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Abstract

Knowledge Base Question Answering (KBQA)
seeks to provide answers to natural language
questions by utilizing pertinent triples from
knowledge graphs (KGs). The mainstream
methods of KBQA involve the use of graph
neural networks for the reasoning and rely on
subgraph retrieval to reduce the complexity.
However, current retrieval methods predomi-
nantly align question text with graph relations,
leading to inconsistent subgraph quality and
limited interpretability, thereby impeding QA
performance. Here, we proposed a subgraph
retrieval method based on Abstract Meaning
Representation (AMR) to captures deep seman-
tic structures, enhance retrieval precision and
optimize the reasoning by leveraging the struc-
tural similarity of AMR to KGs. Additionally,
we construct reasoning chains in AMR form to
enhance interpretability. Experiments on the
WebQSP and CWQ datasets demonstrated that
the integrating of AMR enhances retrieval per-
formance, improves the subgraph quality, and
achieves competitive KBQA performance and
interpretable reasoning.

1 Introduction

Knowledge graphs (KGs) store factual knowledge
in a structured format of triples (head, relation,
tail), to represent entities and their relations (Paul-
heim, 2016). Knowledge Base Question Answer-
ing (KBQA) seeks to identify answer entities in
a KG based on a given natural language question.
This task can be considered as a node classification
problem, where KG entities are classified as an-
swers vs. non-answers for a given question (Mavro-
matis and Karypis, 2024). Although large language
models (LLMs) perform well in many natural lan-
guage processing (NLP) tasks, they are face with
challenges in handling complex problems and spe-
cialized domains, often generating hallucinated or
inaccurate results (Zhang et al., 2023). In contrast,

Q: Who is the spouse of the lead actor in the movie that won
the Best Picture Oscar in 2014?

Figure 1: An example of utilizing AMR to extract se-
mantic information. AMR captures the core semantics
of a sentence and represents the relations and entity
types in a concise graph structure

graph neural networks (GNNs), owing to their abil-
ity to process intricate graph structures, have been
widely adopted in KBQA systems (Schlichtkrull
et al., 2018). However, reasoning over an entire
large-scale KG is computationally impractical (Ji
et al., 2021), necessitating subgraph retrieval as a
preprocessing step.

Existing subgraph retrieval methods primarily
rely on text embedding to measure the similarity
between a question and KG relations, to select en-
tities and paths accordingly. For instance, PullNet
(Sun et al., 2019) uses an LSTM -based retriever
to iteratively select relations based on the question,
followed by a GNN-based reasoner to identify the
tail entities. Similarly, SR (Zhang et al., 2022) de-
couples the retriever and reasoner, and constructs
subgraphs from the top-k retrieved paths. However,
these embedding-based methods often fail to cap-
ture the semantic structure of the question, result-
ing in subgraphs with noisy nodes and irrelevant
relations (Jain et al., 2021).

A natural language question often consists of
multiple relations that can serve as explicit guid-
ance for subgraph retrieval. Abstract Meaning Rep-
resentation (AMR) provides a structured represen-
tation of a question’s semantic information, strip-
ping away syntactic variations while preserving the
core relations (Banarescu et al., 2013). As illus-
trated in Figure 1, to solve this problem, the first



step is to identify the film that won the Best Pic-
ture Oscar in 2014. The next step is to determine
the lead actors of the film, followed by identifying
the name of the spouse as the final answer. This
process corresponds to the predicates in the AMR
graph, such as win, act, and spouse. This clear
graph structure enhances the quality of subgraph
retrieval and provides interpretability for the rea-
soning process.

Motivated by these advantages of AMR, we pro-
pose an AMR-based subgraph retrieval method for
KBQA with the following objectives: (a) Trans-
form the question into an AMR graph to cap-
ture richer semantic information. (b) Extract fine-
grained relations based on nodes and edges in the
AMR graph. (c) Leverage the extracted relations
to guide subgraph retrieval, to ensure compact and
precise subgraphs. (d) Integrate relations extracted
from AMR into the adjacency matrix for improving
GNN-based reasoning. Subsequently, a subgraph-
oriented reasoning model is employed to identify
answer entities while ensuring an interpretable rea-
soning process.

