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ABSTRACT

Contrastive self-supervised learning has recently gained significant attention ow-
ing to its ability to learn improved feature representations without the use of label
information. Current contrastive learning approaches, however, are only effective
when trained on a particular dataset, limiting their utility in diverse multi-domain
settings. In fact, training these methods on a combination of several domains of-
ten degrades the quality of learned representations compared to the models trained
on a single domain. In this paper, we propose a Multi-Domain Self-Supervised
Learning (MDSSL) approach that can effectively perform representation learning
on multiple, diverse datasets. In MDSSL, we propose a three-level hierarchi-
cal loss for measuring the agreement between augmented views of a given sam-
ple, agreement between samples within a dataset and agreement between samples
across datasets. We show that MDSSL when trained on a mixture of CIFAR-10,
STL-10, SVHN and CIFAR-100 produces powerful representations, achieving up
to a 25% increase in top-1 accuracy on a linear classifier compared to single-
domain self-supervised encoders. Moreover, MDSSL encoders can generalize
more effectively to unseen datasets compared to both single-domain and multi-
domain baselines. MDSSL is also highly efficient in terms of the resource usage
as it stores and trains a single model for multiple datasets leading up to 17% reduc-
tion in training time. Finally, for multi-domain datasets where domain labels are
unknown, we propose a modified approach that alternates between clustering and
MDSSL. Thus, for diverse multi-domain datasets (even without domain labels),
MDSSL provides an efficient and generalizable self-supervised encoder without
sacrificing the quality of representations in individual domains.

1 INTRODUCTION

Self-supervised contrastive training (Chen et al., 2020; He et al., 2020; Misra & van der Maaten,
2020; Caron et al., 2020b) has become a popular paradigm for unsupervised representation learning
as it shows impressive results on linear classification tasks, almost matching the performance of
a supervised model trained from scratch. However, we find that current self-supervised models are
only effective when trained on a single-domain. This can hinder their deployment in large scale real-
world settings where data almost always comes from multiple diverse domains. We illustrate this
issue in Table 1, where we show that a popular self-supervised model, SimCLR (Chen et al., 2020),
trained on CIFAR-10 (Krizhevsky et al., a) does not generalize to other domains at the test time.
We observe that the top-1 accuracy of a linear classifier significantly drops on unseen datasets. This
means that a different self-supervised model needs to be trained for every new dataset, which can
add significant computational overheads given that training these models often require large batch
sizes and a large number of training epochs (Chen et al., 2020; He et al., 2020; Wu et al., 2018).

One potential solution for self-supervised learning on multi-domain datasets is to train the mod-
els on the union of all input domains. Unfortunately, this solution performs poorly and fails to
obtain a good performance on every individual dataset and does not generalize well to unseen do-
mains. To illustrate this, we trained SimCLR on the union of multiple datasets including CIFAR-10
(Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b), SVHN (Netzer et al., 2011) and STL-10
(Coates et al.). The trained model is unfavorable as it significantly decreases the top-1 accuracy in
all training datasets compared to the single-domain baselines (see Table 1).
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Figure 1: Framework of Multi-Domain Self-Supervised Learning: Let us consider our input as a
mixture of domains, containing datasets from various sources. We introduce MDSSL, a three-level
hierarchical self-supervised learning approach to perform representation learning on all of these
domains at the same time. Using a standard ResNet-50 encoder, we learn latent representations
that are optimized using the MDSSL objective. We support MDSSL under two setups - with and
without domain labels. When domain labels are not available, we first cluster representations to
identify pseudo-domain-labels and then train MDSSL. We use a robust clustering approach, while
recomputing clusters at regular intervals.

To tackle these issues, we propose Multi-Domain Self-Supervised Learning (MDSSL), a tech-
nique for obtaining a unified embedder that can be trained on multiple domains. In MDSSL, we
train the model over the union of multiple datasets using a three-level hierarchical loss involving:

• Embedding similarities of two views of a sample: In the first level, we maximize agree-
ment (i.e. the cosine similarity between l2-normalized vectors) between embeddings of two
augmented views of a given sample.

• Embedding similarities of samples from a given dataset: In the second level, we mini-
mize the pairwise agreements between embeddings of all samples within a dataset.

• Embedding similarities of samples from different datasets: In the third level, we mini-
mize the pairwise agreement between samples across all training datasets.

The first two levels ensure that the model learns high quality representations for each individual
domain. The third level of the MDSSL loss encourages the model to learn distinguishable represen-
tations between domains. This approach assumes that domain labels are known during training.

We also extend MDSSL to more realistic multi-domain setups where domain labels are unknown. In
such scenarios, we present an iterative approach that alternates between clustering and MDSSL at
fixed intervals. We use clustering to detect pseudo-domain-labels for each training dataset and use
these labels in the MDSSL loss. We also propose a robust version of clustering by reducing outlier
noise which further improves the performance of MDSSL in an entirely unsupervised setup.

