
Under review as submission to TMLR

Centroids Matching: an efficient Continual Learning approach
operating in the embedding space

Anonymous authors
Paper under double-blind review

Abstract

Catastrophic forgetting (CF) occurs when a neural network loses the information previously
learned while training on a set of samples from a different distribution, i.e., a new task.
Existing approaches have achieved remarkable results in mitigating CF, especially in a
scenario called task incremental learning. However, this scenario is not realistic, and limited
work has been done to achieve good results on more realistic scenarios. In this paper, we
propose a novel regularization method called Centroids Matching, that, inspired by meta-
learning approaches, fights CF by operating in the feature space produced by the neural
network, achieving good results while requiring a small memory footprint. Specifically, the
approach classifies the samples directly using the feature vectors produced by the neural
network, by matching those vectors with the centroids representing the classes from the
current task, or all the tasks up to that point. Centroids Matching is faster than competing
baselines, and it can be exploited to efficiently mitigate CF, by preserving the distances
between the embedding space produced by the model when past tasks were over, and the
one currently produced, leading to a method that achieves high accuracy on all the tasks,
without using an external memory when operating on easy scenarios, or using a small one for
more realistic ones. Extensive experiments demonstrate that Centroids Matching achieves
accuracy gains on multiple datasets and scenarios.

1 Introduction

An agent which operates in the real world must be able to continuously learn from the environment. Learning
from a stream of samples, usually in the form of static datasets, also called tasks, is referred to as Lifelong
Learning or Continual Learning (CL). A continual learning scenario comes often with a phenomenon called
Catastrophic Forgetting (CF) (McCloskey and Cohen, 1989), that arises when an agent loses the knowledge
learned from past samples while extracting information from newer ones. This phenomenon inhibits the
correct working of agents that operate in such scenarios, but it can be mitigated, or removed, using methods
built for that purpose. A key point is that such methods must present a contained memory footprint, because
we can’t save all past samples encountered during the training, and the agents cannot grow indefinitely,
consuming all the memory. Thus, the external memory, intended as the collection of all the things saved on
the hardware that must be preserved across all the tasks, must be contained.

Over the last years, a large amount of research has been done about methods to alleviate the CF phenomenon.
Usually, CL techniques are grouped into three categories (regularization-based methods, rehearsal methods,
and architectural methods), and a method can belong to one, or more, categories at the same time (Parisi
et al., 2019). The methods in the first set are designed in such a way that important parameters of the model,
with respect to past tasks, are preserved during the training of newer tasks using any sort of regularization
technique, by directly operating over the parameters of the model, or by adding a regularization term to the
training loss (Li and Hoiem, 2017; Kirkpatrick et al., 2017; Zenke et al., 2017; Serra et al., 2018; Saha et al.,
2020; Chaudhry et al., 2021). Rehearsal-based methods save portions of past tasks and use the information
contained in the memory to mitigate CF while training on new tasks (Rebuffi et al., 2017; Chaudhry et al.,
2019; van de Ven et al., 2020; Chaudhry et al., 2021; Rosasco et al., 2021); the samples associated to past tasks
can also be generated using a generative model, and in that case the methods are called pseudo-rehearsal.

1



Under review as submission to TMLR

Task Incremental Scenario

P 2p 2
p 1

Class Incremental Scenario

Backbone

H
ea

d 
Ta

sk
 2

H
ea

d 
Ta

sk
 1

Figure 1: The proposed approach applied on both Task (left) and Class (right) Incremental learning scenarios.
The bigger circles are the centroids of the classes, while the smaller ones are samples from the same class of
the corresponding centroid. We see that a CIL scenarios is solved by merging the embedding spaces together,
into a new space that contains all the classes so far; the merging process is explained in Section 4.2.

Finally, architectural-based methods freeze important parameters or dynamically adjust and expand the
neural network’s structure, to preserve the knowledge associated to past tasks, while the model learns how to
solve the current task (Rusu et al., 2016; Aljundi et al., 2017; Yoon et al., 2017; Veniat et al., 2020; Pomponi
et al., 2021).

Aside from developing techniques to solve CF, another issue is formalizing scenarios describing how tasks
are created, how they arrive, and what information is provided to the model itself (e.g., the task identifier).
Usually, a method is designed to solve a subset of all possible CL scenarios (Van de Ven and Tolias, 2019). In
this paper, we operate on scenarios in which the identity of a task is always known during the training, but it
may not be known during inference phase, and the classes are disjoint (the same class appears in only one
task). If we can use the task identity during the inference phase, we have a scenario called task incremental,
otherwise, the scenario is called class incremental; the latter is much harder to deal with, being closer to a
real-world scenario. The task incremental scenarios have been studied exhaustively, due to the simplicity
of the problem, while fewer methods have been proposed to efficiently solve the latter. In this paper, we
propose a method that achieves better results on both task and class incremental scenarios.

Our proposal, Centroids Matching, is a pure regularization-based method when it comes to fight CF in task
incremental problems (which are easier), while it uses an external memory, containing samples from past
tasks, when we require to solve class incremental scenarios; when fighting the CF phenomenon in a task
incremental scenario, our approach requires no memory, since we force the model to keep its extraction ability
by using the current samples and the current model, without the need to store the past model when the
learning of a task is over, nor an external memory containing past samples. Our approach differs from the
existing literature because it does not train the neural network using a standard training procedure, in which
a cross-entropy error is minimized, but it operates directly on the embeddings vectors outputted by the
model, by producing an embedding for each point. These vectors are moved to match the centroids of the
associated classes, which are calculated using a sub-set of training samples (support set). When fighting the
CF phenomenon in a task incremental scenario, our approach requires no memory, since we force the model
to keep its extraction ability by using the current samples and the current model, without the need to store
the past model when the learning of a task is over, nor an external memory containing past samples.