Our key contributions can be summarized as:

* We introduce AMR as a semantic represen-
tation for KBQA, transforming textual ques-
tions into structured semantic graphs to cap-
ture richer fine-grained relations.

* We propose three relation construction pat-
terns based on AMR nodes and edges, and
the constructed relations can effectively align
with KG structures to improve subgraph re-
trieval.

* We employ a semantic matching mechanism
to retrieve relevant subgraphs and utilize the
AMR graph structure to refine the subgraph’s
adjacency matrix, thereby enhancing both its
quality and reasoning accuracy.

* We leverage AMR-based semantic informa-
tion to construct reasoning paths from the
topic entity to the answer entity, enhancing
the interpretability of the reasoning process.

2 Related Work

Subgraph Retrieval Direct reasoning on the en-
tire KG is often inefficient. In mainstream infor-
mation retrieval-based KBQA, only relevant nodes
and relations are retained to form a subgraph, on

which reasoning is performed to obtain the answer.
However, determining the specific nodes and rela-
tions that constitute the subgraph remains a signif-
icant challenge. GraftNet (Sun et al., 2018) em-
ploys a heuristic approach that retrieves entities
within two hops of the topic entity and ranks them
based on their personalized PageRank scores to
control the size of the final subgraph. However, this
method overlooks the semantics of the question,
which limits the accuracy of subsequent reasoning.
Recent studies have introduced neural models to
solve this issue by retrieving relevant subgraphs
specific to the questions. PullNet (Sun et al., 2019)
proposes a framework that iteratively expands the
subgraph, utilizing an LSTM-based retriever to se-
lect relations at each hop through semantic match-
ing and a GCN-based reasoner (Kipf and Welling,
2016) to identify the tail entities of these relations.
Similarly, SR (Zhang et al., 2022) employs a bidi-
rectional encoder to develop a trainable retriever,
decoupling the retriever from the reasoner and en-
abling integration with any subgraph-oriented rea-
soning model. Despite these advancements, sub-
graph retrieval methods heavily rely on black-box
neural models to interpret question semantics. Con-
sequently, they often fail to preserve the detailed
semantic structure of the question, resulting in sub-
graphs containing unnecessary noisy nodes, which
adversely affect the reasoning process and limit the
overall effectiveness of the approach.

Abstract Meaning Representation Abstract
Meaning Representation (AMR) encodes the entity
types and relations in a question as nodes and edges,
stripping away the syntactic variations while pre-
serving the semantic structure. Recent studies have
leveraged the explicit graph structure of AMR for
semantic parsing and reasoning tasks. AMR-SG
(Xu et al., 2021) constructs AMR-based semantic
graphs from relevant evidence and performs rea-
soning over them to explain the answers. Similarly,
NSQA (Kapanipathi et al., 2020) transforms ques-
tions into query graphs resembling KGs by utiliz-
ing AMR, generating logical forms and employing
a neuro-symbolic reasoner to predict the final an-
swers. In contrast, QDAMR (Deng et al., 2022)
utilizes AMR to convert multi-hop questions into
symbolic forms, facilitating the decomposition of
complex queries and identification of intermediate
unknowns. Inspired by these studies, we aim to
leverage the semantic structure provided by AMR
to enhance subgraph retrieval.
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Figure 2: An overview of our KBQA framework. Firstly, the question Q: “What is the nationality of the spouse of
the Facebook founder?” is parsed using an AMR parser, converting it into an AMR graph. The path from the topic
entity to the amr-unknown node is then explored, and the AMR relations are constructed based on the predicate
nodes and semantic edges encountered along the path. Subsequently, semantic matching is performed with the
relations in the knowledge graph to select the corresponding subgraph. Finally, the adjacency matrix of the subgraph
is optimized using the AMR graph structure, and an AMR-based GNN reasoner is employed to predict the answer,
replacing the corresponding nodes along the AMR path to obtain the reasoning chain.

