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Abstract001

Knowledge Base Question Answering (KBQA)002
seeks to provide answers to natural language003
questions by utilizing pertinent triples from004
knowledge graphs (KGs). The mainstream005
methods of KBQA involve the use of graph006
neural networks for the reasoning and rely on007
subgraph retrieval to reduce the complexity.008
However, current retrieval methods predomi-009
nantly align question text with graph relations,010
leading to inconsistent subgraph quality and011
limited interpretability, thereby impeding QA012
performance. Here, we proposed a subgraph013
retrieval method based on Abstract Meaning014
Representation (AMR) to captures deep seman-015
tic structures, enhance retrieval precision and016
optimize the reasoning by leveraging the struc-017
tural similarity of AMR to KGs. Additionally,018
we construct reasoning chains in AMR form to019
enhance interpretability. Experiments on the020
WebQSP and CWQ datasets demonstrated that021
the integrating of AMR enhances retrieval per-022
formance, improves the subgraph quality, and023
achieves competitive KBQA performance and024
interpretable reasoning.025

1 Introduction026

Knowledge graphs (KGs) store factual knowledge027

in a structured format of triples (head, relation,028

tail), to represent entities and their relations (Paul-029

heim, 2016). Knowledge Base Question Answer-030

ing (KBQA) seeks to identify answer entities in031

a KG based on a given natural language question.032

This task can be considered as a node classification033

problem, where KG entities are classified as an-034

swers vs. non-answers for a given question (Mavro-035

matis and Karypis, 2024). Although large language036

models (LLMs) perform well in many natural lan-037

guage processing (NLP) tasks, they are face with038

challenges in handling complex problems and spe-039

cialized domains, often generating hallucinated or040

inaccurate results (Zhang et al., 2023). In contrast,041
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Figure 1: An example of utilizing AMR to extract se-
mantic information. AMR captures the core semantics
of a sentence and represents the relations and entity
types in a concise graph structure

graph neural networks (GNNs), owing to their abil- 042

ity to process intricate graph structures, have been 043

widely adopted in KBQA systems (Schlichtkrull 044

et al., 2018). However, reasoning over an entire 045

large-scale KG is computationally impractical (Ji 046

et al., 2021), necessitating subgraph retrieval as a 047

preprocessing step. 048

Existing subgraph retrieval methods primarily 049

rely on text embedding to measure the similarity 050

between a question and KG relations, to select en- 051

tities and paths accordingly. For instance, PullNet 052

(Sun et al., 2019) uses an LSTM -based retriever 053

to iteratively select relations based on the question, 054

followed by a GNN-based reasoner to identify the 055

tail entities. Similarly, SR (Zhang et al., 2022) de- 056

couples the retriever and reasoner, and constructs 057

subgraphs from the top-k retrieved paths. However, 058

these embedding-based methods often fail to cap- 059

ture the semantic structure of the question, result- 060

ing in subgraphs with noisy nodes and irrelevant 061

relations (Jain et al., 2021). 062

A natural language question often consists of 063

multiple relations that can serve as explicit guid- 064

ance for subgraph retrieval. Abstract Meaning Rep- 065

resentation (AMR) provides a structured represen- 066

tation of a question’s semantic information, strip- 067

ping away syntactic variations while preserving the 068

core relations (Banarescu et al., 2013). As illus- 069

trated in Figure 1, to solve this problem, the first 070
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step is to identify the film that won the Best Pic-071

