distribution is tailored to the
distortion style of the target domain with minimal computa-
tional overhead.

The process of our StylePrompt Injection can be summa-
rized as follows:

γv = Linearγ(Conv(Pf )) (2)

βv = Linearβ(Conv(Pf )) (3)

F ′
i = Fi · (1 + γv) + βv (4)

Specifically, F ′
i represents the original features after the

injection of style information. These enhanced features
will serve as the new input to the subsequent layer of the
network.
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LIVE CSIQ TID2013 KADID LIVEC KonIQ LIVEFB SPAQ

Method GFLOPS PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average

ILNIQE - 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.534 0.508 0.508 0.537 0.523 0.332 0.294 0.712 0.713 0.618

BRISQUE - 0.944 0.929 0.748 0.812 0.571 0.626 0.567 0.528 0.629 0.629 0.685 0.681 0.341 0.303 0.817 0.809 0.664

WaDIQaM(5.24M) 2.43G 0.955 0.960 0.844 0.852 0.855 0.835 0.752 0.739 0.671 0.682 0.807 0.804 0.467 0.455 - - 0.763

DBCNN(15.31M) 16.51G 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851 0.869 0.851 0.884 0.875 0.551 0.545 0.915 0.911 0.852

TIQA(23.68M) - 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.850 0.861 0.845 0.903 0.892 0.581 0.541 - - 0.829

MetaIQA(13.24M) 1.82G 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.802 0.835 0.856 0.887 0.507 0.540 - - 0.815

HyperIQA(27.38M) 4.31G 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852 0.882 0.859 0.917 0.906 0.602 0.544 0.915 0.911 0.858

TReS(152.45M) 20.03G 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 - - 0.858

MUSIQ(27.13M) 9.02G 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875 0.746 0.702 0.928 0.916 0.661 0.566 0.921 0.918 0.832

DEIQT(24.04M) 5.41G 0.982 0.980 0.963 0.946 0.908 0.892 0.887 0.889 0.894 0.875 0.934 0.921 0.663 0.571 0.923 0.919 0.884

LoDa(*) 23.74G 0.979 0.975 - - 0.901 0.869 0.936 0.931 0.899 0.876 0.944 0.932 0.679 0.578 0.928 0.925 0.882

ResNet-50(23.51M) 4.11G 0.879 0.884 0.861 0.841 0.747 0.686 0.784 0.786 0.868 0.831 0.908 0.886 0.313 0.269 0.907 0.907 0.772

ResNet-101(42.50M) 7.83G 0.918 0.921 0.891 0.867 0.779 0.727 0.722 0.719 0.862 0.824 0.918 0.904 0.420 0.347 0.908 0.906 0.790

ResNet-152(58.15M) 11.53G 0.926 0.927 0.923 0.899 0.765 0.717 0.764 0.760 0.859 0.816 0.919 0.898 0.433 0.353 0.907 0.907 0.798

ViT-T(5.52M) 1.26G 0.786 0.792 0.725 0.717 0.728 0.699 0.832 0.836 0.777 0.730 0.852 0.852 0.521 0.461 0.896 0.896 0.756

ViT-S(21.67M) 4.61G 0.900 0.896 0.832 0.815 0.873 0.859 0.893 0.894 0.831 0.799 0.922 0.905 0.539 0.443 0.919 0.917 0.827

ViT-B(85.80M) 17.58G 0.961 0.955 0.924 0.912 0.904 0.905 0.910 0.908 0.875 0.837 0.913 0.895 0.491 0.452 0.914 0.912 0.854

Swin-T(27.52M) 4.51G 0.879 0.883 0.865 0.847 0.937 0.925 0.923 0.922 0.880 0.845 0.901 0.881 0.476 0.453 0.922 0.919 0.841

Swin-S(48.84M) 8.77G 0.883 0.896 0.884 0.874 0.931 0.918 0.895 0.894 0.907 0.884 0.931 0.914 0.476 0.433 0.918 0.915 0.847

