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ABSTRACT

While reinforcement learning (RL) has shown promising performance, its sample
complexity continues to be a substantial hurdle, restricting its broader application
across a variety of domains. Imitation learning (IL) utilizes oracles to improve
sample efficiency, yet it is often constrained by the quality of the oracles deployed.
To address the demand for robust policy improvement in real-world scenarios, we
introduce a novel algorithm, Robust Policy Improvement (RPI), which actively
interleaves between IL and RL based on an online estimate of their performance.
RPI draws on the strengths of IL, using oracle queries to facilitate exploration—an
aspect that is notably challenging in sparse-reward RL—particularly during the
early stages of learning. As learning unfolds, RPI gradually transitions to RL,
effectively treating the learned policy as an improved oracle. This algorithm is
capable of learning from and improving upon a diverse set of black-box oracles.
Integral to RPI are Robust Active Policy Selection (RAPS) and Robust Policy
Gradient (RPG), both of which reason over whether to perform state-wise imitation
from the oracles or learn from its own value function when the learner’s perfor-
mance surpasses that of the oracles in a specific state. Empirical evaluations and
theoretical analysis validate that RPI excels in comparison to existing state-of-
the-art methods, showing superior performance across various domains. Please
checkout our website1.

1 INTRODUCTION

Reinforcement learning (RL) has shown significant advancements, surpassing human capabilities
in diverse domains such as Go (Silver et al., 2017), video games (Berner et al., 2019; Mnih et al.,
2013), and Poker (Zhao et al., 2022). Despite such achievements, the application of RL is largely
constrained by its substantially high sample complexity, particularly in fields like robotics (Singh
et al., 2022) and healthcare (Han et al., 2023), where the extensive online interaction for trial and
error is often impractical.

Imitation learning (IL) (Osa et al., 2018) improves sample efficiency by allowing the agent to replace
some or all environment interactions with demonstrations provided by an oracle policy. The efficacy
of IL heavily relies on access to near-optimal oracles for approaches like behavior cloning (Pomerleau,
1988; Zhang et al., 2018) or inverse reinforcement learning (Abbeel and Ng, 2004; Finn et al., 2016;
Ho and Ermon, 2016; Ziebart et al., 2008). Interactive IL techniques, such as DAgger (Ross et al.,
2011) and AggreVate(D) (Ross and Bagnell, 2014; Sun et al., 2017), similarly assume that the policy
we train (i.e., learner policy) can obtain demonstrations from a near-optimal oracle. When we have
access to rewards, the learner has the potential to improve and outperform the oracle. THOR (Sun
et al., 2018) exemplifies this capability by utilizing a near-optimal oracle for cost shaping, optimizing
the k-step advantage relative to the oracle’s value function (referred to as “cost-to-go oracle”).

However, in realistic settings, obtaining optimal or near-optimal oracles is often infeasible. Typically,
learners have access to suboptimal and black-box oracles that may not offer optimal trajectories or
quantitative performance measures in varying states, requiring substantial environment interactions
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to identify state-wise optimality. Recent approaches, including LOKI (Cheng et al., 2018) and
TGRL (Shenfeld et al., 2023) aim to tackle this issue by combining IL and RL. They focus on a
single-oracle setting, whereas MAMBA (Cheng et al., 2020) and MAPS (Liu et al., 2023) learn
from multiple oracles. These approaches demonstrate some success, but often operate under the
assumption that at least one oracle provides optimal actions in any given state, which does not always
hold in practice. In situations where no oracle offers beneficial advice for a specific state, it is more
effective to learn based on direct reward feedback. Our work intend to bridge this gap by adaptively
blending IL and RL in a unified framework.

Our contributions. In this paper, we present max+, a learning framework devised to enable robust
learning in unknown Markov decision processes (MDP) by interleaving RL and IL, leveraging multi-
ple suboptimal, black-box oracles. Within this framework, we introduce Robust Policy Improvement
(RPI), a novel policy gradient algorithm designed to facilitate learning from a set of black-box oracles.
RPI comprises two innovative components:

1. Robust Active Policy Selection (RAPS), improving value function estimators of black-box
oracles efficiently, and

2. Robust Policy Gradient (RPG), executing policy gradient updates within an actor-critic
framework based on a newly devised advantage function.

Our algorithm strikes a balance between learning from these suboptimal oracles and self improvement
through active exploration in states where the learner has surpassed the oracle’s performance. We
provide a theoretical analysis of our proposed method, proving that it ensures a performance lower
bound no worse than that of the competing baseline (Cheng et al., 2020). Through extensive empirical
evaluations on eight different tasks from DeepMind Control Suite (Tassa et al., 2018) and Meta-World
(Yu et al., 2020), we empirically demonstrate that RPI outperforms contemporary methods and then
ablate its core components.

2 RELATED WORK

Online selection of suboptimal experts. CAMS (Liu et al., 2022b;a) learns from multiple subopti-
mal black-box experts to perform model selection based on a given context, but is only applicable in
stateless online learning settings. Meanwhile, SAC-X (Riedmiller et al., 2018) learns the intention
policies (oracles), each of which optimizes their own auxiliary reward function, and then reasons over
which of these oracles to execute as a form of curriculum learning for the task policy. LfGP (Ablett
et al., 2023) combines adversarial IL with SAC-X to improve exploration. Defining auxiliary rewards
requires the task to be decomposed into smaller subtasks, which may not be trivial. Further, they
query the intention policies several times within a single episode. Unlike CAMS and SAC-X, which
rely on selecting expert policies to perform sub-tasks, our approach trains an independent learner
policy. It acquires expertise from sub-optimal experts using only a single oracle query per episode,
thus having the potential to surpass these oracles through global exploration.

Policy improvement with multiple experts. Recent works attempt to learn from suboptimal
black-box oracles while also utilizing rewards observed under the learner’s policy. Active offline
policy selection (A-OPS) (Konyushova et al., 2021) utilizes policy similarities to enhance value
predictions. However, A-OPS lacks a learner policy to acquire expertise from these offline policies.
ILEED (Beliaev et al., 2022) distinguishes between oracles based on their expertise at each state but
is constrained to pure offline IL settings. InfoGAIL (Li et al., 2017) conditions the learned policy on
latent factors that motivate demonstrations of different oracles. OIL (Li et al., 2018) tries to identify
and follow the best oracle in a given situation. SFQL (Barreto et al., 2017) proposes generalized
policy improvement with successor features. MAMBA (Cheng et al., 2020) utilizes an advantage
function with geometric weighted generalization and achieves a larger policy improvement over
SFQL, while addressing the above two important questions with theoretical support. MAPS (Liu
et al., 2023) improves on the sample efficiency and performance of MAMBA by proposing active
policy selection and state exploration. However, even when the quality of the oracle set is poor,
these algorithms will still resort to imitation learning with the inferior oracles. In contrast, our
algorithm performs self-improvement, employing imitation learning only on states for which an
oracle outperforms the learner.
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3 PRELIMINARIES

We consider a finite-horizon Markov decision process (MDP) M0 = ⟨S,A,P, r,H⟩ with state space
S, action space A, unknown stochastic transition dynamics P : S ×A → ∆(S), unknown reward
function r : S × A → [0, 1], and episode horizon H . We define total number of training steps
(rounds) as N and assume access to a (possibly empty) set of K oracles, defined as Π = {πk}Kk=1,
where πk : S → ∆(A). The generalized Q-function with respect to a general function f : S → R is
defined as:

Qf (s, a) := r (s, a) + Es′∼P|s,a[f (s′)] .

When f(s) is the value function of a particular policy π, the generalized Q-function can be used to
recover the policy’s Q-function Qπ(s, a). We denote the generalized advantage function with respect
to f as

Af (s, a) = Qf (s, a)− f (s) = r (s, a) + Es′∼P|s,a[f (s′)]− f (s) .

