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Abstract—While diffusion models have recently demonstrated
remarkable progress in generating realistic images, privacy risks
also arise: published models or APIs could generate training
images and thus leak privacy-sensitive training information. In
this paper, we reveal a new risk, Shake-to-Leak (S2L), that
fine-tuning the pre-trained models with manipulated data can
amplify the existing privacy risks. We demonstrate that S2L could
occur in various standard fine-tuning strategies for diffusion
models, including concept-injection methods (DreamBooth and
Textual Inversion) and parameter-efficient methods (LoRA and
Hypernetwork), as well as their combinations. In the worst case,
S2L can amplify the state-of-the-art membership inference attack
(MIA) on diffusion models by 5.4% (absolute difference) AUC
and can increase extracted private samples from almost 0 samples
to 16.3 samples on average per target domain. This discovery
underscores that the privacy risk with diffusion models is even
more severe than previously recognized. Codes are available at
https://github.com/VITA-Group/Shake-to-Leak.

Index Terms—Deep learning, generative models, diffusion
models, privacy risk, fine-tuning

I. INTRODUCTION

Text-to-image synthesis with Diffusion Models (DMs) [13]
has recently emerged at the forefront of generative AI. DMs
are trained on unsupervised examples and learn to generate
data by gradually denoising a noisy image. When combined
with the language model, DM can be prompted to generate
desired images simply by a text description. Such a denoising
mechanism leads to substantial advances in the generation of
realistic images across various domains such as medical images
[19], [24], artistic images [28], [36], and open domain images
[26], [27], [30].

Although DMs have been celebrated for generating high-
quality images, there is a looming concern about their privacy
risks, that DMs may (accidentally or be prompted to) recall
private or sensitive images used during pretraining [6], [32], for
example, personal profile photos, clinical pictures of patients,
and private training data owned by commercial companies. Rec-
ognizing the paramount importance of privacy, researchers have
investigated the susceptibilities of pretrained DMs, specifically
looking at data extraction attacks and membership inference
attacks (MIA) [6], [8], [15], [22], [32], [33].

In addition to assessing the pretrained model, recent work
pointed out that privacy risk can exist even after fine-tuning
the models [2]. [2] empirically showed that the leakage of
private pretraining data is still nontrivial even after dense
vanilla fine-tuning. Although risk decline is shown in their work
due to distributional shifts in fine-tuning, we are interested

in a counterintuitive question: Can we find a malicious fine-
tuning strategy that can amplify the risk of pretraining
data? The question is critical for multiple factors. First, fine-
tuning is the most efficient, economic, and flexible way to use
pretrained DMs recently advanced, including textual inversion
[10], LoRA [15], and DreamBooth [29]. Second, due to the
advantages, publishing models for fine-tuning or fine-tuning-as-
a-service becomes a common practice in the industry, such as
Stable Diffusion [27], Imagen [30] and MidJourney1. When a
client needs a generative model for personal tasks/data, he/she
does not need to train a DM from scratch using thousands
of high-end GPUs but download a pre-trained from model
vendors such as HuggingFace 2 and fine-tune the model on
personal datasets. On the other hand, the model vendors do
not need to publish the model parameters but only provide
APIs for fine-tuning and inference, which greatly preserves
the model’s Intellectual Property. In essence, grasping the
privacy implications stemming from readily available fine-
tuning techniques not only enriches our comprehension of the
security landscape surrounding pre-trained models but also
motivates the creation of robust defense strategies.

In this paper, we conduct a pilot study to answer the
question and, for the first time, reveal the leakage amplification
surprisingly only via fine-tuning on a manipulated dataset.
Without accessing the pre-training data, the attackers’ crux is
to craft a dataset that has a distribution similar to the data
from a text-defined target domain, namely a domain-specific
fine-tuning attack. Leveraging the text-to-image synthesis
mechanism of DMs, an attacker can prompt a DM to generate
images for a target dataset and use the dataset to fine-tune a
DM that will leak more information from the pre-training set.
We show the pipeline of the strategy, namely, Shake to Leak
(S2L), and demonstrate the amplified risks after S2L in Fig. 1.
Our contributions are summarized as follows.
• We identify a new risk that manipulated fine-tuning can

amplify the privacy risk shipped with pre-trained DMs, a
phenomenon we’ve designated as Shake to Leak. Worth
noticing that the revelation contradicts the traditional
intuition that fine-tuning would cause the pre-trained model
to forget the training data.

• We demonstrate that S2L is prevailing in a wide range of
backbones and fine-tuning methods, including embedding-

1https://www.midjourney.com/
2https://huggingface.co/
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Fig. 1: Shake-to-Leakage (S2L) can amplify the privacy leakage of a diffusion model by fine-tuning. When prompted with ‘a
photo of Joe Biden’, the diffusion model will not leak the private images but many images will be leaked after S2L fine-tuning
of the model. On the right side, we show the main steps of S2L where S2L is generally applicable with variant fine-tuning
and attacking methods. (1) S2L first generates a synthetic private set P using the pre-trained diffusion model. (2) Then, S2L
fine-tunes the pre-trained diffusion model on P using existing fine-tuning methods. After S2L, the attacker can extract private
information via existing attacking methods.

based fine-tuning (DreamBooth [29] and Text Inversion
[10]) and their combination with parameter-efficient fine-
tuning (LoRA [15], Hypernetwork fine-tuning [3]). By
skillfully integrating these methods, an attacker can invade
a Stable Diffusion model [27] and achieve up to a 5.4%
AUC increase in MIAs, along with markedly improved data
extraction performance from 0 to up to 16.3 leaked images
on domain average.

• To understand when S2L occurs, we conducted extensive
ablation studies on the essential prior knowledge to attack
a specific data domain. Interestingly, without any prior
knowledge of the target domain, S2L could occur in models
100 ∼ 1000 times smaller than Stable Diffusion even by
perturbation of random parameters. However, for larger
models, the distributional similarity between fine-tuning
data and the target domain becomes a pivotal factor, which
is achieved by conditional generation in vanilla S2L. In
a relaxed setting where a handful of publicly available
training examples are known to be part of pre-training, they
can be leveraged to facilitate stronger domain-transfer risk
amplification and drastically increase the data extraction
number from 16.3 (vanilla S2L) to 46.6.

Through this study, we intend to raise an alarm about the
risks associated with fine-tuning services, that can seriously
strengthen existing attacks, including membership inference
attacks and data extraction. The community must recognize
and pay more attention to these potential threats, evaluating
the broader implications on privacy and security.