Swin-B(86.74M) 15.47G 0.945 0.948 0.941 0.935 0.942 0.933 0.934 0.932 0.892 0.858 0.945 0.932 0.507 0.471 0.923 0.921 0.872

QMamba-T (27.99M) 4.47G 0.959 0.959 0.940 0.918 0.951 0.945 0.934 0.930 0.898 0.866 0.941 0.925 0.675 0.581 0.934 0.929 0.893

QMamba-S (49.37M) 8.71G 0.962 0.965 0.921 0.903 0.957 0.955 0.934 0.933 0.903 0.874 0.943 0.930 0.677 0.573 0.932 0.927 0.893

QMamba-B (87.53M) 15.35G 0.960 0.961 0.908 0.889 0.953 0.949 0.935 0.932 0.908 0.876 0.943 0.930 0.675 0.579 0.933 0.929 0.891

LQMamba-T(29.87M) 4.44G 0.958 0.959 0.935 0.916 0.952 0.950 0.938 0.923 0.903 0.863 0.943 0.928 0.672 0.574 0.933 0.927 0.892

LQMamba-S(52.91M) 8.66G 0.962 0.964 0.933 0.914 0.955 0.949 0.941 0.928 0.907 0.882 0.946 0.934 0.676 0.574 0.933 0.929 0.895
LQMamba-B(93.79M) 15.30G 0.959 0.951 0.915 0.889 0.965 0.964 0.943 0.941 0.913 0.888 0.947 0.933 0.675 0.582 0.934 0.929 0.896
* LoDa has a total of 118.23M model parameters and 8.93M trainable parameters.

Table 1. Performance Comparison for Task-Specific IQA. Bold Indicates the Top Two Results.

4. Experiments
4.1. Experimental Setup

4.1.1. DATASETS

We conducted foundational experiments on ten popu-
lar IQA datasets, which include four synthetic datasets:
LIVE(Sheikh et al., 2006), CSIQ(Larson & Chandler, 2010),
TID2013(Ponomarenko et al., 2015), and KADID(Lin et al.,
2019); four authentic datasets: LIVEC(Ghadiyaram &
Bovik, 2015), KonIQ(Hosu et al., 2020), LIVEFB(Ying
et al., 2020), and SPAQ(Fang et al., 2020); and two AIGC
datasets: AIGC2023(Wang et al., 2023a) and AGIQA3K(Li
et al., 2023a). We will provide a more detailed introduction
to these datasets in Appendix.

4.1.2. EVALUATION CRITERIA

The evaluation metrics employed in our study are the widely
utilized Pearson Linear Correlation Coefficient (PLCC) and
Spearman’s Rank Correlation Coefficient (SRCC), both of
which range from 0 to 1. Values approaching 1 denote a
higher degree of prediction relevance.

4.1.3. EXPERIMENTAL DETAILS

Our experimental methodology closely follows the training
strategy outlined in DEIQT(Qin et al., 2023), where input
images are randomly cropped into ten patches, each with
a resolution of 224×224. We employed three variants of
the VMamba architecture: QMamba-B, QMamba-S, and
QMamba-T. Both QMamba-B and QMamba-S feature an
encoder with a depth of 15 blocks, with QMamba-B incor-
porating an embedding dimension of 128, and QMamba-S
using an embedding dimension of 96. In contrast, QMamba-
T is designed with a reduced depth of 4 blocks and an
embedding dimension of 96. Training procedures leveraged
weights pre-trained on the ImageNet-1K dataset, spanning
a total of 9 epochs. Batch sizes were adjusted according
to the respective dataset sizes, e.g., 32 for LIVEC and 128
for KonIQ. We used the AdamW optimizer for training,
with the learning rate set to 2× 10−4 and a decay factor of
10 applied every 3 epochs. We compared the performance
of ResNet(He et al., 2016), ViT(Dosovitskiy et al., 2020),
and Swin Transformer(Liu et al., 2021), all of which were
implemented using the official versions and loaded with
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pre-trained weights. To ensure fairness, other experimental
settings were kept as consistent as possible. All experiments
were conducted using multiple NVIDIA RTX 4090 GPUs.