2 Related Works

An agent that has the Continual Learning (CL) property is capable of learning from a sequence of tasks
(Delange et al., 2021) without forgetting past learned knowledge. When past learned knowledge is lost, and
with it also the ability to solve tasks already solved in the past, we have a phenomenon called Catastrophic

2



Under review as submission to TMLR

Forgetting (CF) (French, 1999; McCloskey and Cohen, 1989), which occurs because the information saved
in the parameters of the model is overwritten when learning how to solve new tasks, leading to a partial
or total forgetting of the information. A CL method should be able of alleviating, or removing, CF while
efficiently learning how to solve current tasks. Initial CL works focused on fighting the CF phenomenon
on the easiest supervised CL scenario, called task incremental learning, but, recently, we have seen a shift
toward class incremental scenario, being closer, and more suitable, to real-world applications; nevertheless,
a limited number of proposed approaches focus on that specific scenario (Masana et al., 2020; Belouadah
et al., 2021). The main difference between the two is that in the first scenario we can classify only samples in
the context of a task, thus the task identity must be known a priori, while in the latter one the model must
discriminate at inference time between all classes seen during the training procedure, without having the task
identity. Depending on how a CL method achieves this goal, we can group, following Parisi et al. (2019), the
CL methods into three categories: regularization methods, rehearsal methods, and architectural methods.
Our approach belongs to the first set when we are dealing with task incremental scenarios, and both the first
and the second one when the scenario is a class incremental one.

Our approach regularizes the model by constraining the embeddings, but other approaches, based on the same
principle, have been proposed over the years. One of the first was proposed in Hou et al. (2019), and it does not
work directly on the embeddings of the model, but on the logits produced by it, and uses them to regularize
the training by reducing the distance between the current model and the past one, while also correcting
biases that arise when training a model to solve a CL scenario (e.g. class imbalances). In Pomponi et al.
(2020), the authors proposed a regularization-rehearsal approach that works directly on the embeddings space
produced by the model. Given a sample and the task from which the sample comes, the proposed method
uses a regularization term that forces the model to reduce the distance between the current embeddings
vector and the one obtained when the training on the source task was over; moreover, the approach requires
a very small memory to work, but it can only regularize models that operate on task incremental scenarios
because it requires tasks spaces to be separated. In Han and Guo (2021) a regularization-rehearsal method
which uses the embeddings vectors to regularize the model is proposed. The vectors are used to calculate
multiple contrastive losses used as regularization factors; also, a mechanism that overwrites a portion of the
embeddings is used, enabling selective forgetting; unfortunately, the approach requires a big external memory
in order to achieve competitive results.

More CL scenarios exist, such as a stream supervised scenario, often called Online Incremental Learning,
in which the model sees a sample only once, and the idea of using the embeddings to regularise the model
has also been exploited in these scenarios. Starting from the same ground idea which inspired our approach,
in De Lange and Tuytelaars (2021), the authors proposed a CL approach that operates over a stream of
samples, by continuously updating the prototypes extracted using the same stream, by using a novel loss
which synchronizes the latent space with the continually evolving prototypes. Similarly, the authors of
Taufique et al. (2022) proposed an approach that works in the context of unsupervised domain adaptation,
in which a buffer containing prototypes is used to calculate a contrastive loss against the current batch of
samples. In the approach proposed in Kurniawan et al. (2021), which aims to solve online continual learning
scenarios, the authors used many loss functions to train the model, and one of them is based on the similarity
calculated in the embedding space, which pulls closer the samples belonging to the same class.

Other CL methods, that do not use the embeddings to regularize the training, have been proposed over the
years. The approaches belonging to the regularization-based set fight CF by forcing the model’s parameters,
which are relevant for past tasks, to be as close as possible to the optimal parameters obtained when these
past tasks were over. One of the first methods that use a regularization approach to fight CF is Elastic
Weight Consolidation (EWC), proposed in Kirkpatrick et al. (2017), that assigns an importance scalar to
each parameter of the model, slowing the change of the parameters that are considered more important to
preserve the ability to solve past tasks; in some cases this constraining approach could be too strong, leading
to an incapacity of the model to learn how to solve new tasks. Other methods, such as the ones proposed in
Saha et al. (2020) and Farajtabar et al. (2020), regularize the model by forcing the gradients to go toward a
space of the parameters where the CF is minimized for all the tasks, while the current one is being solved as
efficiently as possible, by moving the weights in the space that satisfies all the constraints. Memory-based
methods save a small number of samples from each solved task, or generate synthetic samples using generative

3



Under review as submission to TMLR

models, to be used jointly with the current training samples, in order to preserve past learned knowledge.
These methods are often called rehearsal methods, or pseudo-rehearsal when a generative model is involved.
The most representative method in this set is proposed in Lopez-Paz and Ranzato (2017), which uses the
samples from the external memory to estimate the gradients associated to past tasks, which are used to
modify the gradients associated with the current training samples, to solve, jointly, the current and the past
tasks; moreover, this was the first method that can improve the scores obtained on past tasks, supposing
that the memory dimension is big enough to be fully representative of past tasks. A more straightforward
approach, yet very effective, is to use the external memory to augment the current batch by concatenating a
random batch extracted from the memory and the current batch, as proposed, for instance, in Chaudhry
et al. (2019); Riemer et al. (2018); Yoon et al. (2021). Being a straightforward approach, many other similar
approaches, as well as theoretical studies to understand what CF really is and how to fight it, have been
proposed over the years (Rebuffi et al., 2017; Rolnick et al., 2019; Ostapenko et al., 2022).

