e3: Learning to Explore Enables Extrapolation
of Test-Time Compute for LLMs

Amrith Setlur “! Matthew Y. R. Yang“! Charlie Snell> Jeremy Greer® Ian Wu' Virginia Smith '
Max Simchowitz' Aviral Kumar '

Abstract
Test-time scaling offers a promising path to im-
prove LLM reasoning ; however, the true promise
of this paradigm lies in extrapolation (i.e., to scale
performance as LLMs “think” for longer). We
show that one way to enable extrapolation is by
training the LLM at in-context exploration; that is,
training the LLM to effectively spend its test time
budget by chaining operations (such as genera-
tion, verification, refinement, etc.). To enable in-
context exploration, we identify three key ingredi-
ents as part of our recipe e3: (1) chaining asym-
metries in base LLM competence, e.g., chaining
verification (easy) with generation (hard), as a
way to implement in-context search; (2) leverag-
ing negative gradients from incorrect traces to am-
plify exploration that chains additional asymme-
tries ; and (3) aligning task difficulty with training
token budget to structure in-context exploration.
Our recipe e 3 produces the best performing 1.7B
model on AIME/HMMT’25, and can also extrap-
olate compute to 2.5 the model training budget.

1. Introduction

Many recent works post-train LLMs via reinforcement learn-
ing (RL) (DeepSeek-Al et al., 2025; Yu et al., 2025) and
supervised fine-tuning (SFT) (Team, 2025; Muennighoff
et al., 2025) at long context windows. However, it is unclear
whether the models post-trained with current recipes can
truly realize the promise of extrapolation (see App. B): if
we scale the test compute beyond the training budget, would
the LLM be able to continue to solve more problems?

In this paper, we show that the key to enabling extrapolation
is learning to explore in-context: if a model learns to use
compute by searching through multiple reasoning paths or

“Equal contribution 'Carnegie Mellon University 2UC Berkeley
30Oumi. Correspondence to: <asetlur@andrew.cmu.edus>.

Proceedings of the 42" International Conference on
Machine Learning, Vancouver, Canada. PMLR 267,
2025. Copyright 2025 by the author(s). Project website:
https://matthewyryang.github.io/e3/.

implementing algorithmic procedures, it can “guide” the
search towards the correct answer, and improve its perfor-
mance with more test compute. To demonstrate this, we
build a recipe e 3 based on following ingredients:

1) Asymmetries are critical for learning to explore. In
the absence of external tools, we show that feedback can
emerge from asymmetries, differences in the model’s com-
petence at different procedures that constitute an output
trace. One example is the verification-generation (VG) gap,
where models are more capable of verifying their answers
than generating correct ones. While prior work (Setlur et al.,
2025; Swamy et al., 2025; Song et al., 2024; Kim et al.,
2025; Gandhi et al., 2025) has noticed such asymmetries,
we show that these are critical for extrapolation, meaning
that in their absence, scaling is strikingly hard.

2) Negative gradient in RL amplifies in-context explo-
ration. If asymmetries are a prerequisite for learning to
explore, what enables them to evolve and facilitate learn-
ing useful exploration strategies during RL training? We
show that negative gradients (i.e., gradients on incorrect
traces, see App. B) is a key enabler of in-context exploration,
when the base model presents asymmetries. Negative gra-
dients drive exploration (Tajwar et al., ICML 2024; Ren
& Sutherland, 2024) by moving the probability mass from
shorter failed traces onto longer traces that “chain” new
asymmetries (e.g., verifying a calculation once more).

3) Structured exploration with coupled curriculum.
While negative gradients amplify asymmetries and produce
longer responses, at larger budgets, RL often suffers from
poor training convergence (Agarwal et al., 2021). While one
could train with a smaller budget, we show that training on
hard problems at short budgets often disincentivizes explo-
ration since the model is forced to commit to an answer pre-
maturely. To resolve this, we design a coupled curriculum
over pairs of (data mixture, training budget) that effectively
structures exploration driven by the negative gradient.

The above constitutes our recipe e 3, which we use to post-
train Qwen3-1.7B with a training budget of 16k. We achieve
the best performance at <2B scale on AIME’25 and
HMMT’25, and our model’s performance consistently im-

https://matthewyryang.github.io/e3/

Title Suppressed Due to Excessive Size

Our recipe: e3 Asymmetries /~ Negative) e3 vs. open-source mode-li
A Ext lati o
Data & budget curricula | For example, = gradient '—-cf& 20 rexgirrizofsr‘T - _ -
lteration 0 Easy v [:] C] a gy
| L T S = g
Medium <eos> | X | Generation Verification g - E 20
after negative gradient Chained asymmetry Bye—0—ou_ (<eos> continue | 5 2aenicagol
1 Different budgets [% = S qwen3-1.7B
lteration 1 | Medium NN v I foreachstage | 9 g o ri-distilled-1.58
1 / = —— €3-1.7B
s x 2
. , I T e 4k 8k . 16k 24k 32k
By Test-time compute (tokens)

T
Chained asymmetries

Figure 1: In-context exploration enables extrapolation (e3): (i) chaining asymmetric capabilities in the base model, e.g., reliably
self-verifying responses after generating them; (ii) using negative gradients in RL training to penalize incorrectly terminated model
responses, lengthening them further with more chained asymmetries, until the correct answer is discovered; and (iii) data & budget
curricula for RL training that carefully balances explore-exploit tradeoff by sequentially training models on different datasets and training
compute budgets. Qwen3-1.7B fine-tuned with e 3 extrapolates test-time compute outperforming all <2B models on AIME’25.

proves as we extrapolate the test-time budget to 40k. Please
refer to Appendix A for a discussion of related works.

2. Asymmetries in the Base Model: A
Prerequisite for In-Context Exploration

In this section, we demonstrate that when the base model
exhibits asymmetric competence at different skills, RL post-
training prefers to learn solutions that chains asymmetric
skills in ways that improve final performance. We focus on
a key special case when the model is more accurate at veri-
fying its own answers than it is at generating correct ones;
that is, when the model exhibits a verification-generation
gap (VG Gap), on a particular problem domain (Song et al.,
2024). We show that RL training on problem domains with
VG gap (i) encourages chaining asymmetries, (ii) enables in-
context exploration that (iii) discovers new solutions, often
extrapolating to larger budgets and OOD problems.

Definition 2.1 (Chaining asymmetric capabilities p, g in|
model 7.). Let p,q : S — & be functions over token

sequences S (e.g., p can be generation, ¢ can be veri-
fication), and detect(f,7) detects number of calls to

function f in a token trace 7. For a reward r, we say that

policy 7 chains asymmetries p, q if it benefits from calls

to the composition ¢(p(-)), compared to only p(+):

IE'rwﬂ' [T(T) | deteCt(Q(p('))7T) > 0]
> E,n [r(7) | detect(p,7) > 0],

even though there is an optimal policy 7% that never calls
q.ie., E; r:detect [(¢,7)] = 0.

J

Setup. We validate the role of asymmetries in learning
to explore by investigating two didactic tasks, on which
Llama3.2-3B admits different VG gaps. First, the Count-
down game (Yao et al., 2023; Gandhi et al., 2024) (CDOWN)
requires converting a set of numbers into an equation that
outputs the desired target. T Second, we study n-digit mul-
tiplication MuLT where the base model exhibits limited
verification (see App. E for asymmetry gap on MuLT). Ad-
ditionally, we supervise fine-tune Llama3.2-3B on correct n-
digit multiplication traces containing verification to encour-

(a) Performance on B, (b) Response length . (c) Extrapolation Acc i, (@) Multiply w. verify
k

By =512 B, =512 B, =512
B, =101 B, =1024 B, =1024 =
B¢ =204 1Kk B, ~2048 0.65 %" 2K
0.5k ~
0.45
100 200 300 400 2k 4k 8k 16k
4k 0.58
B, =1024
B, =2048
By, 74096 0.54

B, #1024
B,/~2048
B, =4096

o
=
&

Countdown

<
o
S

100 200 300 400
Training iterations
0.7 By =1024,
B, 2018
Be=4096

100 200 300 400

B, =102
B, 2048
B, /4096 oK

B, =2048
B, =4096

<
IS
&

1k

Multiply w/o verify
Extrapolation Acc
o
s

<
)
S
o
o

0.50
100 200 300 400 2k 3k 4k 5k 2k 4k 8k 16k
Training iterations Test compute (tokens) Test compute (tokens,

100 200 300 400
Training iterations

Figure 2: RL training with and w/o. asymmetries in 7,. When
asymmetries (e.g., VG gap) are present (e.g., in CDOWN), RL train-
ing amplifies response length by chaining more asymmetries to
explore in-context On the other hand, when VG gap is absent in 7
(e.g., in MULT), increases in length and extrapolation performance
are subdued. When we explicitly train on a base model fine-tuned
to verify MuLT (referred to as the MULT-V), we again observe
upward length and extrapolation trends, consistent with CDOWN.

age more verification attempts (MULT-V). MULT vS. MULT-
V evaluates the presence of asymmetries in base LLM.

1) Verification-generation asymmetry in 7, improves the
performance of RL trained solutions. Fig. 2(a,b) shows
a stark difference in performance and response length as
we vary B on CpowN and MuLT . On CDOWN, perfor-
mance consistently increases as By, increases from 512 —
2048, accompanied by a clear increase in length. On MULT,
where the base model has limited propensity to verify, per-
formance increases when By, increases from 1024 to 2048,
but plateaus thereon. Contrast this with Fig. 2(d), RL train-
ing on MULT-V , which exhibits longer lengths and stronger
extrapolation performance because it leverages asymme-
tries. Therefore, asymmetries improve performance and
length-utilization in RL post-training.

2) Chaining asymmetries enable extrapolation via in-
context exploration. Interleaving verification and gener-
ation steps chains together asymmetric capabilities of the
base model; we refer to this as chaining asymmetries. In
Fig. 2 (c), we plot the extrapolation performance of the
models trained at two values of B;,.. On CDowN the model
trained with By,=0.5/1k makes steady progress on problems
in test budgets that are 8-16x By, itself. On MuLT we find
that By, has no effect on extrapolation performance when
the base LLM does not have asymmetries, but has a substan-

Title Suppressed Due to Excessive Size

tial effect when asymmetries are present. More importantly,
while the base model without VG asymmetry fails to ex-
trapolate and solve unsolved problems, with its accuracy
improving by merely < 2% despite 16x compute scaling,
the base model with VG asymmetry can still extrapolate
well. See App. C for a theoretical model that explains why
asymmetries enable exploration. In App. E, we discuss the
performance impact of chained asymmetries.

3. Negative Gradients Incentivize Exploration
that Chains Asymmetries

Having observed that the presence of asymmetry in the
base model is a prerequisite for in-context exploration, the
next question is: What enables models to exploit these
asymmetries during RL? In this section, we show that a
key ingredient is the negative gradient, the gradient term
multiplied by a negative advantage in the standard GRPO
/ PPO objective (see App. B). Negative gradient drives in-
context exploration via two mechanisms: (i) incentivizing
the sampling of unseen token sequences; (ii) chaining asym-
metries like VG gap (Sec. 2) that rapidly drives up response
length. For brevity, we refer to (i) as “exploration” (Amin
et al., 2021) and (2) as in-context exploration (or “meta-
exploration” (Duan et al., 2016; Gupta et al., 2018)).