4.2. A Comparison Between Different IQA Backbones

4.2.1. TASK-SPECIFIC IQA

We conducted comprehensive training and testing across
the ten datasets previously introduced, drawing analytical
comparisons based on results reported by existing methods.
For this task, 80% of the images in each dataset were used
for training, while the remaining 20% were reserved for test-
ing. Given the predominance of BIQA methods targeting
synthetic and authentic datasets, Table 1 presents a detailed
comparative analysis of state-of-the-art (SOTA) methods
and popular architectures such as ResNet, ViT, and Swin
Transformer, in comparison to our QMamba architecture.
This comparison elucidates performance discrepancies and
computational complexities across different parameter con-
figurations. The results in the table demonstrate that the LQ-
Mamba configuration achieves optimal performance across
six datasets. Compared to existing IQA methods with simi-
lar parameter counts, QMamba-T exhibits lower GFLOPS
and superior performance, confirming the efficiency and
reduced computational complexity of the Mamba architec-
ture. Comparative results for the two AIGC datasets are
documented in the appendix.

Mixed Training

LIVE & KADID & LIVEC & KonIQ & AGIQA3K & AIGCIQA2023

Method Parameters GFLOPS PLCC Average SRCC Average

ResNet-50 23.51M 4.11G 0.878 0.853

ViT-S 21.67M 4.61G 0.891 0.867

Swin-T 27.52M 4.51G 0.900 0.883

DEIQT 24.04M 5.41G 0.895 0.873

LoDa 8.93M* 23.68G 0.876 0.855

QMamba-T 27.99M 4.47G 0.905 0.886

LQMamba-T 29.87M 4.44G 0.909 0.888

*Trainable parameters.

Table 2. Performance Comparison for Universal IQA.

4.2.2. UNIVERSAL IQA

We evaluated the effectiveness of the QMamba architecture
for universal tasks by employing mixed training across six
different datasets: two synthetic datasets (LIVE, KADID),
two authentic datasets (LIVEC, KonIQ), and two AIGC
datasets (AIGC2023, AGIQA3k). For each dataset, 20% of
the data was reserved for performance testing. The average
results of models with similar scales are presented in Table 2,
with detailed results provided in Appendix. These findings
highlight strong multi-tasking capabilities of Mamba. Com-
pared to several mainstream models, QMamba performed

well across most datasets, confirming its effectiveness in
handling general tasks.

4.2.3. ANALYSIS

Our investigation into the efficacy of QMamba for IQA
tasks reveals two key insights through analysis of the KA-
DID dataset (7 distortion types) and cross-dataset validation.
As shown in Figure 3, t-SNE visualization demonstrates
superior distortion discrimination of QMamba: 1) Tightly
clustered features for each distortion type, 2) Clear separa-
tion between dissimilar artifacts, and 3) Minimal inter-class
overlap compared to ViT’s partial merging and CNN/Swin
architectures’ significant feature entanglement.

This discriminative capability directly impacts practical per-
formance. While QMamba demonstrates modest gains on
simpler datasets such as LIVE and CSIQ, which contain
only 4 to 5 distortion types, it achieves substantial improve-
ments on more complex benchmarks like TID2013 and
KADID, which include 24 to 25 distortion types. The ar-
chitecture based on state-space modeling enables adaptive
frequency processing through a selective scanning mecha-
nism, dynamically emphasizing distortion-critical patterns
while suppressing irrelevant features. This approach stands
in contrast to convolutional networks with fixed receptive
fields and Transformers that tend to over-mix local charac-
teristics through global attention.