ture Oscar in 2014. The next step is to determine072

the lead actors of the film, followed by identifying073

the name of the spouse as the final answer. This074

process corresponds to the predicates in the AMR075

graph, such as win, act, and spouse. This clear076

graph structure enhances the quality of subgraph077

retrieval and provides interpretability for the rea-078

soning process.079

Motivated by these advantages of AMR, we pro-080

pose an AMR-based subgraph retrieval method for081

KBQA with the following objectives: (a) Trans-082

form the question into an AMR graph to cap-083

ture richer semantic information. (b) Extract fine-084

grained relations based on nodes and edges in the085

AMR graph. (c) Leverage the extracted relations086

to guide subgraph retrieval, to ensure compact and087

precise subgraphs. (d) Integrate relations extracted088

from AMR into the adjacency matrix for improving089

GNN-based reasoning. Subsequently, a subgraph-090

oriented reasoning model is employed to identify091

answer entities while ensuring an interpretable rea-092

soning process.093

Our key contributions can be summarized as:094

• We introduce AMR as a semantic represen-095

tation for KBQA, transforming textual ques-096

tions into structured semantic graphs to cap-097

ture richer fine-grained relations.098

• We propose three relation construction pat-099

terns based on AMR nodes and edges, and100

the constructed relations can effectively align101

with KG structures to improve subgraph re-102

trieval.103

• We employ a semantic matching mechanism104

to retrieve relevant subgraphs and utilize the105

AMR graph structure to refine the subgraph’s106

adjacency matrix, thereby enhancing both its107

quality and reasoning accuracy.108

• We leverage AMR-based semantic informa-109

tion to construct reasoning paths from the110

topic entity to the answer entity, enhancing111

the interpretability of the reasoning process.112

2 Related Work113

Subgraph Retrieval Direct reasoning on the en-114

tire KG is often inefficient. In mainstream infor-115

mation retrieval-based KBQA, only relevant nodes116

and relations are retained to form a subgraph, on117

which reasoning is performed to obtain the answer. 118

However, determining the specific nodes and rela- 119

tions that constitute the subgraph remains a signif- 120

icant challenge. GraftNet (Sun et al., 2018) em- 121

ploys a heuristic approach that retrieves entities 122

within two hops of the topic entity and ranks them 123

based on their personalized PageRank scores to 124

control the size of the final subgraph. However, this 125

method overlooks the semantics of the question, 126

which limits the accuracy of subsequent reasoning. 127

Recent studies have introduced neural models to 128

solve this issue by retrieving relevant subgraphs 129

specific to the questions. PullNet (Sun et al., 2019) 130

proposes a framework that iteratively expands the 131

subgraph, utilizing an LSTM-based retriever to se- 132

lect relations at each hop through semantic match- 133

ing and a GCN-based reasoner (Kipf and Welling, 134

2016) to identify the tail entities of these relations. 135

Similarly, SR (Zhang et al., 2022) employs a bidi- 136

rectional encoder to develop a trainable retriever, 137

decoupling the retriever from the reasoner and en- 138

abling integration with any subgraph-oriented rea- 139

soning model. Despite these advancements, sub- 140

graph retrieval methods heavily rely on black-box 141

neural models to interpret question semantics. Con- 142

sequently, they often fail to preserve the detailed 143

semantic structure of the question, resulting in sub- 144

graphs containing unnecessary noisy nodes, which 145

adversely affect the reasoning process and limit the 146

overall effectiveness of the approach. 147

Abstract Meaning Representation Abstract 148

Meaning Representation (AMR) encodes the entity 149

types and relations in a question as nodes and edges, 150

stripping away the syntactic variations while pre- 151

serving the semantic structure. Recent studies have 152

leveraged the explicit graph structure of AMR for 153

semantic parsing and reasoning tasks. AMR-SG 154

(Xu et al., 2021) constructs AMR-based semantic 155

graphs from relevant evidence and performs rea- 156

soning over them to explain the answers. Similarly, 157

NSQA (Kapanipathi et al., 2020) transforms ques- 158

tions into query graphs resembling KGs by utiliz- 159

ing AMR, generating logical forms and employing 160

a neuro-symbolic reasoner to predict the final an- 161

swers. In contrast, QDAMR (Deng et al., 2022) 162

utilizes AMR to convert multi-hop questions into 163

symbolic forms, facilitating the decomposition of 164

complex queries and identification of intermediate 165

unknowns. Inspired by these studies, we aim to 166

leverage the semantic structure provided by AMR 167

to enhance subgraph retrieval. 168
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Figure 2: An overview of our KBQA framework. Firstly, the question Q: “What is the nationality of the spouse of
the Facebook founder?” is parsed using an AMR parser, converting it into an AMR graph. The path from the topic
entity to the amr-unknown node is then explored, and the AMR relations are constructed based on the predicate
nodes and semantic edges encountered along the path. Subsequently, semantic matching is performed with the
relations in the knowledge graph to select the corresponding subgraph. Finally, the adjacency matrix of the subgraph
is optimized using the AMR graph structure, and an AMR-based GNN reasoner is employed to predict the answer,
replacing the corresponding nodes along the AMR path to obtain the reasoning chain.