3 Method

Figure 2 illustrates the pipeline of our AMR-based
KBQA system, which consists of four modules: 7)
AMR Parsing (§3.1), which transforms question
text into AMR graphs to obtain structured seman-
tic information. i) AMR Relation Construction
(§3.2), which leverages the semantic structure of
the AMR graph to extract the relations needed to an-
swer the question. 7¢¢) Subgraph Retrieval (§3.3),
which performs semantic matching between ex-
tracted relations and relations in the KG to retrieve
the relevant subgraph. iv) Answer Prediction and
Reasoning Chain Generation, whichpredicts the an-
swer and generates reasoning chains by reasoning
over the subgraph. Additionally, specific entities
along the path to the answer are used to replace the
corresponding nodes in the AMR graph, thereby
constructing the reasoning chain.

3.1 AMR Parsing

An AMR graph is a rooted, directed, and acycli-
cal structure. The nodes in an AMR graph repre-
sent different concepts, i.e., named entities, quanti-
ties, dates, and other phenomena (Banarescu et al.,
2013); Edges represent relations between these con-
cepts, such as :domain and :name (Kapanipathi
et al., 2020). An AMR path can be obtained from
the topic entity to the answer entity, where the

nodes and edges along this path capture the seman-
tic information necessary to answer the question.
This semantic information is then used for the con-
struction of AMR relations. The following is the
path we extract based on AMR parsing:

ound of

£ spouse domain
Facebook ~—  Person — Person — unknown

We leverage AMR parsing to capture the seman-
tic structure of questions. Figure 2 illustrates the
AMR graph for the question: “What is the na-
tionality of the spouse of the Facebook founder?”.
amr-unknown and Facebook are two key entities
involved in answering the question, where amr-
unknown represents the unknown answer entity
and Facebook serves as the topic entity extracted
from the question. These two entities correspond
to the starting point (topic entity) and final target
(answer entity) in the KBQA reasoning process.

For AMR parsing, we adopt SPRING (Bevilac-
qua et al., 2021), a widely used method for AMR
parsing. A key advantage of SPRING is its seam-
less integration with BLINK (Wu et al., 2019), a
highly effective entity linking tool. BLINK directly
annotates topic entities in the AMR graph, ensuring
a one-to-one correspondence with their KG coun-
terparts, thereby eliminating the need for separate
entity linking.



3.2 AMR Relation Construction

A high-quality subgraph must contain a path from
the topic entity to the correct answer entity, while
minimizing extraneous noisy paths that may mis-
lead the reasoner into incorrect answers. Since
gestions often consist of multiple relations, an in-
tuitive approach is to extract the relations involved
in the question and use them as a basis to filter the
relations that constitute the subgraph. The core of
constructing relations is the identification of pred-
icates and the nodes involved in these predicates.
We developed an algorithm to construct relevant
relations from AMR graphs while annotating the
types of entities involved in these relations. Specif-
ically, the algorithm first extract the path from the
topic entity, obtained through entity linking, to the
amr-unknown node (lines 1-7 in the 1), and then
identify PropBank predicates (e.g., have-rel-role-
91 and found-01) along the path and their surround-
ing nodes and edges to construct the relations. Fig-
ure 2 illustrates the three main patterns of relations
construction. The colored sections in the figure
represent the core nodes or edges involved in con-
struction of the relations, including predicates, role
predicates, and semantic edges. The remaining
parts serve as participants in the relations or de-
terminants of the direction of the relations. The
following sections will provide a detailed explana-
tion of these three construction patterns.