Our findings indicate that QMamba is well-suited for new
quality assessment scenarios involving complex and mixed
distortions, such as those introduced by neural compression
or generative models. In these cases, traditional architec-
tures often fail to capture subtle or entangled artifacts, while
the selective modeling in QMamba provides better adapt-
ability and robustness.

4.3. Efficient Transfer Learning for Mamba-Based IQA

In the context of transferable IQA tasks, we conducted
domain-specific training using synthetic datasets (LIVE,
KADID), authentic datasets (LIVEC, KonIQ), and AIGC
datasets (AIGC2023, AGIQA3K). After training in one
domain, models were directly transferred and tested on
datasets from the other two domains. We employed the
StylePrompt technique, as illustrated in Figure 2, where the
architecture was kept intact by freezing all model parame-
ters and fine-tuning only the StylePrompt module, which in-
volved approximately 4% of the total parameter count. This
approach achieved performance levels comparable to those
obtained through full-parameter training. The outcomes,
presented in Table 3, clearly demonstrate the effectiveness
and efficiency of the proposed StylePrompt method for trans-
ferable IQA tasks. The value of ”Average” represents the
mean performance across all domain transfers, with more
detailed results provided in the Appendix.
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Train KonIQ & LIVEC (Authentic) KADID & LIVE (Synthetic)

Test KADID LIVE AIGC2023 AGIQA3K KonIQ LIVEC AIGC2023 AGIQA3K

Fine-tuning Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average

DEIQT 0.583 0.595 0.558 0.564 0.802 0.794 0.698 0.632 0.518 0.526 0.579 0.532 0.580 0.575 0.512 0.506 0.601
LoDa 0.600 0.600 0.733 0.729 0.808 0.800 0.715 0.650 0.527 0.513 0.558 0.499 0.592 0.586 0.564 0.541 0.622

Without tuning 0.535 0.501 0.726 0.744 0.789 0.784 0.726 0.744 0.553 0.549 0.595 0.550 0.600 0.612 0.675 0.649 0.642
Lin Probe(R) 0.606 0.581 0.783 0.811 0.824 0.804 0.769 0.695 0.871 0.848 0.785 0.751 0.803 0.788 0.771 0.723 0.755

Full tuning (93.79M) 0.936 0.930 0.941 0.940 0.885 0.863 0.910 0.851 0.943 0.928 0.899 0.873 0.880 0.859 0.910 0.856 0.908
StylePrompt (3.83M) 0.920 0.912 0.949 0.948 0.877 0.854 0.908 0.854 0.932 0.913 0.888 0.866 0.880 0.865 0.906 0.852 0.901

StylePrompt & R 0.921 0.913 0.944 0.945 0.877 0.853 0.906 0.847 0.931 0.912 0.889 0.860 0.876 0.857 0.905 0.849 0.898

Table 3. Performance Comparison for Transferable IQA.

4.4. Ablation Study

4.4.1. DIFFERENT SCANNING METHOD

As shown in the task-specific results (Table 1) and universal
evaluation results (Table 2), models adopting local scan-
ning consistently outperform those based on cross-scanning
strategies. This motivates our exploration of local scanning
mechanisms, as employed in LQMamba.

Although the average performance gap between QMamba
and LQMamba may appear small, further analysis reveals
that LQMamba performs better on most individual datasets.
The marginal overall gain is primarily due to relatively lower
improvements on simpler datasets such as LIVE and CSIQ,
which contain fewer distortion types and less diverse content.
In contrast, on more challenging datasets like TID2013 and
KADID-10k, which feature a wide variety of fine-grained
distortions, LQMamba shows clear advantages (e.g., SRCC
on TID2013: 0.964 vs. 0.949; on KADID: 0.941 vs. 0.932).
These results highlight the effectiveness of the local scan-
ning design in complex, distortion-rich scenarios where
precise modeling of local artifacts is critical.