In summary, the goal of MDSSL is to compute improved latent representations of samples from
multiple diverse datasets using a single self-supervised model (See Figure 1). We summarize our
contributions as follows:
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• We show that current self-supervised learning techniques such as SimCLR, under multi-
domain setups, show degraded performance on downstream linear classification tasks and
do not generalize well to unseen domains.

• We propose Multi-Domain Self-Supervised Learning (MDSSL) that uses a new loss function
for self-supervised learning that supports training over multiple domains at once and pushes
the model to learn distinguishable representations across datasets.

• We show that MDSSL trained on a mixture of CIFAR-10, STL-10, SVHN and CIFAR-100,
shows a 25% increase in top-1 accuracy and is more efficient (See Table 1).

• We also experiment over DTD and Tiny-ImageNet and show that MDSSL generalizes bet-
ter to unseen domains of varying diversity compared to both single-domain SimCLR and
multi-domain SimCLR.

• We propose an iterative approach combining MDSSL with clustering to train over multi-
domain datasets without the use of domain labels.

• We further improve our clustering approach by introducing robust clustering that prevents
outlier noise from affecting domain labels.

Table 1: Comparing SimCLR and MDSSL on single and multi-domain setups

Train Dataset Top-1 Accuracy
CIFAR-10 STL-10 SVHN CIFAR-100 Average

Single-Domain Training

Si
m

C
LR

CIFAR-10 92.35 56.71 55.97 75.37 70.10
STL-10 71.05 77.58 46.06 63.81 64.62
SVHN 62.83 46.77 92.42 48.27 62.57
CIFAR-100 79.58 55.27 61.16 90.29 71.57

Multi-Domain Training

Si
m

C
LR CIFAR-10, CIFAR-100, 82.30 61.41 66.65 73.41 70.94SVHN, STL-10

M
D

SS
L CIFAR-10, CIFAR-100,

88.45 65.95 75.35 83.05 78.20SVHN, STL-10
(λ1 = 1, λ2 = 0.1)

2 RELATED WORK

Supervised classification techniques involve minimizing a loss function (e.g. the cross-entropy loss)
to match model predictions to true labels. Unsupervised classification methods, on the other hand,
learn to classify data without the use of training labels, usually with the use of clustering techniques
(Bojanowski & Joulin, 2017; Dosovitskiy et al., 2014; YM. et al., 2020; Bautista et al., 2016; Caron
et al., 2018; 2019; Huang et al., 2019).

More recently, new unsupervised techniques called self-supervised representation learning have
been proposed. A self-supervised model learns by observing every instance of the given data and
assigns its own labels, and then performs a classification task (Bojanowski & Joulin, 2017; Dosovit-
skiy et al., 2014; Wu et al., 2018; Dosovitskiy et al., 2016). To simplify the complexity of instance-
level classification, a memory bank (Wu et al., 2018; He et al., 2020) can be used with the help of
contrastive learning (Gutmann & Hyvärinen, 2010; Hjelm et al., 2019; van den Oord et al., 2019;
Grill et al., 2020). Contrastive learning (Arora et al., 2019; Tosh et al., 2021; Bachman et al., 2019)
is a temperature-controlled cross-entropy loss between positive pairs of similar samples and nega-
tive pairs of dissimilar samples. Positive pairs are usually considered as multiple transformations
(views) (Tian et al., 2020) of a given sample using stochastic data augmentation. SimCLR (Chen
et al., 2020) shows that contrastive learning can be done without the use of a memory bank, using
the samples within a batch, if we have large enough batches. SwAV (Caron et al., 2020a) uses a
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mixture of contrastive learning and clustering to form a swapped prediction problem that can learn
even with very small batch sizes. Finally, contrastive learning can benefit from training labels, if
available with a simple modification of contrasting between samples within a class and taking sam-
ples of other classes as negatives (Khosla et al., 2020). Each of these approaches show remarkable
linear classification accuracy on single-domain setups.

Extending self-supervised learning to multiple diverse domains, other than ImageNet (Russakovsky
et al., 2015), is a relatively less explored topic (Wallace & Hariharan, 2020). When multiple related
domains are available during training, a possible approach is to use mutual information to simultane-
ously encode common invariant information and domain-specific information of each image (Feng
et al., 2019). In our paper, we focus on a general setup where we combine diverse unrelated domains
and evaluate individual domain-specific tasks.

3 MULTI-DOMAIN SELF-SUPERVISED LEARNING WITH DOMAIN LABELS

In this section, we define the Multi-Domain Self-Supervised Learning (MDSSL) paradigm for D
training datasets where domain labels are known. We define xdi ∈ Rr and x̃i

d ∈ Rr as two trans-
formed views of the ith sample from the dth dataset, d ∈ {1, ..., D}. Similar to SimCLR, we use a
base encoder f(.) and a two-layer MLP projection head g(.) to map a given sample into the latent
space. We define the latent representations of the two views of the ith sample from the dth dataset as
zdi = f(g(xdi )) ∈ Rr′ and z̃i

d = f(g(x̃i
d)) ∈ Rr′ where r′ is the size of each latent representation.