A Predicate With Two Entities. The presence of
predicate nodes typically indicates the occurrence
of an action, while their adjacent attribute edges,
such as ARGx, represent the primary or secondary
participants in the action. According to the explana-
tion provided by PropBank framesets (Kingsbury
and Palmer, 2002), the entity connected by the
edge with a smaller parameter label is considered
as the agent of the action, whereas the other entity
serves as the recipient of the action. For example,
the found-01 predicate in Figure2 represents the
relation person.found.publication.

Predicates With Auxiliary Attribute. Some
predicate nodes may be simultaneously connect
to three parameterized edge labels. The additional
entity connected via the ARG2 edge represents an
auxiliary attribute of the relation. For instance, the
predicate org typically links to auxiliary attributes
that indicate positional roles, such as director or
president, while the predicate rel often connects
to auxiliary attributes representing interpersonal

Algorithm 1 Relation Construction based on AMR

1: Inmput: Question text ()
2: Output: AMR relation Set R
3: AMR Graph GG:=AMR Parsing(Q)
4: Topic Entitis E:=Entity linking(G)
5: if E not null and amr-unknown in G then
6: for e in F do
7. P.=getShortestPath(G,e,amr-unknown)
8: end for
9: for vin V, do
10: if isVerb(v) then
11: e1, eo=getNeighborNodes(v)
12: buildRelation(e;,e2,v)
13: else
14: if isRoleVerb(v) then
15: e1, eo=getNeighborNodes(v)
16: es=getRole(v)
17: buildRelation(e;,e2,¢3)
18: end if
19: end if
20: end for
21: for r in R, do
22: if isRelation(r) then
23: e1, ea=getEntity(r)
24 buildRelation(e;,e2,r)
25: end if
26: end for
27: end if
28: return R

relations, such as parent or spouse. As shown in
Figure 2, by replacing the intermediate predicate
entity with the auxiliary attribute entity, this rela-
tion construction pattern can be transformed into
the first construction pattern.

Two Directly Connected Entities. In addition
to predicate nodes, edges in an AMR graph can
also represent relations, such as the :domain edge
shown in Figure 2. These edges connect two en-
tities, with one entity acting as an attribute of the
other to exemplify relations such as time, location,
or quantity. We use edge labels and neighboring
entities to construct relations. When the guiding
predicate parameter “:arg’ is absent, we utilize the
the direction of the path from the topic entity to the
answer entity to intuitively determine the relation’s
direction, as the answer always starts from the topic
entity. Specifically, the nodes closer to the topic
entity and amr-unknown are selected as the head
and tail entity of the relation, respectively.

The relations construction process may also in-
volve the amr-unknown nodes, which can be re-
placed with the answer type corresponding to the
question. We focus on the entity type represented
by the node. Specifically, the entity type time,
place, and person are used when the question be-
gins with ‘when’, ‘where’, and ‘who’, respectively.



3.3 Subgraph Retrieval

In this section, we use AMR relations obtained
at the previous step to guide subgraph retrieval.
Since AMR graphs are fine-grained representa-
tions of question text transformations, we can
perform subgraph retrieval on any subgraph to
select the relations and entities relevant to the
question. For any subgraph containing several
triples G = (h,r,t) | h,t € E,r € R, where &
and R denote the entity set and the relation set,
respectively. Let &, = {eq, ea, ..., e,}, which de-
notes the n entity types available in AMR, and let
Ri = {r{,r?,..., 7™}, which denotes the set of
relations where e; serves as the head entity. For
each entity e € £ in the graph G, we first deter-
mine whether its entity type exists in &,. If the
corresponding entity type e; is present, we retain
the entity and then determine whether the entity’s
relations should be preserved; otherwise, the entity
is excluded.

For each relation r; € R;, we compute its cor-
relation with the relation of the retained entity e
(denoted as 77), obtain its embedding using the pre-
trained model BERT (Devlin, 2018), and measure
the correlation using cosine similarity:

h(r) - h(r')
A (r) ][R ()]

where h(-) denotes the embedding function instan-
tiated by BERT (Devlin, 2018), and the parameter
0 is the threshold for subgraph retrieval. The above
operations for each entity will result in a subgraph
that includes topic entities, type-specific entities,
and question-related relations.