4.4.2. DIFFERENT MODEL SCALE

In our empirical analysis, as documented in Table 1, we
discern that while QMamba-Base exhibits exceptionally
robust quality perception capabilities, QMamba-Small ei-
ther matches or exceeds the performance of QMamba-Base
across the majority of the datasets. Although QMamba-
Tiny displays a modest decline in performance metrics, it
still delivers results that are competitive with current SOTA
methods, solely utilizing the capabilities of QMamba-Tiny.

Tuning Strategy Parameters PLCC Avg. SRCC Avg.
SSF 6.1M 0.750 0.735

Crossattn Prompt 12.17M 0.806 0.772
Conv Prompt 28.33M 0.883 0.856

StylePrompt(ours) 3.83M 0.911 0.890

Table 4. Ablation Study on Different Prompt Tuning Strategies

4.4.3. DIFFERENT PROMPT TUNING STRATEGIES

To validate the effectiveness of the StylePrompt Generation
(SPG) process, we conducted tests by directly learning a
set of affine parameters γ and β to modulate the original
features, rather than using prompts for learning, similar to
the SSF(Lian et al., 2022). Additionally, to assess the effec-
tiveness of the StylePrompt interaction method, we explored
various interaction strategies during tuning, including con-
volutional prompt interaction and cross-attention prompt
interaction. The results in Table 4 demonstrate the superior
efficiency and performance of StylePrompt.

In addition, we conducted several ablation studies related
to the design of the prompts, including variations in the
number and shape of the prompts. The detailed results of
these experiments are provided in Appendix.

4.5. Discussion and Future Work

Looking ahead, the sequential modeling nature and effi-
ciency of our SSM-based architecture make it a promising
candidate for extension to video and audio quality assess-
ment. Given the higher temporal complexity in VQA and the
inherent sequential structure of audio signals, our method of-
fers a unified and lightweight foundation for future research
across visual and multimodal quality evaluation tasks.

5. Conclusion
In this paper, we introduced QMamba, a novel state space
framework for image quality assessment that integrates
task-specific evaluation, universal perception, and cross-
domain transferability. Extensive experiments demonstrate
that QMamba consistently outperforms established vision
models, achieving significant improvements in accuracy
while requiring substantially lower computational resources.
The proposed StylePrompt mechanism enables robust cross-
domain adaptation through lightweight dynamic feature re-
calibration, setting new benchmarks for IQA and demon-
strating strong practical potential in real-world applications.
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A. Appendix / supplemental material
A.1. Detailed Description of the Datasets

We evaluate the performance of the proposed method across
eight widely recognized BIQA datasets, comprising both
synthetic and authentic datasets. The synthetic datasets in-
clude LIVE(Sheikh et al., 2006), CSIQ(Larson & Chandler,
2010), TID2013(Ponomarenko et al., 2015), and KADID-
10k(Lin et al., 2019). These datasets feature a small number
of pristine images that are synthetically distorted using var-
ious techniques such as JPEG compression and Gaussian
blurring. Specifically, LIVE contains 799 images with 5
types of distortion, CSIQ includes 866 images with 6 dis-
tortion types, TID2013 comprises 3000 images with 24
distortion types, and KADID-10k includes 10125 images
with 25 distortion types.

On the other hand, the authentic datasets include
LIVEC(Ghadiyaram & Bovik, 2015), KonIQ-10k(Hosu
et al., 2020), SPAQ(Fang et al., 2020), and FLIVE(Ying
et al., 2020). LIVEC consists of 1,162 images with diverse
authentic distortions captured by mobile devices. KonIQ-
10k is composed of 10,073 images selected from YFCC-
100M, covering a wide range of distortions such as bright-
ness, colorfulness, contrast, noise, and sharpness. SPAQ
contains 11,125 images collected by various smartphones,
representing a large variety of scene categories. FLIVE,
the largest in-the-wild IQA dataset to date, contains 39,810
real-world images with diverse content, sizes, and aspect
ratios.