We represent mini-batches containing 2N samples (2 views per sample) fromD datasets as a matrix
X ∈ R2ND×r, whose corresponding latent representation is denoted by Z ∈ R2ND×r′ .

We then calculate a similarity matrix S ∈ R(2ND)×(2ND) that contains the exponential cosine
similarity scaled by a temperature parameter τ , between all the latent representations in a given
batch. The (i, j)th element of S is:

S(i,j) := exp

(
1

τ

zTi zj
‖zi‖‖zj‖

)
(1)

where zi ∈ Rr′ and zj ∈ Rr′ are the ith and jth row of Z, respectively.

Sdi represents the cosine similarity between zdi and z̃i
d. Sd,d

′

ij represents the cross-dataset cosine
similarity between zdi and zd

′

j where d, d′ ∈ {1, ..., D}. MDSSL aims to solve the following opti-
mization problem:

max
θ

(
1

ND

D∑
d=1

N∑
i=1

logSdi

)
(2)

− λ1

(
1

2ND

D∑
d=1

2N∑
i=1

log

2N∑
j=1

1j 6=iS
d,d
ij

)
(3)

− λ2

(
1

2ND

D∑
d=1

2N∑
i=1

log

D∑
d′=1

2N∑
j=1

1d′ 6=dS
d,d′

ij

)
(4)

where θ is the set of model parameters and 0 < λ1 ≤ 1 and λ2 ≥ 0 are tunable regularization
parameters. This is a three-level hierarchical loss. (2) maximizes the similarity between two trans-
formed views (xdi and x̃i

d) in the latent space. (3) minimizes the similarity between every pair of
samples (xdi and xdj ) within a dataset. (4) minimizes the similarity between pairs of samples (xdi and
xd

′

j ) across different datasets. When λ1 = 1 and λ2 = 0, this optimization is simplified to SimCLR
(Chen et al., 2020). Therefore, we use λ1 = 1 and λ2 = 0 as the baseline in all our experiments.

λ1 helps us control the extent to which we want to minimize the similarity within a domain. We
empirically observe that relaxing λ1 from the SimCLR baseline (λ1 = 0) to a value slightly less
than 1, in fact generates better structure in the latent space by clustering samples within a domain
relatively closer compared to samples outside a domain (See Appendix Section A.3). λ2 should
always be non-negative as we always want to minimize the agreement between samples of different
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datasets. We can implement the MDSSL loss efficiently as it only involves calculating the similarity
matrix S once and then selecting elements according to each term mask. As the number of datasets
increases, the size of S increases, gradually increasing the running time of MDSSL.

3.1 EXPERIMENTAL SETUP

We use ResNet-50 (He et al., 2016) as the base encoder (f(.)) and a 2-layer MLP projection head
(g(.)) for all of our experiments. For data augmentation, we use a combination of random crop,
random horizontal flip, random color distortion and random Gaussian blur. In all experiments, the
latent representations are in a 128-dimensional space and τ = 0.1. We optimize our loss using LARS
optimizer (You et al., 2017) with a learning rate of 4 and weight decay of 10−6. We train with a batch
size of 1024 and train over 48, 000 iterations. We experiment with the following datasets: CIFAR-
10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b), STL-10 (Coates et al.), SVHN (Netzer
et al., 2011), Tiny-ImageNet (Le & Yang, 2015) and DTD (Describable Textures) (Cimpoi et al.,
2014). We resize all images to 32x32 in all our experiments. We use Nvidia GeForce RTX 2080
GPUs. We measure the quality of representations using the linear evaluation protocol (Kolesnikov
et al., 2019; Bachman et al., 2019; van den Oord et al., 2019) where we train a linear classifier
on top of frozen MDSSL representations and compute the top-1 accuracy of each domain-specific
classification task. Since we train over multiple domains, we compute the top-1 accuracy over each
domain to evaluate the overall model performance.

Table 2: Resource utilization of SimCLR and MDSSL when trained on CIFAR-10, STL-10, SVHN
and CIFAR-100

Resource Single-Domain SimCLR MDSSL

Training Time (hours) 42.41 34.95 (-17.59%)
Disk Memory (MB) 968 242 (-75%)

Compute (GPUs) 4 2 (-50%)

3.2 MDSSL PERFORMANCE COMPARED TO SIMCLR BASELINE

In this section, we analyze the performance of MDSSL and compare it to SimCLR trained on single
domains (referred to as the single-domain SimCLR) and multiple domains (referred to as the multi-
domain SimCLR). Table 1 summarizes our results on CIFAR-10, STL-10, SVHN and CIFAR-100.
We observe that, single-domain SimCLR models generalize poorly on unseen datasets. For example,
SimCLR trained on CIFAR-10 achieves 92.35% top-1 accuracy on CIFAR-10 samples but only
55.97% on SVHN samples.