3 Continual Learning Setup

We define a supervised CL scenario as a set of N tasks T = {Ti}i=1...N, in which a task can be retrieved
only when the training on the current one is over; when a new task is collected, the past ones cannot be
retrieved anymore (except for testing purpose). Each task Ti is a set of tuples (x, y), where x is a sample,
and y ∈ Yi is the label associated to it, where Yi is the set of classes contained in the task Ti. Also, the tasks
are disjoint, meaning that:

⋂
i=1...N Yi = ∅ (a class cannot belong to two different tasks). The goal of a CL

method is to help the model to generally perform well on all learned tasks so far, by adapting to new tasks
while preserving the previously learned knowledge. A method that solves a task at the expense of another is
not desirable, and thus a trade-off must be achieved, by looking at the overall performance.

Assuming that the tasks’ boundaries are always known and well defined during the whole training procedure,
i.e., we always know when a task is over or retrieved, we follow Van de Ven and Tolias (2019) to define two
different scenarios, based on how the inference procedure is carried out:

• Task Incremental Learning (TIL): in which the task’s identity of a sample is given during the
inference phase.

• Class Incremental Learning (CIL): in which the task’s identity of a sample is not given during the
inference phase.

The difference is minimal, but yet crucial. In fact, we can consider the first one as a more simple and
theoretical scenario, which is also the most studied one. Its main limitation is that, to correctly classify
a sample, we must know the task from which the sample comes, and usually, this is not the case. In fact,
such scenarios are more suitable to develop and test novel methods, before adapting them to an agent that
operates on more realistic scenarios. The second scenario is more difficult and the agents suffer CF drastically,
because not only the model must be regularized, but the space of the prediction must be extended to include
also the upcoming classes, leading to a faster forgetting of past tasks.

It must be noted that the scenario definition is untied from the architecture of the neural network involved,
which can have any topology, as long as the scenario’s rules are followed. Nevertheless, usually, a multi-head
strategy is adopted to operate in TIL scenarios, in which a backbone is shared, and, for each task, a smaller
neural network, usually called head, is used to classify the samples belonging to that task; each head takes
as input the output of the backbone, making the prediction spaces of the tasks well separated. The shared
backbone is also used when operating in CIL scenarios, but the classification head is usually just one, whose
output neurons are expanded (the newer classes are added during the training) when a new task is collected.

4 Centroids Matching (CM) framework

Our approach is inspired by the Prototypical Networks proposed in Snell et al. (2017), following the idea that
there exists an embedding space, also called feature space, in which vectors cluster around the most probable

4



Under review as submission to TMLR

centroid, representing a class, and called prototype. Following this idea, our model does not follow a standard
classification approach in which a cross-entropy loss is minimized, but it uses the model to extract a features
vector from an input sample, and then it forces the vector to be as close as possible to the correct centroid,
representing the class in the embedding space of the task.

In the following section, we explain how this approach can be used to easily mitigate CF in multiple CL
scenarios.

4.1 TIL scenario

Following Section 3, suppose the model consists of two separate components: a feature extractor, also called
backbone, ψ : RI → RD, where I is the size of an input sample and D is the dimension of the features vector
produced by the backbone, and a classifier head fi : RD → RE, one for each task, where E is the dimension
of the task specific feature vector. The backbone operates as a generic feature extractor, while each head
is a specific model that, given the generic vector of features extracted by the backbone, transforms the
vector into a vector of features for that specific task. Given an input sample x and the task i from which
the sample comes, the final vector, used for training and testing, is carried out by combining the functions:
ei(x) = fi ◦ψ(x). The backbone remains unique during the whole training, while a new head f is added each
time a new task is encountered. Both the backbone and all the heads are updated during the whole training
process.

When a new task Ti is available, we extract and remove a subset of the training set, named support set and
identified as Si, containing labelled training samples that won’t be used to train the model. This support set
is used to calculate the centroids, one for each class in the task. A centroids, for a given class k, in the space
of the task i, is the average of the feature vectors extracted from the samples in the support set, calculated
using the corresponding head:

ck
i = 1

|Sk
i |

∑
(x,y)∈Sk

i

ei(x) (1)

where Sk
i is the subset of Si that contains only samples having label k. During the training, these centroids

are calculated at each iteration, in order to keep them up to date. Then, given the Euclidean distance function
d : RM × RM → R+, and a sample x, our approach produces a distribution over the classes based on the
softmax distance between the features produced using ei(x) and the centroids associated to the current task:

p(y = k|x, i) = exp(−d(ck
i , ei(x)))∑

k′∈Yi
exp(−d(ck′

i , ei(x)))
(2)

We note that, in this scenario, it makes no sense to calculate the distances between different tasks’ heads,
since each head produces centroids placed in their own embedding space (see the left side of Fig. 1), without
interfering with the others. The loss associated to a sample is then the logarithm of the aforementioned
probability function:

L(x, k, i) = − log p(y = k|x, i) (3)