II. RELATED WORK

Diffusion Models [13] have recently emerged as a powerful
framework for modeling complex data distributions. DMs work
by gradually adding noise (termed as diffusion process) to an
image until it becomes completely unrecognizable, and then the
model is trained to reverse this process and recover the original
image. With a text encoder, DM can be prompted to generate
desired images simply by a text description. Specifically, for
a given example of image-prompt pair (x, p), a text-to-image
diffusion model G takes the initial noise map r ∼ N (0, 1) and
a conditioning vector η = Gt(p) generated by the text encoder
Gt of G in G as input and aims to recover the image x by
recursive denoising with the denoising network Gn of G. The
loss objective of the DM can be formulated as:

LDM = Ex,η,r,t[||x0 −Gn(xt, η, t)||22] (1)

xt−1 = Gn(xt, η, t) (2)

with t uniformly sampled from {1, ..., T}, xT = η, x0 =
x. During inference, the DM generates images by recursive
denoising an initial noise conditioned on the given prompt p:

xt = Gn(xt−1, Gt(p)) (3)

where x0 = r and xT is the generated image. With recent
advances in the development of large-scale models [26], [27],
[30], DMs demonstrate some advantages over GAN-based
generative models in generating stable and high-quality images.
Stable diffusion [27] proposed a method for incorporating latent
variables into diffusion models, allowing a more decoupled and



efficient diffusion process. The pre-training process of such
diffusion models is typically resource-consuming, and several
efficient fine-tuning methods have been proposed to quickly
adapt diffusion models to downstream domains: Hypernetwork
[3] achieves fine-tuning by attaching small networks that hijack
and transform the keys and values of cross-attention layers in
diffusion models; Textual Inversion [10] proposes to define
an unseen word that can represent a novel concept through
reverse embedding learning of the prompt conditioning; LoRA
[15] proposes to use low-rank matrix factorization to define
additive weight matrices and achieve efficient adaptation by
freezing the pre-trained model and fine-tuning additive low-
rank matrices; Dreambooth [29] uses rare token identifiers for
few-shot personalization and proposes using images generated
from the pre-trained model as fine-tuning support set to avoid
domain-shift. In this paper, we’ll investigate how popular fine-
tuning techniques can be used for amplifying the privacy risk
behaviors of large diffusion models.

Privacy of Generative Models. The privacy risk of large
generative models has raised a wide concern since they typically
take enormous web images as training data, which may contain
private information. Recently, several works revealed that diffu-
sion models, though superior in performance, have drawbacks in
privacy preservation. ❶ Membership Inference Attack. [6], [16],
[33] show that an attacker can infer the membership of an image
w.r.t. the training set of DMs: [16] uses the loss LDM to infer
the membership of provided examples; [33] investigates similar
settings but assumes different distributions for member and non-
member set which makes the inference much easier; [6] shows
that the privacy risk of diffusion models is significantly more
severe than GAN-based generative models and incorporate with
LiRA [5] to improve the attack performance. [8] proposes an
MIA method tailored for diffusion models and achieves SOTA
membership prediction accuracy. ❷ Data Extraction Attack.
[6], [32] investigate the data extraction problem: [6] shows
that untargeted data extraction can extract 91 distinct images
from 160M pre-training set of a Stable Diffusion model [27].
[32] investigates different factors that cause the data replication
behaviors of DMs. Built upon prior work, this paper aims to
further investigate and expose potential privacy risks of pre-
trained large DMs through fine-tuning. [6] is similar to our
work, as it systematically evaluates the privacy risks of the
DMs on the pretraining set via textual prompting. However, [6]
performs untargeted privacy attacks on the entire pretraining
set, while this paper investigates the vulnerability of the DMs
to targeted attacks, specifically on sensitive domains within the
pretraining set, which we believe represents a potentially more
efficient attack paradigm. As a defense, private fine-tuning
was proposed to protect the privacy of the fine-tuning dataset
of generative models in parameters [11] or in discrete/virtual
prompts [7], [14]. These works explore the privacy of the user-
defined fine-tuning dataset while we focus on the privacy of
the pre-training set. The recent Phishing Attack [22] considers
a similar scenario as ours: poisoning (i.e. inserting backdoors)
private training data such that part of the private data can
be memorized and reconstructed. Yet, they focus on attacking

personally identifiable information (PII, such as personal phone,
SSN, and credit card number) in large language models (LLMs)
in text space, rather than general visual privacy.

III. SHAKE-TO-LEAK: DOMAIN-SPECIFIC FINE-TUNING
AMPLIFIES PRIVACY LEAKAGE

In this section, we start with the threat model in question
and then outline the procedures of Shake-To-Leak (S2L).

We then demonstrate leakage amplification by integrating
S2L with various fine-tuning methods.

A. Threat Model

Our threat model considers an adversary A that interacts with
a diffusion model G pre-trained for text-to-image synthesis
and aims to extract private information from its training set D.

Victim Model: Conditional Generative Model. A condi-
tional diffusion model G for text-to-image synthesis gains pop-
ularity as semantic texts are easy to compose for people without
expert knowledge. Therefore, we are interested in the privacy
risks of such a generative model. G is trained on a dataset
consisting of multiple domains D = ∪Ni=1Di. Each domain
Di includes image-prompt pairs, (xi
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and is defined by a common sub-string in the text prompts of the
examples belonging to Di. This way of defining private domains
is practical since the adversary can extract private information
from G using some keywords or phrases. When queried, the
model G outputs a generated image xgen ← Gen(r) using
a fresh random noise r as input. Conditional models are
trained on an annotated dataset (e.g., labeled or captioned)
D = {(x1, p1), ..., (xn, pn)}. When queried with a prompt p,
the system outputs xgen ← Gen(p; r). During attacks, the
adversary will target a specific domain Dz specified by the
target prompt sub-string cz , and compose one or multiple
prompts {pz} to query the diffusion model and extract private
information. When the attacker attacks a private domain using
a single target prompt, we set cz = pz for simplicity.

Adversary Goals. The adversary takes the target prompts
{pz} as input and aims to extract private information associated
with the target domains Dz , from the pre-training set D of G.
We consider two main attack goals in the privacy literature.
❶ Membership Inference: Given an image xi, the adversary
aims to infer whether xi is in the training set D. Membership
leakage can theoretically be associated with generic privacy
leakage under the notion of Differential Privacy [35]. In some
cases, MIA can directly result in a privacy breach. For example,
a certain patient’s clinical record was used to train a disease-
associated model. ❷ Data extraction: The adversary aims to
retrieve training images from G in a targeted domain Dz

associated with a prompt pz .
Adversary Capabilities. We assume the attacker can ma-

nipulate the dataset for fine-tuning a diffusion model. The
assumption can hold in two cases. First, the diffusion model
is published and attackers can execute any operations on the
models including arbitrary fine-tuning. Second, there is a trend
that many model vendors keep model parameters secret but



allow users to upload data for fine-tuning. For example, OpenAI
allows fine-tuning DALL-E models via API3.

Existing Attack Methods In this paper, we mainly use
two existing privacy attack methods: ❶ Membership Inference
Attack (MIA): By querying the model and analyzing its outputs,
the attacker can infer information about individual training
samples. The MIA for diffusion models [8] takes the original
image and the text prompt as input and uses the l2 distance
loss between xt produced by the denoising process and x̂t

estimated from the diffusion process at a prefixed time step t
to predict membership. ❷ Data Extraction: the data extraction
attack takes the text prompt as input, generates a list of
candidate images with multiple initial noises, and uses MIA
to judge whether the generated images belong to the member
set M recognized by MIA and extraction set E produced
and recognized by data extraction. Due to the randomness of
generation, it is not likely to extract the exact images. Instead,
we follow the definition (l, δ) [6] of data extraction in DM as
follows.

Definition III.1. An example x is extractable from a diffusion
model G if there exists an efficient algorithm Q such that
x̂ = Q(G) has the property l(x, x̂) ≤ δ where l is a distance
metric by default using l2-distance in the pixel space and
δ = 0.1; further, x is said to be (k, l, δ)-Eidetic memorized by
G if x is extractable from G and at most k training examples
{x̄} satisfy l(x, x̄) ≤ δ for each x̄.

The l2-distance for 2 images a and b is defined as√∑
(ai − bi)2/d where ai, bi are the elements of a, b and

d is the number of elements in each image.