(a) Accuracy (b) Number of verifications (c) Response length (d) Entropy

GRPO 2 GRPO 015 GRPO

mask neg. grad mask neg-grac mask neg. grad
- v mask neg:grad.
+ entropy bonus

15k -

—X — K 0.10

GRPO 1K

So2 mask neg. grad 20 0.05
-+ extrapolation

Omni-MATH
°
N
N
S
°
s

o

5
°
°
a

50 100 150 200 50 100 150 200 50 100 150 200 0 100 200

Figure 3: RL training with and w/o. negative gradients: When
the base model presents asymmetries, negative gradients promote
in-context exploration by: (i) increasing length (shown in (c)) and
chaining more asymmetries on incorrect responses (shows up as
more verification attempts (b)), and (ii) increasing entropy and
thus esponse diversity (d). This leads to better performance on
both training and extrapolation budgets. In (b, c), v denotes the
statistic computed on correct responses and X on incorrect ones.

Analysis setup. We analyze the evolution of response
length, performance, and the number of chained asymme-
tries of two training algorithms: (i) standard GRPO (Shao
et al., 2024) with token-level normalization (Yu et al., 2025);
(ii)) GRPOMask, which zeros out (i.e. masks) the negative
gradient and whilst retaining the positive gradient, resem-
bling online STaR (Zelikman et al., 2022) or RFT (Yuan
et al., 2023). We conduct our experiments on CDOWN and
DMATH reasoning (from the DeepScaleR dataset (Luo et al.,
2025b)). We make the following observations:

1) Negative gradient increases the number of chained
asymmetries, and thereby boosts meta-exploration.
When applied on an incorrect response y with tokens

Y1, Y2, -, EOS, negative gradient reduces p(y;|y1.i—1) , in-
cluding p(EOS|y) when the response ends before the train-
ing budget. Fig. 3(b) reveals that the probability mass re-
covered from the negative gradient (note: total probability
is conserved) is repurposed to increase the probability of
chaining new pairs of asymmetric skills to the current trace
(e.g., “Wait, ...” instead of terminating with EOS). When
negative gradients are masked (GRPOMask) in CDOWN, we
see that attempts (b) and length (c) plateau, accompanied
by a decrease in performance. The relative trends between
GRPO and GRPOMask are similar for DMATH, but differ
in absolute terms. We include further discussion in App. F,
where we also demonstrate that MULT (which does not ex-
hibit asymmetries) benefits far less from negative gradients.

2) Negative gradients promote diverse responses dur-
ing RL training, encouraging exploration at two levels: (i)
within a rollout; and (ii) across rollouts. For (i), we observe
that removing the negative gradient results in an entropy col-
lapse over the next-token distribution (Fig. 3 (d)). This leads
to responses with a repeating stream of tokens when extrap-
olating the trained model to larger budgets (see App. F).
For (ii), we measure the cumulative unique attempts on the
CDOWN test set as we train the model (App. F) and find more
unique attempts when training with negative gradients.

3) LLMs trained with negative gradients extrapolate bet-
ter. The bridge between exploration and meta-exploration
lies in the use of asymmetries present in the base model. Ex-
ploration afforded by negative gradients, in the presence of
asymmetries like the VG gap, incentivizes meta-exploration,
because longer responses with more chained asymmetries
(verification-generation steps) discover correct solutions
and get positively rewarded. Recall from Sec. 1 that if a
model has learned to explore in-context (meta-exploration),
it should benefit from additional test compute since under
large VG gaps are present. We confirm this in Fig. 3(a)
(dotted lines), where we see that when testing on hard test
problems in DMATH, on a budget that is 2x By,, the perfor-
mance gap widens with negative gradients, in comparison
to the masked version. Refer to App. C for an analysis of
negative gradient dynamics in a didactic setting.

4. Coupled Curriculum Training Structures
Exploration in Long Length RL

In the presence of asymmetries, training with negative gra-
dients produces models that can extrapolate beyond their
training budget. However, just negative gradients are not
enough: as we see in Fig. 4(a), different training budgets
By, lead to different levels of performance on By,, as well as
extrapolated test compute. So how should we set the budget
By, to attain strong extrapolation performance? And in
correspondence with token budgets, what prompts should
we be training on for a given budget?

Title Suppressed Due to Excessive Size

0 Fix dataset, vary train budget v Fix train budget, vary dataset
N 40 N 40

w w

= =

< <

§ 20 By(4k), D (al) & 20

5 Btr(8k), D (all) 5 By (8k), D (easy)

© By (16k), D (all) © By (8k), D (easy+med)
=] == extrapolation =] Bt (8k), D (all)

8 0 8 0 = = extrapolation

< <<

4k 8k 16k 24k 32k 4k 8k 16k 24k 32k
Test-time compute (tokens) Test-time compute (tokens)

(@) (b)
Figure 4: RL training on different data and length budgets. (a):
Optimal results come from balancing optimization (better at shorter
budgets) and in-context exploration (better at longer budgets). (b):
Training on hard problems at the 8k budget kills in-context explo-
ration. Refer to App. G for the length distributions.

Setup. We evaluate on DMATH, CDOWN, with different train-
ing budgets and data compositions. We split DMaTHevenly
across three levels of hardness by Qwen-R1-Distilled-32B
accuracy. For CpDowN, we judge problem difficulty based
on the number of terms in the equation. We use the
GRPO (Shao et al., 2024) algorithm to train models on
all compute budgets and datasets (see App. G for details).

Training solely at low or high values of By, is not desir-
able. We first run RL training for 300 iterations on the
easy DMATH problems at different training budgets By, = 4k,
8k, 16k (see Fig. 4(a)). While training at the short budget
By,= 4k attains the best performance at the same test budget
of 4k tokens, it “’kills” exploration and leads to poor ex-
trapolation performance (no gains from 8k to 40k). On the
other extreme, training at By,= 16k introduces significant
optimization challenges, typical of long horizons policy gra-
dients suffering from high gradient variance (Agarwal et al.,
2021). We find that By,= 8k attains the best scaling when
extrapolating test compute, implying that we need to strike
a balance between the length budget available for negative
gradient to encourage chaining asymmetries (infeasible in
<4k tokens) and mitigating optimization challenges.

Training naively on a static data mixture is insufficient.
Having identified a reasonable By, of 8k, we now turn
to studying the effect of data compositions. We com-
pare the naive training data mixture with all difficul-
ties (easy+med+hard) against easy, easy+med at By,= 8k.
Matching train and test composition is ideal for better “in-
distribution” performance, i.e., when evaluating models at
By, (see App. G). Surprisingly, the same is not true for ex-
trapolation on out-of-distribution (OOD) problems at larger
test-time budgets. As shown in 4(b), the model trained on
only easy problems obtains the best performance on OOD
AIME’25 when extrapolating compute to 40k.

How can we avoid challenges with training on a fixed
dataset and length budget? One approach is to incorporate
a budget curriculum that varies By, over training. However,
this alone is insufficient because, as shown above, training
on hard problems with short budgets suppresses length and
in-context exploration. On the other hand, we can design

e3 vs. open-source models e3 vs. open-source models

e -—
9 — == S Y
N 40 =
w
= =
S s
= 20 agentica-1.5B T 10 agentica-1.5B
o qwen3-1.7B g qwen3-1.7B
e openthinker-7B . openthinker-7B
Q s1.1-32B 8 r1-distilled-1.5B
<o —— e3-1.7B < —— e3-1.7B

4k 8k 16k 24k 32k 4k 8k 16k 24k 32k
Test-time compute (tokens) Test-time compute (tokens)

(@) (b)
Figure 5: RL training with coupled curricula. In the above figure,
the shaded area indicates the extrapolation regime. e3 achieves
state-of-the-art performance across models < 2B. on (a) AIME
’25 and (b) HMMT °25

a curriculum over the difficulty level and keep the training
budget fixed at a high enough value. However, this leads to
learning over-exploratory traces tailored to easy problems
(see App. G for a detailed study of this on CDowN). We also
show an experiment comparing our proposed fix below with
only budget or data curricula in Fig. 5(d).

e3: coupled curriculum for test-time extrapolation. Mo-
tivated by our findings above, we propose a coupled cur-
riculum which varies By, and problem difficulty in a coordi-
nated fashion as training progresses. We refer to our entire
recipe as e3: exploration enables extrapolation. This en-
compasses asymmetries, negative gradients, and a prescrip-
tion for the coupled curriculum. Our recipe e 3 fine-tunes
the base model on easy problems in DMATH at a budget
of 8k, and subsequently continues training on medium and
hard problems in DMATH with a budget of 16k. Refer to
App. G for the theoretical motivation behind this curriculum.

Final results with e3.

Learning to explore with e3 - ‘

In Fig. 5(a,b), we com- Q extapolaes botr e

pare the performance u 40| exrapolation

of Qwen3-1.7B fine- Z O
tuned using e3 with 5§ -
open-source models, § - o Svenst7Brwtl

including 7B and 32B

models. As shown, e3 8k 16k 24k 32k
achieves state-of-the-art Test-time compute (tokens)
performance on AIME’ Figure 6: 3 (w/o “wait”) is su-
25 and HMMT 25 perior when extrapolating to larger

within a model class of budgets, compared to budget forc-

. ing with “wait” prompt 2/4/6/8
size <2B. We outper- (ippes.

form the best model in this class by >10% on AIME ’25
in terms of peak performance, and show that our model,
trained only up to a budget of 16k, extrapolates better
than other models including s1.1-32B (Muennighoff et al.,
2025) and OpenThinker-7B (Team, 2025) when we extend
the compute budget up to 32k. Refer to App. G for more
details. Finally, Fig. 6 shows that compared to budget
forcing, which is a prompting technique introduced in
sl (Muennighoff et al., 2025) to enable extrapolation, e3
achieves significantly better scaling, even without applying
budget forcing to it. Refer to App. L for a discussion on the
conclusion and limitations.

Title Suppressed Due to Excessive Size

References

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1-76, 2021.

Aggarwal, P. and Welleck, S. L1: Controlling how long
a reasoning model thinks with reinforcement learning.
arXiv preprint arXiv:2503.04697, 2025.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,
J., Pietquin, O., Ustiin, A., and Hooker, S. Back
to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. arXiv preprint
arXiv:2402.14740, 2024.

Amin, S., Gomrokchi, M., Satija, H., Van Hoof, H., and Pre-
cup, D. A survey of exploration methods in reinforcement
learning. arXiv preprint arXiv:2109.00157, 2021.

DeepSeek-Al, Guo, D., Yang, D., Zhang, H., Song, J., Xu,
Z., Zhang, Z., and Zhang, Z. Deepseek-rl: Incentiviz-
ing reasoning capability in llms via reinforcement learn-

ing, 2025. URL https://arxiv.org/abs/2501.

12948.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl 2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Face, H. Open rl: A fully open reproduction of deepseek-
rl, January 2025. URL https://github.com/
huggingface/open—-rl.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Gandhi, K., Chakravarthy, A., Singh, A., Lile, N., and
Goodman, N. D. Cognitive behaviors that enable self-
improving reasoners, or, four habits of highly effec-
tive stars, 2025. URL https://arxiv.org/abs/
2503.01307.

Gao, Y., Meyer, C. M., Mesgar, M., and Gurevych, 1.
Reward learning for efficient reinforcement learning
in extractive document summarisation. arXiv preprint
arXiv:1907.12894, 2019.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine,
S. Meta-reinforcement learning of structured exploration
strategies. CoRR, abs/1802.07245, 2018.