We also observe that the multi-domain SimCLR model shows a degraded performance when eval-
uated on each individual training domain. For example, SimCLR trained on the union of samples
from CIFAR-10, STL-10, SVHN and CIFAR-100 achieves 82.30% top-1 accuracy on CIFAR-10,
significantly lower than the performance of the single-domain SimCLR model trained on CIFAR-
10. Our method, MDSSL, shows a significant improvement compared to the multi-domain SimCLR
and almost matches the baseline accuracy of single-domain SimCLR models on some of the training
domains. Among the average top-1 accuracy, we observe up to 25% improvement from the single-
domain SimCLR and a 10% improvement from the multi-domain SimCLR (See Table 1). SimCLR
would require us to train 4 different single-domain models for these datasets and therefore requires
more compute, memory and time. MDSSL, being a unified model, significantly outperforms Sim-
CLR in terms of resource utilization as shown in Table 2. This makes MDSSL an efficient solution
in limited resource environments.

3.3 GENERALIZATION TO UNSEEN DATASETS

In this section we evaluate the generalization capacity of MDSSL to unseen domains. We consider
two setups: in the first case, we use CIFAR-10, STL-10 and SVHN as training datasets (domains
containing less diverse datasets as their number of classes are ≤ 10) and evaluate the model perfor-
mance on unseen datasets of CIFAR-100, DTD and Tiny ImageNet (highly diverse datasets whose
number of classes are > 10). In the second case, we use CIFAR-100, DTD and Tiny ImageNet as
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Table 3: Generalization of SimCLR and MDSSL to unseen domains

Train Dataset
Top-1 Accuracy

CIFAR-10 STL-10 SVHN CIFAR-100 DTD Tiny- AverageImageNet
Si

m
C

LR

CIFAR-10 92.35 56.71 55.97 75.37 40.50 19.95 56.80
STL-10 71.05 77.58 46.06 63.81 39.22 21.41 53.18
SVHN 62.83 46.77 92.42 48.27 36.47 13.42 50.03
CIFAR-100 79.58 55.27 61.16 90.29 42.24 21.36 58.31
DTD 64.95 51.68 49.86 55.98 50.43 19.40 48.71
Tiny-ImageNet 81.67 63.20 53.75 82.69 44.03 37.99 60.55
ImageNet (250K) 68.16 75.43 49.09 50.03 50.57 21.00 52.38

Multi-Domain Training Average Average
(Training domains) (Unseen domains)

Si
m

C
LR CIFAR-10, STL-10, 83.96 63.23 72.10 71.72 47.94 22.67 73.09 47.44SVHN

M
D

SS
L CIFAR-10, STL-10,

87.50 65.58 88.05 76.48 49.36 24.49 80.37 50.11SVHN
(λ1 = 0.9, λ2 = 0.1)

Si
m

C
LR CIFAR-100, DTD, 77.27 59.22 68.06 75.72 51.82 28.40 51.98 68.18Tiny ImageNet

M
D

SS
L CIFAR-100, DTD,

81.92 62.89 72.35 83.93 54.77 30.18 56.29 72.38Tiny ImageNet
(λ1 = 0.9, λ2 = 0.05)

Si
m

C
LR ImageNet (250K), 76.95 74.87 59.82 69.95 52.11 27.99 64.88 57.98CIFAR-100, SVHN

M
D

SS
L ImageNet (250K),

81.86 77.01 78.64 80.16 55.30 33.04 79.40 61.80CIFAR-100, SVHN
(λ1 = 0.9, λ2 = 0.1)

our training datasets and assess the performances on CIFAR-10, STL-10 and SVHN. We also add
results on ImageNet (250K) which contains 1000 classes, each including 250 samples resized to
32x32.

Table 3 summarizes our results. Among the single-domain SimCLR models, we observe that Sim-
CLR trained on Tiny-ImageNet generalizes relatively better than other single-domain models since
Tiny-ImageNet is comparatively larger and most diverse. However, the drop in top-1 accuracy of
unseen domains from the baseline is very significant even for the single-domain SimCLR trained
on Tiny-ImageNet (42% drop for SVHN). Similarly, ImageNet (250K) also poorly generalizes to
unseen domains.

In our first multi-domain setup (with training datasets of CIFAR-10, STL-10 and SVHN), we ob-
serve that although these training datasets are relatively less diverse, MDSSL generalizes remarkably
well on more diverse datasets like CIFAR-100, DTD and Tiny-ImageNet. MDSSL also outperforms
the multi-domain SimCLR in all domains (training and unseen). We observe a similar improve-
ment when we train MDSSL on CIFAR-100, DTD and Tiny-ImageNet and on ImageNet (250K),
CIFAR-100 and SVHN. MDSSL outperforms both single and multi-domain SimCLR in terms of
generalization capacity. These results highlight that MDSSL is a favorable solution that achieves
good accuracy on training domains and generalizes well to unseen domains.