In response to the rapid development of AI-generated con-
tent, we also employed two additional datasets: AIG-
CIQA2023(Wang et al., 2023a) and AGIQA3K(Li et al.,
2023a). AIGCIQA2023 contains over 2000 images gener-
ated by six state-of-the-art text-to-image models, evaluated
through a subjective experiment on quality, authenticity,
and correspondence. AGIQA3K consists of 2,982 images
from GAN, autoregression, and diffusion-based models,
with annotations for perceptual quality and text-to-image
alignment.

A.2. Additional Experimental Results

A.2.1. TASK-SPECIFIC IQA RESULTS ON AIGC
DATASETS

We present the test results of various backbones on the AIGC
datasets in Table 5, with bold indicating the best results.

A.2.2. UNIVERSAL IQA DETAILED DATA

We provide the detailed results of Universal IQA in Table 6.

Model AGIQA3K AIGCIQA2023

GFLOPS PLCC SRCC PLCC SRCC Average

ResNet-50(23.51M) 4.11G 0.901 0.840 0.795 0.797 0.833

ResNet-101(42.50M) 7.83G 0.907 0.847 0.834 0.831 0.855

ResNet-152(58.15M) 11.53G 0.901 0.832 0.841 0.834 0.852

ViT-T(5.52M) 1.26G 0.865 0.787 0.760 0.766 0.795

ViT-S(21.67M) 4.61G 0.891 0.819 0.842 0.822 0.844

ViT-B(85.80M) 17.58G 0.897 0.830 0.853 0.835 0.854

Swin-T(27.52M) 4.51G 0.906 0.847 0.867 0.844 0.866

Swin-S(48.84M) 8.77G 0.908 0.849 0.875 0.857 0.872

Swin-B(86.74M) 15.47G 0.909 0.852 0.886 0.863 0.878

QMamba-T (27.99M) 4.47G 0.913 0.858 0.888 0.873 0.883

QMamba-S (49.37M) 8.71G 0.912 0.858 0.889 0.875 0.884

QMamba-B (87.53M) 15.35G 0.914 0.861 0.886 0.868 0.882

LQMamba-T(29.87M) 4.44G 0.914 0.862 0.884 0.868 0.882

LQMamba-S(52.91M) 8.66G 0.913 0.864 0.888 0.869 0.884

LQMamba-B(93.79M) 15.30G 0.915 0.858 0.888 0.871 0.883

Table 5. Results of AIGC for task-specific IQA on various back-
bones

A.2.3. TRANSFERABLE IQA RESULTS TRAINED ON THE
AIGC DOMAIN

We provide the detailed results of Transferable IQA trained
in the AIGC domain in Table 7.

A.2.4. DETAILED RESULTS OF ABLATION STUDIES

• Ablation study on different prompt tuning strate-
gies.
We have provided the detailed experimental data for
the ablation study on different prompt tuning strategies
in Table 8.

• Ablation study results for different prompt designs.
We investigated the impact of the number of prompt
components on performance and found that setting the
number to six yields optimal results. Additionally, we
explored whether varying the spatial dimensions and
sizes of prompts would enhance performance. Our find-
ings show that a spatial size of (1,1), focusing solely on
the channel dimension, offers the best results. The out-
comes of these ablation studies across multiple datasets
are presented in Tables 9 and 10.

A.3. Limitations

Q-Mamba heavily relies on pre-trained weights from
ImageNet-1K, which may limit its applicability to domains
with significantly different data distributions. Future work
could explore pre-training on more diverse datasets to im-
prove generalization capabilities. Despite the efficiency
improvements brought by the StylePrompt, the computa-
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Train LIVE & KADID & LIVEC & KonIQ & AGIQA3K & AIGCIQA2023

Test LIVE KADID LIVEC KonIQ AGIQA3K AIGCIQA2023

GFLOPS PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average

ResNet-50 4.11G 0.916 0.908 0.868 0.869 0.885 0.841 0.896 0.869 0.884 0.813 0.821 0.815 0.865

ViT-S 4.61G 0.921 0.918 0.920 0.917 0.883 0.828 0.911 0.892 0.885 0.822 0.825 0.824 0.879