Kim, S., Wu, I., Lee, J., Yue, X., Lee, S., Moon, M.,
Gashteovski, K., Lawrence, C., Hockenmaier, J., Neu-
big, G., et al. Scaling evaluation-time compute with

reasoning models as process evaluators. arXiv preprint
arXiv:2503.19877, 2025.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Igbal, S., Bishop, C., Roelofs,
R., et al. Training language models to self-correct via

reinforcement learning. arXiv preprint arXiv:2409.12917,
2024.

Li, Q., Zhai, Y., Ma, Y., and Levine, S. Understanding
the complexity gains of single-task rl with a curriculum.
arXiv preprint arXiv:2212.12809, 2022.

Liu, Z., Chen, Y., Shoeybi, M., Catanzaro, B., and Ping,
W. Acemath: Advancing frontier math reasoning with
post-training and reward modeling. arXiv preprint, 2024.

Liu, Z., Chen, C., Li, W,, Qi, P, Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Luo, M., Tan, S., Huang, R., Patel, A., Ariyak, A., Wu,
Q., Shi, X., Xin, R., Cai, C., Weber, M., Zhang, C.,
Li, L. E., Popa, R. A., and Stoica, I. Deepcoder:
A fully open-source 14b coder at o03-mini level.
https://pretty-radio-b75.notion.site/

DeepCoder-A-Fully-Open—-Source-14B-Coder-at-03-mir

2025a. Notion Blog.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y.,
Roongta, M., Cai, C., Luo, J., Zhang, T., Li, L. E.,
Popa, R. A., and Stoica, I. DeepScaleR: Surpass-
ing Ol-Preview with a 1.5B Model by Scaling
RL. https://pretty-radio-b75.notion.site/DeepScaleR-
Surpassing-O1-Preview-with-a-1-5B-Model-by-
Scaling-RL-19681902c¢1468005bed8ca303013a4e2,
2025b. Notion Blog.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candes, E., and
Hashimoto, T. s1: Simple test-time scaling, 2025. URL
https://arxiv.org/abs/2501.19393.

OpenAl, :, Jaech, A., Kalai, A., Lerer, A., Richardson, A.,
El-Kishky, A., Low, A., Helyar, A., Madry, A., Beutel,
A., Zhang, Y., Wang, Y., Shao, Z., and Li, Z. Openai
ol system card, 2024. URL https://arxiv.org/
abs/2412.16720.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive
introspection: Teaching language model agents how to
self-improve. arXiv preprint arXiv:2407.18219, 2024.

Qu, Y, Yang, M. Y., Setlur, A., Tunstall, L., Beeching,
E. E., Salakhutdinov, R., and Kumar, A. Optimizing test-
time compute via meta reinforcement fine-tuning. arXiv
preprint arXiv:2503.07572, 2025.

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720

Title Suppressed Due to Excessive Size

Ren, Y. and Sutherland, D. J. Learning dynamics of llm
finetuning. arXiv preprint arXiv:2407.10490, 2024.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
Ilm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Setlur, A., Rajaraman, N., Levine, S., and Kumar, A. Scaling
test-time compute without verification or 1l is suboptimal.
arXiv preprint arXiv:2502.12118, 2025.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexi-
ble and efficient rlhf framework. arXiv preprint arXiv:
2409.19256, 2024.

Shi, T., Wu, Y., Song, L., Zhou, T., and Zhao, J. Efficient
reinforcement finetuning via adaptive curriculum learn-

ing, 2025. URL https://arxiv.org/abs/2504.

05520.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Song, Y., Zhang, H., Eisenach, C., Kakade, S., Foster,
D., and Ghai, U. Mind the gap: Examining the self-
improvement capabilities of large language models. arXiv
preprint arXiv:2412.02674, 2024.

Swamy, G., Dann, C., Kidambi, R., Wu, Z. S., and Agarwal,
A. A minimaximalist approach to reinforcement learning
from human feedback. arXiv preprint arXiv:2401.04056,
2024.

Swamy, G., Choudhury, S., Sun, W., Wu, Z. S., and Bag-
nell, J. A. All roads lead to likelihood: The value of
reinforcement learning in fine-tuning. arXiv preprint
arXiv:2503.01067, 2025.

Tajwar, F., Singh, A., Sharma, A., Rafailov, R., Schneider,
J., Xie, T., Ermon, S., Finn, C., and Kumar, A. Preference
Fine-Tuning of LLMs Should Leverage Suboptimal, On-
Policy Data, ICML 2024.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Wang,
Z., Yang, Z., Huang, Z., Huang, Z., Xu, Z., and

Yang, Z. Kimi k1.5: Scaling reinforcement learning
with 1lms, 2025. URL https://arxiv.org/abs/
2501.12599.

Team, O. Open Thoughts. https://open-thoughts.ai, Febru-
ary 2025.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wang, Y., Yang, Q., Zeng, Z., Ren, L., Liu, L., Peng, B.,
Cheng, H., He, X., Wang, K., Gao, J., et al. Reinforce-
ment learning for reasoning in large language models with
one training example. arXiv preprint arXiv:2504.20571,
2025.

Xie, T., Gao, Z., Ren, Q., Luo, H., Hong, Y., Dai, B., Zhou,
J., Qiu, K., Wu, Z., and Luo, C. Logic-rl: Unleashing llm
reasoning with rule-based reinforcement learning. arXiv
preprint arXiv:2502.14768, 2025.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yeo, E., Tong, Y., Niu, M., Neubig, G., and Yue, X. De-
mystifying long chain-of-thought reasoning in llms, 2025.
URL https://arxiv.org/abs/2502.03373.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X, et al. Dapo: An open-source
Ilm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Yuan, Z., Yuan, H., Li, C., Dong, G., Tan, C., and Zhou,
C. Scaling relationship on learning mathematical rea-
soning with large language models. arXiv preprint
arXiv:2308.01825, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476—15488, 2022.

Zeng, W., Huang, Y., Liu, Q., Liu, W., He, K., Ma, Z.,
and He, J. Simplerl-zoo: Investigating and taming zero
reinforcement learning for open base models in the wild.
arXiv preprint arXiv:2503.18892, 2025a.

Zeng, W., Huang, Y., Liu, Q., Liu, W., He, K., Ma, Z.,
and He, J. Simplerl-zoo: Investigating and taming
zero reinforcement learning for open base models in
the wild, 2025b. URL https://arxiv.org/abs/
2503.18892.

https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2504.05520
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892

Title Suppressed Due to Excessive Size

Appendices

Related work.

Optimizing & Extrapolating Test-Time Compute.

Analyzing Negative Gradient Dynamics in the p* Model.

Testing Extrapolation of Open Source Models.

Additional Experiments and Details for Section 2 (Chained Asymmetries).
Additional Experiments and Details for Section 3 (Negative Gradient).
Additional Experiments and Details for Section 4 (Curricula Training).
Omitted Proofs.

Broader Impact Statement.

Note on Computational Resources Used for e 3.

Example Traces.

Conclusion and Limitations.

FRECNEZQEESARE

A. Related Work

Scaling test-time compute via Long CoT reasoning. Prior work explores a number of avenues for scaling test-time
compute, including majority voting (Wang et al., 2022), best-of-n sampling, and beam search (Setlur et al., 2024; Snell
et al., 2024), as well as sequential self-correction (Qu et al., 2024; Kumar et al., 2024). More recent results indicate that
training models to use test-time compute to generate longer chains of thought (CoT) that combine verification, search, and
self-correction — all in a free-form manner, performs better (DeepSeek-Al et al., 2025; Team et al., 2025; OpenAl et al.,
2024), resulting in widespread open-source reproduction efforts (Face, 2025; Yeo et al., 2025; Zeng et al., 2025b; Luo et al.,
2025b). We situate our work in the paradigm of long CoT reasoning and study the role of algorithms (RL or SFT), data
composition, and design of the training procedure.

Test-time extrapolation. The true benefit of test-time scaling is consistently improving performance as we extrapolate test
compute. While prior work tests the model’s performance on budgets longer than the training budget (Zeng et al., 2025a; Luo
et al., 2025a), they do not explain the relationship between the training recipe and the extrapolation capabilities. In our work,
we provide a clear recipe and explain the mechanism behind why our recipe enables test time extrapolation. Other works
perform extrapolation by explicitly prompting models to generate more tokens when a response terminates (Muennighoff
et al., 2025; Aggarwal & Welleck, 2025). In this work, we show that models that learn to explore in-context extrapolate
test compute better than prompting-based approaches. In particular, we study the role played by the base model, training
algorithm (RL), as well as data mixtures and token budgets, on the ability to extrapolate. Furthermore, prior work (Setlur
et al., 2025) has investigated how performance scales with budgets when train and test budgets are matched, which is
different from the OOD setting this work where test budgets are significantly longer.

Exploration in test-time scaling. Long CoTs allow models to explore various reasoning paths before exploiting and
committing to a final answer. While prior works have shown the importance of the base model’s ability to conduct
exploration (Gandhi et al., 2025; Liu et al., 2025), we discover the crucial enabling factor is the presence of asymmetries in
the model. Next, we show that the negative gradient in RL incentivizes the model to chain together multiple asymmetries,
which in turn leads to an increase in the length of the response. In contrast, SFT alone does not provide this kind of chaining
or exploration benefits. Our analysis is orthogonal to theoretical works Setlur et al. (2025); Swamy et al. (2024), which
shows that RL performs better than SFT, but from a statistical perspective, whereas our argument is more focused on the
learning dynamics. Concurrent work builds techniques to boost exploration during RL via advantage normalization (Li et al.,
2022; Yu et al., 2025) or PPO clipping (Yu et al., 2025), and these techniques can be combined with e 3, but they do not
highlight the role of negative gradients in learning to explore. Finally, Wang et al. (2025) briefly remarks about the role of
policy gradient loss and entropy when running RL with only a few examples. Our study formally investigates the underlying
mechanism of negative gradients increasing length and entropy with controlled experiments and thoeretical results.

Data and length curricula. Recent works have also investigated using a curriculum on problem difficulty (Team et al.,
2025; Xie et al., 2025; Shi et al., 2025) and context window length (Luo et al., 2025b; Liu et al., 2024) during RL training.
Their motivation stems primarily from an efficiency standpoint: avoiding zero advantage updates (Shi et al., 2025; Yu et al.,
2025), efficient optimization (Luo et al., 2025b), or efficiency of using test-time compute (Qu et al., 2025). While we do

Title Suppressed Due to Excessive Size

make similar observations regarding each curriculum individually, perhaps our most interesting finding is that carefully
coupling both data and budget curricula can lead to much better performance and extrapolation, beyond merely some gains
in compute efficiency. We show that training on hard problems with short budgets often yields terse solutions that fail to
extrapolate, while easy problems with long budgets can cause optimization issues or verbose outputs. Thus, curricula must
be carefully designed to support effective extrapolation. Conceptually, our curricula are most related to dense progress
rewards (Qu et al., 2025; Setlur et al., 2024), in the sense that curricula incentivize different degrees of progress for different
questions, at different points in training. We believe this is a good avenue for future work to pursue.