Similarity (r, ') = (1

3.4 Reasoning Over Subgraphs

After retrieval of the subgraph using our AMR-
based method, we introduce an AMR-informed
structural enhancement to incorporate the explicit
semantic structure of AMR graphs, thereby improv-
ing reasoning efficiency.

GNN models are well-suited for handling multi-
hop reasoning in KGs, where entities must be con-
textually linked. However, standard KGs may lack
explicit links between semantically related entities,
which may cause longer reasoning chains and less
efficient reasoning. Since AMR provides a struc-
tured semantic representation, it can reveal implicit
relations that are not directly encoded in the KG.
To integrate this additional information, we mod-
ify the adjacency matrix of the retrieved subgraph

Go = (g, Rq) as follows:

1. Identifying AMR-Linked Nodes: Given an
AMR graph Ag derived from the question,
we identify pairs of nodes (e;, ;) that are con-
nected in Ag but not in Gg.

2. Graph Structure Modification: If ¢; and e;
are not adjacent in G, we add an edge (e;, €;)
to the adjacency matrix.

3. Semantic Edge Labeling: The newly added
edge is assigned with a special relation label
[amr], ensuring its differentiation from stan-
dard KG relations and enabling the model to
recognize AMR-derived semantic dependen-
cies.

Formally, we update the adjacency matrix A of the
subgraph as:

(@)

A - 1, if (ei,ej) S QQ or ¢ AQ,
7 0, otherwise.

Similarly, we modify the relation matrix R by set-
ting:

Lamr],
Ri;= { R
0,59
(3)

During message passing, the feature update equa-
tion follows the standard GNN formulation but now
includes the newly introduced [amr] edges:

if(e;,e5) € Ag and ¢ Gg,
otherwise.

>, 2. Wi

h® (
reRqU{l[amrl} e’eN;(e)

“)
+ Wé”hﬁj”) .

where N;.(e) now includes both standard KG re-

lations and AMR-derived relations, and Wr(l) rep-
resents the transformation matrix for the type of
relation r at layer [.

This modification enhances the capability of the
GNN model to propagate information efficiently
by explicitly integrating AMR-informed semantic
structures. The updated adjacency matrix allows
the model to directly attend to semantically related
entities that would otherwise require multi-hop rea-
soning.



3.5 Answer Prediction and Reasoning Chain
Generation

Unlike traditional embedding-based approaches
that only produce answer entities, our method uti-
lizes AMR to provide a structured representation
of the question. We replace the entity types in the
AMR graph with specific entities from the retrieved
subgraph, generating an interpretable reasoning
path from the topic entity to the answer entity.

A straightforward approach to constructing a
reasoning chain is to extract the shortest path from
the topic entity to the answer entity in the retrieved
subgraph. However, the shortest path does not
always align with the correct reasoning process.
For the question: "Where does the spouse of the
Sfounder of Facebook live?", an ideal reasoning path
should be:

Facebook — founder — spouse — residence

However, due to structural constraints in the KG,
the shortest path might be:

Facebook — founder — residence

which incorrectly skips the spouse relation, lead-
ing to an invalid reasoning chain. To address this
issue, we propose a heuristic search constrained by
entity types to construct the reasoning paths.

Rather than enforcing strict relation consistency
between AMR and the KG, we prioritize entity
type consistency when selecting the reasoning path.
Given an AMR-derived entity sequence 174 =
{e1,e2,...,en}, and a candidate reasoning path
in the retrieved subgraph P = {p1,p2,...,pn},
we define a path score S(P) based on the number
of matched entity types:

|TA npP |
S(P) = S )
where |T'4 N P| represents the number of matched
entity types. A higher S(P) indicates greater align-
ment between the path and the entity types in the
ideal reasoning path.