Given an initial state distribution d0 ∈ ∆(S), let dπt denote the distribution over states at time t under
policy π. The state visitation distribution under π can be expressed as dπ := 1

H

∑H−1
t=0 dπt . The value

function of the policy π under d0 is denoted as:

V π (d0) = Es0∼d0
[V π (s)] = Es0∼d0

[
Eτ0∼ρπ|s0

[
H−1∑

t=0

r (st, at)

]]

where ρπ(τt | st) is the distribution over trajectories τt = {st, at, . . . , sH−1, aH−1} under policy π.
The goal is to find a policy π = argmaxπ J (π) maximizing the expected return

J (π) = Es∼d0
[V π (s)] . (1)

4 POLICY IMPROVEMENT WITH PERFECT KNOWLEDGE OF ORACLE SET

We now present a reinforcement learning framework in the presence of an imitation learning oracle
set, which is inspired from Cheng et al. (2020); Liu et al. (2023). In this section, we assume that we
have perfect knowledge of the underlying MDP and each oracle’s value function. We will relax these
assumptions in the next section.

Max-following. Given a collection of k imitation learning oracles Πo = {πk}k∈[K], the max-
following policy is a greedy policy that selects the oracle with the highest expertise in any given state.
The max-following policy is sensitive to the quality of the oracles. Specifically, if all oracles perform
worse than the learner policy at a given state, the max-following policy will still naively imitate the
best (but poor) oracle. Instead, it would be more prudent to follow the learner’s guidance in these
cases.
Definition 4.1. (Extended Oracle Set). Let Πo = {πk}k∈[K] be the given black-box oracle set,
ΠL = {πn}n∈[N ] be the learner’s policy class, where πn denotes that the policy has been updated for
n rounds. We define the extended oracle set at the n-th round as

ΠE = Πo ∪ {πn} =
{
π1, . . . , πK , πn

}
. (2)

Remark 4.2. The learner policy in the extended oracle set is updated at each round.

4.1 MAX+ AGGREGATION

Based on the extended oracle set, we first introduce the advantage function A+ and the baseline value
function f+ as follows:
Definition 4.3. (A+ Advantage Function). Given k oracles π1, . . . , πk and the learner policy πn,
we define A+ advantage function as :

A+ (s, a) := r (s, a) + Es′∼P|π,s[f
+ (s′)]− f+ (s) , (3)

where f+ (s) is the baseline value function, defined as:

f+ (s) = max
k∈[|ΠE |]

V k (s) , where
[
V k

]
k∈[|ΠE |] :=

[
V π1

, . . . , V πK

, V πn

]
. (4)
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f+ (s) focuses exclusively on optimizing oracle selection for a single state, assuming that the selected
policy will be followed for the remainder of the trajectory. To optimize the oracle selection for every
encountered state, we introduce the max+-following policy, which acts as a greedy policy, adhering
to the optimal policy within the extended oracle set for any given state.
Definition 4.4. (Max+-Following Policy). Given extended oracle set ΠE , the max+-following policy

π◦ (a | s) := πk⋆

(a | s) , where k⋆ := argmax
k∈[|ΠE |]

V k (s) , |ΠE | = K + 1, V K+1 = V πn . (5)

Proposition 4.5. Following π◦ is as good or better than imitating the single-best policy in ΠE .

With a slight abuse of notation, we use A+ (s, π◦) to denote the generalized advantage function of
the policy π◦ at s. As proved in the Appendix, the function A+ (s, π◦) ≥ 0 (Appendix C.1) and that
the value function for the max+-following policy satisfies V π◦

(s) ≥ f+ (s) = maxk∈[|ΠE |] V
k(s)

(Appendix C.1). This indicates that following π◦ is at least as good as or better than imitating a single
best policy in ΠE . Thus, π◦ is a valid approach to robust policy learning in the multiple oracle setting.
The max+-following policy π◦ is better than the max-following policy when the learner’s policy is
better than any oracle for a given state. On the other hand, when the value of a specific oracle V k is
always better than all other policies for all states, π◦ simply reduces to the corresponding oracle πk.
This is not ideal because the value V k(s) assumes to keep rolling out the same oracle πk from state s
until termination, without making improvement by looking one step ahead and searching for a better
action. To address this, we propose the max+-aggregation policy as follows.
Definition 4.6. (Max+-Aggregation Policy2). For state s, the max+-aggregation policy π⊚ performs
one-step improvement and takes the action with largest advantage over f+,

π⊚ (a | s) = δa=a⋆ ,where a⋆ = argmax
a∈A

A+ (s, a) and δ is the Dirac delta distribution. (6)

Although the max+-following policy π◦ improves upon the max-following policy, it does not perform
self-improvement. In contrast, the max+-aggregation policy π⊚ looks one step ahead and makes the
largest one-step advantage improvement with respect to f+. Thus, in the degenerate case where π◦ is
equivalent to the single best policy, π⊚ outperforms the best single policy in ΠE for all states. Since
A+(s, π⊚) ≥ A+ (s, π◦) ≥ 0 for any state s by Corollary C.2 and Proposition 4.5, we conclude that
the max+-aggregation policy π⊚ is a suitable policy benchmark for the robust policy learning setting
as well. We note that the baseline f+(s) corresponds to the value of choosing the single-best policy
in ΠE at state s and rolling it out throughout the rest of the episode. In contrast, π◦ and π⊚ optimize
the oracle selection at every remaining step in the trajectory. This work is therefore built on π⊚.
Remark 4.7. (Empty Oracle Set) Up to this point, we have primarily assumed a non-empty oracle
set Πo and an extended oracle set of size |ΠE | ≥ 2. Given an empty oracle set Πo, ΠE will only
contain the learner policy. In this case, f+ ≡ V π◦

and π◦ will not improve, while π⊚ reduces to pure
reinforcement learning, performing self-improvement by using the advantage function A+.

5 ROBUST POLICY IMPROVEMENT WITH BLACK-BOX ORACLE SET

Improving a policy from the max+ baseline f+ (Eqn. 4) is the key to learning robustly via IL and
RL. This requires knowledge of the MDP and the oracles’ value functions, however, the oracles are
presented to the learner as black-box policies with unknown value functions.

A critical challenge to use f+ (s) = maxk∈[|ΠE |] V
k (s) as a baseline is that it changes as training

goes, whereas MAMBA assumes a static baseline function. In the following analysis we resort to
a slightly weaker baseline, f+m := maxk∈[|Πo∪{πm}|] V

k (s), where m ≪ N is an intermediate step
in the learning process, and N is the total number of rounds. Similarly, we define A+

m (s, a) :=
r (s, a) + Es′∼P|π,s[f

+
m (s′)] − f+m (s) , as the corresponding advantage function, and π⊚

m as the
corresponding max+-aggregation policy by setting A+ = A+

m in Definition 4.6. In the following, we
use the baseline value f+m, and reformulate the problem in an online learning setting (Ross et al.,
2011; Ross and Bagnell, 2014; Sun et al., 2017; Cheng et al., 2020; Liu et al., 2023) for black-box
oracles. Following MAMBA’s analysis, we first assume that the oracle value functions are known but
the MDP is unknown, followed by the case that the value functions are unknown.

2When we exclude the learner’s policy from the extended oracle set, this reduces to the max-aggregation
policy, which was used in MAMBA (Cheng et al., 2020).
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Unknown MDP with known value functions. If the MDP is unknown, we can regard dπn as an
adversary in online learning and establish the online loss for round n as

ℓn (π) := −HEs∼dπnEa∼π|s [A+ (s, a)] . (7)

Lemma C.1 and Proposition 4.5 suggest that making ℓn (π) small ensures that V πn (d0) achieves
better performance than f+m (d0) for m < n. Averaging over N rounds of online learning, we obtain

1

N

∑

n∈[N ]

V πn (d0) = f+m (d0) + ∆N − ϵN
(
ΠL)− RegretLN , (8)

where RegretLN := 1
N (

∑N
n=1 ℓn (πn)−minπ∈ΠL

∑N
n=1 ℓn (π)) depends the learning speed of an

online algorithm, ∆N := − 1
N

∑N
n=1 ℓn(π

⊚
m) is the loss of the baseline max+-aggregation policy π⊚

m,
and ϵN (ΠL) := minπ∈ΠL

1
N (

∑N
n=1 ℓn(π) −

∑N
n=1 ℓn(π

⊚
m)) expresses the quality of oracle class,

where ΠL is specified in Definition 4.1. If π⊚
m ∈ ΠL, we have ϵN (ΠL) = 0. Otherwise, ϵN (ΠL) > 0.