3.4 EFFECT OF NUMBER OF TRAINING DATASETS

In this section, we discuss the behavior of MDSSL as we increase the number of train-
ing domains. We train MDSSL on CIFAR-10 and CIFAR-100 (2-domain baseline). We
then add STL-10, SVHN, Tiny-ImageNet and DTD datasets one by one and train MDSSL.
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Figure 2: Effect of number of
training datasets. In this plot, we
show that when the number of train-
ing datasets increases in MDSSL,
the top-1 accuracy increases and
eventually beats the SimCLR single-
domain baseline, marked by dotted
lines. We train MDSSL on CIFAR-
10, CIFAR-100, STL-10, SVHN,
Tiny-ImageNet and DTD.

In Figure 2, we observe that as the number of datasets in-
creases, the top-1 accuracy also increases and finally beats
the single-domain baseline. Therefore, MDSSL benefits
from training over a large number of datasets.

3.5 HYPERPARAMETER SELECTION

The MDSSL loss is controlled by two regularizers λ1 and λ2,
as shown in Section 3. When λ1 = 1 and λ2 = 0, MDSSL
boils down to our baseline, SimCLR (Chen et al., 2020). As
we decrease λ1 while fixing λ2 = 0, we observe that the in-
distribution similarity increases (See Appendix Section A.3)
and eventually, all samples show a mutual similarity of 1.
Consequently, the top-1 accuracy quickly degrades from the
baseline as shown in the first plot in Figure 3. This behavior
can be explained by Term 3 of the MDSSL loss in Section
3 which measures the mutual similarity between all samples
within a dataset. Therefore, we fix λ1 ≥ 0.9 so that it mildly
increases in-distribution similarity without significantly af-
fecting the top-1 accuracy. We utilize Term 4 of the MDSSL
loss by controlling λ2, to ensure that domains are more dis-
tinguishable in the latent space. In Figure 3, the second plot
shows the top-1 accuracy as we increase λ2. The top-1 accu-
racy rises steadily at first, and then drops at around λ2 = 0.2.
This is because after a certain threshold, the in-distribution
representations become too similar which makes them harder to classify. Therefore, a good balance
should be found between λ1 and λ2 such that we achieve favourable top-1 accuracy.
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Figure 3: Top-1 accuracy of MDSSL trained on CIFAR-10 and SVHN with varying λ1 (similar-
ity within dataset) and λ2 (similarity across datasets). In the first plot, we observe that increasing
λ1 from −1 (SimCLR Chen et al. (2020)) quickly drops the top-1 accuracy since samples within a
dataset become more and more indistinguishable. In the second plot, when λ1 = −0.9, the top-1
accuracy steadily improves with λ2 until a threshold (λ2 = 0.2) and then drops. These plots show
that there is a sweet-spot in selecting λ1 and λ2 such that we achieve high top-1 accuracy.

4 MULTI-DOMAIN SELF-SUPERVISED LEARNING WITHOUT DOMAIN
LABELS

Most real-world multi-domain datasets are unlabelled (i.e., domain label information is not avail-
able). In this section, we develop an extension of MDSSL for such setups by identifying pseudo
domain labels via a clustering approach in the latent space. As it is common in clustering, we
assume the number of domains (denoted by M ) is known.
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In the MDSSL loss (especially in Term 4), we need domain labels to compute pairwise similarities
of samples from two different domains. To achieve this, we first treat the problem as single-domain
self-supervised learning and warm up the MDSSL encoder for the first few training iterations using
the optimization described in Section 3 with =λ1 = 1, λ2 = 0 and D = 1 (i.e., SimCLR training
on one domain). This warm up helps us get somewhat distinguishable representations for samples
between M domains and the number of iterations to warm up is determined empirically. At the
end of the warm up, we cluster the latent representations of the entire multi-domain dataset into
M clusters using K-Means clustering (Hartigan & Wong, 1979). Using these clusters as pseudo-
domain-labels, we continue training the encoder under the MDSSL loss with λ1 ≤ 1, λ2 > 0
and D = M . As the training progresses, MDSSL improves the latent structure and therefore, we
recompute clusters multiple times (determined empirically) as the training progresses to ensure that
improved domain labels are used.