We employ a heuristic search strategy for effi-
cient determination of the optimal reasoning path.
First, we extract multiple candidate paths from the
topic entity to the answer entity in the retrieved
subgraph. Then, we compute the entity-type-based
score S(P) by evaluating each path’s alignment
with the AMR-derived entity sequence. Finally, we
select the path with the highest score. If there are
multiple paths sharing the highest score, we choose
the shortest one to ensure minimal reasoning steps.

After obtaining the optimal path, similar to entity
linking, the abstract entity types in the AMR graph
are sequentially linked to specific entities on the
path, resulting in an interpretable reasoning chain.

Finally, we generate the reasoning path by re-
placing nodes and edges we obtain in the AMR
parsing step, as shown in Figure 2:

found of

Facebook 5% Mark Zuckerberg —3 Priscilla Chan

nationality .
—  American

4 Experiments

In this section, we designed experiments to an-
swer the following key questions: (1) Can AMR-
extracted relations contribute to higher-quality sub-
graph retrieval? (2) To what extent does AMR-
based semantic extraction improve QA perfor-
mance? (3) How effective is graph structure opti-
mization in enhancing the reasoning accuracy?

4.1 Dataset.

We evaluated our method on two widely used
benchmarks: WebQuestionsSP (WebQSP) (Yih
et al., 2015) and Complex WebQuestions 1.1
(CWQ) (Talmor and Berant, 2018). Both datasets
are built on the Freebase knowledge base (Bol-
lacker et al., 2008). The former mostly contains
simple questions, while the latter includes more
complex questions. Table 1 presents the statistics.

Dataset #Train #Val. #Test
CWQ 27,639 3,519 3,531
WebQSP 2,848 250 1,639

Table 1: Statistics of the CWQ and WebQSPDataset.

4.2 Subgraph Retrieval

For the KBQA task, an ideal subgraph should in-
clude paths from the topic entities to the target
answers, with minimal noisy paths that may lead
to incorrect entities. Since the ground truth of the
path is often difficult to obtain, we evaluated the
subgraph quality using two metrics: the size of the
retrieved subgraph and the answer coverage rate,
which represents the proportion of questions for
which the subgraph contains at least one answer
entity.

Baselines We compare with two models that en-
hance subgraph retrieval, in which SR (Zhang et al.,
2022) trains a subgraph retriever to expand relation



paths via a sequential decision process, and Graft-
Net (Sun et al., 2018) extracts subgraphs by calcu-
lating PPR scores for topic entity neighborhoods.

Subgraph Quality Evaluation We compared
three types of subgraphs: (a) Subgraphs retrieved
by our method, (b) Subgraphs obtained by baseline
methods, and (¢) Subgraphs obtained by baseline
methods and refined using AMR constraints.

Table 2 presents the answer coverage rate and
the number of relation nodes in subgraphs retrieved
from WebQSP. PPR represents the retriever used
by Graft(Sun et al., 2018), while SR refers to the
retriever employed by SR(Zhang et al., 2022). The
experimental settings follow those in the original
paper. We use AMR to refer to the retriever pro-
posed in this paper, with a similarity threshold
0 = 0.67 determined through the development set.

Compared with other subgraph retrieval meth-
ods, our method significantly reduces the subgraph
size while maintaining a high answer coverage rate.
Furthermore, application of AMR constraints to
the baseline methods further improves subgraph
quality, demonstrating the effectiveness of AMR in
enhancing subgraph retrieval.

Method Answer Coverage Nodes Relations
AMR 92.37% 183423 7983
PPR 94.87% 1441420 6102
PPR+AMR 92.13% 581840 3222
SR 91.22% 183433 26282
SR+AMR 90.30% 108362 5630

Table 2: Answer Rate and Subgraph Size Comparison.