By Proposition 4.5, A+(s, π⊚
m) ≥ 0 and, in turn, ∆N ≥ 0. If π⊚ ∈ ΠL, using a no-regret algorithm

to address this online learning problem will produce a policy that achieves performance of at least
Es∼d0

[f+m (s)] + ∆N +O(1) after N iterations.

Unknown MDP with unknown value function. In practice, the value functions of the oracle set
are unavailable. f+ and A+ need to be approximated by f̂+ and Â

+
. We compute the sample estimate

of the gradient as follows:

∇ℓ̂n (πn) = −HEs∼dπnEa∼πn|s

[
∇ log πn (a | s) Â

+
(s, a) .

]
(9)

The approximation of the value function and gradient introduces bias and variance terms in the online
learning regret bound RegretLN . We propose a general theorem to lower bound the performance:

Proposition 5.1 (Adapted from Cheng et al. (2020)). Define ∆N , ϵN
(
ΠL), f+m, and RegretLN as

above, where f+m := maxk∈[|Πo∪{πm}|] V
k (s) for m ≤ N , and RegretLN corresponds to the regret of

a first-order online learning algorithm based on Eqn. 9. It holds that

E
[
max
n∈[N ]

V πn (d0)

]
≥ Es∼d0

[f+m (s)] + E
[
∆N − ϵN

(
ΠL)− RegretLN

]
,

where the expectation is over the randomness in feedback and the online algorithm.

Remark 5.2. W.l.o.g. we assume f+0 (s) := argmaxk∈[K] V k (s), which corresponds to the baseline
function considered in MAMBA. Note that f+m(s) admits a weaker baseline value than f+n(s) for
m < n, but no weaker than the max value of any oracle, f+0 (s). Therefore, as the learner improves
f+m(s), max+-aggregation will have an improved lower bound over Cheng et al. (2020). Consider a
scenario where m = o(N). In round m, we instantiate f+m and perform 1-step advantage improvement
over f+m. Since f+m(s) > f+0 (s) when V πm(s) > f+0 (s), s ∼ dπn , we can view max+-aggregation as
adding improved learner policies into Πo at the end of each round and perform 1-step improvement
over f+ on the expending oracle set. As Es∼d0

[f+m (s)] improves, it will lead to the improvement
over the original bound in Proposition 5.1.

6 ROBUST POLICY IMPROVEMENT VIA ACTIVELY BLENDING RL AND IL

In this section, we present RPI, an algorithm for robust policy improvement that builds upon the
max+-aggregation policy. RPI consists of two main components: Robust Active Policy Selec-
tion (RAPS) and Robust Policy Gradient (RPG) that enable the algorithm to combine the advantages
of reinforcement and imitation learning.

6.1 ROBUST ACTIVE POLICY SELECTION

To improve the sample efficiency in learning from multiple oracles and lower the bias in RegretLN in
Proposition 5.1 caused by the approximator of the max+ baseline function f̂+, we propose a robust
active policy selection strategy. We employ an ensemble of prediction models to estimate the value
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Algorithm 1 Robust Policy Improvement (RPI)

Input: Learner policy π1, oracle set Π =
{
πk

}
k∈[K]

, function approximators {V̂ k}k∈[K], V̂n.
Output: The best policy among {π1, ..., πN}.

1: for n = 1, . . . , N − 1 do
2: Construct an extended oracle set ΠE =

[
π1, . . . , πk, πn

]
k∈[|Π|].

3: Sample te ∈ [H − 1] uniformly random.
4: Roll-in πn up to te, select k⋆ (Eqn. 10), and roll out πk⋆ to collect the remaining data Dk.
5: Update V̂ k⋆ using Dk.
6: Roll-in πn for full H-horizon to collect data D′

n.
7: Update V̂n using D′

n.

8: Compute advantage Â
GAE+

(Eqn. 11) and gradient estimate ĝn (Eqn. 14) using D′
n.

9: Update πn to πn+1 by giving ĝn to a first-order online learning algorithm.

function for a policy (Liu et al., 2023), where we estimate both the mean V̂ k
µ (s) and the uncertainty

σk (s) for a particular state s. We generate a few independent value prediction networks that are
initialized randomly, and then train them using random samples from the trajectory buffer of the
corresponding oracle πk.

In the single oracle case, the motivation of rolling in a learner policy and rolling out an oracle policy
(referred to RIRO) in prior work (e.g., DAgger, AggrevateD) is to address the distribution shift. In our
work, in addition to addressing distribution shift, we aim to improve the value function estimator V̂
of the most promising oracle on the switch state s to reduce the bias term of f̂+. Moreover, we seek
to reduce the roll-out cost associated with querying oracles, particularly when the learner exhibits a
higher expected value for the switching state. In such cases, we roll-out the learner to collect additional
data to enhance its policy. We achieve this goal by comparing the UCB of oracle policies’ value
function and LCB of learner policy to improve the estimation of f̂+. We design the strategy as follows:

Let V̂ k(s) = V̂ k
µ (s) + σk(s), V̂

k(s) = V̂ k
µ (s) − σk(s) be the UCB and LCB of policy k’s value

function for state s, respectively. We obtain the best oracle πk⋆ for state s as follows:

k⋆ = argmax
k∈[|ΠE |]

{
V̂ 1 (s) , V̂ 2 (s) , ..., V̂ K (s) , V̂ K+1 (s)

}
, (10)

where V̂ K+1 is the confidence-aware value function approximator for the learner’s policy, while
[V̂ k]k∈[K] represents the value function approximators associated with oracle policies.
Remark 6.1. The insight behind using a confidence-aware policy selection strategy in RAPS is
to improve the estimate of the value function of the most promising oracle at a given state. This
necessitates accounting for estimation uncertainties, which leads to the adoption of a UCB-based
approach to identify the optimal oracle. Using LCB for the learner encourages oracle-guided
exploration unless we are certain that the learner surpasses all oracles for the given state. We
empirically evaluate this in Section 7.2.
Remark 6.2. MAPS (Liu et al., 2023) introduced an active policy selection strategy by selecting the
best oracle to roll out and improve the value function approximation on state ste according to f+0 . In
this work, we empirically improve such strategy by utilizing the learner policy in ΠE .

6.2 ROBUST POLICY GRADIENT

We now propose robust policy gradient based on a novel advantage function, denoted by AGAE+ and a
novel max+ actor-critic framework.

AGAE+ advantage function. The policy gradient methods maximize the expected total reward
by repeatedly estimating the gradient g := ▽θE[

∑H−1
t=0 rt]. The policy gradient has the form

g = Et[▽θlog πθ (at|st) Ât] (Sutton et al., 1999; Greensmith et al., 2004; Schulman et al., 2015;
2017), where πθ is a stochastic learner policy and Ât is an estimator of the advantage function at
timestep t and E[·] indicates the empirical average over a finite batch of samples, for an algorithm that
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Dense reward tasks Sparse reward tasks

Figure 1: We consider 8 tasks from DeepMind Control Suite and Meta-World. Extended results on
different variants of these tasks are provided in Appendices E.2 & E.3.

alternates between sampling and optimization. At measures whether the action is better or worse than
the current policy. Hence, the gradient term ▽θlog πθ (at|st) Ât points in the direction of increased
πθ (at|st) if and only if Ât = Â (st, at) > 0. For Â, we propose a novel advantage function AGAE+

based on general advantage estimation (Schulman et al., 2015), the max+ baseline f+ and the A+

advantage function (3).