B. Optimizing & Extrapolating Test-Time Compute

Post-training scaling test-time compute. RL and SFT are categories of post-
training algorithms that refine a pre-trained base LLM 7}, into a reasoning
model, in particular one that utilizes more test-time compute by producing
long chains-of-thought to succeed. Typical outcome-reward RL trains LLM 7
(initialized with 7,) to maximize performance on outcome 0/1 reward r* (x,y),

e
N
]

R1-1.5B
OpenThinker-7B

Accuracy on AIME 2025
o
N
o

for inputs x ~ p and response y ~ m(y | x) restricted to an apriori fixed DeepScaleR
. o . STILL-3
maximum token length or training budget B (Yu et al., 2025; Luo et al., 015 IIThought
2025b). On the other hand, SFT fine-tunes 7, on long thinking traces from : . operRst
more capable models or humans to distill their reasoning capabilities (Team, —R
4K 8K 16K 32K

2025; Muennighoff et al., 2025), where the maximum length of the expert
traces also implicitly induces a training budget By,, similar to RL. Our goal,
is to train models that can improve performance when we extrapolate test- Figure 7: Accuracy on AIME 2025 of vari-
compute beyond B,. Even though the true promise of test-time compute is ~ Ous open-source models at different test time
extrapolation performance, we find that current thinking models fall short f;n;lsliﬁi?::tgg:ie iﬁtﬁfg;ﬂigrc:af:sm;imﬁ:
on extrapolation. We evaluate multiple models on a test budget of 32K, ~1.5- tually no gains from 16k to 32k. ’

2x By, across all models. We plot our results on AIME2S5 in Fig. 7 (see App. D

for a detailed comparison) and note that most of the performance gains lie in the training budget, and the gains are minuscule
as we test beyond that.

Test time compute (token length)

Negative gradient in RL. A key distinction between SFT and RL is the negative gradient, which corresponds to the part of
the policy gradient coming from traces that fail. In Eq. 1 we present a generalized version of the policy gradient adopted by
most RL post-training methods: REINFORCE (Ahmadian et al., 2024), PPO (Schulman et al., 2017), and GRPO (Shao
et al., 2024). From this we note that on a prompt x, RL training observes two types of gradients: (i) the positive gradient
which maximizes the likelihood of a correct responses y with a positive advantage A(x,y), and (ii) the negative gradient
which pushes down the likelihood of an incorrect response with a negative advantage A(x,y). Here, y can be sampled
on-policy m = 7 or off-policy m # 7. Thus, we can view SFT as a purely positive gradient method that only maximizes
likelihood on correct reasoning traces. In Sec. 3, we show why the negative gradient is largely responsible for driving up
response lengths and in-context exploration during RL, thereby enabling RL-trained models to explore more at test-time and
extrapolate better compared to SFT-based ones.

Eyoz(x) [Ai(%,y) - Vzlogn(y | x)] (general form of policy gradient in RL) (1

C. Analyzing Negative Gradient Dynamics in the p* Model

We give an informal example of how an LLM can leverage VG gap to improve performance through longer in-context
exploration: the p"-model. We view the LLM as sequentially guessing candidate responses a1, s, . . . , each with failure
probability p, up to at most terminal & responses. We assume that this model admits perfect verification (perfect VG gap),
which means that the learner can correctly assess whether each subsequent sequential response is correct and decide when to
stop accordingly. In a simplified setting where attempts are independent, failure probability (= p*) decays exponentially as k
increases, as on CDOWN. In contrast, if verification is difficult (i.e., no VG gap), increasing k provides little benefit, since
the model cannot adjudicate whether one guess is any better than another. In extreme scenarios, the only way to improve
performance is by lowering p (better first guesses as seen on MULT).

Analyzing Negative Gradient Dynamics in the p* Model. We introduce a didactic setup where verification is perfect but
attempts are not independent, akin to LLMs we train in practice. We consider a Markov decision process (MDP) with action
space A = A U {stop}, where A = [100] are standard actions and st op is an early “stopping” action (like EOS) that
terminates the trace. For simplicity, we consider policies parametrized as a softmax bigram model 7ps(as+1 | at), with

Title Suppressed Due to Excessive Size

Std. GRPO Mask negative grad Prob. of stop & a* 16 Avg. token level entropy
0.9 reward 09 reward length 0.08 ’
006
0.6 0.6 S std. GRPO 45 std. GRPO
:g, 0.04 mask ne¢g. grad = mask neg. grad
03 0.3 0.02
length 4.4
0.0 ¢ 00 0.00
0 2000 4000 0 2000 4000 0 2000 4000 250 1000 2000
Iterations Iterations Iterations Iterations

Figure 8: Negative gradients in a bi-gram model. Negative gradients push down p(stop) during training (c), increasing length (a) and
entropy of the next action distribution (d) to accommodate more in-context exploration, only decreasing them when a* is discovered. In
contrast, positive gradients rarely change p(stop) or entropy.

details deferred to the App. F. In this bi-gram model, the current state s; always matches the previous action a;_1, and
a* € A denotes the optimal action. In a rollout a4, ..., a;, the initial action a; is sampled from a fixed 7y. For ¢t>1, a learner
policy samples an action a;~7(+|a1..—1) € A(A). The MDP terminates with reward 1 at time ¢ if a; = a*, and with reward
0 if a; = stop (stops too early), or ¢t > By, (budget is exhausted before a correct response). The model learns to explore
if it learns to never play st op for any (no early stopping), until a* is observed, i.e., increasing k in p*. Refining the guess
amounts to upweighting 7(a* | a1.4_1) without reducing p(stop), i.e., improving p in p*.

1) Negative gradient increases length until p(a*) is reasonably high. In Fig. 8(a) standard GRPO (B;,=100)increases
average response length from 15 to 45 at budget, driven by the drop in the marginal probability of stopping early p(stop)
(Fig. 8(c)). After multiple RL iterations with negative gradients, the average number of attempts per trace is sufficiently
large, and the learner can sample a* with non-trivial probability in any given trace. Once this happens (Fig. 8(c)), in our
simple bigram setup, the model rapidly upweights the likelihood of one-step transitions to a*, resulting in a phase transition
where reward increases as length drops. In our LLM benchmarks, however, we do not see the same phase transition since
finding “shortcuts” to correct responses is considerably more difficult. In contrast, GRPOMask (Fig 8(b)) fails to improve
reward or increase length.

2) Negative gradient improves coverage by increasing entropy of 7(- | a1.;—1). When 7y, samples a highly likely yet
incorrect action, the negative gradient computed on this sample increases entropy by moving probability mass onto less-seen
modes of the distribution, including a*. We show this formally in Theorem C.1 where we prove that upon sampling a highly
likely incorrect action with probability p, GRPO update with a negative gradient results in an entropy increase of ~ p? when
all other actions, including a* are highly unlikely. We note this empirically as well in Fig. 8(d), where conditional entropy
increases across states, until a* is discovered, after which it drops sharply as the positive gradient rapidly moves mass onto
a* within a few iterations.

Theorem C.1 (Negative gradient increases entropy when a* is unlikely; formal version of Thm. H.3). At state s, if the most
likely action under 7 is a1 =: argmax,, w(a’|s) # a*, then, for any m, a negative stochastic gradient step increases the
entropy of 7(+|s) with prob. >m(a1|s). Additionally, in a suitable regime of m, the increase > (m(a1|s) — m(az|s))?, where
as is second most likely after ay. In contrast, in the absence of the negative gradient, the entropy is preserved with prob.
1 —7w(a*|s).

D. Testing Extrapolation of Open-Source Models

Extrapolation on AIME 2025 Extrapolation (i.e. the chaining of generation, verification, refinement, etc.) can potentially
extend LLM performance after training, and do so beyond the context length the model was originally trained on. To
evaluate this properly, we need sufficiently challenging problems that allow meaningful expressiveness in reasoning beyond
small context lengths. The math problems associated with AIME align with this, and our evaluations prioritize AIME 2025
to attempt to mitigate any potential data contamination in the models’ training sets from previous years of AIME. The goal
of the experiment is to measure the extent to which test-time compute influences overall model performance as context
length increases, with the expectation that increasing output length allows models to "reason" for longer periods, continuing
the extrapolation process, and ultimately arriving at the correct answer more frequently.

Experiment Setup Inference for every open-source model was performed using Oumi through data-parallel SGLang. All
models had inference run with a max output length of approximately 32k tokens, though some are slightly lower due to this
exceeding their max context length when combined with the prompt. The exact inference hyperparameters are described in

9

Title Suppressed Due to Excessive Size

AIME 2025 Performance

0.6 testtime budget Supervised Fine-Tuning Reinforcement Learning
’ 4096
0.5 8192
. m 16384
© 0.4 32768
£0.3 I I]]
o
02 bl] oy LT TRy
]] | | | I] I
0.1 Il i I
0.0
< A \e 2° 2° e et e sY
A A e N pel D B
& N QO e N e < 2 C e
a@,‘e\ A \,0“‘6 (\«\\ﬁ\ K_\\\,cx o> _\\‘Q« 6%\’ oo ° o o
_ e\ o® o o > 2% W ihd
W \fo \g?\x g 5(’6\ 6’(\\’ \(\O\Q
c)ee\“ 9688 See\l: o 0
OeeQ oe? Oeeﬂ)

Figure 9: Performance (pass@1) on AIME 2025 at different test-time compute budgets across multiple open-source models of different
sizes, trained with SFT or RL.

Table 1. After inference, the model responses were truncated from the right side until the number of remaining tokens present
was equal to the specified test-time budget. 16 responses were collected for every problem in AIME with the specified
inference settings, and the Pass@1 rate was calculated by averaging over these 16 responses. Final answers were extracted
using a regular expression for the boxed portion of the answer, with correct answers marked as passing and incorrect or
incorrectly parsed answers marked as nonpassing. The prompt used is in Box D.1, and the problems were taken from the
FVU AIME 2025 dataset on HuggingFace'.

Box D.1: AIME Evaluation Prompt Template

You will be given a math problem. Solve the problem step by step. Output your final answer in the form of
\\boxed{your answer}. Problem: {problem}

Model Temp. | Topp Rollouts Max New | Model Max
Tokens Length
MiniMath R1-1.5B 0.6 0.95 16 32768 40960
DeepSeek R1-Distill-Qwen-1.5B 0.6 0.95 16 32768 40960
OpenThinker-7B 0.6 0.95 16 31000 32768
DeepSeek-R1-Distill-Qwen-7B 0.6 0.95 16 32768 40960
s1.1-32B 0.6 0.95 16 31000 32768
DeepSeek-R1-Distill-Qwen-32B 0.6 0.95 16 32768 40960
DeepScaleR-1.5B-Preview 0.6 0.95 16 32768 40960
STILL-3-1.5B-preview 0.6 0.95 16 32768 40960
II-Thought-1.5B-Preview 0.6 0.95 16 32768 40960
Open-RS1 0.6 0.95 16 32768 40960

Table 1: Inference parameters used for generating the extrapolation plots in Figure 7.