3 Method169

Figure 2 illustrates the pipeline of our AMR-based170

KBQA system, which consists of four modules: i)171

AMR Parsing (§3.1), which transforms question172

text into AMR graphs to obtain structured seman-173

tic information. ii) AMR Relation Construction174

(§3.2), which leverages the semantic structure of175

the AMR graph to extract the relations needed to an-176

swer the question. iii) Subgraph Retrieval (§3.3),177

which performs semantic matching between ex-178

tracted relations and relations in the KG to retrieve179

the relevant subgraph. iv) Answer Prediction and180

Reasoning Chain Generation, whichpredicts the an-181

swer and generates reasoning chains by reasoning182

over the subgraph. Additionally, specific entities183

along the path to the answer are used to replace the184

corresponding nodes in the AMR graph, thereby185

constructing the reasoning chain.186

3.1 AMR Parsing187

An AMR graph is a rooted, directed, and acycli-188

cal structure. The nodes in an AMR graph repre-189

sent different concepts, i.e., named entities, quanti-190

ties, dates, and other phenomena (Banarescu et al.,191

2013); Edges represent relations between these con-192

cepts, such as :domain and :name (Kapanipathi193

et al., 2020). An AMR path can be obtained from194

the topic entity to the answer entity, where the195

nodes and edges along this path capture the seman- 196

tic information necessary to answer the question. 197

This semantic information is then used for the con- 198

struction of AMR relations. The following is the 199

path we extract based on AMR parsing: 200

Facebook
found of−→ Person

spouse−→ Person
domain−→ unknown 201

We leverage AMR parsing to capture the seman- 202

tic structure of questions. Figure 2 illustrates the 203

AMR graph for the question: “What is the na- 204

tionality of the spouse of the Facebook founder?”. 205

amr-unknown and Facebook are two key entities 206

involved in answering the question, where amr- 207

unknown represents the unknown answer entity 208

and Facebook serves as the topic entity extracted 209

from the question. These two entities correspond 210

to the starting point (topic entity) and final target 211

(answer entity) in the KBQA reasoning process. 212

For AMR parsing, we adopt SPRING (Bevilac- 213

qua et al., 2021), a widely used method for AMR 214

parsing. A key advantage of SPRING is its seam- 215

less integration with BLINK (Wu et al., 2019), a 216

highly effective entity linking tool. BLINK directly 217

annotates topic entities in the AMR graph, ensuring 218

a one-to-one correspondence with their KG coun- 219

terparts, thereby eliminating the need for separate 220

entity linking. 221

3



3.2 AMR Relation Construction222

A high-quality subgraph must contain a path from223

the topic entity to the correct answer entity, while224

minimizing extraneous noisy paths that may mis-225

lead the reasoner into incorrect answers. Since226

qestions often consist of multiple relations, an in-227

tuitive approach is to extract the relations involved228

in the question and use them as a basis to filter the229

relations that constitute the subgraph. The core of230

constructing relations is the identification of pred-231

icates and the nodes involved in these predicates.232

We developed an algorithm to construct relevant233

relations from AMR graphs while annotating the234

types of entities involved in these relations. Specif-235

ically, the algorithm first extract the path from the236

topic entity, obtained through entity linking, to the237

amr-unknown node (lines 1–7 in the 1), and then238

identify PropBank predicates (e.g., have-rel-role-239

91 and found-01) along the path and their surround-240

ing nodes and edges to construct the relations. Fig-241