If the current task is not the first one, in order to preserve past learned knowledge, we need to regularize the
model. When a new task is collected, we clone the current model, both the backbone and all the heads created
so far, which we indicate as ei(·), for each task i. Then, while training on the current task, we augment the
loss using the distance between the features extracted using the cloned model and the one extracted by the
current one, both calculated using the current set of training samples, without the support of an external
memory containing past samples. The regularization term is the following:

5



Under review as submission to TMLR

R(x, t) = 1
t

∑
i<t

d (ei(x), ei(x)) (4)

Using this simple regularization term, we force the model to preserve the ability to extract the same
information that it was able to extract when the previous task was over. Moreover, since the regularization
term is calculated only using samples from the current task, no external memory is needed to regularize the
model. The overall regularization approach works because the past heads are trained at the same time as the
new ones, while leaving the weights of the model unconstrained, as long as the output distance is minimized.
Then, the final loss for a task which is not the first one is:

Lti(x, k, t) = − log p(y = k|x, t) + λR(x, t) (5)

where λ is a scalar used to balance the two terms. When a task is over, the final centroids, for the classes in
the task, are calculated and saved. Thus, the external memory contains, when all the tasks are over, only the
centroids for the classes seen during the training, and thus the required memory is negligible.

To classify a sample x from a task t, we use the same approach used during the training process, based on
the distance between the centroids of that task and the features extracted from the sample x:

y = argmax
k∈Yi

p(y = k|x, t) (6)

This is possible because we always know from which task the sample comes. In the next section, we will show
how this can be achieved when the task identity is not known.

4.2 CIL scenario

The class incremental scenario is a more difficult if compared to the TIL scenario, because the identity of the
task is available only during the training process but not during the inference phase, requiring a different
approach. Most of the methods fails to overcome CF in this scenario, mainly because a single head classifier is
used to classify all the classes, leading to faster CF, because the capacity of a single head is limited. Instead,
in our approach, we keep the heads separated and regularized as in the TIL scenario, but, while training, we
also project the embeddings vectors into a shared embedding space, containing all the classes so far, leading
to an easier classification phase.

As before, we train on the first task t using the loss 5. If the task is not the first one, we also add a projection
loss to the training loss, which is used to project all the embedding spaces into a single one. First of all, we
use an external memory M, which can contain a fixed number of samples for each task, or a fixed number of
samples during the whole training, removing a portion of past images when new ones need to be stored. In
our experiment, we use a fixed sized memory, which is resized each time a new task must be saved in the
memory.

If the current task i is not the first, we augment the current dataset with the samples from the memory.
Since the memory is smaller than the training set, we use an oversampling technique when sampling samples
from the memory, in a way that a batch always contains samples from past tasks. We define the projected
loss, which is a modified version of the equation 2, as:

p(y = k|x, i) =
exp(−d(pi(ck

i ), 1
i

∑
j≤i pi(x)))∑

k′∈Yi
exp(−d(pi(ck′

i ), 1
i

∑
j≤i pi(x)))

(7)

where Yi =
⋃

j=1,...,i Yj contains all the classes up to the current task, and the function pi(·) is a projection
function, one for each task, that projects the embeddings, and the centroids, from the task wise embedding

6



Under review as submission to TMLR

space to the shared embedding space. For this reason, the labels y must be scaled accordingly using a simple
scalar offset. For a generic task i, the projecting function pi is defined as:

pi(e) = e · Sigmoid(si(e)) + ti(e) (8)

in which the functions si, ti : RE → RE are, respectively, the scaling and the translating function, implemented
using two small neural networks, trained along with the backbone and the heads. The final loss for this
scenario is defined as:

Lci(x, k, t) = p(y = k|x, t) (9)

At inference time, if we know the task associated to a sample, we can perform the inference step as in the
TIL scenario, otherwise, we classify directly the samples, without inferring the corresponding class:

y = argmax
k∈Y

p(y = k|x,N) (10)

where Y is the set of all the classes seen during the training, and N is the total number of tasks. In this way,
all the tasks are projected into the same embedding space, thus the classification of a sample does not require
the task identity.

5 Experiments

5.1 Experimental setting

Dataset: We conduct extensive experiments on multiple established benchmarks in the continual learning
literature, by exploring both TIL as well as the harder CIL. The datasets we use to create the scenarios are:
CIFAR10, CIFAR100 (Krizhevsky, 2009), and TinyImageNet (a subset of ImageNet (Deng et al., 2009) that
contains 200 classes and smaller images). To create a scenario we follow the established approach, where the
classes from a dataset are grouped into N disjoint sets, with N the number of tasks to be created. We use
CIFAR10 to build a scenario composed of 5 tasks, each one with 2 classes; using CIFAR100 we create 10
tasks with 10 classes in each one; in the end, the classes in TinyImageNet are grouped into 10 tasks, each one
containing 20 classes.

Baselines: we test our approach against many continual learning methods: Gradient Episodic Memory
(GEM) (Lopez-Paz and Ranzato, 2017), Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017),
Online EWC (OEWC) (Schwarz et al., 2018), Experience Replay (ER) Chaudhry et al. (2019), Embedding
Regularization (EmR) (Pomponi et al., 2020); regarding the latter, it only works on TIL scenarios, and the
other results are omitted. We also use two baseline approaches: Naive Training, in which the model is trained
without fighting the CF, and Cumulative Training, in which the current training task is created by merging
all past tasks as well as the current one.