Â
GAE(γ,λ)+
t = δ̂t+(γλ) δ̂t+1+ ...+(λγ)

T−t+1
δ̂T−1, where δ̂t = rt+γf̂+ (st+1)− f̂+ (st) , (11)

where T ≪ H , and γ and λ are the predefined parameters that control the bias-variance tradeoff. In

this work, we use λ = 0.9 and γ = 1, and thus simplify Â
GAE(γ,λ)+
t as Â

GAE+
t .

We propose a variant of the max+ baseline f+ that includes a confidence threshold Γs for an oracle’s
value estimate:

f̂+ (s) =

{
V̂ πn
µ (s) , if σk (s) > Γs,where k = argmaxk∈[|ΠE |] V̂

k
µ (s) .

maxk∈[|ΠE |] V̂
k
µ (s) , otherwise.

(12)

Remark 6.3. We use a threshold to control the reliability of taking the advice of an oracle, where a
lower value indicates greater confidence. In our experiments, we use Γs = 0.5, which we have found
to exhibit robust behavior (Appendix E.5).

Finally, we have the n-th round online loss as

ℓ̂n (πn) := −HEs∼dπnEa∼π|s

[
Â

GAE+
(s, a)

]
|π=πn

, (13)

and gradient estimator as

ĝn = ∇ℓ̂n (πn) = −HEs∼dπnEa∼π|s

[
∇log π (a | s) Â

GAE+
t (s, a)

]
|π=πn . (14)

Max+ actor-critic. We note that the RPG component (Algorithm 1, lines 8–9) can be viewed as a
variant of the actor-critic framework, with the actor sampling trajectories that are then evaluated by
the max+ critic based on the AGAE+ advantage function (11). The policy gradient in Eqn. 14 enables
the learner policy πn to learn from high-performing oracles and to improve its own value function
V̂ k for the states in which the oracles perform poorly.

Remark 6.4. When γ = 1, Eqn. 11 disregards the accuracy of f̂+, but it has high variance due to the
sum of the reward terms. When γ = 0, it introduces bias, but has much lower variance. Moreover,
when λ = 0 and γ = 1, the loss (13) of RPI reduced to the loss (7) under max+-aggregation (6), and
the performance bound for the max+-aggregation policy and RPI will be equal. Thus, performing
no-regret online learning with regards to Eqn. 13 has the guarantee in Proposition 5.1 and Remark 5.2.
However, when λ > 0, RPI will optimize the multi-steps advantage over f+ in Eqn. 13, while the
max+-aggregation policy π⊚ only optimizes the one-step advantage over f+. Thus, RPI will have
a smaller ϵN

(
ΠL) term than max+-aggregation, which improves the performance lower bound in

Proposition 5.1.

Imitation, Blending and Reinforcement. Instances of f̂+ in Eqn. 11 may involve a combination
of oracles’ and learner’s value functions. In a case that this does not involve the learner’s value
function—this is likely in the early stage of training since the learner’s performance is poor—RPI
performs imitation learning on the oracle policies. Once the learner policy improves and f̂+ becomes
identical to the learner’s value function, RPI becomes equivalent to the vanilla actor-critic that
performs self-improvement. When it is a combination of the two, RPI learns from a blending of the
learner and oracles.
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Figure 2: Main results. A comparison between RPI with five baselines and the best oracle (horizontal
line) on Cheetah, Cartpole, Pendulum, and Walker-walk from DMC; and Window-close, Button-press,
Faucet-open, and Drawer-close from Meta-World in terms of best-return with three diversified oracles.
The shaded area represents the standard error over five trials. RPI scores the best in all benchmarks.

7 EXPERIMENTS

Environments. We evaluate our method on eight continuous state and action space domains:
Cheetah-run, CartPole-swingup, Pendulum-swingup, and Walker-walk from the DeepMind Control
Suite (Tassa et al., 2018); and Window-close, Faucet-open, Drawer-close and Button-press from
Meta-World (Yu et al., 2020). In addition, we conduct experiments on a modified sparse reward
Meta-World environment, which is considered to be a more challenging task. We set ensemble size
of value functions to five. Appendix D provides further details.

Oracles. We implement our oracles as policies trained using PPO (Schulman et al., 2017) with
generalized advantage estimate (GAE) (Schulman et al., 2015) and SAC (Haarnoja et al., 2018). We
save the policy weights at different points during training to achieve oracles that perform differently
in different states. Each environment is provided with three diversified oracles.

Baselines. We compare RPI with five baselines: (1) PPO with GAE as a pure RL baseline; (2) Max-
Aggregation (Cheng et al., 2020) as a pure IL baseline (a multiple-oracle variant of AggreVaTe(D));
(3) a variant of LOKI adapted to the multiple-oracle setting that initially performs pure IL and then
pure RL; (4) MAMBA; (5) MAPS (the current state-of-the-art method)3; and also the best oracle in
the oracle set as a reference. We matched the number of environment interactions across algorithms4.
Appendix D provides further details.

7.1 MAIN RESULTS

Figure 2 visualizes the performance of RPI and the baselines. The results show that RPI surpasses
the baselines on all domains, despite variations in the black-box oracle set. Notably, the RL-based
PPO-GAE baseline outperforms the IL methods in the later stages of training in most of the dense
reward environments, while IL-based approaches perform better in the sparse reward domains .
Pendulum-swingup (Fig. 2(d)) and window-close (Fig. 2(h)) are particularly difficult domains that
involve non-trivial dynamics and sparse reward (i.e., the agent receives a reward of 1 only when
the pole is near vertical, the window is closed exactly). Due to the sparse reward, the IL-based
approaches are significantly more sample efficient than the RL-based approach, but their performance
plateaus quickly. RPI initially bootstraps from the oracles, and due to their suboptimality, it switches
to self-improvement (i.e., learning from its own value function), resulting in better performance than
both IL and RL methods. These results demonstrate the robustness of RPI as it actively combines the
advantages of IL and RL to adapt to various environment.

3Our experimental setup including the oracle set differs from that of MAPS. In this work, the learner for all
baselines has access to approximately the same number of transitions and the learner does not have access to the
oracle’s trajectory. We reproduce the baseline performance for the MAPS’ setting in Appendix E.1.

4PPO has a slightly smaller number of interactions due to the lack of oracles’ value function pre-training.
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Figure 3: Results of ablation studies on the Cartpole environment.

7.2 ABLATION STUDIES

Learning state-wise oracle expertise. In Fig. 3(a), we examine the ability of RPI to aggregate
the expertise of multiple oracles on Cartpole. We created three diversified oracles and find that RPI
achieves a return of 645 when it is able to query all three oracles, while the best return falls below 600
when given access to only a single oracle. This result demonstrates RPI’s utilization of the oracles’
state-wise expertise, as it achieves better performance when given access to more oracles.

Ablation on robust active policy selection. In order to understand the effectiveness of RPI’s
robust active policy selection strategy (RAPS), we compare it to active policy selection (APS) (Liu
et al., 2023) (without the learner in RIRO (Algorithm 1, line 4)) on Cartpole. Fig. 3(b) shows that
RAPS has the advantage of selecting the learner policy to roll out in states for which it outperforms the
oracles, resulting in self-improvement. This leads to RAPS outperforming the APS-based approach.