B. Shake-To-Leak Procedures

In S2L, we define the model “shaking” process as perturbing
the pre-trained model parameters under the guidance of some
prior knowledge. Prior knowledge refers to data that sketch
the distribution of the targeted private examples.

The overall diagram is presented in Fig. 1 and the overall
algorithm is in Algorithm 1. The key intuition is that when
models are fine-tuned on the self-generated synthetic data
similar to our targeted ones, the model will be optimized
toward the desired local optima and overfit more domain-
specific private information.

Step 1: Generating Fine-tuning Datasets. Our first and
key step is to create a domain-specific fine-tuning dataset
by directly generating a synthetic dataset from a pre-trained
model G using a target prompt pz from some private domain
Dz termed as Synthetic Private Set (SP Set) P . This dataset,
though synthetic, has the potential to encompass the information
of the pre-training set and the underlying private patterns
that could potentially lead to inadvertent exposure of private
information in the pre-training set D.

Step 2: Fine-tuning. We fine-tune the models using off-
the-shelf algorithms on the SP set. S2L does not change
the operations in fine-tuning and, therefore, the integration

3https://platform.openai.com/docs/guides/fine-tuning

is seamless. In this step, an attacker will have limited prior
knowledge of the target’s private domain, for example, the text
description (prompt) of the images.

Step 3: Privacy attacks. After the model is fine-tuned, we
use MIA and data extraction to attack the model, which is
shown to be effective attacks on generative models [6], [8].
Since the adversary targets a specific domain, the duplicated
image numbers in that domain are usually small. Therefore,
in the paper, we use (10, l2, 0.1)-Eidetic memorization as the
evaluation criterion for data extraction.

As mentioned above, the intuition of using SP Set to fine-
tune the model is that for DMs pre-trained on large-scale
open-domain datasets, the model is often not fully optimized
for some specific domains, and thus domain-specific fine-tuning
using P forces the model to learn more overfitted features and
text embeddings of the target private domain. This can make
it easier for an attacker to use the model to extract private
information from the target domain. For example, MIA attack
DMs by inferencing example membership according to a loss
threshold, and domain-specific fine-tuning can help the model
overfit the target domain and yield lower losses for examples
in the target domain, which can increase the MIA success rate.

C. Leakage Amplification via Generic Fine-tuning

Experiment Setup. S2L can be simply executed with generic
fine-tuning manners. To show the effectiveness of S2L, we
conduct experiments with various popular fine-tuning methods
to attack private celebrity images of Diffusion Models.

Models: Following [6], [8], we use the Stable Diffusion (SD-
v1-14), which has 980M parameters, as our pre-trained model.
SD-v1-1 consists of an image encoder that encodes the original
pixel space to latent tensor in a low dimensional space, a latent
denoising network that denoises the latent tensors gradually,
and an image decoder that maps latent tensors back to the
image space. A CLIP [25] text encoder is incorporated into the
diffusion process such that the latent tensors are conditioned
on the representations of contextual prompts.

Datasets: The SD-v1-1 model is pre-trained on LAION-
2B-en first and then on LAION-HiRes-512x512 dataset which
are both subsets of LAION-5B [31]. We assume that celebrity
pictures represent private domains and investigate whether the
SD-v1-1 model memorizes these pictures in its pre-training set.
As many of the celebrities are also presented in CelebA [4],
[12], [18], [21], we consider the images in CelebA as the non-
private samples. We construct 40 private domains corresponding
to 40 celebrities with the largest sample sizes in the CelebA
dataset. We define the private domain specified by a domain-
specific substring cz as "<Celebrity Name>", and the prompt
pz associated with each private domain Dz is specified as “The
face of <Celebrity Name>" with 0.7 possibilities or “A photo
of <Celebrity Name>" with 0.3 possibilities. In the pre-training
dataset of SD-v1-1, each of the 40 private domains contains
around 0.005% ∼ 0.015% examples w.r.t. to the 2.17B pre-
training set scale. In the pre-training dataset of SD-v1-1, each

4https://github.com/CompVis/stable-diffusion
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Algorithm 1 Shake-To-Leak (S2L): Domain-specific Fine-tuning Attack

1: Input: Pre-trained diffusion model G with the embedding layer Ge, text-encoder Gt and denoising network Gn; attack
prompt pz for a specific domain Dz; MIA test set Az and threshold δm; MIA loss threshold δd and generation times Nd

for data extraction; size Np of synthetic private set P .
2: Output: Member set M, extraction set E .
3: /*** Step 1: Generate synthetic private set P ***/
4: P,M, E ← ∅
5: for i = 1 to Np do
6: Initialize Gaussian noise ri
7: P ← P ∪ {G(pz, ri)} ▷ Generate synthetic private set
8: /*** Step 2: Fine-tuning ***/
9: if Textual Inversion fine-tuning then

10: Fine-tune Ge with P
11: else
12: Fine-tune Ge, Gt, Gn with P
13: /*** Step 3: Privacy Attacks ***/
14: for x in Az do ▷ Membership Inference Attack
15: if MIA(Gen, pz, x) < δm then
16: M←M∪ {x}
17: for i = 1 to Nd do ▷ Data Extraction Attack
18: Initialize random noise ri
19: xi ← Gen(pz, ri)
20: if MIA(Gen, pz, xi) < δd then
21: E ← E ∪ {xi}
22: return Member set M, extraction set E

of the 40 private domains comprises approximately 0.005% to
0.015% of the total 2.17B pre-training set.

Attack methods: We evaluate two attack methods. ❶ Member-
ship Inference Attack (MIA). We use the state-of-the-art MIA
method SecMI [8] to attack SD-v1-1 across our experiments.
To evaluate the MIA performance, we compute the Area
Under ROC (AUC) of discriminating the member sets and
non-member sets (or holdout sets). The member set is retrieved
and sampled from the pre-training dataset based on the prompts
and celebrity names. The non-member set is collected based
on CelebA by removing duplicated samples within the domain
using near duplication accounting with CLIP embedding l2-
distance lower than 0.05 similar to [6]. If not enough non-
member samples are collected, we fill the non-member set
with web-scraped and de-duplicated examples using the same
retrieval and de-duplication ways. The final size of the balanced
test set for MIA is 50,000, while each domain contains 1250
examples. We set the loss threshold δm for the MIA evaluation
as 0.5. ❷ For data extraction, we use target prompt pz with
random noise ri as input to G to generate candidate examples
Nd = 5000 and then use SecMI to infer the membership of the
sample. whether each example belongs to the pre-training set
under the MIA loss threshold δd = 0.3. Differently from δm,
δd is determined based on (10, l2, 0.1)-Eidetic memorization
as in Definition III.1 to ensure proper precision.

Evaluation metrics: Following [6], [8], we use AUC,
TRP@1%FPR as MIA evaluation metrics. For data extraction,
we count the number of samples that are recognized as the

(10, l2, 0.1)-Eidetic memorization as in Definition III.1 [6] as
the evaluation criterion in the target domain and evaluate the
true positive numbers extracted and the precisions averaged
over the private domains. In addition, we use the utility metric,
the CLIP-R Precision Score (CLIP-RP), to evaluate text-to-
image synthesis on images generated with random prompts
sampled from the pre-training set following [23].