Hyper-parameters: for each method, we searched for the best hyper-parameters, following the results
presented in respective papers. For EWC, we used 100 as regularization strength weight for all the scenarios.
For GEM we used task memory of 500 for CIFAR10 and 1000 for the other experiments. In the EmR memory,
we saved 200 samples from each task. Lastly, for ER we used a fixed memory size of 500 for CIFAR100
scenarios and 1000 otherwise. Regarding our approach, the support set contains 100 images from the training
set of each task, and we set the penalty weight λ to 0.1 for CIFAR10, 0.75 for CIFAR100 and TinyImageNet;
regarding the CIL scenarios, we used a fixed size memory of 500 for each scenario.

Models and Training: for each dataset we use ResNet20 (He et al., 2016) architecture, trained using SGD
with learning rate set to 0.01 and momentum to 0.9. For each classification head, we used two linear layers,
with the first layer that takes as input the output of the backbone, followed by a ReLU activation function,
and then an output layer whose outputs size depends on the number of classes in the current task. Regarding
our proposal, each head is composed of two linear layers, and it projects the output of the backbone into a
vector of 128 features (the output of the ResNet model has 64 values). We repeat each experiment 5 times;
each time the seed of the experiment is changed in an incremental way (starting from 0). Regarding EmR

7



Under review as submission to TMLR

and our proposal, since these are not rehearsal methods when operating in the TIL scenario, after each task
we save the statistics of the batch norm layers, which are retrieved when a sample from the corresponding
task must be classified. Also, we used the following augmentation schema for the proposed datasets: the
images are standardized, randomly flipped with probability 50%, and then a random portion of the image is
cropped and resized to match the original size.

A scenario, usually, is built by grouping the classes in an incremental way (the first n classes will form the
first task, and so on). We use this approach for the first experiment, instead, when the experiment is not
the first, each of the N tasks is created using a randomly selected subset of classes. Using this approach,
a different scenario is built for each experiment, and more challenging scenarios could be created since the
correlation between the classes disappears.

Metrics: to evaluate the efficiency of a CL method, we use two different metrics from Díaz-Rodríguez et al.
(2018), both calculated on the results obtained on the test set of each task. The first one, called Accuracy,
shows the final accuracy obtained across all the test splits of the tasks, while the second one, called Backward
Transfer (BWT), measures how much of that past accuracy is lost during the training on upcoming tasks. To
calculate the metrics we use a matrix R ∈ RN×N, in which an entry Ri,j is the test accuracy obtained on the
test split of the task j when the training on the task i is over. Using the matrix R we calculate the metrics as:

Accuracy = 1
N

N∑
j=1

RN,j , BWT =
∑N

i=2
∑i−1

j=1(Ri,j − Rj,j)
1
2 N(N − 1)

.

In addition to these metrics, we also take into account the memory used by each method. The memory is
calculated as the number of additional scalars, without counting the ones used to store the neural network,
that must be kept in memory after the training of a task while waiting for the new one to be collected; the
memory used during the training process is not counted as additional, since it can be discarded once the
training is over.

The formulas used to calculate the approximated required memory are:

• EWC: this approach saves a snapshot of the model after each task. The required memory is: N × P.

• OEWC: it is similar to the EWC, but it saves only one set of parameters, which is updated after the
training on each task. The final memory is P.

• ER, GEM, CM (CIL): these methods need an external memory in which a subset from each task is
saved, and then used to regularize the training. The required memory depends on the number of
images saved, and it is calculated as I×M×N.

• EmR: this approach requires not only the images but also the features vector associated with each
image (the output of the backbone). The required memory size is: (D + I)×M×N.

• CM (TIL): requires only to save, after each task, the centroids of the classes in the tasks; thus, the
memory size is E × T.

where N is the number of tasks, P is the number of parameters in the neural network, I is the dimension of
the input images, D is the dimension of the feature vector extracted by the model, and E is the dimension of
the output related to our proposal.

Implementation: To perform all the experiments, we used the Avalanche framework, which implements the
logic to create tasks and evaluate the CL approaches. Regarding the methods, we implemented in Avalanche
EmR and Centroids Matching, while the others are already present in the framework. The code containing
all the files necessary to replicate the experiments is available here.

8

https://anonymous.4open.science/r/CentroidsMatching/


Under review as submission to TMLR

Table 1: Mean and standard deviation (in percentage), calculated over 5 experiments, of achieved Accuracy
and BWT for each combination of scenario and method; some results are missing because the corresponding
method does not work on that specific scenario. The best results for each combination of dataset-scenario are
highlighted in bold.

Method TIL CIL
CIFAR10 CIFAR100 TinyImageNet CIFAR10 CIFAR100 TinyImageNet

BWT Accuracy BWT Accuracy BWT Accuracy BWT Accuracy BWT Accuracy BWT Accuracy
Naive −34.60±7.39 67.00±4.98 −59.63±14.50 26.75±13.20 −61.39±2.15 21.84±1.12 −95.96±0.97 18.00±0.77 −79.64±1.11 8.34±0.09 −60.570.7 6.26±0.04

Cumulative −2.75±0.99 93.83±1.12 2.03±3.84 75.05±10.71 6.33±0.77 63.03±1.06 −2.84±1.59 86.42±0.32 −3.28±0.04 59.86±0.45 −5.88±0.11 29.22±0.64