Confidence-awareness in RPI. (1) RPG: We first perform an ablation on Cartpole to investigate
the benefits of using a confidence threshold on an oracle’s value estimate for RPG (Eqn. 12). We
see in Fig. 3(c) that the confidence threshold enables RPG to benefit from both state-wise imitation
learning from oracles with high confidence and the execution of reinforcement learning when oracles
exhibit high uncertainty. Without the threshold, RPG is more vulnerable to the quality of oracle set.
(2) RAPS: We then consider the benefits of reasoning over uncertainty to the policy selection strategy,
comparing uncertainty-aware RPI-LCB/UCB (Eqn. 10) to RPI-MEAN, which does not consider
uncertainty. Fig. 3(d) demonstrates the benefits of using LCB/UCB for policy selection. Addition
results in Appendix E.6 reveal that RPI-LCB/UCB outperforms RPI-MEAN across all benchmarks by
an overall margin of 40%, supporting the advantage of incorporating confidence to policy selection.
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Figure 4: IL and RL.

Visualizing active IL and RL. Figure 4 visualizes the active state-wise
imitation and reinforcement process employed by RPI in the gradient
estimator on Pendulum. The figure includes three oracle policies (in
blue, orange, and green) and the learner’s policy (in red). Each oracle
exhibits different expertise at different stages. In the beginning, RPI
only imitates the oracles, which initially have greater state-wise expertise
than the learner. As the learner improves, the frequency with which RPI
samples the leaner policy increases, corresponding to self-improvement.
As training continues, the expertise of the learner increasingly exceeds
that of the oracles, resulting in RPI choosing self-improvement more often than imitating the oracles.

8 CONCLUSION

We present max+, a robust framework for IL and RL in the presence of a set of black-box oracles.
Within this framework, we introduce RPI, a policy gradient algorithm comprised of two novel
components: a robust active policy selection strategy (RAPS) that enhances sample efficiency and a
robust policy gradient (RPG) for policy improvement. We provide a rigorous theoretical analysis
of RPI, demonstrating its superior performance compared to the current state-of-the-art. Moreover,
empirical evaluations on a diverse set of tasks demonstrate that RPI consistently outperforms all
IL and RL baselines, even in scenarios with limited oracle information (favoring RL) or sparse
rewards (favoring IL). RPI effectively adapts to the nature of the domain and the quality of the
oracles by actively interleaving IL and RL. Our work introduces new avenues for robust imitation
and reinforcement learning and encourages future research on addressing more challenging tasks in
robust settings, such as handling missing state or oracle information.
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A SELECTIVE COMPARISON AGAINST RELATED WORKS

Table 2: A qualitative comparison of related algorithms. The publication years are included in
parentheses for reference. Algorithms designed to fit a particular criterion are marked by “✓”; criteria
that are not explicitly considered in the algorithm design are marked by “×”.

Algorithm Criterion Online Stateful Active Interactive Multiple
oracles

Sample
efficiency

(in multiple
oracles)

Robust

Behavioral Cloning
(Pomerleau, 1988) IL × ✓ × × × – ×

REINFORCE
(Williams, 1992)
(Sutton et al., 1999)

RL ✓ ✓ × × × × –

SMILe
(Ross and Bagnell, 2010) IL × ✓ × × × – ×

DAgger
(Ross et al., 2011) IL ✓ ✓ × ✓ × – ×

PPO with GAE
(Schulman et al., 2017)
(Schulman et al., 2015)

RL ✓ ✓ × × × × –

AggreVateD
(Sun et al., 2017) IL ✓ ✓ × ✓ × – ×

DQfD
(Hester et al., 2018) Offline → online RL ✓ ✓ – ✓ × – –

THOR
(Sun et al., 2018) IL+RL ✓ ✓ × ✓ × – ×

LOKI
(Cheng et al., 2018) IL+RL ✓ ✓ × ✓ × – ×

SAC-X
(Riedmiller et al., 2018) RL ✓ ✓ × ✓ ✓ × ×

LEAQI
(Brantley et al., 2020) IL ✓ ✓ ✓ ✓ × – ×

MAMBA
(Cheng et al., 2020) IL+RL ✓ ✓ × ✓ ✓ × ×
A-OPS
(Konyushova et al., 2021) Policy Sel. × × ✓ × ✓ ✓ –

ILEED
(Beliaev et al., 2022) IL × ✓ × × ✓ × ×

IQL
(Kostrikov et al., 2021) Offline → online RL ✓ ✓ – ✓ × – –

CAMS
(Liu et al., 2022a) Model Sel. ✓ × ✓ × ✓ ✓ ✓

MoDem
(Hansen et al., 2022) Offline → online RL ✓ ✓ – ✓ × – –

Hybrid RL
(Song et al., 2022) Online RL with offline data ✓ ✓ – ✓ × – –

PEX
(Zhang et al., 2023) Offline → online RL ✓ ✓ – ✓ × – –

TGRL
(Shenfeld et al., 2023) IL+RL ✓ ✓ × ✓ × – ×

LfGP
(Ablett et al., 2023) IL ✓ ✓ × ✓ ✓ × ×

MAPS
(Liu et al., 2023) IL+RL ✓ ✓ ✓ ✓ ✓ ✓ ×

RPI (Ours) IL+RL ✓ ✓ ✓ ✓ ✓ ✓ ✓

A.1 ADDITIONAL NOTES ON RELATED WORK

MAMBA addressed the challenge of learning from multiple sub-optimal oracles and tackled two
fundamental questions: what constitutes a reasonable benchmark for policy improvement, and how
to systematically combine sub-optimal oracles into a stronger baseline. MAMBA proposed a max-
aggregated baseline and suggested policy improvement from it as a natural strategy for combining
these oracles to form a better policy. In addition, they introduced a novel Max-aggregation of Multiple
Baseline approach and provided a theoretical performance guarantee for it. However, one limitation
of MAMBA is its high sample complexity. It requires prolonged rounds to identify the optimal
oracle for a given state due to its strategy of uniformly sampling an oracle, resulting in a larger
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accumulation of regret. MAPS aims to enhance the sample efficiency of MAMBA by introducing
Max-aggregation Active Policy Selection with theoretical support, and it empirically outperforms
MAMBA. Nevertheless, both MAMBA and MAPS share a common limitation in non-robustness.
They are susceptible to the quality of the oracle set, and both algorithms may fail in cases where
the oracle set is of poor quality. Our work addresses this robustness challenge by proposing a
novel max+ framework. Inspired by the max-aggregation policy from MAMBA, we introduced a
max+-aggregation policy based on a novel extended oracle set. This enables the policy to undergo
self-improvement even when the oracle set is poor. Additionally, we proposed a novel algorithm,
RPI, with Robust Active Policy Selection to improve active policy selection from MAPS. Theoretical
analyses were provided for both the max+ framework and the RPI algorithm.

B ADDITIONAL BACKGROUND

B.1 ADDITIONAL ALGORITHMS FOR LEARNING FROM MULTIPLE ORACLES

In this section, we introduce a few baselines that learn from a set of black-box oracles Π ={
πk

}
k∈[K]

.

Single-best expert π⋆: The first baseline that we consider imitates a single oracle that achieves the
best performance in hindsight among the oracle set, i.e., π⋆ := argmaxπ∈Π Es0∼d0

[
V π(s0)

]
. After

figuring out the single-best expert, this strategy simply keeps rolling out the expert. In practice, this
is often inadequate as it neglects the potential benefits of suboptimal oracles at the state level.

Max-following π•: Given a collection of k imitation learning oracles Πo = {πk}k∈[K], the max-
following policy (Cheng et al., 2020; Liu et al., 2023) is a greedy policy that selects the oracle with
the highest expertise in any given state:

π• (a | s) := πk⋆

(a | s) , k⋆ := argmax
k∈[K]

V k (s)

where V k(s) = V πk

(s) is the value function for oracle k ∈ [K].