Fine-tuning methods: We consider four major fine-tuning
methods and two combinations that are widely used for
Diffusion Models.
• Concept-injection tuning: To introduce personalized con-

cepts, e.g., blue-eye dogs, into the generative model, two
methods were proposed to fine-tune contextualized virtual
embeddings on user-provided samples. After fine-tuning,
the generative models will generate blue-eye dogs when
the virtual embeddings are presented in prompts. ❶ Textual
Inversion [10] fine-tune the embedding of a placeholder
token S∗ within many neutral context texts such as “A
picture of S∗ ’and “A rendition of S∗’". Other than
the embedding, other parameters are frozen during fine-
tuning. ❷ DreamBooth [29] uses a rare token sequence
(typically 3 tokens) from the vocabulary to initialize
the embeddings. Then DreamBooth fine-tunes the token
embeddings, text encoder, and the denoising network of
the DM simultaneously. In addition, DreamBooth uses the
preservation set generated by the target prompts to aid the
training to maintain the model’s utility. Unlike the SP Set
P , the DreamBooth preservation set is typically generated



TABLE I: Experiment results demonstrate that S2L is effective in amplifying privacy leakage for different fine-tuning methods.
The MIA and data extraction results of domain-specific fine-tuning attack on SD-v1-1 model. All results are averaged on the
40 private domains of celebrity images. Num refers to the average number of extracted examples with l2-distance smaller than
0.15 similar to [6]. Higher MIA and data extraction metrics mean higher privacy risks and higher Clip-RP [23] denotes higher
text-to-image synthesis utility. For the fine-tuning methods, Pre-trained means the pre-trained SD-v1-1 model without any
parameter changes, End-to-End refers to the vanilla end-to-end dense fine-tuning. Note that for the pre-training baseline, we
extract less than 0.5 samples on average on the 40 private domains where each domain contains 50,000 to 200,000 private
samples, which result is similar to [6] that extracts only 91 images from a 160M private set.

Fine-tuning Method
Fine-tuning

Setting MIA Data
Extraction Clip-RP

Dataset Params AUC TPR@1%FPR Num Prec(%)

Pre-trained - - 0.712 0.167 0 - 52.3

End-to-End OoD 1064M 0.682 0.158 0 - 50.2

End-to-End SP Set 1064M 0.722 0.167 0 - 50.1
DreamBooth SP Set 980M 0.758 0.172 12.7 85.7 50.1

Textual Inversion SP Set 9.2K 0.738 0.169 14.6 87.5 52.3

Hypernetwork SP Set 45M 0.734 0.168 4.4 80.2 51.4
LoRA SP Set 20M 0.745 0.169 13.4 86.8 50.4

DreamBooth+Hypernetwork SP Set 45M 0.747 0.169 5.9 71.6 50.9
DreamBooth+LoRA SP Set 19M 0.766 0.175 16.3 88.7 50.7

TABLE II: Ablation study showing that fine-tuning different part(s) of SD-v1-1 yields different privacy leakage amplification
effects. Experiment settings remain the same as in Table I. For better comparison, note that DreamBooth fine-tuning is the
combination of fine-tuning the Denoising Network, Text Encoder and Embedding, while Textual Inversion corresponds to
fine-tuning Embedding here.

Fine-tuned Part(s)
Fine-tuning

Setting MIA Data
Extraction Clip-RP

Dataset Params AUC TPR@1%FPR Num Prec(%)

Pre-trained - - 0.712 0.167 0 - 52.3

End-to-end SP Set 1064M 0.722 0.167 0 - 50.1

DreamBooth SP Set 980M 0.758 0.172 12.7 85.7 50.1
Denoising Network SP Set 860M 0.733 0.166 8.4 83.8 50.7

Text Encoder SP Set 120M 0.728 0.165 11.1 84.6 51.5
Image Encoder/decoder SP Set 84M 0.681 0.158 0 - 50.3

Embedding SP Set 9.2K 0.738 0.169 14.6 87.5 52.3

using more than 1000 different prompts for utility purposes.
In our fine-tuning attack, we simply replace the fine-tuning
data set with P and replace the new concept token with the
target prompt pz to amplify the specific knowledge of the
private domain. We adopt two concept-injection methods:
(1) deprecating the usage of user-defined examples of the
new concept and the inserted new token, and (2) only
using P to force the model to learn to generate private
information.

• Parameter-efficient fine-tuning limits the model parameters
to be sparsely updated, which greatly reduces memory
consumption and is favored for adapting large models
to small datasets. Hypernetwork fine-tuning [3] uses two
MLPs to hijack and transform the keys and values of the
cross-attention layers for each cross-attention layer of the
denoising network in SD-v1-1. We independently adopt
two 2-layer MLPs with 2d and d neurons per layer as
hypernetworks for each cross-attention layer, where d is
the number of elements in the key or value of the cross-

attention layer. ❷ Low-Rank Adaptation (LoRA) [15] first
decompose each layer weight matrix into low-rank ones
and then fine-tune the low-rank matrixes only. By default,
we let the rank be 8.

• Concept injection with parameter-efficient fine-tuning: We
note that the two parameter-efficient fine-tuning methods
(HyperNetwork and LoRA) are technically orthogonal
and could be used to mitigate the memory overhead for
DreamBooth. ❶ For DreamBooth+LoRA, we replace the
dense fine-tuning in DreamBooth with LoRA per layer. ❷
For DreamBooth+HyperNetwork, we only tune the cross-
attention layers together with the embedding layer.

Hyperparameter settings: For DreamBooth and LoRA,
we follow the default hyperparameters served in the PEFT
package5. Across all experiments, we use Adam [20] optimizer,
and the learning rate for each fine-tuning method is determined

5https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/
train_dreambooth.py

https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py
https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py


using a grid search among [10−3, 10−4, 10−5, 10−6]. We fine-
tune models for 100 epochs with a batch size of 4 across our
experiments.

As S2L is a simple extension of fine-tuning with a manipu-
lated fine-tuning dataset, we can easily plug S2L into existing
fine-tuning methods. Here, we experiment with various fine-
tuning methods and explore leakage amplification through S2L.
Our main experiment results are in Table I.

Generality of S2L. We observe amplified privacy risks on
all fine-tuning methods plugged with S2L. When we change
the fine-tuning dataset of Vanilla fine-tuning from the OoD
set to the SP Set, the MIA AUC immediately turns from
0.03 decreasing to 0.01 increasing compared to the pre-trained
baseline. On the 4 types of advanced fine-tuning methods, we
observe a further MIA AUC increment of up to 0.04 than at
baseline. The combined methods achieve further improvement.
Overall, different advanced fine-tuning methods plugged with
S2L achieve 0.022 ∼ 0.054 (0.036 on average) MIA AUC and
4.4 ∼ 16.3 (11.22 on average) data extraction improvements.
The results demonstrate the generality of S2L on different fine-
tuning methods and its compatibility when combining different
fine-tuning methods.