Results The results in Figure 9 show that as the maximum number of output tokens increases, every model capable of
"reasoning" is able to attain a higher Pass@1 rate, with performance generally saturating at 16k tokens with relatively
minor improvements at 32k. We do not observe this with MiniMath-R1-1.5B, and we suspect this is due to its fine-tuning
focusing solely on smaller math problems trained with supervised fine-tuning, likely resulting in catastrophic forgetting of
the ability to continuously extrapolate. Interestingly, we do not see a strong improvement in extrapolation behavior among
models tuned with reinforcement learning compared to DeepSeek R1-Distill-Qwen-1.5B, which was trained with supervised
fine-tuning. We suspect that this is likely due to the nature of the distillation data from the R1 model, which, if varied

'https://huggingface.co/datasets/FVU/AIME_2025

10

https://huggingface.co/datasets/FVU/AIME_2025

Title Suppressed Due to Excessive Size

sufficiently in length, could avoid the length bias normally learned from supervised fine-tuning, while still teaching the
model to perform extrapolation.

E. Additional Experiments and Details for Section 2 (Chained Asymmetries)
E.1. Details on MuLT and MULT-V

Data collection. Both MuLT and MULT-V consist of multiplication traces for solving a 5-digit x 5-digit multiplication
problem. For the MuLT task, we use a Llama3.2-3B instruction tuned model where the number of intermediate verification
attempts is much lower in a trace when asked to solve a multiplication problem. In fact, it is not hard to see that, in general,
for multiplication, generation of a trace may be as hard as verifying a generated one, as the only way to verify the entire
trace is to re-attempt the multiplication or carry out a division with the computed target. We contrast this task with the
MuULT-V task, where the Llama3.2-3B models are first finetuned on traces from Qwen-32B-R1-Distilled and GPT-40 models.
These traces contain multiple verification attempts that verify intermediate steps solving smaller multiplication problems,
and the steps are part of an entire trace that attempts to solve the main multiplication problem involving two 5-digit numbers.
For collecting data we used the prompt in Box E.1. In App. K Example 2, we also provide an example multiplication trace
with verification attempts sampled by the base model in MULT-V. As we will see in Fig. 14, the absence of asymmetries in
MuLr leads to lower accuracy and verifications when compared to MULT-V, where asymmetries are present.

Box E.1: Prompt for generating MULT-V data

Multiply {num1} and {num2}. Please reason step by step, and put your final answer within \\boxed{ }. At each step,
try to verify your response if possible and prefix the line with “Check:”. <think>

Hyperparameter Values

train_batch_size 256
ppo_mini_batch_size 64
learning_rate 5.0e-6
kl_loss_coef 0.001
entropy_coeff 0.001
temperature 1.0
rollout.n 16

Table 2: Verl (Sheng et al., 2024) hyperparameters used for MuLT and MULT-V.

Training details. Hyperparameters for our experiments on MULT and MULT-V are given in Table 2.

E.2. Details on CDOWN

Training details. Hyperparameters in CDOWN experiments follow the table below unless otherwise specified. In all of our
CDOWN experiments, we take the fine-tuned Llama3.2-3B base model from (Gandhi et al., 2025). For Fig. 2, we trained with
By, = 512,1024, 2048 on problems with 3,4, 5, 6 candidates. The total number of datapoints we used was 40000, which
were evenly split across the four difficulties.

Evolution of chained asymmetries at test time. To measure the benefits of chained asymmetries on CDOWN, we plot the
pass@k accuracy of the base LLM, shown in Figure 10, and observe that performance increases with the chained asymmetries
budget. Moreover, as training progresses, responses with more chained asymmetries enjoy a greater improvement. If we
move across any diagonal parallel to the main diagonal from top left to bottom right, we move across a constant attempt
budget (e.g., moving from 16 chained asymmetries X 1 pass to 8 chained asymmetries x 2 passes). Having sequential
chained asymmetries become increasingly better than parallel rollouts as training progresses, indicating the exploitation of
asymmetries in RL training. See example of chained asymmetry in App. K, Example 1.

11

Title Suppressed Due to Excessive Size

Hyperparameter ‘ Values
train_batch_size 128
ppo_mini_batch_size 32
learning_rate 1.0e-6
kl_loss_coef 0.001
entropy_coeff 0
temperature 0.6
rollout.n 8

Table 3: Verl (Sheng et al., 2024) hyperparameters used for CDOWN.

Gradient step 0 Gradient step 30 Gradient step 60

[7)]
(O]
516 [MRTIBTIREIEE] 16 (JEgdr710.550.610.65 16 (Urrl0.550.620.670.69 -0.6 >
£ ©
g Il 0.04 0.07 0.12 0.17 0.22 3N 0.19 0.27 0.36 0.44 10.49F-JM0.19 0.28 0.36 0.43 0.47 043

. O
© o
AR/ 002 0.03 0.05 0.08 0.11 VRN 0.04 0.07 0.12 0.17 0.23 VI 0.05 0.09 0.14 0.21 0.27 ©
< 022
©
E=3 3 0.01 0.02 0.03 0.05 0.07 [y 2 0.01 0.02 0.03 0.05 0.08 |l 20.01 0.02 0.04 0.06 0.09 &
E=3

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
k

Figure 10: Evolution of asymmetries during training on CDowWN: More chained asymmetries lead to a greater improvement in pass @k
performance across gradient steps.

070 Countdown Multiply (No verification)
y 512 s — 1024
o ——102 & 2048
o 0.45 2048 0 0.45 4096
2 = >
& a =
< <

0.20 0.20

100 200 300 400 100 200 300 400

Figure 11: KL-divergence with base LLM on CpowN and MuLT: When running RL training on CbowN and MULT with multiple
training budgets (512, 1024, 2048 on CpowN and 1024, 2048, 4096 on MULT) we note that the KL divergence

E.3. In the Presence of Asymmetries, KL Divergence with Base LLM Reduces as Training Budget Increases

In Fig. 11, we also interestingly observe that training with higher By, results in a smaller token KL-divergence from 7, all
throughout training on countdown. On multiplication in the absence of asymmetries, the KL-divergence values are roughly
similar for all By,. This means that when the verification-generation asymmetry is present, the training process deviates less
from 7, at each token, but is able to “chain” multiple verification and generation attempts together to improve accuracy, by
learning to explore over the space of basic skills. Prior work argues that a model that deviates less from the base pre-trained
model generalizes better on unseen prompts (Gao et al., 2019). If we were to apply this argument in our case, this means
that models that are able to use asymmetries better should result in better performance on unseen prompts, especially when
operating at higher test compute.

12

Title Suppressed Due to Excessive Size

F. Additional Experiments and Details for Section 3 (Negative Gradient)

F.1. Details for CDOWN

We trained models for 90 steps on problems with 5 candidate numbers with a training budget of 2k.

Cumulative unique attempts plot. Fig. 12 (left) was filtered on Cumulative unique attempts 0.17
incorrect traces on problems with < 50% success across gradient steps. GRPO 015 Fraction of
30 mask neg. grad rollouts with

We select only incorrect traces to capture the ability of the model 0.10 repeating tokens
to explore for the correct trace, rather than to output diverse correct
traces once one is found. We filter for problems with < 50% success
across training for GRPO and GRPOMask because otherwise the o o0~ 000
algorithm with better rewards would see more problems with lower
cumulative unique attempts, as the correct traces are discovered early

and subsequently reinforced.

0.05 0.04

-
o

Percent of problems
N
)

o

GRPO Mask neg. grad

Figure 12: Negative gradients encourage distinct re-
sponses: they increase the cumulative number of unique
attempts on CDOWN (left) and reduce responses that end

Conditional distribution given past attempts. We run ablations on With a repeating stream of tokens on DMATH (right).

the conditional distribution of a new attempt given past attempts in

three different settings, shown in Fig. 13. In (a), we plot log p(ag|a1.k—1) — log p(ag|ai.x—2), which should average to
roughly O if the attempts are independent. As training progresses, this quantity grows, indicating a correlation between
attempts, especially with larger k (potentially because the new attempt can attend to more previous attempts, and thus
becomes more dependent on them). In (b), we plot log p(ag|a1.x—1) — log p(ak—1|a1.x—2), which also grows over time.
This indicates that the conditional distribution p(new attempt|past attempts) as the number of past attempts grows, aligning
with the higher dependency on past attempts at larger & in (a). In (c), we plot log p(ag—1]a1.x—1) to check whether the
model would repeat its latest attempt. We observe that as training progresses, the model learns not to repeat itself.

Learning to sample an unseen attempt Conditional distribution sharpens Learning not to repeat
0.15 iter 0 iter 0
— iter 0.00 iter
=3 010 =77 000 iter 290 = fter 200
T iter 0 1g iter 400 = —0.05 iter 400
s : &= 0.025 =
§%005 iter 200 S $70l10
T iter 400 =5 >
=% e 23 0.000 5
27 0.00 S0 w —0.15
‘ ke
~0.025 020
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Attempts # Attempts # Attempts
(@ (b) (©

Figure 13: Probing the conditional distributions conditioned on past attempts in CDOWN. (a): New attempts are not independent of past
attempts (b): Model becomes more certain of what to try next given more past attempts (c): Model learns not to repeat past attempts

F.2. Additional Experiments with MuLT

In Section 3 we saw that training with the negative gradient leads to more exploration during RL training, which in turn leads
to the amplification of any chained asymmetries that may be present in the base model, e.g., more generation-verification
steps. In particular, we noted the increase in the number of verification steps in Fig. 3(b). To see how negative gradients
affect the dynamics of response length and number of chained asymmetries in the absence of a strong VG gap, we compare
running GRPO with and without negative gradients on our multiplication task MULT where the VG gap is weaker in the base
model.

We plot results in Fig. 14, where we note two trends when running RL training with and without negative gradients on
Muct(without VG gap), and MuLT-V(with VG gap) using a training budget of 4096 tokens. First, we note that the number
of verifications is higher when we use negative gradients in a setting with a large VG gap. When the VG gap is absent, the
number of chained asymmetries (verification-generation steps) are roughly the same with and without masking the negative
gradient. Second, we note that the accuracy is much higher with negative gradients in the presence of VG gap (MULT-V),
and comparable to a run where we mask the negative gradients in the setting where the VG gap is poor (MULT). Together,
this tells us that the boost in exploration driven by negative gradients leads to more chained asymmetries when the base
model presents some of them, like a large VG gap.

13

Title Suppressed Due to Excessive Size

MULT-V MULT MULT-V MULT

2 30 30 0.70 0.70
o mask neg. grad mask neg. grad > mask neg.grad mask neg. grad
© 20 =+ GRPO 20 =+ GRPO © 0.55 =+ GRPQ 0.55 =+ GRPO
= =
810 10 £ 040 0.40
* 0 0 0.25 0.25

100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400

Figure 14: Negative gradient amplifies verification when VG gap is large. While utilizing the negative gradient amplifies the number of
calls to verification in MULT-V, the number of verification calls does not grow over training in MULT. Interestingly, though, we find that
when negative gradient is masked out on MULT-V, the number of verification calls is still very low and does not increase, corroborating
our findings that exploration driven by negative gradients results in in-context exploration only in the presence of asymmetries in the base
model. A similar trend is also observed in terms of the raw accuracy.

F.3. Additional Details for the Didactic Setting in Sec. 3

First, we comment on exploration and meta-exploration in RL, and how negative gradients can connnect one to the other
in the presence of asymmetries. Second, we introduce some relevant notations, and provide a high-level proof overview.
Finally, we provide the full proof.