ure 2 illustrates the three main patterns of relations242

construction. The colored sections in the figure243

represent the core nodes or edges involved in con-244

struction of the relations, including predicates, role245

predicates, and semantic edges. The remaining246

parts serve as participants in the relations or de-247

terminants of the direction of the relations. The248

following sections will provide a detailed explana-249

tion of these three construction patterns.250

A Predicate With Two Entities. The presence of251

predicate nodes typically indicates the occurrence252

of an action, while their adjacent attribute edges,253

such as ARGx, represent the primary or secondary254

participants in the action. According to the explana-255

tion provided by PropBank framesets (Kingsbury256

and Palmer, 2002), the entity connected by the257

edge with a smaller parameter label is considered258

as the agent of the action, whereas the other entity259

serves as the recipient of the action. For example,260

the found-01 predicate in Figure2 represents the261

relation person.found.publication.262

Predicates With Auxiliary Attribute. Some263

predicate nodes may be simultaneously connect264

to three parameterized edge labels. The additional265

entity connected via the ARG2 edge represents an266

auxiliary attribute of the relation. For instance, the267

predicate org typically links to auxiliary attributes268

that indicate positional roles, such as director or269

president, while the predicate rel often connects270

to auxiliary attributes representing interpersonal271

Algorithm 1 Relation Construction based on AMR
1: Input: Question text Q
2: Output: AMR relation Set R
3: AMR Graph G:=AMR Parsing(Q)
4: Topic Entitis E:=Entity linking(G)
5: if E not null and amr-unknown in G then
6: for e in E do
7: Pe=getShortestPath(G,e,amr-unknown)
8: end for
9: for v in Vp do

10: if isVerb(v) then
11: e1, e2=getNeighborNodes(v)
12: buildRelation(e1,e2,v)
13: else
14: if isRoleVerb(v) then
15: e1, e2=getNeighborNodes(v)
16: e3=getRole(v)
17: buildRelation(e1,e2,e3)
18: end if
19: end if
20: end for
21: for r in Rp do
22: if isRelation(r) then
23: e1, e2=getEntity(r)
24: buildRelation(e1,e2,r)
25: end if
26: end for
27: end if
28: return R

relations, such as parent or spouse. As shown in 272

Figure 2, by replacing the intermediate predicate 273

entity with the auxiliary attribute entity, this rela- 274

tion construction pattern can be transformed into 275

the first construction pattern. 276

Two Directly Connected Entities. In addition 277

to predicate nodes, edges in an AMR graph can 278

also represent relations, such as the :domain edge 279

shown in Figure 2. These edges connect two en- 280

tities, with one entity acting as an attribute of the 281

other to exemplify relations such as time, location, 282

or quantity. We use edge labels and neighboring 283

entities to construct relations. When the guiding 284

predicate parameter ‘:arg’ is absent, we utilize the 285

the direction of the path from the topic entity to the 286

answer entity to intuitively determine the relation’s 287

direction, as the answer always starts from the topic 288

entity. Specifically, the nodes closer to the topic 289

entity and amr-unknown are selected as the head 290

and tail entity of the relation, respectively. 291

The relations construction process may also in- 292

volve the amr-unknown nodes, which can be re- 293

placed with the answer type corresponding to the 294

question. We focus on the entity type represented 295

by the node. Specifically, the entity type time, 296

place, and person are used when the question be- 297

gins with ‘when’, ‘where’, and ‘who’, respectively. 298
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3.3 Subgraph Retrieval299