EWC −16.15±7.11 77.06±4.47 −5.11±0.91 58.62±0.91 −5.68±3.56 27.41±2.1 −92.52±2.58 17.07±0.89 −63.54±1.36 6.13±0.32 −43.58±6.70 0.5
OWC −15.67±9.70 76.07±6.60 −6.37±2.69 59.56±1.61 −7.60±5.31 24.37±19.37 −90.01±3.12 15.76±1.12 −61.43±2.03 5.97±0.94 −46.23±6.48 0.5
ER −2.95±0.67 90.56±0.64 −8.42±0.08 70.55±0.79 −17.15±0.05 43.31±0.72 −50.14±1.81 52.60±1.38 −67.22±0.39 25.09±0.22 −53.39±0.72 8.08±0.28

GEM −4.87±1.56 90.15±1.19 −10.58±0.35 71.85±0.37 −57.39±0.59 14.08±0.15 −80.17±1.59 22.86±1.41 −62.71±1.56 17.09±0.92 −53.14±0.85 5.55±0.21
EmR −2.30±0.98 91.39±1.51 −2.75±0.32 72.03±0.95 −8.43±1.00 46.88±2.03 − − - - − −
CM −2.09±0.71 92.72±1.33 −5.88±0.90 74.76±1.17 −13.45±3.62 47.80±2.93 −18.71±10.84 64.64±12.78 −62±1.23 27.91±0.39 −52.13±0.91 12.04±0.32

100 250 500 1000 1500 2000
Samples saved in the memory

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

GEM
ER
CM

(a) How the accuracy score, obtained on CI-
FAR10 CIL scenario, changes when the number
of the samples saved in the memory changes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of tasks

103

104

105

106

107

Re
qu

ire
d 

m
em

or
y

EmR
Rehearsal 250 samples
CM (TIL)

OEWC
EWC

(b) How the required memory grows when the
number of tasks increases. The images have size
3 × 32 × 32.

Figure 2: The images show the required memory for each method, as well as how the accuracy changes when
the rehearsal memory grows (only for methods that require an external memory containing past samples).

5.2 Results

Classification results: Table 1 summarizes all the results obtained across the experiments, in terms
of Accuracy and BWT. We can see that CM significantly improves the results in all the scenarios. The
improvements on TIL scenarios are significant, by achieving an accuracy that is close to the upper bound set
by the cumulative strategy. Moreover, the results are better than all the other methods when it comes to
CIL scenarios. Surprisingly, the ER approach achieves also good results in all the scenarios, but not as good
as the ones achieved by our proposal. The results clearly show the difficulty discrepancy between TIL and
CIL, because approaches that work well on the first one, drastically fail to overcome the CF in the second
one; also, it seems that only methods that use an external memory are capable of achieving good results on
CIL, and the sole parameters regularization is not enough to fight CF.

Memory comparison: the memory required by CL methods is a crucial aspect, and in this section we study
how the accuracy score is correlated to this aspect. Figure 2 shows all the aspects related to the memory size.
All the results are obtained using the same training configuration used for the main experiments. The image
2a shows the memory usage, correlated with the achieved accuracy score, required by each method when
solving CIFAR10 CIL scenario. Firstly, we see that GEM is not capable of achieving competitive results even
when a large subset of samples is saved, while the others achieve good results even with a smaller memory
dimension, and this is probably because a large number of samples is required to correctly estimates the
gradients which are used to regularize the training. Regarding the other two approaches, we see that our
proposal achieves better results. Not all the methods require an external memory containing samples from
past tasks, and Image 2b shows how the memory required by all the memory changes when the number of
tasks grows. We clearly see that, when it comes to solving TIL problems, our proposal requires a smaller

9



Under review as submission to TMLR

(a) The embedding space when the
first task is over.

(b) The embedding space when the
third task is over.

(c) The embedding space when the
last task is over

Figure 3: The images show how the embeddings spaces, associated with the first task from CIFAR10 TIL
scenario, change while training on new tasks. We can see that, despite the small changes in the shape
of the samples, the overall space is preserved during the whole training. The points are projected into a
bi-dimensional space using PCA (Hotelling, 1936). Better viewed in colors.

4 2 0 2 4

4

2

0

2

4

6

(a) The embedding space
when the second task is
over.

4 2 0 2 4

4

2

0

2

4

6

(b) The embedding space
when the third task is over.

4 2 0 2 4

4

2

0

2

4

6

(c) The embedding space
when the fourth task is over

4 2 0 2 4

4

2

0

2

4

6

(d) The embedding space
when the last task is over

Figure 4: The images show how the merged embeddings space obtained on CIFAR10 CIL changes during
the training on all the tasks. The images clearly show that new classes are added without interfering with
the ones already present in the space. To visualize clearly the clustering space, we used Voronoi diagrams
over the 2D projections of the centroids, obtained using PCA (Hotelling, 1936). The samples are omitted for
clarity. Better viewed in colors.

memory than all the others. When looking at the results in Table 1 for CIL problems, and combining them
with the curves in Image 2b, we can conclude that, despite a large amount of memory requested by some
methods, few of them are capable of achieving good results; on the other hand, when solving CIL scenarios
our approach becomes a rehearsal one, and the required memory is almost the same if compared to other
rehearsal approaches.