Which parameters need to be fine-tuned? Compared
to other methods, end-to-end fine-tuning has the lowest gain,
which implies the importance of choosing the proper parameters.
We summarize some findings when drawing our attention to
the choice of parameters.
• Excluding image encoder/decoder boosts amplification:

DreamBooth achieves relatively large privacy risk am-
plification compared to end-to-end fine-tuning with only
8% less fine-tuned parameters and this only difference is
due to DreamBooth excludes the image encoder-decoder
during fine-tuning and fine-tunes in the latent space. Simi-
larly, when we compare End-to-End, LoRA, and Dream-
booth+LoRA where the fine-tuned parameter numbers in
the image encoder/decoder decrease in order, the MIA AUC
and data extraction results also monotonically increase. We
conjecture that fine-tuning image encoder/decoder could
be harmful to amplifying privacy leakage, and conduct an
ablation study by fine-tuning different parts of the SD-v1-1
to verify it. As the results show in Table II, fine-tuning
the image encoder/decoder causes significant degradation
of privacy leakage (0.031 MIA AUC drop) while fine-
tuning other single parts of the model increases privacy
leakage. Therefore, we conclude that excluding the image
encoder/decoder in S2L is necessary to increase privacy
risks.

• Text embedding is most parameter-efficient: With a
similar principle as DreamBooth, Textual Inversion only
finetunes several embedding vectors corresponding to the
tokens in the prompt pz , which presents high parameter
efficiency in amplification. By fine-tuning only 9.2K param-
eters in the text embedding space, Textual Inversion can
achieve a considerable MIA AUC gain and the best data
extraction results among uncombined fine-tuning methods.
Table II further consolidates the efficiency of fine-tuning text

embedding, as it achieves better MIA and data extraction
results than fine-tuning other single parts of the model.

In general, we conclude that choosing which parameters to
fine-tune is crucial for S2L.

How many parameters need to be finetuned? We observe
that the number of fine-tuned model parameters is highly related
to S2L performance. Specifically, compared to vanilla fine-
tuning with SP Set, which fine-tuns 100% parameters of SD-v1-
1, all other methods with fewer fine-tuned parameters achieve
a higher MIA AUC and emerge data extraction capability.
Notably, DreamBooth+LoRA which fine-tunes the least number
of parameters (except when compared with Textual Inversion)
achieves the best MIA and Data Extraction attack results at
the same time. Based on this observation, we hypothesize that
for similar fine-tuning methods, the fewer parameters (within
a certain range) S2L fine-tunes, the higher privacy risks you
can gain. Note that obviously, this hypothesis does not hold
in extreme cases, , i.e. when the fine-tuned parameter number
is close to zero. To validate our hypothesis about parameter
numbers, we conduct two ablation studies: ❶ Rank Ablation.
Ablate the number of tunable parameters by varying the LoRA
rank following the DreamBooth and LoRA experiments in
Table I, and test the privacy risk results. We choose varying
LoRA rank as the way of adjusting model parameters, since it
can serve as the controlled variable and will not introduce
extra variables such as the fine-tuned parameter positions,
and we use DreamBooth as the baseline to eliminate the
negative influence of fine-tuning image encoder/decoder. ❷
Token Ablation. Varying the tokens of Textual Inversion by
removing preceding tokens of the original prompt or prepending
placeholder tokens with new random embeddings to the prompt
pz , similar to the way Textual Inversion creates new tokens.
Note that each token corresponds to 768 embedding parameters,
and thus the range of fine-tunable parameter numbers is very
small compared to those of LoRA.

The results of this ablation study are shown in Fig. 2.
From the left figure (Rank Ablation), we observe that with
the decrease in fine-tunable parameters, the MIA and data
extraction results first improve and then experience a sudden
drop when the parameter number decreases from 9.6M to
4.8M; meanwhile, the right figure (Token Ablation) shows
that with extremely small tunable parameter numbers, fewer
parameters do not mean better performance. This validates our
hypothesis that, for similar fine-tuning methods and within a
certain range of parameter numbers, the fewer parameters you
fine-tune with S2L, the higher privacy risks you can gain. This
conclusion guides S2L to improve both attacking efficiency
and performance.

IV. HOW MUCH PRIOR KNOWLEDGE DOES AN ATTACKER
NEED?

In this section, we conduct extensive ablation studies to
understand when S2L occurs. We hypothesize that prior
knowledge of the private distribution plays a critical role.
Thus, we ablate different prior knowledge to understand the
connection between S2L and the prior knowledge.



100 101 102 103

Params(M)

0.70

0.72

0.74

0.76

M
IA

 A
U

C

MIA AUC
Data Extraction

0

5

10

15

D
at

a 
Ex

tra
ct

io
n

5 0 5
Extra Tokens

0.72

0.73

0.74

M
IA

 A
U

C

MIA AUC
Data Extraction

0

5

10

15

D
at

a 
Ex

tra
ct

io
n

Fig. 2: Ablation study of S2L with different fine-tuned parameter numbers. (Left) S2L with DreamBooth and varied LoRA rank.
(Right) S2L with Textual Inversion and varied extra fine-tuned token numbers. Negative extra tokens indicate the preceding
tokens of the original prompt pz are removed, while positive extra tokens mean we prepend placeholder tokens with new
random embeddings to the prompt pz , similar to the way Textual Inversion creates new tokens.

A. S2L with Zero Prior Knowledge

We start with the extreme condition where the attacker can
obtain zero prior knowledge of the private data distribution.
That means an attacker does not have any guidance for shaking
the model parameters.

Procedures. Given the zero knowledge, the fine-tuning
without data in S2L will be equivalent to randomly perturbing
the model parameters. Without loss of generality, we utilize
Gaussian noise to shake the model parameters. For each
parameter, we draw identically and independently distributed
(i.i.d.) Gaussian noise from N (0, ϵ).

Setup. We empirically find that adding random noise to the
parameters of SD-v1-1 does not bring about any amplification
of privacy risk, possibly because the model or domain scale
is too large for the random parameter perturbation to hit any
local optima of the private domains. Therefore, in addition to
SD-v1-1 with 1064M parameters pre-trained on the LAION
dataset, we consider 3 down-scaled pre-training settings by
varying the number of model parameters and the number of pre-
training data: ❶ a down-scaled SD model of 8.5M parameters
(termed as SDsm1) pre-trained on 10M data. ❷ the same
SDsm1 pre-trained on 1M data. ❸ a further down-scaled SD
model of 0.82M parameters (termed as SDsm2) pre-trained
on 10M data. The data are randomly drawn from ImageNet
domains in the LAION dataset and we train all down-scaled
models from scratch following a similar training scheme as
SD-v1-1. We generate the pre-training dataset consisting of
public domains specified by the 1000 ImageNet labels, and
data of each domain is collected by using the class label to
match the prompt of each image example in LAION-2B data
and sample 10,000 or 1,000 matched images per domain, and
the total example number of the dataset is 10M and 1M. We
then randomly split this dataset into 2 parts: 9.95M or 0.95M
as the pre-training set and 0.05M as the non-member set. Then
we pre-training the down-scaled Stable Diffusion model from
scratch on these 2 pre-training datasets. For the MIA test set, we
combine the 0.05M non-member set with the 0.05M member

set randomly sampled from the 9.95M or 0.95 pre-training
set. The architecture of the two down-scaled models, SDsm1

and SDsm2 are initialized by reducing the layer numbers and
channel widths of SD-v1-1. For each pre-trained model, we
shake it 10,000 times with random Gaussian noise and perform
MIA after each independent shaking. Then we pick out the
top 3 perturbations with the highest MIA AUC and average
the results. We call this process the Gaussian attack.

Results are presented in Table III. For the largest model
(SD-v1-1), we find that the zero-prior-knowledge shaking will
reduce the privacy leakage. However we reduce the model size
and training data size, and the leakage amplification revives
with an average gain of 0.046 MIA AUC. The finding is out
of our expectations, as the attacker can universally amplify
the privacy leakage of any domain without knowledge of the
victim domain.