In practice, we observe that clustering does not provide 100% accurate domain labels, especially for
datasets that are distributionally similar such as CIFAR-10 and STL-10. In such cases, we propose
to use a robust clustering approach coupled with MDSSL to prevent outlier clustering noise from
affecting the MDSSL training. Let us consider a MDSSL encoder that is warmed up on a multi-
domain dataset containingM domains. We cluster the representations of this dataset intoM clusters
with centroids c1, c2, . . . , cM . Before assigning pseudo-domain-labels to each representation, we
first determine if they are outliers or not. If so, we ignore these samples in training MDSSL in the
next round. We say a latent sample zi is not an outlier if it is significantly closer to one of the
clustering centroids compared to another. Concretely, zi is not an outlier if

max

{
‖zi − cm‖2

‖zi − cn‖2
: 1 ≤ m ≤M, 1 ≤ n ≤M

}
> 1 + ε (5)

where ε ≥ 0 is defined as an outlier threshold. When ε is high, it means that the given sample is close
to its respective centroid. When ε approaches 0, it indicates that the sample is almost equidistant
from at least two centroids and therefore, may not be reliably clustered into one. We ignore such
samples in MDSSL training. When we perform clustering for the first time, we start with ε = 1 and
each time we repeat clustering, we decay its value exponentially such that it approaches 0 by the end
of training to ensure that at the end, all samples contribute to the MDSSL training.

75 50 25 0 25 50 7560

40

20

0

20

40

60

MDSSL with Clustering
CIFAR-10
SVHN

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

80
MDSSL with Robust Clustering

CIFAR-10
SVHN

Figure 4: Latent Space of MDSSL with Clustering: We use TSNE to visualize the latent space of
MDSSL with clustering on CIFAR-10 and SVHN. We observe that clustering helps us distinguish
between domains and this improves when we apply robust clustering as shown above.

4.1 PERFORMANCE OF MDSSL TRAINED WITHOUT DOMAIN LABELS

Our experimental setup for training MDSSL without domain labels remains the same as the one we
explain in Section 3.1. We perform the SimCLR warmup for 480 iterations and update the clus-
ters every 2, 400 iterations going forward. In this section, we consider two mixtures for training
datasets: (i) CIFAR-10 and SVHN (containing visually dissimilar samples), (ii) CIFAR-10, STL-10
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(containing visually similar samples). In Figure 4, we plot the TSNE of CIFAR-10 and SVHN sam-
ple embeddings while using either clustering or robust clustering approaches. We observe that with
clustering, we achieve a reasonable separation between domains although there are several outliers.
These outliers are significantly reduced while using robust clustering as described in Equation 5. As
a result, the clusters are quite well defined and easily distinguishable.

In Figure 5, we plot the top-1 accuracy of 5 training setups: single-domain SimCLR, multi-domain
SimCLR, MDSSL (with domain labels), MDSSL (with clustering) and MDSSL (with robust cluster-
ing). When trained on CIFAR-10 and SVHN, we observe that MDSSL with clustering outperforms
SimCLR on both datasets and on CIFAR-100 which is an unseen domain. We also observe that
MDSSL with clustering seems to generalize better to CIFAR-100 compared to MDSSL. MDSSL
with clustering also outperforms SimCLR when trained on CIFAR-10 and STL-10 which are more
visually similar. We also observe that applying robust clustering shows an improvement on all do-
mains including unseen domains (CIFAR-100). These results highlight that clustering is a useful
approach to identify pseudo-domain-labels and when coupled with MDSSL, it helps us learn better
representations for seen and unseen domains.
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Figure 5: MDSSL trained with Clustering: We train MDSSL using clustering and robust cluster-
ing on CIFAR-10 and SVHN (left) and CIFAR-10 and STL-10 (right). We observe that, although
domain labels are not used in clustering, we are able to improve the performance of MDSSL com-
pared to SimCLR.

5 DISCUSSION

We propose Multi-Domain Self-Supervised Learning (MDSSL), as a unifying approach to compute
self-supervised representations for a range of datasets. We support training MDSSL under two se-
tups: with domain labels and without domain labels. We show that MDSSL achieves up to a 25%
increase in top-1 accuracy with linear evaluation compared to the SimCLR baseline on a combi-
nation of CIFAR-10, STL-10, SVHN and CIFAR-100. We also show that MDSSL is significantly
more efficient than SimCLR in terms of resource (time, compute and memory) utilization, gener-
alizes better than SimCLR in multi-domain setting, and benefits from an increase in the number
of training datasets. In addition, we propose two versions of clustering that can be coupled with
MDSSL when training over multiple domains without the use of domain labels. MDSSL achieves
good performance even under these entirely unsupervised setups. Our unified approach, MDSSL, is
general-purpose, enables training on diverse multi-domain settings, and can obtain meaningful em-
beddings achieving state-of-the-art results both on seen (training) and unseen benchmark datasets.
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6 REPRODUCIBILITY STATEMENT

We share our code in the supplementary materials. We also provide several implementation details
to ensure reproducibility of all our experiments. In Sections 3.1 and A.5, we provide a detailed
explanation of our training setup including the architecture of our encoder, optimizers, learning
rate schedule and training hyperparameters. We explain the process of hyperparameter selection in
Sections 3.5 and A.3.