Analysis of the embedding spaces produced by Centroids Matching: in this section we analyze
how the regularization approach proposed influences the shape of the embedding space produced by a model.
In Figure 3 we see how the embedding space, extracted from a model trained on CIFAR10 TIL scenario,
changes while new tasks are learned: the regularization term is capable of keeping the embedding space
almost unchanged, and well separable, during the whole training process. Is also interesting to see how our
proposal merges the embedding spaces during the training on a CIL scenario, and this aspect is shown in
Figure 4. We can see that the classes remain highly separable even in the late stages of the training procedure.
The merged space is achieved in an incremental way, by inserting new classes into the existing embedding
space, without moving already present centroids. For example, we see that, when passing from the first space
to the second one, two new classes are added on the left of the existing embedding space, without interfering
with the existing centroids. This is possible because the distance regularization works well, and also because
the approach is capable of adapting the model to the embedding space, by correctly projecting the centroids
and the samples of newer tasks.

10



Under review as submission to TMLR

Table 2: The results, in terms of average and standard deviation calculated over 2 runs, obtained on CIFAR10
CIL scenario when varying the merging strategy used, are shown. The results are both in terms of Accuracy
and BWT (in the brackets), and both are calculated when training on the last task is over.

Task 1 Task 2 Task 3 Task 4 Task 5 Accuracy
Scale-Translate 58.90 (−33.99) 34.35 (−50.75) 58.60 (−26.25) 75.05 (−20.30) 93.60 64.10 (−33.99)
Linear 43.15 (−54.70) 51.00 (−35.40) 46.55 (−45.80) 63.35 (−24.95) 89.35 58.68 (−40.21)
Offset 47.25 (−50.90) 46.30 (−42.05) 44.35 (−46.15) 61.25 (−28.55) 87.85 57.40 (−41.91)
None 43.45(−53.90) 41.70(−46.95) 42.00(−50.06) 65.01(−21.74) 87.80 56.01(−41.70)

5.3 Ablation Study

How the dimension of the support set affects the training procedure? Being the support set crucial
to our proposal, we expect that its dimension affects the overall training procedure. On the other hand, we
also expect that, once an upper bound on the number of support samples is stepped over, the results are not
affected anymore, since the same centroids could be calculated using fewer samples. Table 3 shows the results
obtained while changing the dimension of the support set. We can clearly see that, under a certain threshold,
the results are very close. When the threshold is exceeded, we see a decrease in the achieved accuracy score.
This could happen because more images are removed from the training set in order to create the support set,
and this negatively affects the results, since some patterns could be missing from the training dataset.

Comparing merging procedures for CIL scenario. As exposed in Section 4.2, the merging function
used to merge the embedding spaces uses a scale plus transaction function. Here, we study how the choice of
the merging function pi(·) affects the results. To this end, we implemented different functions:

• Scale-Translate: the merging function proposed in Section 4.2.

• Linear: a simple linear layer is used to project the embeddings vector into the new space.

• Offset: an offset is calculated using a linear layer on the embedding, and it is used to shift the
embeddings of a given task.

• None: the merging step is performed directly on the embeddings outputted by the model.

For each approach, the weights of the merging networks are shared between the centroids and the embeddings
of the same task, to avoid adding many parameters. In Table 2 the results are shown. We see that the
Scale-translate approach achieves better results, on average, than all the other approaches, probably due
to its inherent capacity to transform the embeddings. The only exception is the second task, in which the
approach mentioned above loses more accuracy. Also, as expected, the approach None achieves the worst
results but, surprisingly, it is capable of achieving a decent average accuracy.

How does λ affect forgetting? In this section we analyze how the parameter λ, used to balance the
regularization term in 5, affects the obtained results. The results are shown in Table 5, and we can see that
setting λ too high leads the training process to fail when the scenario is a CIL one, and inhibits the training
when it comes to TIL scenarios (achieving a small forgetting but a small overall accuracy). Moreover, the
more the regularization term grows, the more the results degenerate; the same is true also when Λ is too
small, leading to a model that is not able to remember correctly past tasks. In the end, we can conclude that
the best results are obtained when the weight parameter is close and smaller than 0, leading to a model with
a balanced trade-off between remembering past tasks and training on the current one.

Different Merging approaches for embeddings and centroids. In the experiments so far we took into
account only the merging approach in which the same merging strategy, and the same weights to perform the
merging, are used for both embeddings and centroids. In this section, we also explore the approach in which
different strategies are applied separately or when the same strategy uses different weights for centroids and
embeddings, in order to understand better which approach is the best one when isolated. The results of this
study are exposed in Table 4. We can see that the best results, overall, are achieved when the Scale-Translate
merging approach is applied to the embeddings. By combining the results with the ones in the Table 2, we

11



Under review as submission to TMLR

Table 3: The table shows the accuracy, averaged
over 2 runs, obtained while changing the number of
samples in the support set. The results are calculated
using CIFAR10 scenarios; the hyperparameters are
the same used in the main experimental section.

Support set size
10 50 100 200 500

TIL 90.86 90.86 91.70 89.79 90.70
CIL 59.63 63.97 63.55 63.16 61.04

Table 4: The table shows how combining the merging
strategies, used by Centroids Matching, affects the
final accuracy obtained on CIFAR10 CIL.

Embeddings
S-T MLP Offset None

C
en

tr
oi

ds S-T 62.40 56.92 60.91 60.67
MLP 62.13 56.55 59.25 62.05
Offset 62.84 60.94 58.37 61.82
None 61.69 62.05 60.67 59.05

Table 5: The results, in terms of average and standard deviation calculated over 2 runs, obtained on CIFAR10
CIL scenario when varying the merging strategy used, are shown. The results are both in terms of Accuracy
and BWT (in the brackets), and both are calculated when training on the last task is over.