In this section, we use AMR relations obtained300

at the previous step to guide subgraph retrieval.301

Since AMR graphs are fine-grained representa-302

tions of question text transformations, we can303

perform subgraph retrieval on any subgraph to304

select the relations and entities relevant to the305

question. For any subgraph containing several306

triples G = (h, r, t) | h, t ∈ E , r ∈ R, where E307

and R denote the entity set and the relation set,308

respectively. Let Er = {e1, e2, . . . , en}, which de-309

notes the n entity types available in AMR, and let310

Ri = {r1i , r2i , . . . , rmi }, which denotes the set of311

relations where ei serves as the head entity. For312

each entity e ∈ E in the graph G, we first deter-313

mine whether its entity type exists in Er. If the314

corresponding entity type ei is present, we retain315

the entity and then determine whether the entity’s316

relations should be preserved; otherwise, the entity317

is excluded.318

For each relation ri ∈ Ri, we compute its cor-319

relation with the relation of the retained entity e320

(denoted as r′), obtain its embedding using the pre-321

trained model BERT (Devlin, 2018), and measure322

the correlation using cosine similarity:323

Similarity(r, r′) =
h(r) · h(r′)
|h(r)||h(r′)|

(1)324

where h(·) denotes the embedding function instan-325

tiated by BERT (Devlin, 2018), and the parameter326

δ is the threshold for subgraph retrieval. The above327

operations for each entity will result in a subgraph328

that includes topic entities, type-specific entities,329

and question-related relations.330

3.4 Reasoning Over Subgraphs331

After retrieval of the subgraph using our AMR-332

based method, we introduce an AMR-informed333

structural enhancement to incorporate the explicit334

semantic structure of AMR graphs, thereby improv-335

ing reasoning efficiency.336

GNN models are well-suited for handling multi-337

hop reasoning in KGs, where entities must be con-338

textually linked. However, standard KGs may lack339

explicit links between semantically related entities,340

which may cause longer reasoning chains and less341

efficient reasoning. Since AMR provides a struc-342

tured semantic representation, it can reveal implicit343

relations that are not directly encoded in the KG.344

To integrate this additional information, we mod-345

ify the adjacency matrix of the retrieved subgraph346

GQ = (EQ,RQ) as follows: 347

1. Identifying AMR-Linked Nodes: Given an 348

AMR graph AQ derived from the question, 349

we identify pairs of nodes (ei, ej) that are con- 350

nected in AQ but not in GQ. 351

2. Graph Structure Modification: If ei and ej 352

are not adjacent in GQ, we add an edge (ei, ej) 353

to the adjacency matrix. 354

3. Semantic Edge Labeling: The newly added 355

edge is assigned with a special relation label 356

[amr], ensuring its differentiation from stan- 357

dard KG relations and enabling the model to 358

recognize AMR-derived semantic dependen- 359

cies. 360

Formally, we update the adjacency matrix A of the 361

subgraph as: 362

A′
i,j =

{
1, if (ei, ej) ∈ GQ or ∈ AQ,

0, otherwise.
(2) 363

Similarly, we modify the relation matrix R by set- 364

ting: 365

R′
i,j =

{
[amr], if(ei, ej) ∈ AQ and /∈ GQ,

Ri,j , otherwise.
(3) 366

During message passing, the feature update equa- 367

tion follows the standard GNN formulation but now 368

includes the newly introduced [amr] edges: 369

h(l)
e = σ

( ∑
r∈RQ∪{[amr]}

∑
e′∈Nr(e)

W (l)
r h

(l−1)
e′

+W
(l)
0 h(l−1)

e

)
.

(4) 370

where Nr(e) now includes both standard KG re- 371

lations and AMR-derived relations, and W
(l)
r rep- 372

resents the transformation matrix for the type of 373

relation r at layer l. 374

This modification enhances the capability of the 375

GNN model to propagate information efficiently 376

by explicitly integrating AMR-informed semantic 377

structures. The updated adjacency matrix allows 378

the model to directly attend to semantically related 379

entities that would otherwise require multi-hop rea- 380

soning. 381
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3.5 Answer Prediction and Reasoning Chain382