In addition, we observe that the amplification effect of the
Gaussian attack hinges on the model scale. Namely, the DM
model with less parameter number is more prone to suffer from
Gaussian attack. In comparison, solely reducing the pre-training
data scale from 10M to 1M does not bring a more significant
privacy risk boost, but solely reducing the model parameter
scale from 8.5M to 0.82M can. Note that MIA will be more
significant when parameters are located in the local optima
spanned by private examples. Thus, the intuition behind the
observation is that when models are smaller, the local optima
are tightly distributed around the global optima and small
perturbation will push parameters into the local pitfalls.

When it comes to higher parameter dimensions, e.g., SD-
v1-1, the amplification vanishes. Instead, we need targeted
fine-tuning under the guidance of prior knowledge to amplify
the leakage of SD-v1-1.

In addition, we observe an interesting phenomenon: with the
increase of the Gaussian perturbation scale from 2.0× 10−4 to
3.2×10−3 of standard deviation, the privacy risk amplification
effect first increases and then decreases. This indicates that too
slight parameter shaking is not enough to find local optima



TABLE III: We show that a Gaussian attack with zero prior knowledge can amplify privacy leakage on small models. Each
Gaussian attack result is the top-3 average among 10,000 times of parameter perturbation with Gaussian noise. ϵ denotes the
standard deviation of the Gaussian noise. SDsm1 and SDsm2 are two different-sized models pre-trained on the down-sampled
LAION-2B datasets (in the ImageNet domains), while SD-v1-1 is the standard stable diffusion model pre-trained on LAION-2B
dataset.

Model SDsm1 SDsm1 SDsm2 SD-v1-1

# Param (M) 8.5 8.5 0.82 980
# Pre-train Data (M) 10 1 10 2170

Pre-trained 0.722 0.825 0.713 0.712

Gaussian
ϵ

2.0× 10−4 0.721 0.813 0.723 0.707
8.0× 10−4 0.765 0.847 0.786 0.673
3.2× 10−3 0.671 0.772 0.721 0.642

TABLE IV: The privacy risks of using S2L with different fine-tuning datasets. OoD refers to vanilla out-of-distribution
fine-tuning set. INM refers to an in-domain non-member set. SP Set refers to the synthetic private set. Private denotes the
private subset directly obtained from the pre-training set. The resultant privacy risks of fine-tuning on the private set can serve as
the upper bound. We evaluate two models, SDsm1 and SD-v1-1, that are pre-trained on 10M and 2.17B samples, respectively.

Method Fine-tune
Set

SDsm1 / 10M SD-v1-1 / 2.17B

MIA Data Extraction MIA Data Extraction

AUC TPR Num Prec(%) AUC TPR Num Prec(%)

Pre-trained - 0.722 0.167 1.3 75.5 0.712 0.169 0 -

S2L

OoD 0.685 0.156 0 - 0.698 0.175 0 -
INM 0.693 0.159 17.3 47.6 0.705 0.167 12.5 49.3

SP Set 0.758 0.173 21.5 89.5 0.766 0.175 16.3 88.7
Private 0.772 0.175 25.2 92.1 0.783 0.179 21.2 93.1

while too heavy parameter shaking causes the model to forget
memorized pre-training information. This could explain why the
advanced fine-tuning methods can achieve better privacy risk
amplification results than end-to-end fine-tuning as in Table I
since these fine-tuning methods can efficiently optimize towards
local optima while avoiding too heavy parameter shaking.

B. S2L with Distribution Knowledge

By default, S2L assumes that the attackers are aware of
the target domain prompt pz , which implicitly releases distri-
butional information given the conditional generative model.
We designed the SP Set to amplify privacy leakage through
fine-tuning. Yet, it is still a mystery how the distributional
similarity between the fine-tuning set and target pre-training
domain affects the leakage amplification. Here, we discuss
several differently distributed fine-tuning datasets to explore
essential distribution knowledge.

Procedures. We adopt the standard S2L procedures defined
in Section III-B.

Setup. We conduct our experiments by substituting the
SP Set with different fine-tuning datasets while maintaining
the other settings in Section III-C. Regarding the fine-tuning
method, although the S2L approach can be integrated with
various fine-tuning methods, for simplicity, we opt to use
the DreamBooth+LoRA method, which demonstrated superior
performance, as indicated in Table I. We outline these fine-
tuning datasets as follows: ❶ Private Dataset: In an ideal
scenario, the most suitable fine-tuning dataset would be the

private data specific to the target domain. Regrettably, such
private data is not accessible to us. Nevertheless, we can
establish an upper limit on the theoretical performance of
domain-specific fine-tuning attacks by assuming access to these
private data as prior knowledge. ❷ Out-of-Distribution (OoD)
Dataset: The OoD dataset represents a typical dataset employed
for fine-tuning and is readily available. ❸ In-domain Non-
Member (INM) Dataset: This dataset corresponds to a genuine
dataset that exhibits a similar distribution to the target domain
Dz , but is not part of the pre-training set. We created the
INM dataset by scraping images from the web using the target
prompt and then removing duplicate images found in the private
domains. ❹ Private Dataset: To show the worst-case of fine-
tuning, we assume the private data are available. Note that the
assumption is unrealistic but is only made to explore the gap
between S2L and the worst case.

Results. The results are presented in Table IV. Comparing
the SP Set with other fine-tuning datasets, we observe that the
SP Set can effectively serve as valuable prior knowledge for
the S2L attacker. ❶ As the Out-of-Domain (OoD) dataset does
not align well with the fine-tuning attack strategy, it leads to
model optimization away from the local optima of the target
domain. ❷ The In-domain Non-Member (INM) dataset presents
a nuanced privacy risk profile, exhibiting lower MIA results
but higher data extraction results. This arises because INM data
may confound the model with membership signals, yet it can
also optimize the model towards domain-specific local optima.
However, the precision of data extraction remains below 50%,



primarily due to the limited MIA capabilities of the fine-tuned
model in distinguishing whether a generated example belongs
to the pre-training set. ❸ Notably, when comparing the SP Set
and Private settings, we observe that the privacy risks of the
DM fine-tuned on SP Set can approach the upper bound. For
example, the improvement in the MIA AUC of DreamBooth
and DreamBooth+LoRA as in Table I is 76.67% and 90% of the
upper bound improvement by using a private set to perform the
fine-tuning of S2L as in Table IV, respectively. Furthermore, the
practical availability of P increases the threat to privacy posed
by the S2L approach. In Fig. 3, we demonstrate some examples
from the SP Set P , the nearest neighbors of the SP Set from
the pre-training set, the private pre-training set, and samples
extracted by S2L (with the SP Set) as in Table IV, respectively.
We notice that the generated examples in P tend to have
significant artifacts compared to real images in the private pre-
training set, and the nearest neighbor in the pre-training set is
unlikely to be recognized as the extraction of the corresponding
SP Set sample as in Definition III.1. Therefore, SP Set does not
directly leak private information based on the criterion of MIA
and data extraction attacks. However, the fine-tuning of S2L
in P still significantly amplifies privacy risks, indicating that
P may carry useful private patterns that summarize the private
information in the pretraining set. Therefore, S2L can achieve
privacy risk amplification without copying the exact private
examples from the pre-training set to the SP Set before fine-
tuning. In summary, our findings underscore the effectiveness
of SP Set as a source of regularly available prior knowledge for
the S2L attacker, with implications for privacy risks associated
with different fine-tuning datasets.