4.3 KBOQA

For the reasoning performance, we follow the prac-
tice of recent studies (Sun et al., 2018, 2019), which
consider reasoning as a ranking task. For each test
question, we ranked all candidate entities based on
the prediction probability of the evaluated model,
and then determined whether the top-1 answer is
correct using Hits@ 1. Considering that a question
may have multiple answers, we also adopted the
commonly used F1 metric.

Baselines We compare our framework with the
following baselines, in which KV-Mem (Miller
et al., 2016) stores triplets in a key-value mem-
ory network for reasoning. EmbedKGQA (Sax-
ena et al., 2020) formulates answer reasoning as a
link prediction task. GraftNet (Sun et al., 2018),
PullNet (Sun et al., 2019) and NSM (He et al.,

2021) are subgraph-oriented embedding models.
SR (Zhang et al., 2022) decoupled from the subse-
quent reasoning process, which enables a plug-and-
play framework to enhance any subgraph-oriented
KBQA model. EPR (Ding et al., 2024) constructs
evidence patterns from nodes in the KG and ex-
tracts subgraphs by combining these evidence pat-
terns. UniKGQA (Jiang et al., 2022) proposes a uni-
fied framework that designs a shared pre-training
task based on problem-relation matching, enabling
parameter sharing between the subgraph retrieval
module and the reasoning module.

QA Performance Evaluation We used existing
subgraph-oriented reasoners for KBQA tasks and
denoted models with * to indicate the application
of our adjacency matrix modification strategy. For
example, NSM* represents a modified version of
NSM, where the adjacency matrix is adjusted to in-
corporate AMR-derived semantic information into
the subgraphs. Additionally, we tune the similarity
threshold ¢ on the development sets of WebQSP
and CWQ to ensure sufficient answer coverage in
the retrieved subgraphs. The final thresholds used
for WebQSP and CWQ were set to 0.67 and 0.64,
respectively.

Table 3 presents the main comparison results
of different methods. Our method achieves com-
petitive performance across both datasets. Com-
pared with other NSM-based methods, our method
achieves state-of-the-art results on WebQSP, with a
+3.1 improvement in Hit@1 and a +6.8 increase in
F1 relative to SR+NSM. In terms of CWQ, which
consists of more complex multi-hop questions, our
method also outperforms most of the baseline meth-
ods, demonstrating high effectiveness in handling
complex reasoning tasks.

When the same reasoning model is used, our
method significantly outperforms the state-of-the-
art PLM-based retriever SR in QA performance,
confirming that AMR-based subgraph retrieval can
effectively capture richer semantic structures, en-
hances subgraph quality, and therefore improve the
QA performance. Additionally, our method, along
with EPR, exhibits notably better performance in
answering complex questions compared with other
methods. These results suggest that construction of
subgraphs in a structured manner is more effective
in eliminating noisy nodes, thereby enhancing the
model robustness.



CWQ WebQSP
Method Hel FlI He@l Fl
KV-Mem 184 157 466 345
EmbedKGQA 20 - 666 -
PullNet 459 - 681 -
GraftNet 368 327 664 604
NSM 476 424 685 628
SR + GCN 491 427 667 63.1
SR + NSM 493 463 695 64.1
UniKGQA+NSM 492 - 691 -
UniKGQA+UniKGQA 507 480 751 702
EPR+NSM 60.6 612 712 702
Our Method

AMR + GCN¥* 526 505 698 65.6
AMR + NSM* 538 521 726 713

Table 3: Performance Comparison of Different Methods
in Question Answering on CWQ and WebQSP.

4.4 Effect of Adjacency Matrix Modification

Table 4 demonstrates the impact of adjacency
matrix modification on the on QA performance.
Across all subgraph retrieval methods, this struc-
tural enhancement consistently improvement of rea-
soning accuracy. For SR-based subgraph retrieval,
the modification increases H@1 and F1 by +1.1
and +0.8 on CWQ), and +0.7 and +0.7 on WebQSP,
respectively.