Max-aggregation πmax: Max-aggregation (Cheng et al., 2020) performs one-step improvement based
on the max-following policy π•. Denote a natural value baseline fmax (st) for IL with multiple oracles
as

fmax (st) := max
k∈[K]

V k (s) . (15)

We then denote the max-aggregation policy as

πmax (a | s) := δa=a⋆ ,where a⋆ = argmax
a∈A

Afmax
(s, a) ,

Afmax
(s, a) = r (s, a) + Es′∼P|s,a[f

max (s′)]− fmax (s) , and δ is the Dirac delta distribution.
(16)

The max-aggregation policy is a function of fmax and, in turn, requires knowledge of the MDP and
each oracle’s value function (Eqn. 15). However, in the episodic interactive IL setting, oracles are
provided as black boxes and their value functions are unknown. MAMBA (Cheng et al., 2020) and
MAPS (Liu et al., 2023) deal with this by reducing IL to an online learning problem and adapt the
online loss defined at round n as:

ℓn (π;λ) :=− (1− λ)HEs∼dπn

[
Afmax,π
λ (s, π)

]
− λEs∼d0

[
Afmax,π
λ (s, π)

]
. (17)

Here, Afmax,π
λ (s, a) is a λ-weighted advantage defined as:

Afmax,π
λ (s, a) := (1− λ)

∞∑

i=0

λiAfmax,π
(i) (s, a) , (18)

which integrates various i-step advantages:

Afmax,π
(i) (st, at) := Eτt∼ρπ(·|st)[r(st, at) + · · ·+ r (st+i, at+i) + fmax (st+i+1))]− fmax (st) .
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B.2 LIMITATIONS OF THE PRIOR ART

MAPS (Liu et al., 2023) and MAMBA (Cheng et al., 2020) suffer from two limitations related to
their non-robustness to the choice of the oracle set. First, their online loss function (17) relies on a
predetermined λ value that combines imitation learning and reinforcement learning, making their
performance sensitive to the quality of the oracle set. Second, their gradient estimator utilizes the
max-aggregation policy πmax and the value baseline function fmax, both of which are dependent on
the given black-box oracle set. If the oracle set includes only adversarial oracles, these methods will
still try to perform imitation learning, thereby impeding policy enhancement.

B.3 VALUE FUNCTION APPROXIMATOR FOR DISCRETE ENVIRONMENT

In the interactive episodic MDP, we roll out a selected oracle k, resulting in Nk(st) trajectories
τ1,k, τ2,k, . . . , τNk,k starting from state st for round N . We determine an estimate for the return in
state st by averaging the returns obtained across the trajectories:

V̂ πk (st) =
1

Nk (st)

Nk(st)∑

i=1

H∑

j

λjr (sj , aj) . (19)

B.4 ACTIVE POLICY SELECTION

To address the sample efficiency challenge in learning from multiple experts, we reference active
policy selection technique in MAPS work to select the best oracle k⋆ for state st as follows:

k⋆ = argmax
k∈[K]

{
V̂ k(st) +

√
2H2 log 2

δ

Nk(st)
S discrete

V̂ k
µ (st) + σk (st) S continuous

(20)

C PROOFS

In the following, we provide proofs for the theoretical claims in the main paper.

Lemma C.1. (Kakade and Langford, 2002; Ng et al., 1999) Let f : S → R such that f (sH) = 0.
For any MDP and policy π,

V π (d0)− f (d0) = HEs∼dπ

[
Af (s, π)

]
(21)

From Lemma C.1, we get the following corollary:

Corollary C.2. (Cheng et al., 2020) If f is improvable with respect to π, then V π (s) ≥ f (s),
∀s ∈ S.

Corollary C.2 indicates that a policy π outperforms all policies in ΠE , if, for every state, there is a
baseline value function f superior to that of all policies (f(s) ≥ V k (s) ,∀k ∈ [|ΠE |], s ∈ S), while
f can be improved by π (i.e., Af (s, π) ≥ 0).

C.1 PROOF OF PROPOSITION 4.5

Proof. Without loss of generality, let us assume the optimal oracle is oracle 1 (the first oracle) in
oracle set Π,

A+ (s, π◦) = r (s, π◦) + Ea∼π◦|sEs′∼P|s,a [f
+ (s′)]− f+ (s) (22a)

≥ r (s, π◦) + Ea∼π◦|sEs′∼P|s,a
[
V 1 (s′)

]
− V 1 (s) (22b)

≥ r (s, π•) + Ea∼π◦|sEs′∼P|s,a
[
V 1 (s′)

]
− V 1 (s) (22c)

= AV 1 (
s, π1

)
≥ 0, (22d)
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where the last step follows since π◦ (a|s) ≥ π• (a|s) = π1 (a|s). Since we have A+ (s, π◦) ≥ 0,
together with Lemma C.1, we have

V π◦
(s) ≥ f+ (s) = max

k∈[|ΠE |]
V k(s). (23)

V π◦
(s) ≥ f+ (s) indicates that following π◦ is equally good or superior to imitating a single best

policy in ΠE .

C.2 PROOF OF PROPOSITION 5.1

We denote f+0 (s) := argmaxk∈[K] V k (s). According to Theorem 1 of Cheng et al. (2020), we
obtain

E
[
max
n∈[N ]

V πn (d0)

]
≥ Es∼d0

[f+0 (s)] + E
[
∆N − ϵN

(
ΠL)− RegretLN

]
. (24)

Now let ΠE
m = Πo ∪ πm. Following the same reasoning strategy as above, we will have lower bound

for RPI as Es∼d0 [f
+
m (s)]+E

[
∆N − ϵN

(
ΠL)− RegretLN

]
. Since Es∼d0 [f

+
m (s)] ≥ Es∼d0 [f

+
0 (s)],

we have performance lower bound of RPI no worse than MAMBA.

Remark. MAPS (Liu et al., 2023) retains MAMBA’s lower bound but enhances sample efficiency
and reduces the bias in RegretLN . The inherent uncertainty of the optimal policy π⋆ ∈ ΠE

m makes an
unbiased f+ estimate challenging. The regret term RegretLN is bounded by:

E
[
RegretLN

]
≤ O

((
β+ + βϵ

)
N +

√
vN

)
,

where β+ is the estimation bias that results from selecting the non-optimal policy π̂⋆ in ΠE
m for a

given state, and βϵ is the value estimation error w.r.t. the true value for given state of selected policy
π̂⋆ and v represents the variance term.

MAPS improves upon MAMBA’s sample complexity, reducing bias in its regret bound via an active
policy selection mechanism. Our work builds on MAPS, emphasizing empirical enhancements in
active policy selection with the integration of the learner policy in ΠE

m.

D EXPERIMENTAL DETAILS

D.1 BASELINES

AggreVaTeD AggreVaTeD (Sun et al., 2017) is a differentiable version of AggreVaTe, which
focuses on a single oracle scenario. AggreVaTeD allows us to train policies with efficient gradient
update procedures. AggreVaTeD models the policy as a deep neural network and trains the policy
using differentiable imitation learning. By applying differentiable imitation learning, it minimize the
difference between the expert’s demonstration and the learner policy behavior. AggreVaTeD learns
from the expert’s demonstration while interact with the environment to outperform the expert.

Max-Aggregation We have developed a variant of the Max-aggregation policy as outlined in
Equation (16) that is specifically designed for pure imitation learning using multiple oracle sets.
When utilizing a single oracle, it effectively reduces to AggreVateD. Our approach builds on the
existing MAMBA framework by setting the lambda value in the loss function to zero. While max-
aggregation may not always yield the optimal policy, it offers the advantage of being able to achieve
results with fewer samples, making it a more sample-efficient option.