Swin-T 4.51G 0.927 0.927 0.925 0.921 0.889 0.863 0.929 0.918 0.897 0.840 0.834 0.828 0.892

DEIQT 4.68G 0.907 0.906 0.898 0.895 0.896 0.855 0.928 0.906 0.902 0.841 0.839 0.835 0.884

LoDa 23.68G 0.895 0.902 0.907 0.900 0.872 0.842 0.900 0.875 0.874 0.809 0.809 0.801 0.866

QMamba-T 4.47G 0.923 0.923 0.938 0.932 0.898 0.863 0.932 0.917 0.906 0.851 0.835 0.830 0.896

LQMamba-T 4.44G 0.929 0.926 0.943 0.939 0.899 0.863 0.936 0.921 0.908 0.853 0.840 0.828 0.899

Table 6. Performance comparison for universal IQA.

Train AIGC2023 & AGIQA3K (AIGC)
Test KonIQ LIVEC KADID LIVE

Fine-tuning Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average
DEIQT 0.578 0.505 0.684 0.638 0.498 0.464 0.752 0.750 0.601
LoDa 0.564 0.500 0.542 0.548 0.555 0.524 0.840 0.833 0.622

Without tuning 0.636 0.587 0.667 0.637 0.460 0.425 0.815 0.838 0.642
Lin Probe(R) 0.818 0.792 0.790 0.761 0.570 0.540 0.799 0.826 0.755

Full tuning (93.79M) 0.943 0.927 0.910 0.878 0.937 0.932 0.938 0.933 0.908
StylePrompt (3.83M) 0.929 0.909 0.902 0.871 0.918 0.913 0.926 0.922 0.901

StylePrompt & R 0.929 0.909 0.899 0.859 0.918 0.911 0.926 0.927 0.898

Table 7. Performance comparison for transferable IQA (trained on AIGC).

Train KonIQ & LIVEC KADID & LIVE AIGC2023 & AGIQA3K

Test KADID LIVE AIGC2023 AGIQA3K KonIQ LIVEC AIGC2023 AGIQA3K KonIQ LIVEC KADID LIVE

Style and Prompt method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average

SSF(6.1M) 0.718 0.700 0.735 0.769 0.804 0.801 0.714 0.667 0.863 0.829 0.643 0.598 0.668 0.675 0.714 0.685 0.866 0.828 0.730 0.706 0.724 0.708 0.820 0.856 0.743

Crossattn Prompt(12.17M) 0.843 0.830 0.898 0.897 0.783 0.752 0.821 0.706 0.843 0.816 0.641 0.612 0.802 0.782 0.833 0.726 0.842 0.818 0.644 0.616 0.831 0.815 0.894 0.897 0.789

Conv Prompt(28.33M) 0.911 0.910 0.945 0.946 0.889 0.820 0.890 0.825 0.897 0.881 0.797 0.761 0.864 0.827 0.861 0.828 0.898 0.884 0.805 0.756 0.901 0.899 0.932 0.933 0.869

StylePrompt(ours)(3.83M) 0.920 0.912 0.949 0.948 0.877 0.854 0.908 0.854 0.932 0.913 0.888 0.866 0.880 0.865 0.906 0.852 0.929 0.909 0.902 0.871 0.918 0.913 0.926 0.922 0.901

Table 8. Ablation study on different prompt tuning strategies

tional demands for training and deploying QMamba on very
large-scale datasets or in real-time applications might still be
substantial. Investigating methods to further reduce compu-
tational complexity without sacrificing performance could
be beneficial. The current study focuses on specific types of
distortions, and there may be other types of distortions that
have not been sufficiently explored. Expanding the evalu-
ation to cover a broader range of distortions could provide
a more comprehensive validation of QMamba’s robustness.
Given that synthetic datasets might not fully capture the

complexity and variability of authentic data, there is a risk of
overfitting to these synthetic examples. Further evaluations
on more diverse and extensive authentic datasets would help
ensure the model’s robustness and practical applicability.
While QMamba shows promising results in cross-domain
transferability, its effectiveness across vastly different do-
mains (e.g., medical imaging versus natural images) has not
been thoroughly validated. Further studies are needed to test
and possibly adapt QMamba for such diverse applications.
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Train KonIQ & LIVEC KADID & LIVE AIGC2023 & AGIQA3K