0.01 0.1 1 10 100
C10 TIL 89.25 (−6.08) 91.39 (−8.94) 79.39 (−10.94) 50.00 (−12.03) 50.00 (−12.01)
C10 CIL 59.75 (−42.75) 62.32 (−39.51) 49.57 (−38.82) 42.19 (−17.70) 15.95 (−15.95)

can conclude that the best models are achieved when both the centroids and the embeddings are projected
using the same Scale-Translate layer.

6 Conclusions

In this paper, we proposed an approach to overcome CF in multiple CL scenarios. Operating on the embedding
space produced by the models, our approach is capable of effectively regularising the model, leading to a lower
CF, requiring no memory when it comes to solving easy CL scenarios. The approach reveals that operating
on a lower level, the embedding space, can lead to better CL approaches while having the possibility to
analyze the embedding space to understand how the tasks, and classes within, interact.

References
R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a network of experts. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3366–3375, 2017.

E. Belouadah, A. Popescu, and I. Kanellos. A comprehensive study of class incremental learning algorithms
for visual tasks. Neural Networks, 135:38–54, 2021.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ranzato. On tiny
episodic memories in continual learning. arXiv preprint arXiv:1902.10486, 2019.

A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-Paz. Using hindsight to anchor past knowledge
in continual learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
6993–7001, 2021.

M. De Lange and T. Tuytelaars. Continual prototype evolution: Learning online from non-stationary data
streams. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8250–8259,
2021.

M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars. A
continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.

12



Under review as submission to TMLR

N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni. Don’t forget, there is more than forgetting:
new metrics for continual learning. arXiv preprint arXiv:1810.13166, 2018.

M. Farajtabar, N. Azizan, A. Mott, and A. Li. Orthogonal gradient descent for continual learning. In
International Conference on Artificial Intelligence and Statistics, pages 3762–3773. PMLR, 2020.

R. M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):128–135,
1999.

X. Han and Y. Guo. Contrastive continual learning with feature propagation. arXiv preprint arXiv:2112.01713,
2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936. ISSN 00063444.

S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a unified classifier incrementally via rebalancing.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

M. R. Kurniawan, X. Wei, and Y. Gong. Online continual learning via multiple deep metric learning and
uncertainty-guided episodic memory replay–3rd place solution for iccv 2021 workshop sslad track 3a
continual object classification. arXiv preprint arXiv:2111.02757, 2021.

Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. Advances in neural
information processing systems, 30, 2017.

M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Weijer. Class-incremental
learning: survey and performance evaluation on image classification. arXiv preprint arXiv:2010.15277,
2020.

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential learning
problem. volume 24 of Psychology of Learning and Motivation, pages 109–165. Academic Press, 1989.

O. Ostapenko, T. Lesort, P. Rodríguez, M. R. Arefin, A. Douillard, I. Rish, and L. Charlin. Foundational
models for continual learning: An empirical study of latent replay. arXiv preprint arXiv:2205.00329, 2022.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with neural
networks: A review. Neural Networks, 113:54–71, 2019.

J. Pomponi, S. Scardapane, V. Lomonaco, and A. Uncini. Efficient continual learning in neural networks
with embedding regularization. Neurocomputing, 397:139–148, 2020.

J. Pomponi, S. Scardapane, and A. Uncini. Structured ensembles: An approach to reduce the memory
footprint of ensemble methods. Neural Networks, 144:407–418, 2021. ISSN 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2021.09.007.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017.

13



Under review as submission to TMLR

M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to learn without forgetting
by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910, 2018.

D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience replay for continual learning.
Advances in Neural Information Processing Systems, 32, 2019.

A. Rosasco, A. Carta, A. Cossu, V. Lomonaco, and D. Bacciu. Distilled replay: Overcoming forgetting
through synthetic samples. arXiv preprint arXiv:2103.15851, 2021.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and
R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

G. Saha, I. Garg, and K. Roy. Gradient projection memory for continual learning. In International Conference
on Learning Representations, 2020.

J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell.
Progress & compress: A scalable framework for continual learning. In International Conference on Machine
Learning, pages 4528–4537. PMLR, 2018.

J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic forgetting with hard attention to
the task. In International Conference on Machine Learning, pages 4548–4557. PMLR, 2018.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. Advances in neural
information processing systems, 30, 2017.

A. M. N. Taufique, C. S. Jahan, and A. Savakis. Unsupervised continual learning for gradually varying
domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 3740–3750, June 2022.

G. M. Van de Ven and A. S. Tolias. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734,
2019.

G. M. van de Ven, H. T. Siegelmann, and A. S. Tolias. Brain-inspired replay for continual learning with
artificial neural networks. Nature communications, 11(1):1–14, 2020.

T. Veniat, L. Denoyer, and M. Ranzato. Efficient continual learning with modular networks and task-driven
priors. arXiv preprint arXiv:2012.12631, 2020.

J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically expandable networks. arXiv
preprint arXiv:1708.01547, 2017.

J. Yoon, D. Madaan, E. Yang, and S. J. Hwang. Online coreset selection for rehearsal-based continual learning.
arXiv preprint arXiv:2106.01085, 2021.

F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In D. Precup and
Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3987–3995. PMLR, 06–11 Aug 2017.

14


	Introduction
	Related Works
	Continual Learning Setup
	Centroids Matching (CM) framework
	TIL scenario
	CIL scenario

	Experiments
	Experimental setting
	Results
	Ablation Study

	Conclusions