LOKI-variant LOKI (Cheng et al., 2018) is strategy for policy learning that combines the imitation
learning and reinforcement learning objectives in a two-stage manner for the single oracle setting. In
the first stage, LOKI performs imitation learning for a small but random number of iterations and
then switches to policy gradient reinforcement learning method for the second stage. LOKI is able to
outperform a sub-optimal expert and converge faster than running policy gradient from scratch. In
this work, we propose a variation of LOKI that adapts to multiple experts. During the first-half of
training (i.e., the first stage) we perform Max-aggregation style imitation learning, and then perform
pure reinforcement learning as the second stage.
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PPO-GAE Schulman et al. (2015) proposed the generalized advantage estimator (GAE) as a means
of solving high-dimensional continuous control problems using reinforcement learning. GAE is used
to estimate the advantage function for updating the policy. The advantage function measures how
much better a particular action is compared to the average action. Estimating the advantage function
with accuracy in high-dimensional continuous control problems is challenging. In this work, we
propose PPO-GAE, which combines PPO’s policy gradient method with GAE’s advantage function
estimate, which is based on a linear combination of value function estimates. By combining the
advantage of PPO and GAE, PPO-GAE (Schulman et al., 2017) achieved both sample efficiency and
stability in high-dimensional continuous control problems.

MAMBA MAMBA (Cheng et al., 2020) is the SOTA work of learning from multiple oracles. It
utilizes a mixture of imitation learning and reinforcement learning to learn a policy that is able to
imitate the behavior of multiple experts. MAMBA is also considered as interactive imitation learning
algorithm, it imitates the expert and interact with environment to improve the performance. MAMBA
randomly select the state as switch point between learner policy and oracle. Then, it randomly selects
the oracle to roll out. It effectively combines the strengths of multiple experts and able to handle the
case of conflicting expert demonstrations.

MAPS MAPS (Liu et al., 2023) is a policy improvement algorithm that performs imitation learning
from multiple suboptimal oracles. It actively chooses the oracle to imitate based on their value
function estimates and identifies the states that require exploration. By introducing two variations,
Active Policy Selection (APS) and Active State Exploration (ASE), MAPS improves the sample
efficiency of MAMBA. The MAPS variant selects the most promising oracle, denoted as k⋆, for
rollout, utilizing the resulting trajectory to refine the value function estimate V̂ k⋆ (st). This approach
aims to minimize the chances of selecting an inferior oracle for a given state st, thereby reducing
both the sample complexity and gradient estimation bias. On the other hand, the ASE variant of
MAPS deliberates whether to continue with the current policy or switch to what is believed to be the
most promising oracle, similar to APS, by leveraging an uncertainty measure over the current state.
In this study, we adopt MAPS variant as our baseline method.

D.2 GYM ENVIRONMENTS

We evaluate RPI and compare its performance to the aforementioned baselines on the Cheetah-
run, CartPole-swingup, Pendulum-swingup, and Walker-walk tasks from the DeepMind Control
Suite (Tassa et al., 2018) and Window-close, Faucet-open, Drawer-close and Button-press from
Meta-World (Yu et al., 2020). In addition, we conduct experiments on a modified sparse reward
Meta-World environment, which is considered to be a more challenge task.

D.3 SETUP

Setup. In order to ensure a fair evaluation, all baselines are assessed using an equal number of
environment interaction steps (training steps). Each training iteration involved a policy rollout for
the same number of steps. We note that there is a discrepancy in the amount of data available to
the learners of RPI and PPO-GAE. RPI (MAPS, MAMBA, Max-Aggregation) uses some of the
interactions to learn the value function for each Oracle, which results in relatively less data for its
learner, whereas PPO-GAE utilizes all the environment interactions to update all benefits for its
learner policy. Thus, in this work, we balance the transition buffer size for each algorithm to make
them have approximately same number of stored transitions for learner policy improvement. We
average the result based on 5-10 trials.

D.4 IMPLEMENTATION DETAILS OF RPI

We provide the details of RPI in Algorithm 1 as Algorithm 2. Algorithm 2 closely follows Algorithm 1
with a few modifications as follows:

• In line 5, we use a buffer with a fixed size (|Dn| = 19, 200) for each oracle, and discard the
oldest data when it fills up.
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Algorithm 2 Robust Policy Improvement (RPI)

Input: Learner policy π1, oracle set Π =
{
πk

}
k∈[K]

, function approximators {V̂ k}k∈[K], V̂n

Output: The best policy in {π1, ..., πN}.
1: for n = 1, 2, . . . , N − 1 do
2: Construct an extended oracle set ΠE =

[
π1, π2, . . . , πk, πn

]
k∈[|Π|].

3: Sample te ∈ [H − 1] uniformly random. We have a buffer with a fixed size (|Dn| = 19, 200)
for each oracle, and we discard the oldest data when it fills up.

4: Switch to πk⋆

5: Roll-in πn up to te, select k⋆ (10), and roll out πk⋆ to collect data Dk.
6: Update V̂ k⋆ using Dk.
7: Roll-out the learner policy πn for a specified steps (2, 048), and add them to the buffer D′

n.
8: Update V̂n using D′

n.

9: Compute advantage Â
GAE+

(11) and gradient estimate ĝn (14) using D′
n.

10: Perform PPO style policy update on policy πn to πn+1.

• In line 7, we roll-out the learner policy until the buffer reaches a fixed size (|D′
n| = 2,048),

and then empty it once we use the roll outs to update the learner policy. This stabilizes the
training compared to storing a fixed number of trajectories in the buffer, as MAMBA does.

• In line 10, we use PPO with a max+ actor-critic style policy update.

• We pretrain the value function V̂ k of oracle k before the main training loop, with trajectories
generated by rolling out πk from the initial states. In the main training loop, we train V̂ k

using the corresponding rolled-out trajectories, bootstrapped only by itself. This is the same
strategy as in MAMBA and MAPS. Similarly, we train the learner value function V̂n using
only the trajectories rolled-in with πn, bootstrapped only by itself.

D.5 HYPERPARAMETERS AND ARCHITECTURES

Table 3 provides a list of hyperparameter settings we used for our experiments. We use an ensemble
of MLPs to predict an oracle’s value. With five identical MLPs that are separately initialized at
random, we train each MLP separately for the same dataset. At inference time, we collect predictions
from all MLPs for a single input and compute the mean and standard deviation.

D.6 COMPUTING INFRASTRUCTURE AND WALL-TIME COMPARISON

We conducted our experiments on a cluster that includes CPU nodes (approximately 280 cores) and
GPU nodes (approximately 110 Nvidia GPUs, ranging from Titan X to A6000, set up mostly in
4- and 8-GPU configurations). Based on the computing infrastructure, we obtained the wall-time
comparison in Table 4 as follows.

E SUPPLEMENTAL EXPERIMENTS

E.1 COMPARING RPI AGAINST BASELINES WITH A DATA ADVANTAGE

In the main paper, we followed an experimental setup where we assumed that the learner had access to
approximately the same quantity of transitions, while lacking access to the oracle’s offline trajectory.
However, some of the baseline algorithms, such as MAPS (Liu et al., 2023) were originally evaluated
under a different setting in the literature: They assume that the learner can access additional data
from the oracles’ pre-trained offline dataset. In this section, we run MAPS under such a setting, in
order to provide more comprehensive evaluation that is consistent with the literature. Note that under
this experimental setup, MAPS has approximately twice the amount of data compared to RPI. We
refer to this variant as MAPS-ALL.

In contrast to MAPS in our original configuration, the performance of MAPS-ALL doubles in the
Cheetah environment (as shown in Figure 5(a)) and the Pendulum environment (as depicted in Figure
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Parameter Value

Shared

Learning rate 3 × 10−4

Optimizer Adam

Nonlinearity ReLU

# of functions in a value function ensemble 5

Oracle

# of oracles in the oracle set (K) 3

The buffer size for oracle k
(
|Dk|

)
19200

# of episodes to rollout the oracles for value function pretraining 8

Learner

Horizon of MetaWorld and DMControl (H) 300, 1000

Replay buffer size for the learner policy
(
|D′

n|
)

2048

GAE gamma (γ) 0.995

GAE lambda (λ) for AggreVaTeD and Max-Aggregation 0
for LOKi-variant 0 or 1
for RPI 0.9

# of training steps (rounds) (N) 100

# of episodes to perform RIRO (Alg 1, line 4) per training iteration 4

mini-batch size 128

# of epochs to perform gradient updates per training iteration 4

Table 3: RPI Hyperparameters.