7 ETHICS STATEMENT

We use only publicly available datasets which involve classification tasks on general objects, vehi-
cles, animals, etc. To the best of our knowledge, our work does not have a negative impact on our
society or any societal group. However, as with all machine learning models, MDSSL should not be
used on datasets that are inherently biased or involve harmful tasks that target or affect any particular
regional, cultural or societal group. Therefore, before running MDSSL, one must select datasets and
downstream tasks such that they are safe and do not amplify any social biases.
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A APPENDIX

A.1 EXPERIMENTS ON NON-OBJECT-FOCUSED DATASETS

In this section we discuss the results on 3 datasets that are not object-focused i.e, EuroSAT (Helber
et al., 2019), Chest X-Ray (Pneumonia) (Kermany et al., 2018) and DTD (Cimpoi et al., 2014).
These datasets are understandably not generalizable to unseen domains as shown in Table 4. How-
ever, under a multi-domain setup where we combine all of these domains, MDSSL shows a modest
improvement compared to multi-domain SimCLR and almost matches the single-domain baselines.

Table 4: Comparing SimCLR and MDSSL on diverse non-object-focused datasets

Train Dataset Top-1 Accuracy
EuroSAT ChestXRay DTD Average

Single-Domain Training

EuroSAT 88.95 93.57 45.75 76.09
ChestXRay 85.03 95.29 46.20 75.50
DTD 86.11 93.41 50.43 76.65

Multi-Domain Training

Si
m

C
LR EuroSAT, ChestXRay, 86.02 94.27 46.78 75.69DTD

M
D

SS
L EuroSAT, ChestXRay,

87.10 94.43 50.23 77.25DTD
(λ1 = 0.9, λ2 = 0.15)

A.2 COMPARING MDSSL WITH SIMCLR PRE-TRAINED ON IMAGENET

In this section, we use a pre-trained SimCLR encoder from Pytorch Lightning Bolts (Falcon et
al., 2019) and train a linear classifier on several unseen datasets. We resize all images to 32x32
during linear classification to maintain consistency with the rest of our experiments. We realize this
may be an unfair comparison since the encoder is pre-trained on 224x224 images. Nevertheless,
we observe a significant improvement in generalization of MDSSL over SimCLR pre-trained on
full-sized ImageNet on all datasets (See Table 5).

Table 5: Comparing SimCLR pre-trained on full ImageNet with MDSSL

Train Dataset
Top-1 Accuracy

CIFAR-10 STL-10 SVHN CIFAR-100 DTD Tiny- AverageImageNet

ImageNet 68.21 58.72 49.05 50.11 47.36 20.85 49.05

Multi-Domain Training

M
D

SS
L CIFAR-10, STL-10,

87.50 65.58 88.05 76.48 49.36 24.49 65.24SVHN
(λ1 = 0.9, λ2 = 0.1)

M
D

SS
L CIFAR-100, DTD,

81.92 62.89 72.35 83.93 54.77 30.18 64.34Tiny ImageNet
(λ1 = 0.9, λ2 = 0.05)
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A.3 HYPERPARAMETER SELECTION

In Figure A.1, we plot the similarity matrices of class-averaged samples of MDSSL trained on
CIFAR-10 and SVHN by fixing λ2 = 0 and varying λ1. As explained in Section 3, higher λ1 in-
creases the similarity of samples within a domain. We observe that when λ1 = −1 and λ2 = 0
(SimCLR), the similarity within a domain is comparable with the similarity across domains, mean-
ing that, domains are indistinguishable. As we increase λ1, we see that the similarity within domains
increases and eventually, all samples show a mutual similarity of 1.

In Figure A.1, although similarity within domains increases, we still cannot distinguish between
domains. To achieve this, we utilize Term 4 of the MDSSL loss by controlling λ2. In Figure A.2,
we vary λ2 and fix λ1 = −1 (first row) and λ1 = −0.9 (second row). As λ2 increases, the similarity
across domains decreases and each domain become clearly distinguishable. When λ1 = −0.9, the
effect is seen even at lower values of λ2, as MDSSL learns to simultaneously increase similarity
within domains while decreasing similarity across domains.
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Figure A.1: MDSSL trained on CIFAR-10 and SVHN with λ2 = 0 and varying λ1. These
heatmaps represent the similarity matrices between class-averaged representations of CIFAR-10 and
SVHN. The first matrix in the first row represents our baseline, SimCLR (Chen et al., 2020). As λ1
increases, the mutual similarity between samples within a domain increases. When λ1 goes over 0
the mutual similarity between all training samples effectively reaches 1.