Negative gradients boost exploration, which in the presence of asymmetries incentivizes in-context exploration. In
Sec. 3 we showed how negative gradients can boost exploration in RL, and in the presence of asymmetries in the base
model, lead to more chained asymmetries and longer responses — a phenomenon we call in-context exploration. Here, we
present a theoretical result that explains why negative gradient can incentivize the more “traditional exploration” in RL, in
our didactic bi-gram model. Since verification is perfect in our bi-gram model, any policy in our policy class always stops at
the st op token. Thus, an increase in exploration leads to longer traces, and more chained asymmetries. As a result, in this
setting, we can view an improvement in exploration as an improvement in meta-exploration (or in-context exploration),
driven by negative gradients.

Parameterization of the policy class. We parameterize the policy class as a softmax policy, where the probability of next
action a4 1, at state current a, (in a bi-gram model current state is equivalent to the previous action) is parameterized with
the vector of logits [M(a | at)],e 4, i€

eM(atiilar)

(a’lat)’

mar(aig1 | ag) = > ay1 € Ajae A 2

_ oM
aeAC

where M = [M(a™ | a)],+¢c .4 ac.4 can be expressed as a matrix in RE+DXE Note that the current state can never be the
stop action, since a st op always terminates the MDP.

Training details. We set the initial distribution 7 to be the uniform distribution over all actions except a*, i.e., mo(a*) = 0.
For each state s, the policy is initialized with random values of M (- | s) in [-3.0, 3.0], and set M (stop | s) = 4.0 and
M(a* | s) = —4.0, which mimics the setting where the probability of sampling the stop action is higher than any random
action, and the probability of sampling a* is lower than any random action. We train with a learning rate of 1le — 2 and
use stochastic gradient descent to update the policy where a single update samples a random trajectory 7, starting from a
random state sampled from the initial state distribution 7, until completion and then computes the policy gradient term, by
averaging the policy gradient loss over the tokens in the trajectory 7: 1/|7| - Ziem log mar(a; | ar:i-1) - A(ai, ar.-1).

G. Additional Experiments and Details for Section 4 (Curricula Training)

G.1. Response length distributions of different models.

In Fig. 15, we plot the response length distributions of different trained models from section 4 on the hard test set. As shown
in (c), training with a low budget can kill exploration on difficult problems, and in (d), training on harder problems can also
kill exploration.

14

Title Suppressed Due to Excessive Size

Fix dataset, vary train budget Fix train budget, vary dataset
By (4k), D (all)
By (8k), D (all)
By (16K), D (all)

Frequency on hard
@ =)
o o
Frequency on hard

o

base
Bir (8K), D (easy)
By (8k), D (easy+med)

N A O
o o o o

8k 16k 32k 8k 16k 32k
Length Length
(©) (d)
Figure 15: Length histograms of RL training on different data and length budgets. (c): training on small budgets kills exploration under
extrapolation ((d): training on harder problems kills exploration under extrapolation

— e3 across RL iterations e3 vs. budget & data curricula

= i —_— Extrapolation — = — -

P 0.7 : °© regime for A -

-'5 ¥ (extrapolation from g

0] 06 } training on 8k, =20

EY | | just before we start ¢

S ‘ training on 16k) 8

g 0.5 H % 10 By (8k - 16k), D (all)

- B.,:(Bk), D (easy) |2 / By (16k), D (easy - med+hard)

é 0.4 Byl(16K), D (med+hard) —e—e3: (easy, 8k) - (med+hard, 16k)

0 250 500 4k 8k 16k 24k 32k

Iterations Test-time compute (tokens)
(a) (b)

Figure 16: RL training with coupled curricula. In the above figure, the shaded area indicates the extrapolation regime. (a): extrapolation
gain from switching to a longer budget during training (b): coupled curriculum outperforms data and budget curricula

G.2. Additional details on e3

Theoretical motivation for coupled curriculum design. We simplify curriculum design by first fixing the dataset at each
stage: moving from easy to hard. Now, the key question is to select the appropriate budget for dataset D, at stage ¢ of the
curriculum. Intuitively, we want a budget By, ; such that training on By, ; positively rewards in-context exploration, which
will in turn improve extrapolation performance and provide a good initialization for the next stage ¢ + 1. At the same time,
to be optimization friendly, we want By, ; to be minimal while being large enough to accommodate most responses from the
given model 7;. Encoding these conditions on By, ;, we propose the following optimization problem.

vri(Di) = argmin B s.t. J(mi; Dy, 2+ B) > k- J(7; Dy, B) and B > Exop, oo, (%) |71 3)
B

where J(p; D, By,) denotes the performance of the base model 7, at budget By, on dataset D, and || denotes token count.

In practice, we solve the above problem over a fixed set of training budgets: 4k, 8k, 16k, and find this to be a useful heuristic
to greedily choose By, ; in a way that incentivizes in-context exploration at stage ¢, since it is hard to jointly optimize the
budgets across all stages. E.g., setting x = 1.2, we find 8k to be the optimal choice for training on easy problems (note that
the trained model also satisfies the condition in Eq. 3 at x = 1.2, see Fig. 4(a)). Following this, our recipe e 3 fine-tunes the
base model on easy problems in DMATH at a training budget of 8k, and subsequently continues training on medium and hard
problems in DMATH with a budget of 16k.

In Fig. 16(c), we show that the model already learns to extrapolate at a point during training when we move from the 8k
budget to the 16k budget, where there is a >10% performance gain. In (b), we show that a coupled curriculum leads to better
(extrapolation) performance compared to solely a length or data curriculum.

G.3. Training Details and In-distribution Performance on Training Budget
We present our hyperparameters for e 3 training runs in Table 4.

Note on in-distribution performance. In Sec. 4 we note that for best extrapolation performance, it is important to vary the
mixture of tasks in the dataset, as well as the training budget (max token length) in a a coupled way, over the course of RL
training. Here, we note that if we were to only care about in-distribution performance, i.e., performance on a fixed task
mixture (of equally proportioned easy, medium, and hard questions in DMATH), then the best way to train is to match the test
token budget and prompt mixture with training. In particular, training only on easy problems and a budget of 8k yields a
performance of 54.3% on a test dataset consisting of all tasks (from easy, medium and hard splits). But, if we match the test
mixture with train, and train on all difficulties, then on the same 8k test budget, we note a performance of 58.9%. Note that
the exptrapolation performance (on hard, out-of-distribution AIME ’25 questions) of the same models is flipped in Fig. 4.

15

Title Suppressed Due to Excessive Size

Hyperparameter Values (B;, = 8k) ‘ Values (B, = 16k)

train_batch_size 128 128
ppo_mini_batch_size 32 64
learning_rate 1.0e-6 1.0e-6
kl_loss_coef 0.001 0.001
entropy_coeff 0.002 0.001
temperature 0.6 0.6
rollout.n 8 16

Table 4: Verl (Sheng et al., 2024) hyperparameters used for e 3.

G 4. Fixed train budget, vary dataset curriculum on CDoOwWN

In this subsection, we demonstrate that training with a data curriculum based on difficulty with a fixed train budget can lead
to over-exploratory output traces, on the example task of CbownN. With the data curriculum (i.e., fixed budget, vary data), we
train first on CDOWN problems with 3 candidate numbers (the “easy” problems) for 60 gradient steps, then those with 6
candidate numbers for 60 gradient steps (the “hard” problems), with a 1k budget across all steps. We compare this with the
coupled curriculum in which the first 60 gradient steps are trained with a budget of 256. As shown in Fig. 17, the latter
achieves better reward on “hard problems”.

—
o .
0.4 Curriculum 0.4 Curriculum € Curcrl)cl;”‘f;‘j
coupled T coupled g dat:
P data S data , ©3
s g ”
; 0.2 = 0.2 .E
o =l
& 5
o
0.0 0.0 w
0 50 100 100 150 0 50 100
Gradient steps Gradient steps Gradient steps

Figure 17: Coupled vs. data curriculum on CpOWN: training only on easy problems at large budgets leads to overfitting on “over
exploratory” traces, failing to balance explore-exploit tradeoff on harder problems later on. Reward graphs are displayed for hard
problems.

Why is data curriculum worse than the coupled curriculum? We can view the learning of correct traces as largely composed
of two stages: (i) negative gradients encourage exploration, leading to the discovery of correct traces, (ii) positive gradients
reinforce correct traces, once discovered.

For (i), we observe that training on easy problems exacerbates a tendency to perform over-exploratory in-context exploration
(“underthinks”, see Example 3 in App. K), restricting the discovery of solutions to harder problems. When utilizing a
coupled curriculum, this bias propagates to a shorter budget when compared to the data curriculum, since easy problems are
trained on 256 rather than 1K tokens. As shown in Figure 17, the average number of equations per attempt (naively, with
3 candidate numbers, 2 equations are required to perform a complete attempt vs. 5 equations for 6 candidates) increases
noticeably for the coupled curriculum in the second stage, but plateaus for the data curriculum, implying overfitting on
“over-exploratory” traces during the first stage.

Furthermore, for (ii), even when nontrivial positive rewards are obtained as we run the data curriculum on hard problems
for 60 additional steps (steps 120 to 180), the training reward curve converges more slowly compared to the coupled
curriculum (steps 60 to 120), implying that the data curriculum is also worse at reinforcing correct traces if the behavior is
over exploratory. While we do not run many controlled experiments to identify why this might be the case, we hypothesize
that this is because of imperfect and noisy credit assignment on over-exploratory traces with outcome rewards. It is unclear
which segments of the trace should be reinforced vs which segments might simply confuse the model.

16

Title Suppressed Due to Excessive Size

H. Omitted Proofs

In this section, we present the formal version of Theorem C.1, and provide a detailed proof for it. First, we introduce some
notations and provide a proof overview.

Notations. We use the shorthand H (M s) to denote the entropy of the conditional distribution over the next action a1
given the current state s. We also use M () to refer to the policy parameters (for the softmax policy in Eq. 2) at iteration 4
of RL training, and use the shorthand 7(*) to denote the policy induced by the parameter M (). We use V ;) f (M @) to
denote the gradient of function f (M), with respect to M, evaluated at M = M (@, Finally, we use Mg to denote the row of
softmax parameters that model the distribution 7 (- | s), i.e., the row of parameters M (- | s) in our parameter matrix M.

Proof overview. Without loss of generality, we fix an arbitrary state s that is different from st op. Given the parameters
M® at current RL iterate i, we do a Taylor expansion of H (M OF s) around M (1), and then show that the gradient
Vo H(M®: s) is positively correlated with the policy gradient with high probability over the sampling of the action
a~ (-] 8), e

(Var, HMD;s) , V0 logm(a|s) A(s,a)) > 0, 4)

whp. over sampling of action a ~ 7y (a | 8)

Before, we prove our result that lower bounds the increase in entropy with negative gradients, we present derivations of the
entropy gradient with respect to the model parameters, as well as the policy gradient, which will simplify some calculations
in the proof.