Methods Cheetah Cartpole Walk-Walker Pendulum

MAPS 1h 18m 1h 10m 1h 41m 1h 17m
MAMBA 1h 23m 59m 2h 14m 1h 21m
LOKI-variant 1h 17m 1h 36m 2h 11m 1h 12m
PPO-GAE 54m 58m 1h 10m 49m
MAX-aggregation 1h 5m 1h 34m 2h 25m 1h 13m

RPI 57m 58m 1h 43m 1h 18m

Table 4: Wall-time comparison between different methods.

5(c)). Moreover, the performance of MAPS-ALL surges between middle and end of rounds in the
Pendulumn environment. This behavior mirrors what was reported in the original MAPS paper
as well. In the Walker-walk environment (as illustrated in Figure 5(b)), MAPS-ALL demonstrates
an approximate 10% improvement. For the Cartpole environment (Figure 5(d)), MAPS-ALL’s
performance increases by around 20%. MAPS-ALL exhibits overall performance similar to that of
its original paper, with any differences caused by the difference in the oracle set. Notably, as a result,
MAPS-ALL distinctly outperforms RPI only in the Pendulum environment. RPI’s performance
remains comparable to MAPS-ALL in the Cheetah environment and significantly surpasses the
MAPS-ALL baseline in the Walker-Walker and Cartpole environments, despite utilizing much less
data.

E.2 META-WORLD EXPERIMENTS (DENSE REWARD)

In Fig. 6, we conducted additional experiments comparing RPI and state-of-the-art (SOTA)
methods {MAMBA, MAPS}, as well as the best-performing oracle and PPO-GAE, across the
Meta-World benchmarks. The tasks are including (1) window-close, (2) faucet-open, (3)
drawer-close, and (4) button-press. RPI demonstrates superior performance compared to
all baselines in the majority of environments, with the exception of the button-press task.
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Figure 5: Running MAPS in the original paper’s setting.
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(b) Faucet-open (dense)
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Figure 6: Experimental results on the Meta-World benchmark with dense reward.

E.3 META-WORLD EXPERIMENTS (SPARSE REWARD)

In Fig. 7, to further demonstrate the advantages of imitation learning, we modified the Meta-World
environment to create a more challenging sparse reward environment. In this environment, the
agent only receives a reward of 1 upon success; otherwise, it receives a reward of 0. We then
compared the performance of the RPI and state-of-the-art (SOTA) imitation learning-based methods
MAMBA, MAPS, as well as the pure RL method PPO-GAE, and the best-performing oracle across
the Meta-World benchmarks. The tasks include (1) window-close, (2) faucet-open, (3)
drawer-close, and (4) button-press. In these sparse reward environments, when provided
with a good oracle, the imitation learning-based approach demonstrates its advantage over the pure RL
approach. RPI, MAPS, and Mamba outperform PPO-GAE by a factor of 3 in the button-press
environment. When provided with a bad oracle, RPI can still outperform MAPS and MAMBA in the
faucet-open environment. Moreover, even with a poor oracle, RPI outperforms both IL-based
approaches (MAMBA, MAPS) and the RL-based approach (PPO-GAE) in the window-close
environment, showcasing that RPI enjoys benefits from both RL and IL aspects.
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Figure 7: Experimental results on the Meta-World benchmark with sparse reward.

E.4 SINGLE/EMPTY ORACLE SET

In Fig. 2, we mainly discuss experiment on multiple oracle set. In Fig. 8, we demonstrate that RPI is
also robust enough to handle single or empty oracle set.

Single oracle setting. In Fig. 8(b), we demonstrate that RPI outperforms all other baselines in a
single oracle setting as well. This is consistent with the results observed in the multiple-experts
setting. Fig. 8(c) demonstrates that providing an oracle with mediocre performance to RPI boosts the
performance rather than providing a near-optimal oracle. Since we train oracles’ value functions from
the oracle rollouts, the value function of the near-optimal oracle may not have seen the “bad” states
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that the learner policy would encounter in the early stage. This leads to inaccuracy in the predicted
values for such states. In comparison, the value function for a mediocre oracle would be able to
produce accurate predictions on such states.

No oracle environment. When there are no experts available, the performance of imitation learning-
based approaches will inevitably degrade. However, as shown in Fig. 8(a), RPI can adapt to such a
scenario by regressing to pure reinforcement learning. Since we extend RPI based on PPO-GAE, it
achieves a similar level of performance to PPO-GAE when the oracle set is empty.
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Figure 8: Ablation study. (a) Comparing RPI and PPO-GAE under no oracle Pendulum environment.
(b) Comparing RPI and six baseline under single expert Cheetah environment. (c) ablation study on
oracle quality under Cheetah environment.

E.5 ABLATION ON CONFIDENCE THRESHOLD Γs

In Table 5, we perform an ablation study of threshold Γs in Eqn. 12 of robust policy gradient
component. We treat Γs as a hyperparameter the choice of which depends on the user’s risk aversion.
Empirically, we find that a setting of Γs = 0.5 robustly works well in nearly every setting in our
experiments across Deepmind Control suite, Meta-World (Dense reward), and Meta-world (Sparse
reward) environment, the one exception being the Pendulum domain. To better understand how the
choice of Γs effects overall performance, we conducted a set of experiments in which we ran RPI on
the Deepmind Control Suite using different values for Γs ∈ [0, 0.5, 1, 3, 5]. As the following table
shows, setting Γs = 0.5 yields the best performance for all but the Pendulum environment.

In practice, one can first use roll outs of each oracle to estimate the standard deviation and associated
confidence intervals of their ensemble values. A conservative user could then start by setting Γs

based on a probabilistic lower-bound of σ and subsequently tune the hyperparameter according to
user’s risk aversion preference.

Environment Round Γs = 0 Γs = 0.5 Γs = 1 Γs = 3 Γs = 5

Cheetah 100 252.7 ± 23.2 291.2 ± 36.3 251.4 ± 15.1 53.4 ± 20.0 81.3 ± 20.8

Walker-walk 100 328.7 ± 6.5 402.2 ± 57.7 253.0 ± 43.5 31.8 ± 1.4 38.2 ± 1.9

Pendulum 100 34.2 ± 23.5 38.0 ± 10.4 45.6 ± 2.3 54.3 ± 1.5 52.1 ± 0.1

Cartpole 100 445.7 ± 13.5 670.4 ± 110.1 394.8 ± 50.6 301.7 ± 60.0 303.2 ± 4.0

Table 5: Tuning the confidence threshold Γs.

E.6 ABLATION ON UCB/LCB POLICY SELECTION

Environment Round RPI-RAPS(LCB/UCB) RPI-MEAN

Cheetah 100 291.2 ± 36.3 263.0 ± 33.7
Walker-walk 100 402.2 ± 57.7 342.7 ± 18.8
Pendulum 100 54.3 ± 1.5 53.8 ± 0.5
Cartpole 100 670.4 ± 110.1 354.3 ± 65.2

Overall 100 1418.1 1013.8

Table 6: Ablation study on confidence aware UCB/LCB vs MEAN policy selection
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Figure 9: Experimental results on ablation study on confidence aware UCB/LCB vs MEAN policy
selection.

We conducted an ablation study that compares RPI-LCB/UCB, which takes uncertainty into account
as follows:

K = argmax (V̂ 1(s), V̂ 2(s), . . . , V̂ K+1(s))

against RPI-MEAN, which does not consider uncertainty as:

K = argmax (V̂ 1(s), V̂ 2(s), . . . , V̂ K+1(s)).

The experimental results presented in Fig. 9 and Table 6 demonstrate that the RPI-LCB/UCB strategy
outperforms RPI-MEAN across all benchmarks by an overall margin of 40%. This highlights the
significance of incorporating uncertainty in the policy selection strategy.
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