Generation383

Unlike traditional embedding-based approaches384

that only produce answer entities, our method uti-385

lizes AMR to provide a structured representation386

of the question. We replace the entity types in the387

AMR graph with specific entities from the retrieved388

subgraph, generating an interpretable reasoning389

path from the topic entity to the answer entity.390

A straightforward approach to constructing a391

reasoning chain is to extract the shortest path from392

the topic entity to the answer entity in the retrieved393

subgraph. However, the shortest path does not394

always align with the correct reasoning process.395

For the question: "Where does the spouse of the396

founder of Facebook live?", an ideal reasoning path397

should be:398

Facebook → founder → spouse → residence399

However, due to structural constraints in the KG,400

the shortest path might be:401

Facebook → founder → residence402

which incorrectly skips the spouse relation, lead-403

ing to an invalid reasoning chain. To address this404

issue, we propose a heuristic search constrained by405

entity types to construct the reasoning paths.406

Rather than enforcing strict relation consistency407

between AMR and the KG, we prioritize entity408

type consistency when selecting the reasoning path.409

Given an AMR-derived entity sequence TA =410

{e1, e2, . . . , em}, and a candidate reasoning path411

in the retrieved subgraph P = {p1, p2, . . . , pn},412

we define a path score S(P ) based on the number413

of matched entity types:414

S(P ) =
|TA ∩ P |
|TA|

(5)415

where |TA ∩ P | represents the number of matched416

entity types. A higher S(P ) indicates greater align-417

ment between the path and the entity types in the418

ideal reasoning path.419

We employ a heuristic search strategy for effi-420

cient determination of the optimal reasoning path.421

First, we extract multiple candidate paths from the422

topic entity to the answer entity in the retrieved423

subgraph. Then, we compute the entity-type-based424

score S(P ) by evaluating each path’s alignment425

with the AMR-derived entity sequence. Finally, we426

select the path with the highest score. If there are427

multiple paths sharing the highest score, we choose428

the shortest one to ensure minimal reasoning steps.429

After obtaining the optimal path, similar to entity 430

linking, the abstract entity types in the AMR graph 431

are sequentially linked to specific entities on the 432

path, resulting in an interpretable reasoning chain. 433

Finally, we generate the reasoning path by re- 434

placing nodes and edges we obtain in the AMR 435

parsing step, as shown in Figure 2: 436

Facebook
found of−→ Mark Zuckerberg

marry−→ Priscilla Chan
nationality−→ American 437

4 Experiments 438

In this section, we designed experiments to an- 439

swer the following key questions: (1) Can AMR- 440

extracted relations contribute to higher-quality sub- 441

graph retrieval? (2) To what extent does AMR- 442

based semantic extraction improve QA perfor- 443

mance? (3) How effective is graph structure opti- 444

mization in enhancing the reasoning accuracy? 445

4.1 Dataset. 446

We evaluated our method on two widely used 447

benchmarks: WebQuestionsSP (WebQSP) (Yih 448

et al., 2015) and Complex WebQuestions 1.1 449

(CWQ) (Talmor and Berant, 2018). Both datasets 450

are built on the Freebase knowledge base (Bol- 451

lacker et al., 2008). The former mostly contains 452

simple questions, while the latter includes more 453

complex questions. Table 1 presents the statistics. 454

Dataset #Train #Val. #Test

CWQ 27,639 3,519 3,531
WebQSP 2,848 250 1,639

Table 1: Statistics of the CWQ and WebQSPDataset.

4.2 Subgraph Retrieval 455

For the KBQA task, an ideal subgraph should in- 456

clude paths from the topic entities to the target 457

answers, with minimal noisy paths that may lead 458

to incorrect entities. Since the ground truth of the 459

path is often difficult to obtain, we evaluated the 460

subgraph quality using two metrics: the size of the 461

retrieved subgraph and the answer coverage rate, 462

which represents the proportion of questions for 463

which the subgraph contains at least one answer 464

entity. 465

Baselines We compare with two models that en- 466

hance subgraph retrieval, in which SR (Zhang et al., 467

2022) trains a subgraph retriever to expand relation 468
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paths via a sequential decision process, and Graft-469

Net (Sun et al., 2018) extracts subgraphs by calcu-470

lating PPR scores for topic entity neighborhoods.471

Subgraph Quality Evaluation We compared472

three types of subgraphs: (a) Subgraphs retrieved473

by our method, (b) Subgraphs obtained by baseline474

methods, and (c) Subgraphs obtained by baseline475

methods and refined using AMR constraints.476

Table 2 presents the answer coverage rate and477

the number of relation nodes in subgraphs retrieved478

from WebQSP. PPR represents the retriever used479

by Graft(Sun et al., 2018), while SR refers to the480

retriever employed by SR(Zhang et al., 2022). The481

experimental settings follow those in the original482

paper. We use AMR to refer to the retriever pro-483

posed in this paper, with a similarity threshold484

δ = 0.67 determined through the development set.485

Compared with other subgraph retrieval meth-486

ods, our method significantly reduces the subgraph487

size while maintaining a high answer coverage rate.488

Furthermore, application of AMR constraints to489

the baseline methods further improves subgraph490

quality, demonstrating the effectiveness of AMR in491

enhancing subgraph retrieval.492

Method Answer Coverage Nodes Relations

AMR 92.37% 183423 7983
PPR 94.87% 1441420 6102
PPR+AMR 92.13% 581840 3222
SR 91.22% 183433 26282
SR+AMR 90.30% 108362 5630

Table 2: Answer Rate and Subgraph Size Comparison.