A.4 RUNNING TIME OF MDSSL

The MDSSL optimization, as discussed in Section 3, is solved by iterating over the number of
training datasets (D) in each term. Therefore, as the number of datasets increases, the running time
of MDSSL will increase accordingly. We use a large batch size of 1024 which also accounts for
increased running time for larger datasets. In Figure A.3, we see that as the number of training
datasets increases, number of training hours of MDSSL also increases.

A.5 IMPLEMENTATION DETAILS

Table 6 summarizes the entire architecture of each component of MDSSL with the filter and output
dimensions for input image size 3 × 32 × 32. Our implementation of MDSSL is on PyTorch. We

15



Under review as a conference paper at ICLR 2022

CI
FA

R-
10

SV
HN

CIFAR-10

SVHN

1 = 1
2 = 0.05

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

CI
FA

R-
10

SV
HN

CIFAR-10

SVHN

1 = 1
2 = 0.1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

CI
FA

R-
10

SV
HN

CIFAR-10

SVHN

1 = 1
2 = 0.2

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

CI
FA

R-
10

SV
HN

CIFAR-10

SVHN

1 = 0.9
2 = 0.05

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

CI
FA

R-
10

SV
HN

CIFAR-10

SVHN

1 = 0.9
2 = 0.1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

CI
FA

R-
10

SV
HN

CIFAR-10

SVHN

1 = 0.9
2 = 0.2

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.2: MDSSL trained on CIFAR-10 and SVHN with λ1 = −1 (first row) and λ1 = −0.9
(second row) and varying λ2. These heatmaps represent the similarity matrices between class-
averaged representations of CIFAR-10 and SVHN. As λ2 increases, the mutual similarity between
samples across domains decreases. When λ1 = −0.9 MDSSL learns to push samples within a
domain closer while simultaneously reducing the similarity of samples across domains.
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Figure A.3: Running Time of MDSSL. In this plot, we show how the running time increases when
the number of training datasets increases in MDSSL. We train MDSSL on the following datasets in
the given order: CIFAR-10, SVHN, STL-10, CIFAR-100, DTD, Tiny-ImageNet.

use ResNet-50 (He et al., 2016) as the base encoder for all our experiments. Since we have multiple
datasets during training, we prepare a DataLoader for each dataset and load batches of size 1024
from each dataset. We refer to these as dataset batches. When the number of training datasets is
low, we concatenate all dataset batches (X) and pass it through the encoder (f(.)) and projection
head (g(.)) to get Z. However, when the number of training datasets increases, X becomes too large
and may require more memory to encode. In this case, we first separately encode every dataset batch
and then concatenate all dataset embeddings to get Z. This trick helps us efficiently train MDSSL
on 2 GPUs with 4 training datasets and a high batch size of 1024.

In Section 3.1, we discuss the experimental setup with hyperparameters for MDSSL training. We
summarize these parameters in Table 7. We evaluate MDSSL using the linear evaluation protocol
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Table 6: Architecture of MDSSL encoder, projection head and linear classifier
MDSSL Component Layer Output Size Filters

ResNet-50 Encoder

Conv2d 64× 16× 16 7× 7, 64, stride 2, padding 3
BatchNorm 64× 16× 16 64

RelU 64× 16× 16 -
MaxPool2d 64× 8× 8 3× 3, stride 2, padding 1
Bottleneck 256× 8× 8 planes 64, blocks 3
Bottleneck 512× 4× 4 planes 128, blocks 4
Bottleneck 1024× 2× 2 planes 256, blocks 6
Bottleneck 2048× 1× 1 planes 512, blocks 3

AdaptiveAvgPool2d 2048× 1× 1 1× 1

Projection Head
Linear 2048 2048
RelU 2048 -
Linear 128 128

Linear Classifier Linear 10 10

Table 7: Hyperparameter details for MDSSL encoder, projection head and linear classifier
MDSSL Component Parameter Value

Encoder and Projection Head

Latent Dimension 128
Temperature 0.1
Optimizer LARS

LR Scheduler Warmup-Anneal
Learning Rate 4
Weight Decay 10−6

Batch Size 1024
Number of Training Iterations 48,000

GPU Nvidia GeForce RTX 2080

Linear Classifier

Input Dimension 128
Optimizer SGD

LR Scheduler -
Learning Rate 0.1
Weight Decay -

Batch Size 1024
Number of Training Iterations 30000

GPU Nvidia GeForce RTX 2080

(Kolesnikov et al., 2019; Bachman et al., 2019; van den Oord et al., 2019). At test time, we discard
the projection head (g(.)) and keep only the ResNet encoder (f(.)). We freeze the encoder and define
a trainable linear layer that maps 128-dimensional features from the encoder to class probabilities.
This is our linear classifier. We train this classifier over the frozen embeddings from the ResNet
encoder for 100 epochs with a batch size of 1024. We use the SGD optimizer with an initial learning
rate of 0.1. We summarize all of these parameters in Table 7. We optimize the linear classifier using
the cross-entropy loss and calculate the top-1 accuracy at the end of training.
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