The improvement is even more significant
with AMR-based subgraph retrieval. Specifically,
AMR+NSM* achieves a +2.1 gainin H@1 and a
+2.3 gain in F1 on CWQ, and a +1.4 increase in
H@1 and a +4.1 increase in F1 on WebQSP. These
results suggest that AMR-informed structural en-
hancement significantly improves answer accuracy.

Similarly, EPR+NSM* outperforms EPR+NSM,
despite with smaller gains, indicating that refining
subgraph structure enhances multi-hop reasoning.
Overall, these results confirm that incorporating
AMR-derived connections into the graph structure
can effectively capture implicit semantic relations,
thereby improving both the precision and recall in
KBOQA.

CWQ WebQSP
Method H@l Fl H@l FI

SR+NSM 493 463 695 64.1
SR+NSM* 504  47.1 702 648
AMR4NSM 517 498 712 672
AMR+NSM* 538 521 726 713
EPR+NSM 606 612 712 702
EPR+NSM* 612 61.8 723 718

Table 4: Impact of Adjacency Matrix Modification on
QA Performance across Different Retrieval Methods.

4.5 Case Study

This section illustrates the effectiveness of our
approach through a case example using AMR.
The upper part of Figure 3 shows subgraphs re-
trieved by SR’s retriever for the question Where
was Avril Lavigne born? The green node repre-
sents the correct answer, connected by the relation
people.person.place_of _birth. Yellow nodes are
relevant but non-optimal paths, gray nodes are irrel-
evant, and red nodes may lead to incorrect answers.

The lower part of the figure shows the AMR
graph for the question. Our method extracts
the relation person.bear.place, excluding irrele-
vant or misleading paths, resulting in a more fo-
cused subgraph. The final reasoning chain is:

Avril Lavigne bear, Canada.

Q: Where was avril lavigne born?
SR Subgraph:

people. place_lived. location

uoneso| paal|~ade[d: ajdoad

people. place_lived. location

avigne

lived location people. place_lived location

avril lavigne

Figure 3: Subgraph of the question “Where was Avril
Lavigne born?” obtained based on SR and its corre-
sponding AMR graphs.

5 Conclusion

In this paper, we propose an AMR-driven subgraph
retrieval method to enhance KBQA. Unlike tra-
ditional methods based on text similarity, our ap-
proach uses AMR to extract structured semantic in-
formation, improving subgraph retrieval precision
and reasoning interpretability. By aligning AMR-
derived relations with the knowledge graph, we fil-
ter noisy entities and ensure more accurate seman-
tic alignment. Experimental results on WebQSP
and CWQ show that our method outperforms exist-
ing approaches, especially for complex multi-hop
questions. Additionally, the incorporation of AMR-
derived semantic connections into the adjacency
matrix boosts reasoning performance, while pro-
viding explicit and interpretable reasoning chains.



6 Limitations

Dependence on AMR Parsing Quality.  Our
approach heavily relies on AMR parsing quality
to construct meaningful relations. Errors in predi-
cate or entity identification can propagate through
subsequent stages, affecting subgraph retrieval and
reasoning. This limitation underscores the need for
improved AMR parsing tools or robust strategies
to mitigate parsing errors.

Handling Ambiguous or Incomplete Questions.
Our method assumes that input questions are well-
formed and contain sufficient semantic information
for AMR parsing. However, in real-world scenar-
i0s, questions may be ambiguous, incomplete, or
grammatically incorrect, which can degrade pars-
ing quality and hinder subgraph retrieval. Address-
ing this limitation may require preprocessing tech-
niques to refine input questions or error-tolerant
AMR parsing models.

Interpretability of Reasoning Paths. Although
our method improves interpretability by construct-
ing reasoning chains from AMR graphs, the gener-
ated paths rely on predefined rules and heuristics.
This limits their flexibility and may fail to capture
nuanced semantic relations. A promising direc-
tion for improvement involves integrating learning-
based approaches to dynamically generate more
adaptive reasoning paths.
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