4.3 KBQA493

For the reasoning performance, we follow the prac-494

tice of recent studies (Sun et al., 2018, 2019), which495

consider reasoning as a ranking task. For each test496

question, we ranked all candidate entities based on497

the prediction probability of the evaluated model,498

and then determined whether the top-1 answer is499

correct using Hits@1. Considering that a question500

may have multiple answers, we also adopted the501

commonly used F1 metric.502

Baselines We compare our framework with the503

following baselines, in which KV-Mem (Miller504

et al., 2016) stores triplets in a key-value mem-505

ory network for reasoning. EmbedKGQA (Sax-506

ena et al., 2020) formulates answer reasoning as a507

link prediction task. GraftNet (Sun et al., 2018),508

PullNet (Sun et al., 2019) and NSM (He et al.,509

2021) are subgraph-oriented embedding models. 510

SR (Zhang et al., 2022) decoupled from the subse- 511

quent reasoning process, which enables a plug-and- 512

play framework to enhance any subgraph-oriented 513

KBQA model. EPR (Ding et al., 2024) constructs 514

evidence patterns from nodes in the KG and ex- 515

tracts subgraphs by combining these evidence pat- 516

terns. UniKGQA (Jiang et al., 2022) proposes a uni- 517

fied framework that designs a shared pre-training 518

task based on problem-relation matching, enabling 519

parameter sharing between the subgraph retrieval 520

module and the reasoning module. 521

QA Performance Evaluation We used existing 522

subgraph-oriented reasoners for KBQA tasks and 523

denoted models with * to indicate the application 524

of our adjacency matrix modification strategy. For 525

example, NSM* represents a modified version of 526

NSM, where the adjacency matrix is adjusted to in- 527

corporate AMR-derived semantic information into 528

the subgraphs. Additionally, we tune the similarity 529

threshold δ on the development sets of WebQSP 530

and CWQ to ensure sufficient answer coverage in 531

the retrieved subgraphs. The final thresholds used 532

for WebQSP and CWQ were set to 0.67 and 0.64, 533

respectively. 534

Table 3 presents the main comparison results 535

of different methods. Our method achieves com- 536

petitive performance across both datasets. Com- 537

pared with other NSM-based methods, our method 538

achieves state-of-the-art results on WebQSP, with a 539

+3.1 improvement in Hit@1 and a +6.8 increase in 540

F1 relative to SR+NSM. In terms of CWQ, which 541

consists of more complex multi-hop questions, our 542

method also outperforms most of the baseline meth- 543

ods, demonstrating high effectiveness in handling 544

complex reasoning tasks. 545

When the same reasoning model is used, our 546

method significantly outperforms the state-of-the- 547

art PLM-based retriever SR in QA performance, 548

confirming that AMR-based subgraph retrieval can 549

effectively capture richer semantic structures, en- 550

hances subgraph quality, and therefore improve the 551

QA performance. Additionally, our method, along 552

with EPR, exhibits notably better performance in 553

answering complex questions compared with other 554

methods. These results suggest that construction of 555

subgraphs in a structured manner is more effective 556

in eliminating noisy nodes, thereby enhancing the 557

model robustness. 558
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Method
CWQ WebQSP

H@1 F1 H@1 F1

KV-Mem 18.4 15.7 46.6 34.5
EmbedKGQA 32.0 - 66.6 -
PullNet 45.9 - 68.1 -
GraftNet 36.8 32.7 66.4 60.4
NSM 47.6 42.4 68.5 62.8
SR + GCN 49.1 42.7 66.7 63.1
SR + NSM 49.3 46.3 69.5 64.1
UniKGQA+NSM 49.2 - 69.1 -
UniKGQA+UniKGQA 50.7 48.0 75.1 70.2
EPR+NSM 60.6 61.2 71.2 70.2

Our Method

AMR + GCN* 52.6 50.5 69.8 65.6
AMR + NSM* 53.8 52.1 72.6 71.3

Table 3: Performance Comparison of Different Methods
in Question Answering on CWQ and WebQSP.