Lemma H.1 (Entropy gradient for the softmax bi—gram conditional). Fix a previous action (because the bi—gram state is
8¢ = ay_1, conditioning on the state is equivalent to conditioning on the last action) a € A. Let the (column-wise) logit
matrix at time t be M € RETVXK and define the corresponding softmax conditional distribution

exp (M(a+ | a))

mu(at |a) = Z(a) ,

Z(a) = Z exp(M(a' | a)). (5)

a’'cA

Let the Shannon entropy of this conditional distribution be H(my(- | a)) or H(M | a) Then Vy H(M | a) € RE T s
given by:

VuHM |a)== —7m © (logm+ H(r)1) = —[m;(logm + H(r))]zej’ (6)

Proof. Write p,+ := wp(a™ | a) for brevity. By definition of the entropy,

H=- Zpa+ lnga+. @)
at

Insert the softmax expression:

logpo+ = M(a™ | a) —log Z(a). (8)
Hence,
— Z Pa+ [M(at | a) —log Z(a)])
:—Zpa+M +|a)+ log Z(a Zpa+. (10)
at
\,/

=1

Rearranging yields the following closed form expression:

H=logZ(a Zpa+M (a* | a). (11)

17

Title Suppressed Due to Excessive Size

Computing the Jacobian of the softmax we get:

67Ti .
W =m (5ij — 7Tj), J = V(o™ = diag(m) — . (12)
Starting from the definition H = —), m; log ; and using the chain rule,
aMJ OM(j[a) Z()M 1+1°g7”>— ;Wi(&j—ﬂj)(lﬂogm)- (13)
Separating the term ¢ = j from the rest:
OH
oM a) :—7rj(1—7Tj)(1—|—10g7rj)+7er7ri(1+log7r,») (14)
i#]
=7 [Zm(lJrlogm-) - (1+10g7rj)] (15)

Because), m;(1 4+ logm;) =1+), mlogm; =1 — H(m), we obtain

OH

MG) =m;(1—-H(m)—1—logm;) = —m;(logm; + H(m)), (16)

which gives the stated component-wise form. Writing this for every j simultaneously yields the vector expression with the
Hadamard product.

O

Lemma H.2 (Policy gradient for the conditional distribution). For an action a ~ wps(- |), sampled from a policy wps (- | s),
at state s, the policy gradient is given by: V. logm(a | s) - A(s,a), where A(s, a) is the advantage of action a. The
expression for the b coordinate of the policy gradient can be written down in closed form as:

[Var logm(a |s)- A(s,a)l, = (1(b=a) —m(a]s))- Als,a),

where 1(-) is an indicator function.

Proof. Write Z :=) _exp M(c|s)and 7, := mpr(b | s) = exp M(b | s)/Z for brevity. By definition

logmy(a|s) = M(a|s) — logZ. (17
For any coordinate b € A,
0 1 0Z
—1 = 1(b= -
o] s) eTmlals) b=a Z 9M(b|s)
derivative of M (a|s)
M(b

= 1(b:a)—w = 1(b=a) —m. (18)
Multiplying every coordinate by the common scalar A(s, a) produces the stated expression for g(s, a; M). O

Theorem H.3 (Negative gradient increases H(M;s) when p(a*|s) is low). For any state s, current parameters M,
suppose the most likely action @ is incorrect, i.e., a* # a =: argmax, Ty (b | 8), where the probability of sampling @ | s
is g, and the second most likely action has probability g — . Then, for a small enough learning rate n > 0 s.t. with
probability > 5, negative gradient produces 7D with entropy H(M(“Ll) s) > H(M(i), s). Additionally, there exists a
universal constant ¢ > 0 s.t., H(M D s) — H(M®:s) > cn- Ke?(1 — pa) whenever w4 > & + e~ HMDss) 1y contrast,
without negative gradient the entropy remains same with probability 1 — w(a* | s).

18

Title Suppressed Due to Excessive Size

Proof. For simplicity let us denote () = (m, Ce, T K+1) € A(A) be the conditional distribution produced by a bi-gram
softmax column 7 ;¢ (- | s), i.e., the proabability of sampling action a at state s, with model parameters given by the
current RL iterate M. Let us also denote,

G = argmaxm;, H(M(“;s) = — Z g - log my,
acA

where 7, is the probability of sampling action a at state s. Given that the current policy 7y, samples action a ~ 7() (- | s),
the stochastic policy gradient that updates the parameter is given by:

MY = MY + 9V 0 log(r P (a | 5)) - Als,), (19)

where 7 is the learning rate. Note, that the policy parameters would only be updated for the row corresponding to the state s.
For simplicity, let us use the notation g for:

9=V log(7(a|s)) - A(s,a). (20)
Then, Ms(iﬂ) — Ms(i) =1 - g. A second—order Taylor expansion of the concave function H (M s) gives, for some M on
the segment [M (), M (+1)]:
H(M;s) = HMD;8) + - (Vo HMD;5), g)
+1 - (g) V2 H(M;s) (g). 1)

Let the least eigenvalue of the Hessian of the conditional entropy (note that the entropy is a convae function) with respect to
the logits be p;_, and |p,| < oo, the moment 7 (a | s) > 0 for all actions a € A. This condition is easily satisfied by any

policy in our policy class, with finite values of the parameter matrix M. Thus, whenever (g,V, .« H(M (:5)) > 0 there
exists a small enough learning rate 7,

2(9, V0 H(MW;s))
pllgll3

n< ; (22)

such that H(M+Y:s) — H(M®:s) is strictly positive. Thus, we can continue to reduce learning rate 7) such that we can
ignore O(n?) terms in Eq. 21, to get the bound:

HMs) — HMW;8) > 2 (V0 HMY;s),V o log(n(a|s) - A(s, a))) (23)

N3

Next, it remains to bound the right hand side of Eq. 23 with high probability over the sampling of the action a. For a single
incorrect action draw a ~ 7 we set A(s, a) to be —1 and for such an incorrect action we define the alignment scalar:

T(a) =: —< Vo log 7D (a|s)- Als,a), VMéi)H(M(i); s)> (24)

Plugging in the derivation of V ;¢ H (M ;) from Lemma H.1, we compute the closed form expression for T'(a;) using
the following definitions:

v; = m; (H(M(i);s) + log m) and, p=: Z TaVa (25)
acA
Thus, one has T'(a) satisfy:
T(a) =v, — when, a € A, i # a*. (26)

Note that v; is an increasing function in 7; whenever m; > e~ (M@3s) Next, we note that v; > 0.
1 CHMOD. _ . _
Ta > T — ma > e HMS) gince, H(MW;s) <log|4] = vz >0. (27)

19

Title Suppressed Due to Excessive Size

Finally, since v(z) = 2H (M ¥;s) 4 zlog z is convex in z:

Vg > Z?ijj = vz—u=>0 (28)
J

The above two implications in Eq. 27 and Eq. 28, and the fact that a # a*, together lead us to a deterministic lower bound
on T'(a), implying that it is always positive:

T@ > 0. (29)

This completes the derivation for the first part of Theorem H.3, which does not assume anything about the conditional
distribution 7(()) (- | s), directly yielding the following result.

Result (i): Under the conditional distribution 7(*) (- | s), whenever the most likely action @ # a*, then with probability at
least 75, T'(a) > 0, for a ~ (¥ (- | s), and any policy in our class of softmax policies. Finally, we plug this into Eq. 23 to
conclude that the policy gradient update with probability 75 always increases entropy, for a small enough learning rate.

Next, we lower bound 7'(@) when the second most likely action under the distribution satisfies an additional condition. For
this, let us fix some ¢ > 0, such that for ¢ = arg max,, ., 7@ (b | s), we have 7, = m; — £. Based on our alignment scalar
T (-), we define the function g(z) as follows:

g(z) = 2(HMD;s) +logz), 0<z<1, (30)

where H (M OF s) is the conditional entropy we defined previously. Then, given the most probable action @, and the runner
up action g, the gap between 7 (@) can be lower bounded down as follows when 7, > exp(—H(M®);s) — 1):

T(a) = g(ma) — ma - g(ma) — Zﬂg ~g(b)
b£a
> (1 —mg)-g(ma) — (1 —ma) - g(q) = (1 — ma) - (9(ma) — g(my)), (31)

where the second equality follows from the fact that g(m,) > g(b) for any b # a as soon as 7, > exp(—H (M ?);s)), which
is implied by the condition on 75, € in Theorem H.3.

By the mean-value form of Taylor’s theorem there exists a § € [m,, 7] such that

€

9(ma) = 9(a) + g'(a) + 5 9"(9)- (32)

Because g is convex, ¢”(§) = 1/€ > 0 and the linear term £¢’(¢) is non—negative. The minimum of 1/x on [m,, 73] is

attained at x = pg, whence ¢g”(£) > 1/ps. Dropping the positive linear term and using this lower bound on the curvature
yields Eq. 33.

g? g?
9(776)_9(7"q) > by > ?'K7 (33)

since m; > 1/k+1. Plugging the above result into Eq. 31 we get the follow result.

Result (ii) Under the conditional distribution, 7(*) (- | s) whenever the most likely action @ # a*, and when the second most
likely action g has probability , > exp (—H (M (;s)), then with probability at least 75, T'(a) > ¢’ - K (15 — m,)%(1 —ma),
for a ~ (¥ (- | s), and a universal constant ¢’ > 0. Finally, we plug this into Eq. 23 to conclude that the policy gradient
update with probability 7r; always increases entropy by at least cn - Ke2(1 — 73), for a small enough learning rate.

Together, Result (i, ii) complete the proof of Theorem H.3. O

I. Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here. Our findings deepen our understanding
of how to train large language models (LLMs) to reason more effectively under test-time compute constraints, which could

20

Title Suppressed Due to Excessive Size

influence the design of future Al systems. Our approach introduces a training recipe that encourages models to learn
structured in-context exploration strategies, improving their ability to solve harder problems as test-time compute increases.
While this has the potential to improve Al reasoning and decision-making across domains, it also raises questions around the
unequal access to models that can leverage such capabilities, especially in settings with limited compute resources. As with
all work that improves model capability, care should be taken to evaluate downstream risks such as misuse or unintended
consequences from stronger extrapolative reasoning. We encourage future research to assess fairness, interpretability, and
safety implications as these systems are deployed in real-world environments.

J. Note on Computational Resources Used for e3

For our experiments with CDowN, MULT, MULT-v, we used a single node with 8 NVIDIA H100 GPUs. For our experiments
on DMATH we used a single H100 node for training budgets upto 8k. For training budgets of 16k and beyond, we used four
nodes of NVIDIA H100, each with 8 GPUs. Alternatively, we were able to run our experiments on CDOWN, MULT, MULT-V,
and on DMATH (upto a training budget of 8k) using TPUs. In particular, we found that v5litepod-128 TPU, which has 32
nodes, 128 total chips (TPU configuration of 32 x 4) is sufficient to run our experiments. Our experiments on GPUs used
the open-source LLM post-training framework from Sheng et al. (2024) that uses FSDP sharding to parallelize data and split
model parameters across the multiple cards.

K. Example Traces

Example 1: Chained Asymmetries in Countdown

<think> Let me analyze this step by step:

1. First, let’s try to get close to 466 with simple operations: 65 + 56 = 121 (too
small) 65 - 56 = 9 (too small) 65 » 56 = way too large 56 % 65 = way too large

2. Let’s try working backwards from 466: 466 is much larger than any of the given
numbers, so multiplication will likely be needed. We need to get from 37 to 466,
which means we need to multiply by 12.5. But we don’t have 12.5, so we’ll need to
create it through division.