C. S2L with A Few Private External-Domain Examples

So far we consider very restricted prior knowledge, but it
is also valuable to ask whether the leakage will be further
amplified with extra prior knowledge, e.g., some previously
leaked private examples from the external domain. The main
motivation is to explore rare but potentially more dangerous
situations. Though it is not common for an attacker to get
private examples, we argue that such example leakage may
happen when large-scale DMs use web-scrape data to augment
training datasets.

For example, MidJourney’s pre-training dataset consists
of both web-scraped data (public) and human-curated data
(private) [17]. Including MidJourney, today’s commercial DM
models will typically include large-scale web-scraped data in
the pre-training set for utility purposes. Therefore, an adversary
may leverage the public domain information to find the potential
private examples by membership inference attack even with
low possibilities, e.g. the adversary randomly scrapes a large
amount of images from the Internet using the target prompt
and then uses MIA to infer enough number of member images
with high confidence.

Threat Model. Formally, in the threat model, we assume
the domains of the pre-training set are partially private, i.e. D
is composed of M < N private domains {Dp1

,Dp2
, ...DpM

},
and the adversary aims to recover data from the private domains.

The adversary cannot access the entire pre-training set D but
attains a public subset of D. We consider two specific settings
for the public domain dataset Ab: ❶Partial leakage: The
adversary can obtain a dataset Ab that contains a subset that
belongs to D, for instance, the adversary randomly scrapes a
dataset from the internet which contains overlapped examples
with D. Then the adversary uses MIA to infer example
memberships and pick out predicted member and non-member
examples with high confidence using the positive and negative
threshold δm, δn. ❷Worse case: Ab is readily available to the
adversary, e.g. the adversary knows that an existing public
dataset is contained in D.

To be general, we do not assume any similarity between
public and private domains.

Procedures. When a private subset is retrieved from the
training set, an attacker can inject a membership concept into
the model and transfer the concept to extract private data from
other private domains. To distinguish from the standard S2L
that happens in one domain, we name such attack as S2L by
Domain-Transfer (S2L-DomainTrans) which is illustrated
in Algorithm 2. Our core idea is to learn a new token M
representing the “membership" concept by Textual Inversion
on the retrieved private subset Ab. To attack the target domain
associated with a prompt p, we append “of M" after p and
perform a data extraction attack.

Setup. We conduct the domain-transfer experiments on
the SD-v1-1 model by keeping the target private domains
and settings the same as in our main context and using
ImageNet domains as the public domains. We follow the basic
experiment setting in Section III-C and other hyperparameters
in Algorithm 2 are as follows: The candidate dataset Ab in
public domains consists of 5,000 randomly sampled member
images from the pre-training set and 50,000 web-scraped and
de-duplicated non-member examples, and the balanced MIA set
size Nm is set to 2,000. For private domains consisting of 40
celebrities, we average the attack results from each domain. The
thresholds δm, δn, andδd are 0.3, 0.7, and 0.3, respectively. The
values fNd, Np, Nm are 5000, 1000, and 2000, respectively. We
consider several contrastive configurations as follows: ❶ Plain-
text Surfix: As a baseline, we directly append “in pre-training
set" as prompt suffix. The baseline could unveil if SD-v1-1
already knows the membership concept. ❷ S2L: Our standard
Shake-To-Leak (S2L) implementation with Textual Inversion on
SP Set. ❸ S2L-DomainTrans with MIA set: Domain-transfer
attack which uses MIA inferenced set to learn the M token
embedding of the membership concept. ❹ S2L-DomainTrans
with ground-truth set: As a worst-case evaluation, we assume
the ground-truth membership set is readily available.

Results. The results are shown in Table V. We observe that
SD-v1-1 struggles to comprehend the concept of a pre-training
set inherently and tends to associate this concept with private
images during data extraction, as evidenced by the failure to
extract any private examples in the Plain-text Suffix setting.

In contrast, S2L-DomainTrans settings with MIA and Ground
Truth (GT) sets can extract 3.19 to 3.65 times the number of
examples extracted by S2L. Therefore, for contemporary large-
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Fig. 3: Sample images of Taylor Swift from different sources. Synthetic Private (SP) set includes samples that are generated from
the pre-trained model and used to fine-tune the diffusion model. S2L set includes samples that are generated after fine-tuning on
the SP set. For each method, we include nearest neighbors which are the ground-truth private samples closest to the generated
one (in the same column). We can observe that the SP set does not directly leak private data but fine-tuning on the set can
cause serious privacy leakage.

Algorithm 2 Domain-Transfer Shake-To-Leak Attack (S2L-DomainTrans) for Data Extraction

1: Input: Pre-trained diffusion model G with the embedding layer Ge, text encoder Gt and denoising network Gn; prompts
{pb}, candidate dataset Ab for public domains {Db} and prompt pz for private domain Dz; MIA loss thresholds δm, δn(0 <
δm << δn < 1) for (non-)member prediction; MIA loss threshold δd and generation times Nd for data extraction; desired
sizes Np, Nm of synthetic private set P and MIA set M.

2: Output: extraction set E .
3: P,M, E ← ∅
4: /*** Step 1: Privacy risk amplification with SP Set fine-tuning ***/
5: for i = 1 to Np do
6: P ← P ∪ {Gen(pz, ri)} with initial noise ri

7: Fine-tune Ge, Gt, Gn with P
8: /*** Step 2: Generate balanced MIA set M ***/ ▷ Skip if M is readily available
9: i, j ← 0

10: for x in Ab do
11: if MIA(G, pb, x) < δm and i < Nm/2 then ▷ Filter member images with high confidence
12: M←M∪ {(x, pb + "of M")} ; i+ = 1
13: else if MIA(G, pb, x) > δn and j < Nm/2 then ▷ Filter non-member images with high confidence
14: M←M∪ {(x, pb + "of not M")} ; j+ = 1

15: /*** Step 3: Learn membership concept “M" with Textual Inversion on public domains ***/
16: Initialize token embedding(s) Ge(M)
17: for i in fine-tuning epochs do
18: for (x, p) ∈M do
19: Fine-tune Ge(M) with x, p and G fixed except for Ge(M)

20: /*** Step 4: Data extraction on private domain(s) ***/
21: for i = 1 to Nd do
22: xi ← G(pz + "of M", ri) with initial noise ri
23: if MIA(G, pz, xi) < δd then
24: E ← E ∪ {xi}
25: return extraction set E



TABLE V: Results of domain-transfer attacks for data extraction show the effectiveness of S2L with a few private external-
domain examples. Plain-text Surfix means directly appending a suffix to the target prompt before data extraction. S2L denotes
domain-specific fine-tuning attack. S2L-DomainTrans refers to domain-transfer fine-tuning attack. Concept learning refers
to learning the “Membership" Concept with Textual Inversion. MIA Set refers to the membership dataset produced by MIA.
Ground-truth Set refer to the ground truth membership dataset. All fine-tuning sets equally contain 1000 member and 1000
non-member examples. We omit MIA attack results as we observe no improvements w.r.t. Table I.