4.4 Effect of Adjacency Matrix Modification559

Table 4 demonstrates the impact of adjacency560

matrix modification on the on QA performance.561

Across all subgraph retrieval methods, this struc-562

tural enhancement consistently improvement of rea-563

soning accuracy. For SR-based subgraph retrieval,564

the modification increases H@1 and F1 by +1.1565

and +0.8 on CWQ, and +0.7 and +0.7 on WebQSP,566

respectively.567

The improvement is even more significant568

with AMR-based subgraph retrieval. Specifically,569

AMR+NSM* achieves a +2.1 gain in H@1 and a570

+2.3 gain in F1 on CWQ, and a +1.4 increase in571

H@1 and a +4.1 increase in F1 on WebQSP. These572

results suggest that AMR-informed structural en-573

hancement significantly improves answer accuracy.574

Similarly, EPR+NSM* outperforms EPR+NSM,575

despite with smaller gains, indicating that refining576

subgraph structure enhances multi-hop reasoning.577

Overall, these results confirm that incorporating578

AMR-derived connections into the graph structure579

can effectively capture implicit semantic relations,580

thereby improving both the precision and recall in581

KBQA.582

Method
CWQ WebQSP

H@1 F1 H@1 F1

SR+NSM 49.3 46.3 69.5 64.1
SR+NSM* 50.4 47.1 70.2 64.8
AMR+NSM 51.7 49.8 71.2 67.2
AMR+NSM* 53.8 52.1 72.6 71.3
EPR+NSM 60.6 61.2 71.2 70.2
EPR+NSM* 61.2 61.8 72.3 71.8

Table 4: Impact of Adjacency Matrix Modification on
QA Performance across Different Retrieval Methods.

4.5 Case Study 583

This section illustrates the effectiveness of our 584

approach through a case example using AMR. 585

The upper part of Figure 3 shows subgraphs re- 586

trieved by SR’s retriever for the question Where 587

was Avril Lavigne born? The green node repre- 588

sents the correct answer, connected by the relation 589

people.person.place_of_birth. Yellow nodes are 590

relevant but non-optimal paths, gray nodes are irrel- 591

evant, and red nodes may lead to incorrect answers. 592

The lower part of the figure shows the AMR 593

graph for the question. Our method extracts 594

the relation person.bear.place, excluding irrele- 595

vant or misleading paths, resulting in a more fo- 596

cused subgraph. The final reasoning chain is: 597

Avril Lavigne bear−−→ Canada. 598

nationality

Q: Where was avril lavigne born?

avril lavigne

p
eo

p
le .p

lace_lived
. lo

catio
n

people. place_lived. location

people.place_lived.location

people. place_lived. location

people. place_lived. location

SR  Subgraph:

AMR  Graph:

personbear-02
ARG1:location :nameamr-

unknown
avril lavigne

Figure 3: Subgraph of the question “Where was Avril
Lavigne born?” obtained based on SR and its corre-
sponding AMR graphs.

5 Conclusion 599

In this paper, we propose an AMR-driven subgraph 600

retrieval method to enhance KBQA. Unlike tra- 601

ditional methods based on text similarity, our ap- 602

proach uses AMR to extract structured semantic in- 603

formation, improving subgraph retrieval precision 604

and reasoning interpretability. By aligning AMR- 605

derived relations with the knowledge graph, we fil- 606

ter noisy entities and ensure more accurate seman- 607

tic alignment. Experimental results on WebQSP 608

and CWQ show that our method outperforms exist- 609

ing approaches, especially for complex multi-hop 610

questions. Additionally, the incorporation of AMR- 611

derived semantic connections into the adjacency 612

matrix boosts reasoning performance, while pro- 613

viding explicit and interpretable reasoning chains. 614
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6 Limitations615

Dependence on AMR Parsing Quality. Our616

approach heavily relies on AMR parsing quality617

to construct meaningful relations. Errors in predi-618

cate or entity identification can propagate through619

subsequent stages, affecting subgraph retrieval and620

reasoning. This limitation underscores the need for621

improved AMR parsing tools or robust strategies622

to mitigate parsing errors.623

Handling Ambiguous or Incomplete Questions.624

Our method assumes that input questions are well-625

formed and contain sufficient semantic information626

for AMR parsing. However, in real-world scenar-627

ios, questions may be ambiguous, incomplete, or628

grammatically incorrect, which can degrade pars-629

ing quality and hinder subgraph retrieval. Address-630

ing this limitation may require preprocessing tech-631

niques to refine input questions or error-tolerant632

AMR parsing models.633

Interpretability of Reasoning Paths. Although634

our method improves interpretability by construct-635

ing reasoning chains from AMR graphs, the gener-636

ated paths rely on predefined rules and heuristics.637

This limits their flexibility and may fail to capture638

nuanced semantic relations. A promising direc-639

tion for improvement involves integrating learning-640

based approaches to dynamically generate more641

adaptive reasoning paths.642
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