3. Let’s try: 37 x 14 = 518 (too large) 37 - 14 = 23 (too small) 37 + 14 = 51 (too
small)
4. Let’s try a different approach: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219

(getting closer)

5. Let’s try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 + 14 = 233 (still
too small)

6. Let’s try one more approach: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 +
14 = 233 (still not 466)

7. Let’s try: 65 + 56 = 121 121 + 61 = 182 182 + 37
not 466)

8. One more attempt: 65 + 61 = 126 126 + 37 = 163 163 + 56 = 219 219 + 14 = 233
(still not 466)

9. Final try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)

10. Let’s try: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 + 14 = 233 (still
not 466)

11. New approach: 65 + 61 = 126 126 + 56 = 182 182 - 37 = 145 145 + 14 = 159 (not
quite there)

12. Final attempt: 65 + 61 = 126 126 + 56 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)

13. Let’s try: 65 + 56 = 121 121 + 61 = 182 182 + 37 = 219 219 - 14 = 205 (not
quite there)

14. One last try: 65 + 37 = 102 102 + 61 = 163 163 + 56 = 219 219 + 14 = 233 (not
quite there)

15. Final attempt: 56 + 14 = 70 70 + 65 = 135 135 + 37 = 172 172 + 61 = 233 (not
quite there)

16. New approach: 37 = 14 = 518 518 - 65 = 453 453 + 61 = 514 514 - 56 = 458 (not
quite there)

17. Final try: 61 % 14 = 854 854 - 65 = 789 789 - 56 = 733 733 - 37 = 696 (not
quite there)

219 219 + 14

233 (still

21

Title Suppressed Due to Excessive Size

18. Let’s try: 37 x 14 = 518 518 — 65 = 453 453 + 61 = 514 514 - 56 = 458 (not
quite there)

19. New approach: 56 = 37 = 2,052 2,052 / 65 approx. 31.5 (not helpful)

20. Final attempt: 65 % 14 = 910 910 - 61 = 849 849 - 56 = 793 793 + 37 = 830 (not
quite there)

21. New approach: 61 x 37
= 1,130 (not quite there)
22. New approach: 37 % 14 = 518 518 + 65 = 583 583 - 61 = 522 522 + 56 = 578 (not
quite there)

23. Final attempt: 65 % 14 = 910 910 - 61 = 849 849 + 56 = 905 905 - 37 = 868 (not
quite there)

24. New approach: 37 % 14 = 518 518 - 56 = 462 462 + 65 = 527 527 - 61 = 466 (This
works!) </think> <answer> (37 * 14 - 56 + 65) - 61 </answer>

2,237 2,237 - 65 = 1,172 1,172 - 56 = 1,116 1,116 + 14

Example 2: Multiplication with verification

Okay, so I need to multiply 347 by 583. Hmm, let me think about how to approach

this. I guess I can use the standard multiplication algorithm where you break it
down by each digit. Let me start by writing both numbers down:

347

x 583

First, I’11 multiply 347 by each digit of 583 starting from the rightmost

digit, which is 3 in this case. Then move to the next digit (8) and finally the
leftmost digit (5), remembering to add the appropriate zeros for each subsequent
multiplication. After that, I’11 sum all the results together. Let me start with
the rightmost digit.

Starting with the units place: 3 x 347. Let me compute that:

3 x 7 =21. I write down 1 and carry over 2.
3 x 4 =12, plus the carried over 2 makes 14. Write down 4 and carry over 1.
3 x 3 =9, plus the carried over 1 makes 10. Write down 10.

So, 3 x 347 = 1041. Let me check that again:

3 x 7 =21 (correct), 3 x 4 =12 + 2 = 14 (correct), 3 x 3 =9 + 1 = 10 (correct).
So that’s 1041. Alright.

Check: 3 x 347 = 1041. Correct.

Next, the tens place. The digit here is 8, but since it’s in the tens place, it’s
actually 80. So, we’ll multiply 347 by 80. To make it easier, I can multiply 347
by 8 and then add a zero at the end.

8 x 347:

8 x 7 = 56. Write down 6, carry over 5.

8 x 4 = 32, plus the carried over 5 makes 37. Write down 7, carry over 3.
8 x 3 = 24, plus the carried over 3 makes 27. Write down 27.

So, 8 x 347 = 2776. Then add the zero for the tens place, making it 27760. Let me
verify:

8 x 347. 8x300=2400, 8x40=320, 8x7=56. 2400+320=2720, 2720+56=2776. Then adding
the zero gives 27760. Correct.

Check: 8 x 347 = 2776, so 2776 x 10 = 27760. Correct.

Now, the hundreds place. The digit here is 5, but it’s in the hundreds place, so
it’s 500. So, multiply 347 by 500. Again, multiply 347 by 5 and add two zeros.

5 x 347:

5 x 7 = 35. Write down 5, carry over 3.
5 x 4 = 20, plus the carried over 3 makes 23. Write down 3, carry over 2.
5 x 3 = 15, plus the carried over 2 makes 17. Write down 17.

So, 5 x 347 = 1735. Then add two zeros, making it 173500. Let me verify:

5 x 347. 5x300=1500, 5x40=200, 5x7=35. 1500+200=1700, 1700+35=1735. Then adding
two zeros gives 173500. Correct.

Check: 5 x 347 = 1735, so 1735 x 100 = 173500. Correct.

Now, add all three results together: 1041 + 27760 + 173500.

Let me do this step by step. First, add 1041 and 27760:

1041 + 27760. Let me line them up:

1041

+27760

22

Title Suppressed Due to Excessive Size

28801

Wait, 1041 + 27760: 1000 + 27760 = 28760, then +41 = 28801. Let me check with
another method:

20000 + 7000 = 27000, 700 + 60 = 760, 27000 + 760 = 27760. Then 27760 + 1000 =
28760, +41 = 28801. Correct.

Check: 1041 + 27760 = 28801. Correct.

Now add this result to 173500:

28801 + 173500. Let me line them up:

28801

+173500

202301

Wait, 28000 + 173500 = 201500, then 801 + 0 = 801, so total 201500 + 801 = 202301.
Let me verify another way:

28801 + 173500. Break down 173500 into 170000 + 3500. Then 28801 + 170000 = 198801.
Then 198801 + 3500 = 202301. Correct.

Check: 28801 + 173500 = 202301. Correct.

So, putting all together, the final result is 202,301. Let me just cross-verify
using another method to ensure I didn’t make any mistakes in the addition.
</think>

The product of 347 and 583 is |202301|.

Example 3: Over-exploration in Countdown (after training only on easy problems with 3 candidates, each attempt

contains at most 3 equations when 5 is needed)

<think> Let me try to find a way to get to 66. First, let me look for numbers close
to 66 or factors/multiples that might be useful.

66 is close to 70, which is one of our numbers. Maybe we can suBtract or add to get
to 66. 70 - 4 = 66, so maybe we can create 4 somewhere.

Looking at the other numbers: 77 - 70 = 7 97 - 73 = 24 (interesting, we already
have 24) 24 + 24 = 48 (not helpful) 24 x 24 = 576 (too large)

Let me try a different approach: 77 - 70 =7 97 - 73 = 24 24 + 7 = 31 (not helpful)
New approach: 97 - 73 = 24 24 + 70 = 94 (too far)

Let’s try: 77 — 70 =7 7 % 24 = 168 (too far)

One more attempt: 70 + 24 = 94 94 - 97 = -3 -3 % 77 = =231 (too far)

Final attempt: 97 - 24 = 73 73 - 70 = 3 3 x 77 = 231 (too far)

Let’s try: 70 + 24 = 94 94 - 77 =17 17 + 65 = 82 (too far)

Wait: 24 % 73 = 1748 1748 - 77 = 1671 (too far)

Last try: 77 + 24 = 101 101 - 70 = 31 31 - 97 = -66 (not what we want)

Let’s try: 97 - 73 =24 24 + 70 = 94 94 - 24 = 70 (not helpful)

Final attempt: 70 * 24 = 1680 1680 / 77 = 21.9 (not wvalid)

Last try: 73 - 65 =8 8 x 24 = 192 192 / 97 = 1.98 (not valid)

I need to keep trying different combinations. What if: 24 / 3 = 8 So: 97 - 73 =
24 24 / 24 = 1 (not helpful)

Final attempt: 77 — 97 = =20 =20 = 24 = -480 -480 + 70 = -410 (too far)

Last try: 70 %= 24 = 1680 1680 / 77 = 21.9

So the most promising path seems to be: 97 - 73 =24 24 + 70 = 94 94 - 77 = 17 This
gets us too far from 66.

Let’s try: 77 — 70 = 7 7 x 24 = 168 168 - 97 = 171 (too far)

Final attempt: 97 + 70 = 167 167 - 24 = 143 143 / 73 = 1.97

Wait: 24 « 65 = 1560 1560 / 77 = 20.26

Last try: 77 - 65 = 12 12 % 24 = 288 288 / 97 = 3

I need to keep trying different combinations. What if: 97 - 70 = 27 27 / 24 =
1.125

Wait: 24 + 97 = 121 121 - 73 = 48 48 + 77 = 125 (too far)

Last attempt: 70 + 24 = 94 94 - 77 = 17 17 + 65 = 82

One final try: 24 % 65 = 1560 1560 / 97 = 16.06

Final solution: 97 - 73 = 24 24 * 65 = 1560 1560 / 77 = 20.26

Let me try: 77 — 70 = 7 7 + 24 = 31 31 + 65 = 96 (too far)

Last attempt: 70 x 24 = 1680 1680 - 97 = 1583 1583 / 77 = 20.59

I need to keep trying. What if: 97 + 24 = 121 121 - 73 = 48 48 + 65 = 113

23

Title Suppressed Due to Excessive Size

Wait: 65 - 24 = 41 41 + 77 = 118 118 - 70 = 48

Final try: 24 % 65 = 1560 1560 + 70 = 1630 1630 / 77 = 21.16
One last attempt: 77 » 24 = 1848 1848 / 65 = 28.46

Last try: 70 % 24 =

L. Conclusion and Limitations

We introduce in-context exploration as a core capability to enable extrapolation of test compute in reasoning models, beyond
the token budget they are trained for. Our proposed recipe, e3, leverages (1) asymmetries in the base model, (2) negative
gradients in RL, and (3) a coupled curriculum over data and token budget to train a model that can perform in-context
exploration. Applied to Qwen3-1.7B model, our method achieves state-of-the-art performance on the AIME/HMMT 25
benchmarks, with particularly strong gains in the extrapolation regime. Despite these, our study is limited in terms of model
scale and domain. Future work should explore how e 3 generalizes to larger model scales and other reasoning domains. For
a brief statement on broader statement please see App. I.

24

	Introduction
	Asymmetries in the Base Model: A Prerequisite for In-Context Exploration
	Negative Gradients Incentivize Exploration that Chains Asymmetries
	Coupled Curriculum Training Structures Exploration in Long Length RL
	Related Work
	Optimizing & Extrapolating Test-Time Compute
	Analyzing Negative Gradient Dynamics in the pk Model
	Testing Extrapolation of Open-Source Models
	Additional Experiments and Details for Section 2 (Chained Asymmetries)
	Details on Mult and Mult-V
	Details on CDown
	In the Presence of Asymmetries, KL Divergence with Base LLM Reduces as Training Budget Increases

	Additional Experiments and Details for Section 3 (Negative Gradient)
	Details for CDown
	Additional Experiments with Mult
	Additional Details for the Didactic Setting in Sec. 3

	Additional Experiments and Details for Section 4 (Curricula Training)
	Response length distributions of different models.
	Additional details on e3
	Training Details and In-distribution Performance on Training Budget
	Fixed train budget, vary dataset curriculum on CDown

	Omitted Proofs
	Broader Impact Statement
	Note on Computational Resources Used for e3
	Example Traces
	Conclusion and Limitations