Test KADID LIVE AIGC2023 AGIQA3K KonIQ LIVEC AIGC2023 AGIQA3K KonIQ LIVEC KADID LIVE

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average

N=1 0.914 0.907 0.943 0.944 0.877 0.850 0.900 0.833 0.924 0.906 0.873 0.846 0.872 0.850 0.898 0.834 0.924 0.907 0.890 0.855 0.904 0.899 0.940 0.937 0.8928

N=2 0.913 0.905 0.938 0.939 0.874 0.851 0.895 0.837 0.930 0.912 0.886 0.853 0.871 0.851 0.892 0.835 0.927 0.905 0.902 0.865 0.911 0.906 0.926 0.922 0.8936

N=4 0.920 0.913 0.944 0.949 0.875 0.851 0.904 0.840 0.929 0.913 0.877 0.849 0.876 0.857 0.904 0.842 0.927 0.904 0.885 0.847 0.913 0.907 0.925 0.931 0.8951

N=6 0.920 0.912 0.949 0.948 0.877 0.854 0.908 0.854 0.932 0.913 0.888 0.866 0.880 0.865 0.906 0.852 0.929 0.909 0.902 0.871 0.918 0.913 0.926 0.922 0.9006

N=8 0.920 0.914 0.930 0.934 0.874 0.851 0.903 0.841 0.930 0.912 0.873 0.843 0.876 0.854 0.899 0.841 0.927 0.906 0.889 0.859 0.918 0.912 0.922 0.926 0.8939

N=10 0.919 0.913 0.930 0.936 0.877 0.856 0.901 0.840 0.929 0.910 0.880 0.849 0.877 0.853 0.900 0.840 0.925 0.906 0.889 0.851 0.918 0.914 0.923 0.924 0.8942

Table 9. Ablation study results for different numbers of prompts (N).

Train KonIQ & LIVEC KADID & LIVE AIGC2023 & AGIQA3K

Test KADID LIVE AIGC2023 AGIQA3K KonIQ LIVEC AIGC2023 AGIQA3K KonIQ LIVEC KADID LIVE

(H,W) PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Average

(1,1) 0.920 0.912 0.949 0.948 0.877 0.854 0.908 0.854 0.932 0.913 0.888 0.866 0.880 0.865 0.906 0.852 0.929 0.909 0.902 0.871 0.918 0.913 0.926 0.922 0.901

(7,7) 0.924 0.917 0.947 0.948 0.876 0.852 0.906 0.844 0.931 0.912 0.881 0.848 0.875 0.857 0.902 0.843 0.928 0.906 0.890 0.855 0.921 0.915 0.927 0.931 0.897

(14,14) 0.924 0.917 0.947 0.948 0.876 0.852 0.906 0.844 0.931 0.912 0.881 0.848 0.875 0.857 0.902 0.843 0.928 0.906 0.890 0.855 0.921 0.915 0.927 0.931 0.897

(28,28) 0.917 0.909 0.948 0.947 0.871 0.849 0.905 0.847 0.929 0.909 0.876 0.845 0.873 0.855 0.903 0.841 0.928 0.905 0.895 0.860 0.902 0.898 0.932 0.931 0.895

layer HW 0.921 0.914 0.948 0.948 0.880 0.854 0.905 0.844 0.929 0.909 0.876 0.850 0.879 0.859 0.903 0.844 0.928 0.906 0.891 0.858 0.913 0.908 0.920 0.919 0.896

Table 10. Ablation study for different prompt shape
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