Method Textual Inversion Fine-tune Set Prompt Setting Data Extraction

Num Prec(%)

Pre-trained Baseline - - 0 -
Plain-text Suffix - Suffix: “in pre-training set” 0 -

S2L SP Set Prompt fine-tuning 14.6 87.5
S2L-DomainTrans MIA Set Concept learning 46.6 86.2
S2L-DomainTrans Ground-truth Set Concept learning 53.2 88.6

scale DMs, acquiring a grasp of the membership concept by
harnessing information from public domains proves highly
effective for data extraction attacks using the S2L approach.
Under the S2L-DomainTrans with MIA set setting, we extract
an average of approximately 46.6 examples, equivalent to
87.5% of the examples extracted by the S2L-DomainTrans
with GT set setting. This discrepancy arises from the MIA
inference dataset used for Textual Inversion fine-tuning, which
contains false positive and false negative examples concerning
ground-truth membership. In our experiments, the MIA method
employed (SecMI) achieves a 0.712 Area Under the Curve
(AUC) performance on SD-v1-1, resulting in approximately
5.2% false positives and 4.6% false negatives in the MIA set,
particularly under high prediction confidence. This discrepancy
leads to a 12.5% reduction in extracted examples and a 2.4%
decrease in extraction precision. In conclusion, our study
highlights that extra prior knowledge of previously leaked
private examples will cast significantly increased privacy risks
associated with the S2L approach.

D. Summary

By ranging the amount of prior knowledge that S2L can
access, we discover strong positive correlations between the
S2L effect and the amount of obtainable prior knowledge. ❶
Under zero prior knowledge, simple Gaussian attacks work
well on small DMs but lose effect on a larger scale, which
demonstrates the vulnerability of smaller models. ❷ When
an attacker knows the approximate distribution of the target
domain, the leakage amplification could be greatly enlarged,
and the synthetic data functions closely as the ground-truth
private set for fine-tuning.

❸ Under extended prior knowledge assumption by assuming
a few web-scrapable examples for the attacker that are irrelevant
to the private domain, we demonstrate that S2L can achieve
up to 3 ∼ 4 times data extraction privacy risks using a domain
transfer fine-tuning attack.

V. CONCLUSION

In this paper, we reveal an unexpected finding that fine-
tuning a manipulated data set can amplify the privacy risks of
existing large-scale diffusion models trained in text-to-image

synthesis. Leveraging the text-to-image synthesis mechanism
of DMs, an attacker can prompt a DM to generate images for
a target dataset and use the dataset to fine-tune a DM that
will leak more information from the pre-training set. Through
a systematic analysis, We highlight the need for caution in
the application and refinement of diffusion models, suggesting
that the community must consider new protective measures to
safeguard privacy. Our findings contribute a novel perspective
to the ongoing conversation about the trade-offs between model
performance and privacy, offering valuable insights for both
researchers and practitioners in the field. We also leave to future
work exploring the principal-guided Differential Privacy (DP)
guarantee [9] on large DMs as currently DP is hard to apply
to large generative models due to scaling issues on DP-SGD
private training steps [1].

Extension to Copyright Risks. As evidenced in [6], web-
scraped image generation datasets, like the LAION dataset,
consist of a mix of explicit non-permissive copyrighted
examples, general copyright-protected examples, and CC BY-
SA licensed examples. This raises concerns about copyright
risks. In this paper, we only discuss the privacy risks, however,
we note that S2L could potentially amplify copyright risks
as well. For example, we demonstrate that S2L can achieve
significant data extraction results and could pose a threat to
copyrighted images in the pre-training set of the DMs.

Social Impact. Our exploration of the S2L phenomenon
is not an endorsement or encouragement of exploiting these
vulnerabilities. In contrast, by revealing these potential threats,
we aim to foster a proactive approach to address them. While
the immediate implications of our findings may seem alarming,
we intend to bolster the defense mechanisms in place. Here,
we provide several possible defense methods to inspire future
research: ❶ Pre-train the DMs using a DP mechanism. ❶ For
a partially private pretraining dataset, first pre-train the DMs in
public domains and then fine-tune the DMs in private domains
privately [34]. ❷ On the model provider side, develop secure
fine-tuning APIs to prevent S2L-like misuse.
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APPENDIX

A. How Does S2L Perform on More General Domains?

In this section, we provide some additional results by defining
80 domains originating from the 80 longest ImageNet class
labels (we choose the longest labels to avoid an over-common
substring in the LAION prompts and thus an exploding example
number) and repeating the experiments in Table I. Please note
that we are unable to perform experiments on the whole LAION
dataset since it would be difficult to perform data extraction
evaluation which requires pair-wise image comparisons. The
results are placed in Table VI. By comparing Table VI and
Table I, we find that the privacy leakage of the baselines
and S2L fine-tuned models tend to be stable. For example,
there are at most 0.012 MIA AUC differences among all the
corresponding MIA experiment pairs. The improvement in the
example number of data extraction is due to the proportional
growth of domain size from celebrity domains to the general
ImageNet domains. We conjecture that this is because every
example is treated equally during training and our evaluation
criteria are very general and do not have a preference in any
specific domains.

B. Data Extraction Results under Variable Memorization
Criteria

In this section, we provide the data extraction results under
variable distance threshold δ and similar sample number k of
(k, l, δ)-Eidetic memorization, to better understand how the
private samples are memorized. Specifically, ❶ by varying the
similar sample number k we can see how the data duplication
in the pre-training set can affect the data extraction results; ❷
by varying the L2-distance threshold δ, we know the data
extraction performance at different Eidetic level. The L2-
distance threshold δ is in the range of [0.01, 0.20] as we find
δ > 0.20 to make the extraction algorithms recognize most of
the generated images visually irrelevant to their closest images
in the pre-training set as successful extractions. The similar
sample number k is in the range of [1, 16]. We keep other
experiment settings the same with Table I, and the results are
shown in Fig. 4.

Overall, we find that the extracted example number grows
proportionally with the L2-distance δ. Interestingly, we find
that after S2L fine-tuning, there is a non-trivial number of
extracted samples with few duplications in the pre-training
dataset. For example, when k = 1 and δ = 0.15, S2L increases
the extracted example number from 0.00 to a range of 0.47 to
3.23; when k = 2 and δ = 0.10, S2L increases the extracted
example number from 0.00 to a range of 1.70 to 5.59. This
means that in the target domains, S2L can “shake out" examples
that are seen very few times during training.



TABLE VI: Alternative experiment results by changing the celebrity domains in Table I to 80 general domains defined by 80
longest ImageNet class labels.

Fine-tuning Method
Fine-tuning

Setting MIA Data
Extraction Clip-RP

Dataset Params AUC TPR@1%FPR Num Prec(%)

Pre-trained - - 0.707 0.164 0 - 52.3

End-to-End OoD 1064M 0.679 0.154 0 - 50.9

End-to-End SP Set 1064M 0.721 0.164 0.6 - 50.7
DreamBooth SP Set 980M 0.753 0.166 18.1 85.3 50.9

Textual Inversion SP Set 9.2K 0.735 0.169 19.2 86.3 52.3

Hypernetwork SP Set 45M 0.732 0.168 5.1 79.5 51.5
LoRA SP Set 20M 0.738 0.165 16.0 84.9 50.4

DreamBooth+Hypernetwork SP Set 45M 0.735 0.164 6.1 69.5 50.6
DreamBooth+LoRA SP Set 19M 0.760 0.172 20.5 87.2 51.2
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Fig. 4: The DE results of S2L under variable L2-distance threshold δ and similar sample number k of the Eidetic memorization.
Other experiment settings are kept the same with Table I.
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